aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-stm32.c
blob: e29818abbeaf462e624ce558a25bf4ded90ea424 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
generated by cgit 1.2.3-korg (git 2.39.0) at 2024-06-15 00:34:51 +0000
 


1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
// SPDX-License-Identifier: GPL-2.0
//
// STMicroelectronics STM32 SPI Controller driver (master mode only)
//
// Copyright (C) 2017, STMicroelectronics - All Rights Reserved
// Author(s): Amelie Delaunay <amelie.delaunay@st.com> for STMicroelectronics.

#include <linux/debugfs.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/of_platform.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#include <linux/spi/spi.h>

#define DRIVER_NAME "spi_stm32"

/* STM32F4 SPI registers */
#define STM32F4_SPI_CR1			0x00
#define STM32F4_SPI_CR2			0x04
#define STM32F4_SPI_SR			0x08
#define STM32F4_SPI_DR			0x0C
#define STM32F4_SPI_I2SCFGR		0x1C

/* STM32F4_SPI_CR1 bit fields */
#define STM32F4_SPI_CR1_CPHA		BIT(0)
#define STM32F4_SPI_CR1_CPOL		BIT(1)
#define STM32F4_SPI_CR1_MSTR		BIT(2)
#define STM32F4_SPI_CR1_BR_SHIFT	3
#define STM32F4_SPI_CR1_BR		GENMASK(5, 3)
#define STM32F4_SPI_CR1_SPE		BIT(6)
#define STM32F4_SPI_CR1_LSBFRST		BIT(7)
#define STM32F4_SPI_CR1_SSI		BIT(8)
#define STM32F4_SPI_CR1_SSM		BIT(9)
#define STM32F4_SPI_CR1_RXONLY		BIT(10)
#define STM32F4_SPI_CR1_DFF		BIT(11)
#define STM32F4_SPI_CR1_CRCNEXT		BIT(12)
#define STM32F4_SPI_CR1_CRCEN		BIT(13)
#define STM32F4_SPI_CR1_BIDIOE		BIT(14)
#define STM32F4_SPI_CR1_BIDIMODE	BIT(15)
#define STM32F4_SPI_CR1_BR_MIN		0
#define STM32F4_SPI_CR1_BR_MAX		(GENMASK(5, 3) >> 3)

/* STM32F4_SPI_CR2 bit fields */
#define STM32F4_SPI_CR2_RXDMAEN		BIT(0)
#define STM32F4_SPI_CR2_TXDMAEN		BIT(1)
#define STM32F4_SPI_CR2_SSOE		BIT(2)
#define STM32F4_SPI_CR2_FRF		BIT(4)
#define STM32F4_SPI_CR2_ERRIE		BIT(5)
#define STM32F4_SPI_CR2_RXNEIE		BIT(6)
#define STM32F4_SPI_CR2_TXEIE		BIT(7)

/* STM32F4_SPI_SR bit fields */
#define STM32F4_SPI_SR_RXNE		BIT(0)
#define STM32F4_SPI_SR_TXE		BIT(1)
#define STM32F4_SPI_SR_CHSIDE		BIT(2)
#define STM32F4_SPI_SR_UDR		BIT(3)
#define STM32F4_SPI_SR_CRCERR		BIT(4)
#define STM32F4_SPI_SR_MODF		BIT(5)
#define STM32F4_SPI_SR_OVR		BIT(6)
#define STM32F4_SPI_SR_BSY		BIT(7)
#define STM32F4_SPI_SR_FRE		BIT(8)

/* STM32F4_SPI_I2SCFGR bit fields */
#define STM32F4_SPI_I2SCFGR_I2SMOD	BIT(11)

/* STM32F4 SPI Baud Rate min/max divisor */
#define STM32F4_SPI_BR_DIV_MIN		(2 << STM32F4_SPI_CR1_BR_MIN)
#define STM32F4_SPI_BR_DIV_MAX		(2 << STM32F4_SPI_CR1_BR_MAX)

/* STM32H7 SPI registers */
#define STM32H7_SPI_CR1			0x00
#define STM32H7_SPI_CR2			0x04
#define STM32H7_SPI_CFG1		0x08
#define STM32H7_SPI_CFG2		0x0C
#define STM32H7_SPI_IER			0x10
#define STM32H7_SPI_SR			0x14
#define STM32H7_SPI_IFCR		0x18
#define STM32H7_SPI_TXDR		0x20
#define STM32H7_SPI_RXDR		0x30
#define STM32H7_SPI_I2SCFGR		0x50

/* STM32H7_SPI_CR1 bit fields */
#define STM32H7_SPI_CR1_SPE		BIT(0)
#define STM32H7_SPI_CR1_MASRX		BIT(8)
#define STM32H7_SPI_CR1_CSTART		BIT(9)
#define STM32H7_SPI_CR1_CSUSP		BIT(10)
#define STM32H7_SPI_CR1_HDDIR		BIT(11)
#define STM32H7_SPI_CR1_SSI		BIT(12)

/* STM32H7_SPI_CR2 bit fields */
#define STM32H7_SPI_CR2_TSIZE_SHIFT	0
#define STM32H7_SPI_CR2_TSIZE		GENMASK(15, 0)

/* STM32H7_SPI_CFG1 bit fields */
#define STM32H7_SPI_CFG1_DSIZE_SHIFT	0
#define STM32H7_SPI_CFG1_DSIZE		GENMASK(4, 0)
#define STM32H7_SPI_CFG1_FTHLV_SHIFT	5
#define STM32H7_SPI_CFG1_FTHLV		GENMASK(8, 5)
#define STM32H7_SPI_CFG1_RXDMAEN	BIT(14)
#define STM32H7_SPI_CFG1_TXDMAEN	BIT(15)
#define STM32H7_SPI_CFG1_MBR_SHIFT	28
#define STM32H7_SPI_CFG1_MBR		GENMASK(30, 28)
#define STM32H7_SPI_CFG1_MBR_MIN	0
#define STM32H7_SPI_CFG1_MBR_MAX	(GENMASK(30, 28) >> 28)

/* STM32H7_SPI_CFG2 bit fields */
#define STM32H7_SPI_CFG2_MIDI_SHIFT	4
#define STM32H7_SPI_CFG2_MIDI		GENMASK(7, 4)
#define STM32H7_SPI_CFG2_COMM_SHIFT	17
#define STM32H7_SPI_CFG2_COMM		GENMASK(18, 17)
#define STM32H7_SPI_CFG2_SP_SHIFT	19
#define STM32H7_SPI_CFG2_SP		GENMASK(21, 19)
#define STM32H7_SPI_CFG2_MASTER		BIT(22)
#define STM32H7_SPI_CFG2_LSBFRST	BIT(23)
#define STM32H7_SPI_CFG2_CPHA		BIT(24)
#define STM32H7_SPI_CFG2_CPOL		BIT(25)
#define STM32H7_SPI_CFG2_SSM		BIT(26)
#define STM32H7_SPI_CFG2_AFCNTR		BIT(31)

/* STM32H7_SPI_IER bit fields */
#define STM32H7_SPI_IER_RXPIE		BIT(0)
#define STM32H7_SPI_IER_TXPIE		BIT(1)
#define STM32H7_SPI_IER_DXPIE		BIT(2)
#define STM32H7_SPI_IER_EOTIE		BIT(3)
#define STM32H7_SPI_IER_TXTFIE		BIT(4)
#define STM32H7_SPI_IER_OVRIE		BIT(6)
#define STM32H7_SPI_IER_MODFIE		BIT(9)
#define STM32H7_SPI_IER_ALL		GENMASK(10, 0)

/* STM32H7_SPI_SR bit fields */
#define STM32H7_SPI_SR_RXP		BIT(0)
#define STM32H7_SPI_SR_TXP		BIT(1)
#define STM32H7_SPI_SR_EOT		BIT(3)
#define STM32H7_SPI_SR_OVR		BIT(6)
#define STM32H7_SPI_SR_MODF		BIT(9)
#define STM32H7_SPI_SR_SUSP		BIT(11)
#define STM32H7_SPI_SR_RXPLVL_SHIFT	13
#define STM32H7_SPI_SR_RXPLVL		GENMASK(14, 13)
#define STM32H7_SPI_SR_RXWNE		BIT(15)

/* STM32H7_SPI_IFCR bit fields */
#define STM32H7_SPI_IFCR_ALL		GENMASK(11, 3)

/* STM32H7_SPI_I2SCFGR bit fields */
#define STM32H7_SPI_I2SCFGR_I2SMOD	BIT(0)

/* STM32H7 SPI Master Baud Rate min/max divisor */
#define STM32H7_SPI_MBR_DIV_MIN		(2 << STM32H7_SPI_CFG1_MBR_MIN)
#define STM32H7_SPI_MBR_DIV_MAX		(2 << STM32H7_SPI_CFG1_MBR_MAX)

/* STM32H7 SPI Communication mode */
#define STM32H7_SPI_FULL_DUPLEX		0
#define STM32H7_SPI_SIMPLEX_TX		1
#define STM32H7_SPI_SIMPLEX_RX		2
#define STM32H7_SPI_HALF_DUPLEX		3

/* SPI Communication type */
#define SPI_FULL_DUPLEX		0
#define SPI_SIMPLEX_TX		1
#define SPI_SIMPLEX_RX		2
#define SPI_3WIRE_TX		3
#define SPI_3WIRE_RX		4

#define SPI_1HZ_NS		1000000000

/*
 * use PIO for small transfers, avoiding DMA setup/teardown overhead for drivers
 * without fifo buffers.
 */
#define SPI_DMA_MIN_BYTES	16

/**
 * struct stm32_spi_reg - stm32 SPI register & bitfield desc
 * @reg:		register offset
 * @mask:		bitfield mask
 * @shift:		left shift
 */
struct stm32_spi_reg {
	int reg;
	int mask;
	int shift;
};

/**
 * struct stm32_spi_regspec - stm32 registers definition, compatible dependent data
 * @en: enable register and SPI enable bit
 * @dma_rx_en: SPI DMA RX enable register end SPI DMA RX enable bit
 * @dma_tx_en: SPI DMA TX enable register end SPI DMA TX enable bit
 * @cpol: clock polarity register and polarity bit
 * @cpha: clock phase register and phase bit
 * @lsb_first: LSB transmitted first register and bit
 * @br: baud rate register and bitfields
 * @rx: SPI RX data register
 * @tx: SPI TX data register
 */
struct stm32_spi_regspec {
	const struct stm32_spi_reg en;
	const struct stm32_spi_reg dma_rx_en;
	const struct stm32_spi_reg dma_tx_en;
	const struct stm32_spi_reg cpol;
	const struct stm32_spi_reg cpha;
	const struct stm32_spi_reg lsb_first;
	const struct stm32_spi_reg br;
	const struct stm32_spi_reg rx;
	const struct stm32_spi_reg tx;
};

struct stm32_spi;

/**
 * struct stm32_spi_cfg - stm32 compatible configuration data
 * @regs: registers descriptions
 * @get_fifo_size: routine to get fifo size
 * @get_bpw_mask: routine to get bits per word mask
 * @disable: routine to disable controller
 * @config: routine to configure controller as SPI Master
 * @set_bpw: routine to configure registers to for bits per word
 * @set_mode: routine to configure registers to desired mode
 * @set_data_idleness: optional routine to configure registers to desired idle
 * time between frames (if driver has this functionality)
 * @set_number_of_data: optional routine to configure registers to desired
 * number of data (if driver has this functionality)
 * @can_dma: routine to determine if the transfer is eligible for DMA use
 * @transfer_one_dma_start: routine to start transfer a single spi_transfer
 * using DMA
 * @dma_rx_cb: routine to call after DMA RX channel operation is complete
 * @dma_tx_cb: routine to call after DMA TX channel operation is complete
 * @transfer_one_irq: routine to configure interrupts for driver
 * @irq_handler_event: Interrupt handler for SPI controller events
 * @irq_handler_thread: thread of interrupt handler for SPI controller
 * @baud_rate_div_min: minimum baud rate divisor
 * @baud_rate_div_max: maximum baud rate divisor
 * @has_fifo: boolean to know if fifo is used for driver
 * @has_startbit: boolean to know if start bit is used to start transfer
 */
struct stm32_spi_cfg {
	const struct stm32_spi_regspec *regs;
	int (*get_fifo_size)(struct stm32_spi *spi);
	int (*get_bpw_mask)(struct stm32_spi *spi);
	void (*disable)(struct stm32_spi *spi);
	int (*config)(struct stm32_spi *spi);
	void (*set_bpw)(struct stm32_spi *spi);
	int (*set_mode)(struct stm32_spi *spi, unsigned int comm_type);
	void (*set_data_idleness)(struct stm32_spi *spi, u32 length);
	int (*set_number_of_data)(struct stm32_spi *spi, u32 length);
	void (*transfer_one_dma_start)(struct stm32_spi *spi);
	void (*dma_rx_cb)(void *data);
	void (*dma_tx_cb)(void *data);
	int (*transfer_one_irq)(struct stm32_spi *spi);
	irqreturn_t (*irq_handler_event)(int irq, void *dev_id);
	irqreturn_t (*irq_handler_thread)(int irq, void *dev_id);
	unsigned int baud_rate_div_min;
	unsigned int baud_rate_div_max;
	bool has_fifo;
};

/**
 * struct stm32_spi - private data of the SPI controller
 * @dev: driver model representation of the controller
 * @master: controller master interface
 * @cfg: compatible configuration data
 * @base: virtual memory area
 * @clk: hw kernel clock feeding the SPI clock generator
 * @clk_rate: rate of the hw kernel clock feeding the SPI clock generator
 * @rst: SPI controller reset line
 * @lock: prevent I/O concurrent access
 * @irq: SPI controller interrupt line
 * @fifo_size: size of the embedded fifo in bytes
 * @cur_midi: master inter-data idleness in ns
 * @cur_speed: speed configured in Hz
 * @cur_bpw: number of bits in a single SPI data frame
 * @cur_fthlv: fifo threshold level (data frames in a single data packet)
 * @cur_comm: SPI communication mode
 * @cur_xferlen: current transfer length in bytes
 * @cur_usedma: boolean to know if dma is used in current transfer
 * @tx_buf: data to be written, or NULL
 * @rx_buf: data to be read, or NULL
 * @tx_len: number of data to be written in bytes
 * @rx_len: number of data to be read in bytes
 * @dma_tx: dma channel for TX transfer
 * @dma_rx: dma channel for RX transfer
 * @phys_addr: SPI registers physical base address
 */
struct stm32_spi {
	struct device *dev;
	struct spi_master *master;
	const struct stm32_spi_cfg *cfg;
	void __iomem *base;
	struct clk *clk;
	u32 clk_rate;
	struct reset_control *rst;
	spinlock_t lock; /* prevent I/O concurrent access */
	int irq;
	unsigned int fifo_size;

	unsigned int cur_midi;
	unsigned int cur_speed;
	unsigned int cur_bpw;
	unsigned int cur_fthlv;
	unsigned int cur_comm;
	unsigned int cur_xferlen;
	bool cur_usedma;

	const void *tx_buf;
	void *rx_buf;
	int tx_len;
	int rx_len;
	struct dma_chan *dma_tx;
	struct dma_chan *dma_rx;
	dma_addr_t phys_addr;
};

static const struct stm32_spi_regspec stm32f4_spi_regspec = {
	.en = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE },

	.dma_rx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_RXDMAEN },
	.dma_tx_en = { STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN },

	.cpol = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPOL },
	.cpha = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_CPHA },
	.lsb_first = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_LSBFRST },
	.br = { STM32F4_SPI_CR1, STM32F4_SPI_CR1_BR, STM32F4_SPI_CR1_BR_SHIFT },

	.rx = { STM32F4_SPI_DR },
	.tx = { STM32F4_SPI_DR },
};

static const struct stm32_spi_regspec stm32h7_spi_regspec = {
	/* SPI data transfer is enabled but spi_ker_ck is idle.
	 * CFG1 and CFG2 registers are write protected when SPE is enabled.
	 */
	.en = { STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE },

	.dma_rx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_RXDMAEN },
	.dma_tx_en = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN },

	.cpol = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPOL },
	.cpha = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_CPHA },
	.lsb_first = { STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_LSBFRST },
	.br = { STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_MBR,
		STM32H7_SPI_CFG1_MBR_SHIFT },

	.rx = { STM32H7_SPI_RXDR },
	.tx = { STM32H7_SPI_TXDR },
};

static inline void stm32_spi_set_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) | bits,
		       spi->base + offset);
}

static inline void stm32_spi_clr_bits(struct stm32_spi *spi,
				      u32 offset, u32 bits)
{
	writel_relaxed(readl_relaxed(spi->base + offset) & ~bits,
		       spi->base + offset);
}

/**
 * stm32h7_spi_get_fifo_size - Return fifo size
 * @spi: pointer to the spi controller data structure
 */
static int stm32h7_spi_get_fifo_size(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 count = 0;

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);

	while (readl_relaxed(spi->base + STM32H7_SPI_SR) & STM32H7_SPI_SR_TXP)
		writeb_relaxed(++count, spi->base + STM32H7_SPI_TXDR);

	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d x 8-bit fifo size\n", count);

	return count;
}

/**
 * stm32f4_spi_get_bpw_mask - Return bits per word mask
 * @spi: pointer to the spi controller data structure
 */
static int stm32f4_spi_get_bpw_mask(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "8-bit or 16-bit data frame supported\n");
	return SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
}

/**
 * stm32h7_spi_get_bpw_mask - Return bits per word mask
 * @spi: pointer to the spi controller data structure
 */
static int stm32h7_spi_get_bpw_mask(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cfg1, max_bpw;

	spin_lock_irqsave(&spi->lock, flags);

	/*
	 * The most significant bit at DSIZE bit field is reserved when the
	 * maximum data size of periperal instances is limited to 16-bit
	 */
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_DSIZE);

	cfg1 = readl_relaxed(spi->base + STM32H7_SPI_CFG1);
	max_bpw = (cfg1 & STM32H7_SPI_CFG1_DSIZE) >>
		  STM32H7_SPI_CFG1_DSIZE_SHIFT;
	max_bpw += 1;

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_dbg(spi->dev, "%d-bit maximum data frame\n", max_bpw);

	return SPI_BPW_RANGE_MASK(4, max_bpw);
}

/**
 * stm32_spi_prepare_mbr - Determine baud rate divisor value
 * @spi: pointer to the spi controller data structure
 * @speed_hz: requested speed
 * @min_div: minimum baud rate divisor
 * @max_div: maximum baud rate divisor
 *
 * Return baud rate divisor value in case of success or -EINVAL
 */
static int stm32_spi_prepare_mbr(struct stm32_spi *spi, u32 speed_hz,
				 u32 min_div, u32 max_div)
{
	u32 div, mbrdiv;

	div = DIV_ROUND_UP(spi->clk_rate, speed_hz);

	/*
	 * SPI framework set xfer->speed_hz to master->max_speed_hz if
	 * xfer->speed_hz is greater than master->max_speed_hz, and it returns
	 * an error when xfer->speed_hz is lower than master->min_speed_hz, so
	 * no need to check it there.
	 * However, we need to ensure the following calculations.
	 */
	if ((div < min_div) || (div > max_div))
		return -EINVAL;

	/* Determine the first power of 2 greater than or equal to div */
	if (div & (div - 1))
		mbrdiv = fls(div);
	else
		mbrdiv = fls(div) - 1;

	spi->cur_speed = spi->clk_rate / (1 << mbrdiv);

	return mbrdiv - 1;
}

/**
 * stm32h7_spi_prepare_fthlv - Determine FIFO threshold level
 * @spi: pointer to the spi controller data structure
 */
static u32 stm32h7_spi_prepare_fthlv(struct stm32_spi *spi)
{
	u32 fthlv, half_fifo;

	/* data packet should not exceed 1/2 of fifo space */
	half_fifo = (spi->fifo_size / 2);

	if (spi->cur_bpw <= 8)
		fthlv = half_fifo;
	else if (spi->cur_bpw <= 16)
		fthlv = half_fifo / 2;
	else
		fthlv = half_fifo / 4;

	/* align packet size with data registers access */
	if (spi->cur_bpw > 8)
		fthlv -= (fthlv % 2); /* multiple of 2 */
	else
		fthlv -= (fthlv % 4); /* multiple of 4 */

	return fthlv;
}

/**
 * stm32f4_spi_write_tx - Write bytes to Transmit Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
static void stm32f4_spi_write_tx(struct stm32_spi *spi)
{
	if ((spi->tx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_TXE)) {
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->cur_bpw == 16) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

			writew_relaxed(*tx_buf16, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

			writeb_relaxed(*tx_buf8, spi->base + STM32F4_SPI_DR);
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

/**
 * stm32h7_spi_write_txfifo - Write bytes in Transmit Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Read from tx_buf depends on remaining bytes to avoid to read beyond
 * tx_buf end.
 */
static void stm32h7_spi_write_txfifo(struct stm32_spi *spi)
{
	while ((spi->tx_len > 0) &&
		       (readl_relaxed(spi->base + STM32H7_SPI_SR) &
			STM32H7_SPI_SR_TXP)) {
		u32 offs = spi->cur_xferlen - spi->tx_len;

		if (spi->tx_len >= sizeof(u32)) {
			const u32 *tx_buf32 = (const u32 *)(spi->tx_buf + offs);

			writel_relaxed(*tx_buf32, spi->base + STM32H7_SPI_TXDR);
			spi->tx_len -= sizeof(u32);
		} else if (spi->tx_len >= sizeof(u16)) {
			const u16 *tx_buf16 = (const u16 *)(spi->tx_buf + offs);

			writew_relaxed(*tx_buf16, spi->base + STM32H7_SPI_TXDR);
			spi->tx_len -= sizeof(u16);
		} else {
			const u8 *tx_buf8 = (const u8 *)(spi->tx_buf + offs);

			writeb_relaxed(*tx_buf8, spi->base + STM32H7_SPI_TXDR);
			spi->tx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->tx_len);
}

/**
 * stm32f4_spi_read_rx - Read bytes from Receive Data Register
 * @spi: pointer to the spi controller data structure
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
static void stm32f4_spi_read_rx(struct stm32_spi *spi)
{
	if ((spi->rx_len > 0) && (readl_relaxed(spi->base + STM32F4_SPI_SR) &
				  STM32F4_SPI_SR_RXNE)) {
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if (spi->cur_bpw == 16) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

			*rx_buf16 = readw_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

			*rx_buf8 = readb_relaxed(spi->base + STM32F4_SPI_DR);
			spi->rx_len -= sizeof(u8);
		}
	}

	dev_dbg(spi->dev, "%s: %d bytes left\n", __func__, spi->rx_len);
}

/**
 * stm32h7_spi_read_rxfifo - Read bytes in Receive Data Register
 * @spi: pointer to the spi controller data structure
 * @flush: boolean indicating that FIFO should be flushed
 *
 * Write in rx_buf depends on remaining bytes to avoid to write beyond
 * rx_buf end.
 */
static void stm32h7_spi_read_rxfifo(struct stm32_spi *spi, bool flush)
{
	u32 sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	u32 rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
		     STM32H7_SPI_SR_RXPLVL_SHIFT;

	while ((spi->rx_len > 0) &&
	       ((sr & STM32H7_SPI_SR_RXP) ||
		(flush && ((sr & STM32H7_SPI_SR_RXWNE) || (rxplvl > 0))))) {
		u32 offs = spi->cur_xferlen - spi->rx_len;

		if ((spi->rx_len >= sizeof(u32)) ||
		    (flush && (sr & STM32H7_SPI_SR_RXWNE))) {
			u32 *rx_buf32 = (u32 *)(spi->rx_buf + offs);

			*rx_buf32 = readl_relaxed(spi->base + STM32H7_SPI_RXDR);
			spi->rx_len -= sizeof(u32);
		} else if ((spi->rx_len >= sizeof(u16)) ||
			   (flush && (rxplvl >= 2 || spi->cur_bpw > 8))) {
			u16 *rx_buf16 = (u16 *)(spi->rx_buf + offs);

			*rx_buf16 = readw_relaxed(spi->base + STM32H7_SPI_RXDR);
			spi->rx_len -= sizeof(u16);
		} else {
			u8 *rx_buf8 = (u8 *)(spi->rx_buf + offs);

			*rx_buf8 = readb_relaxed(spi->base + STM32H7_SPI_RXDR);
			spi->rx_len -= sizeof(u8);
		}

		sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
		rxplvl = (sr & STM32H7_SPI_SR_RXPLVL) >>
			 STM32H7_SPI_SR_RXPLVL_SHIFT;
	}

	dev_dbg(spi->dev, "%s%s: %d bytes left\n", __func__,
		flush ? "(flush)" : "", spi->rx_len);
}

/**
 * stm32_spi_enable - Enable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32_spi_enable(struct stm32_spi *spi)
{
	dev_dbg(spi->dev, "enable controller\n");

	stm32_spi_set_bits(spi, spi->cfg->regs->en.reg,
			   spi->cfg->regs->en.mask);
}

/**
 * stm32f4_spi_disable - Disable SPI controller
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_disable(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

	if (!(readl_relaxed(spi->base + STM32F4_SPI_CR1) &
	      STM32F4_SPI_CR1_SPE)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Disable interrupts */
	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXEIE |
						 STM32F4_SPI_CR2_RXNEIE |
						 STM32F4_SPI_CR2_ERRIE);

	/* Wait until BSY = 0 */
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32F4_SPI_SR,
					      sr, !(sr & STM32F4_SPI_SR_BSY),
					      10, 100000) < 0) {
		dev_warn(spi->dev, "disabling condition timeout\n");
	}

	if (spi->cur_usedma && spi->dma_tx)
		dmaengine_terminate_all(spi->dma_tx);
	if (spi->cur_usedma && spi->dma_rx)
		dmaengine_terminate_all(spi->dma_rx);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SPE);

	stm32_spi_clr_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_TXDMAEN |
						 STM32F4_SPI_CR2_RXDMAEN);

	/* Sequence to clear OVR flag */
	readl_relaxed(spi->base + STM32F4_SPI_DR);
	readl_relaxed(spi->base + STM32F4_SPI_SR);

	spin_unlock_irqrestore(&spi->lock, flags);
}

/**
 * stm32h7_spi_disable - Disable SPI controller
 * @spi: pointer to the spi controller data structure
 *
 * RX-Fifo is flushed when SPI controller is disabled. To prevent any data
 * loss, use stm32h7_spi_read_rxfifo(flush) to read the remaining bytes in
 * RX-Fifo.
 * Normally, if TSIZE has been configured, we should relax the hardware at the
 * reception of the EOT interrupt. But in case of error, EOT will not be
 * raised. So the subsystem unprepare_message call allows us to properly
 * complete the transfer from an hardware point of view.
 */
static void stm32h7_spi_disable(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cr1, sr;

	dev_dbg(spi->dev, "disable controller\n");

	spin_lock_irqsave(&spi->lock, flags);

	cr1 = readl_relaxed(spi->base + STM32H7_SPI_CR1);

	if (!(cr1 & STM32H7_SPI_CR1_SPE)) {
		spin_unlock_irqrestore(&spi->lock, flags);
		return;
	}

	/* Wait on EOT or suspend the flow */
	if (readl_relaxed_poll_timeout_atomic(spi->base + STM32H7_SPI_SR,
					      sr, !(sr & STM32H7_SPI_SR_EOT),
					      10, 100000) < 0) {
		if (cr1 & STM32H7_SPI_CR1_CSTART) {
			writel_relaxed(cr1 | STM32H7_SPI_CR1_CSUSP,
				       spi->base + STM32H7_SPI_CR1);
			if (readl_relaxed_poll_timeout_atomic(
						spi->base + STM32H7_SPI_SR,
						sr, !(sr & STM32H7_SPI_SR_SUSP),
						10, 100000) < 0)
				dev_warn(spi->dev,
					 "Suspend request timeout\n");
		}
	}

	if (!spi->cur_usedma && spi->rx_buf && (spi->rx_len > 0))
		stm32h7_spi_read_rxfifo(spi, true);

	if (spi->cur_usedma && spi->dma_tx)
		dmaengine_terminate_all(spi->dma_tx);
	if (spi->cur_usedma && spi->dma_rx)
		dmaengine_terminate_all(spi->dma_rx);

	stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SPE);

	stm32_spi_clr_bits(spi, STM32H7_SPI_CFG1, STM32H7_SPI_CFG1_TXDMAEN |
						STM32H7_SPI_CFG1_RXDMAEN);

	/* Disable interrupts and clear status flags */
	writel_relaxed(0, spi->base + STM32H7_SPI_IER);
	writel_relaxed(STM32H7_SPI_IFCR_ALL, spi->base + STM32H7_SPI_IFCR);

	spin_unlock_irqrestore(&spi->lock, flags);
}

/**
 * stm32_spi_can_dma - Determine if the transfer is eligible for DMA use
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
 *
 * If driver has fifo and the current transfer size is greater than fifo size,
 * use DMA. Otherwise use DMA for transfer longer than defined DMA min bytes.
 */
static bool stm32_spi_can_dma(struct spi_master *master,
			      struct spi_device *spi_dev,
			      struct spi_transfer *transfer)
{
	unsigned int dma_size;
	struct stm32_spi *spi = spi_master_get_devdata(master);

	if (spi->cfg->has_fifo)
		dma_size = spi->fifo_size;
	else
		dma_size = SPI_DMA_MIN_BYTES;

	dev_dbg(spi->dev, "%s: %s\n", __func__,
		(transfer->len > dma_size) ? "true" : "false");

	return (transfer->len > dma_size);
}

/**
 * stm32f4_spi_irq_event - Interrupt handler for SPI controller events
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_event(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, mask = 0;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32F4_SPI_SR);
	/*
	 * BSY flag is not handled in interrupt but it is normal behavior when
	 * this flag is set.
	 */
	sr &= ~STM32F4_SPI_SR_BSY;

	if (!spi->cur_usedma && (spi->cur_comm == SPI_SIMPLEX_TX ||
				 spi->cur_comm == SPI_3WIRE_TX)) {
		/* OVR flag shouldn't be handled for TX only mode */
		sr &= ~STM32F4_SPI_SR_OVR | STM32F4_SPI_SR_RXNE;
		mask |= STM32F4_SPI_SR_TXE;
	}

	if (!spi->cur_usedma && spi->cur_comm == SPI_FULL_DUPLEX) {
		/* TXE flag is set and is handled when RXNE flag occurs */
		sr &= ~STM32F4_SPI_SR_TXE;
		mask |= STM32F4_SPI_SR_RXNE | STM32F4_SPI_SR_OVR;
	}

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x)\n", sr);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

	if (sr & STM32F4_SPI_SR_OVR) {
		dev_warn(spi->dev, "Overrun: received value discarded\n");

		/* Sequence to clear OVR flag */
		readl_relaxed(spi->base + STM32F4_SPI_DR);
		readl_relaxed(spi->base + STM32F4_SPI_SR);

		/*
		 * If overrun is detected, it means that something went wrong,
		 * so stop the current transfer. Transfer can wait for next
		 * RXNE but DR is already read and end never happens.
		 */
		end = true;
		goto end_irq;
	}

	if (sr & STM32F4_SPI_SR_TXE) {
		if (spi->tx_buf)
			stm32f4_spi_write_tx(spi);
		if (spi->tx_len == 0)
			end = true;
	}

	if (sr & STM32F4_SPI_SR_RXNE) {
		stm32f4_spi_read_rx(spi);
		if (spi->rx_len == 0)
			end = true;
		else /* Load data for discontinuous mode */
			stm32f4_spi_write_tx(spi);
	}

end_irq:
	if (end) {
		/* Immediately disable interrupts to do not generate new one */
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR2,
					STM32F4_SPI_CR2_TXEIE |
					STM32F4_SPI_CR2_RXNEIE |
					STM32F4_SPI_CR2_ERRIE);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_WAKE_THREAD;
	}

	spin_unlock_irqrestore(&spi->lock, flags);
	return IRQ_HANDLED;
}

/**
 * stm32f4_spi_irq_thread - Thread of interrupt handler for SPI controller
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32f4_spi_irq_thread(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);

	spi_finalize_current_transfer(master);
	stm32f4_spi_disable(spi);

	return IRQ_HANDLED;
}

/**
 * stm32h7_spi_irq_thread - Thread of interrupt handler for SPI controller
 * @irq: interrupt line
 * @dev_id: SPI controller master interface
 */
static irqreturn_t stm32h7_spi_irq_thread(int irq, void *dev_id)
{
	struct spi_master *master = dev_id;
	struct stm32_spi *spi = spi_master_get_devdata(master);
	u32 sr, ier, mask;
	unsigned long flags;
	bool end = false;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);
	ier = readl_relaxed(spi->base + STM32H7_SPI_IER);

	mask = ier;
	/* EOTIE is triggered on EOT, SUSP and TXC events. */
	mask |= STM32H7_SPI_SR_SUSP;
	/*
	 * When TXTF is set, DXPIE and TXPIE are cleared. So in case of
	 * Full-Duplex, need to poll RXP event to know if there are remaining
	 * data, before disabling SPI.
	 */
	if (spi->rx_buf && !spi->cur_usedma)
		mask |= STM32H7_SPI_SR_RXP;

	if (!(sr & mask)) {
		dev_dbg(spi->dev, "spurious IT (sr=0x%08x, ier=0x%08x)\n",
			sr, ier);
		spin_unlock_irqrestore(&spi->lock, flags);
		return IRQ_NONE;
	}

	if (sr & STM32H7_SPI_SR_SUSP) {
		dev_warn(spi->dev, "Communication suspended\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32h7_spi_read_rxfifo(spi, false);
		/*
		 * If communication is suspended while using DMA, it means
		 * that something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
	}

	if (sr & STM32H7_SPI_SR_MODF) {
		dev_warn(spi->dev, "Mode fault: transfer aborted\n");
		end = true;
	}

	if (sr & STM32H7_SPI_SR_OVR) {
		dev_warn(spi->dev, "Overrun: received value discarded\n");
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32h7_spi_read_rxfifo(spi, false);
		/*
		 * If overrun is detected while using DMA, it means that
		 * something went wrong, so stop the current transfer
		 */
		if (spi->cur_usedma)
			end = true;
	}

	if (sr & STM32H7_SPI_SR_EOT) {
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32h7_spi_read_rxfifo(spi, true);
		end = true;
	}

	if (sr & STM32H7_SPI_SR_TXP)
		if (!spi->cur_usedma && (spi->tx_buf && (spi->tx_len > 0)))
			stm32h7_spi_write_txfifo(spi);

	if (sr & STM32H7_SPI_SR_RXP)
		if (!spi->cur_usedma && (spi->rx_buf && (spi->rx_len > 0)))
			stm32h7_spi_read_rxfifo(spi, false);

	writel_relaxed(mask, spi->base + STM32H7_SPI_IFCR);

	spin_unlock_irqrestore(&spi->lock, flags);

	if (end) {
		spi_finalize_current_transfer(master);
		stm32h7_spi_disable(spi);
	}

	return IRQ_HANDLED;
}

/**
 * stm32_spi_prepare_msg - set up the controller to transfer a single message
 * @master: controller master interface
 * @msg: pointer to spi message
 */
static int stm32_spi_prepare_msg(struct spi_master *master,
				 struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	struct spi_device *spi_dev = msg->spi;
	struct device_node *np = spi_dev->dev.of_node;
	unsigned long flags;
	u32 clrb = 0, setb = 0;

	/* SPI slave device may need time between data frames */
	spi->cur_midi = 0;
	if (np && !of_property_read_u32(np, "st,spi-midi-ns", &spi->cur_midi))
		dev_dbg(spi->dev, "%dns inter-data idleness\n", spi->cur_midi);

	if (spi_dev->mode & SPI_CPOL)
		setb |= spi->cfg->regs->cpol.mask;
	else
		clrb |= spi->cfg->regs->cpol.mask;

	if (spi_dev->mode & SPI_CPHA)
		setb |= spi->cfg->regs->cpha.mask;
	else
		clrb |= spi->cfg->regs->cpha.mask;

	if (spi_dev->mode & SPI_LSB_FIRST)
		setb |= spi->cfg->regs->lsb_first.mask;
	else
		clrb |= spi->cfg->regs->lsb_first.mask;

	dev_dbg(spi->dev, "cpol=%d cpha=%d lsb_first=%d cs_high=%d\n",
		spi_dev->mode & SPI_CPOL,
		spi_dev->mode & SPI_CPHA,
		spi_dev->mode & SPI_LSB_FIRST,
		spi_dev->mode & SPI_CS_HIGH);

	spin_lock_irqsave(&spi->lock, flags);

	/* CPOL, CPHA and LSB FIRST bits have common register */
	if (clrb || setb)
		writel_relaxed(
			(readl_relaxed(spi->base + spi->cfg->regs->cpol.reg) &
			 ~clrb) | setb,
			spi->base + spi->cfg->regs->cpol.reg);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

/**
 * stm32f4_spi_dma_tx_cb - dma callback
 * @data: pointer to the spi controller data structure
 *
 * DMA callback is called when the transfer is complete for DMA TX channel.
 */
static void stm32f4_spi_dma_tx_cb(void *data)
{
	struct stm32_spi *spi = data;

	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		spi_finalize_current_transfer(spi->master);
		stm32f4_spi_disable(spi);
	}
}

/**
 * stm32f4_spi_dma_rx_cb - dma callback
 * @data: pointer to the spi controller data structure
 *
 * DMA callback is called when the transfer is complete for DMA RX channel.
 */
static void stm32f4_spi_dma_rx_cb(void *data)
{
	struct stm32_spi *spi = data;

	spi_finalize_current_transfer(spi->master);
	stm32f4_spi_disable(spi);
}

/**
 * stm32h7_spi_dma_cb - dma callback
 * @data: pointer to the spi controller data structure
 *
 * DMA callback is called when the transfer is complete or when an error
 * occurs. If the transfer is complete, EOT flag is raised.
 */
static void stm32h7_spi_dma_cb(void *data)
{
	struct stm32_spi *spi = data;
	unsigned long flags;
	u32 sr;

	spin_lock_irqsave(&spi->lock, flags);

	sr = readl_relaxed(spi->base + STM32H7_SPI_SR);

	spin_unlock_irqrestore(&spi->lock, flags);

	if (!(sr & STM32H7_SPI_SR_EOT))
		dev_warn(spi->dev, "DMA error (sr=0x%08x)\n", sr);

	/* Now wait for EOT, or SUSP or OVR in case of error */
}

/**
 * stm32_spi_dma_config - configure dma slave channel depending on current
 *			  transfer bits_per_word.
 * @spi: pointer to the spi controller data structure
 * @dma_conf: pointer to the dma_slave_config structure
 * @dir: direction of the dma transfer
 */
static void stm32_spi_dma_config(struct stm32_spi *spi,
				 struct dma_slave_config *dma_conf,
				 enum dma_transfer_direction dir)
{
	enum dma_slave_buswidth buswidth;
	u32 maxburst;

	if (spi->cur_bpw <= 8)
		buswidth = DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (spi->cur_bpw <= 16)
		buswidth = DMA_SLAVE_BUSWIDTH_2_BYTES;
	else
		buswidth = DMA_SLAVE_BUSWIDTH_4_BYTES;

	if (spi->cfg->has_fifo) {
		/* Valid for DMA Half or Full Fifo threshold */
		if (spi->cur_fthlv == 2)
			maxburst = 1;
		else
			maxburst = spi->cur_fthlv;
	} else {
		maxburst = 1;
	}

	memset(dma_conf, 0, sizeof(struct dma_slave_config));
	dma_conf->direction = dir;
	if (dma_conf->direction == DMA_DEV_TO_MEM) { /* RX */
		dma_conf->src_addr = spi->phys_addr + spi->cfg->regs->rx.reg;
		dma_conf->src_addr_width = buswidth;
		dma_conf->src_maxburst = maxburst;

		dev_dbg(spi->dev, "Rx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	} else if (dma_conf->direction == DMA_MEM_TO_DEV) { /* TX */
		dma_conf->dst_addr = spi->phys_addr + spi->cfg->regs->tx.reg;
		dma_conf->dst_addr_width = buswidth;
		dma_conf->dst_maxburst = maxburst;

		dev_dbg(spi->dev, "Tx DMA config buswidth=%d, maxburst=%d\n",
			buswidth, maxburst);
	}
}

/**
 * stm32f4_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
 * @spi: pointer to the spi controller data structure
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32f4_spi_transfer_one_irq(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 cr2 = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->cur_comm == SPI_SIMPLEX_TX || spi->cur_comm == SPI_3WIRE_TX) {
		cr2 |= STM32F4_SPI_CR2_TXEIE;
	} else if (spi->cur_comm == SPI_FULL_DUPLEX) {
		/* In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		cr2 |= STM32F4_SPI_CR2_RXNEIE | STM32F4_SPI_CR2_ERRIE;
	} else {
		return -EINVAL;
	}

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_set_bits(spi, STM32F4_SPI_CR2, cr2);

	stm32_spi_enable(spi);

	/* starting data transfer when buffer is loaded */
	if (spi->tx_buf)
		stm32f4_spi_write_tx(spi);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

/**
 * stm32h7_spi_transfer_one_irq - transfer a single spi_transfer using
 *				  interrupts
 * @spi: pointer to the spi controller data structure
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32h7_spi_transfer_one_irq(struct stm32_spi *spi)
{
	unsigned long flags;
	u32 ier = 0;

	/* Enable the interrupts relative to the current communication mode */
	if (spi->tx_buf && spi->rx_buf)	/* Full Duplex */
		ier |= STM32H7_SPI_IER_DXPIE;
	else if (spi->tx_buf)		/* Half-Duplex TX dir or Simplex TX */
		ier |= STM32H7_SPI_IER_TXPIE;
	else if (spi->rx_buf)		/* Half-Duplex RX dir or Simplex RX */
		ier |= STM32H7_SPI_IER_RXPIE;

	/* Enable the interrupts relative to the end of transfer */
	ier |= STM32H7_SPI_IER_EOTIE | STM32H7_SPI_IER_TXTFIE |
	       STM32H7_SPI_IER_OVRIE | STM32H7_SPI_IER_MODFIE;

	spin_lock_irqsave(&spi->lock, flags);

	stm32_spi_enable(spi);

	/* Be sure to have data in fifo before starting data transfer */
	if (spi->tx_buf)
		stm32h7_spi_write_txfifo(spi);

	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);

	writel_relaxed(ier, spi->base + STM32H7_SPI_IER);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;
}

/**
 * stm32f4_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
	/* In DMA mode end of transfer is handled by DMA TX or RX callback. */
	if (spi->cur_comm == SPI_SIMPLEX_RX || spi->cur_comm == SPI_3WIRE_RX ||
	    spi->cur_comm == SPI_FULL_DUPLEX) {
		/*
		 * In transmit-only mode, the OVR flag is set in the SR register
		 * since the received data are never read. Therefore set OVR
		 * interrupt only when rx buffer is available.
		 */
		stm32_spi_set_bits(spi, STM32F4_SPI_CR2, STM32F4_SPI_CR2_ERRIE);
	}

	stm32_spi_enable(spi);
}

/**
 * stm32h7_spi_transfer_one_dma_start - Set SPI driver registers to start
 *					transfer using DMA
 * @spi: pointer to the spi controller data structure
 */
static void stm32h7_spi_transfer_one_dma_start(struct stm32_spi *spi)
{
	/* Enable the interrupts relative to the end of transfer */
	stm32_spi_set_bits(spi, STM32H7_SPI_IER, STM32H7_SPI_IER_EOTIE |
						 STM32H7_SPI_IER_TXTFIE |
						 STM32H7_SPI_IER_OVRIE |
						 STM32H7_SPI_IER_MODFIE);

	stm32_spi_enable(spi);

	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_CSTART);
}

/**
 * stm32_spi_transfer_one_dma - transfer a single spi_transfer using DMA
 * @spi: pointer to the spi controller data structure
 * @xfer: pointer to the spi_transfer structure
 *
 * It must returns 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one_dma(struct stm32_spi *spi,
				      struct spi_transfer *xfer)
{
	struct dma_slave_config tx_dma_conf, rx_dma_conf;
	struct dma_async_tx_descriptor *tx_dma_desc, *rx_dma_desc;
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	rx_dma_desc = NULL;
	if (spi->rx_buf && spi->dma_rx) {
		stm32_spi_dma_config(spi, &rx_dma_conf, DMA_DEV_TO_MEM);
		dmaengine_slave_config(spi->dma_rx, &rx_dma_conf);

		/* Enable Rx DMA request */
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_rx_en.reg,
				   spi->cfg->regs->dma_rx_en.mask);

		rx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_rx, xfer->rx_sg.sgl,
					xfer->rx_sg.nents,
					rx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

	tx_dma_desc = NULL;
	if (spi->tx_buf && spi->dma_tx) {
		stm32_spi_dma_config(spi, &tx_dma_conf, DMA_MEM_TO_DEV);
		dmaengine_slave_config(spi->dma_tx, &tx_dma_conf);

		tx_dma_desc = dmaengine_prep_slave_sg(
					spi->dma_tx, xfer->tx_sg.sgl,
					xfer->tx_sg.nents,
					tx_dma_conf.direction,
					DMA_PREP_INTERRUPT);
	}

	if ((spi->tx_buf && spi->dma_tx && !tx_dma_desc) ||
	    (spi->rx_buf && spi->dma_rx && !rx_dma_desc))
		goto dma_desc_error;

	if (spi->cur_comm == SPI_FULL_DUPLEX && (!tx_dma_desc || !rx_dma_desc))
		goto dma_desc_error;

	if (rx_dma_desc) {
		rx_dma_desc->callback = spi->cfg->dma_rx_cb;
		rx_dma_desc->callback_param = spi;

		if (dma_submit_error(dmaengine_submit(rx_dma_desc))) {
			dev_err(spi->dev, "Rx DMA submit failed\n");
			goto dma_desc_error;
		}
		/* Enable Rx DMA channel */
		dma_async_issue_pending(spi->dma_rx);
	}

	if (tx_dma_desc) {
		if (spi->cur_comm == SPI_SIMPLEX_TX ||
		    spi->cur_comm == SPI_3WIRE_TX) {
			tx_dma_desc->callback = spi->cfg->dma_tx_cb;
			tx_dma_desc->callback_param = spi;
		}

		if (dma_submit_error(dmaengine_submit(tx_dma_desc))) {
			dev_err(spi->dev, "Tx DMA submit failed\n");
			goto dma_submit_error;
		}
		/* Enable Tx DMA channel */
		dma_async_issue_pending(spi->dma_tx);

		/* Enable Tx DMA request */
		stm32_spi_set_bits(spi, spi->cfg->regs->dma_tx_en.reg,
				   spi->cfg->regs->dma_tx_en.mask);
	}

	spi->cfg->transfer_one_dma_start(spi);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 1;

dma_submit_error:
	if (spi->dma_rx)
		dmaengine_terminate_all(spi->dma_rx);

dma_desc_error:
	stm32_spi_clr_bits(spi, spi->cfg->regs->dma_rx_en.reg,
			   spi->cfg->regs->dma_rx_en.mask);

	spin_unlock_irqrestore(&spi->lock, flags);

	dev_info(spi->dev, "DMA issue: fall back to irq transfer\n");

	spi->cur_usedma = false;
	return spi->cfg->transfer_one_irq(spi);
}

/**
 * stm32f4_spi_set_bpw - Configure bits per word
 * @spi: pointer to the spi controller data structure
 */
static void stm32f4_spi_set_bpw(struct stm32_spi *spi)
{
	if (spi->cur_bpw == 16)
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
	else
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_DFF);
}

/**
 * stm32h7_spi_set_bpw - configure bits per word
 * @spi: pointer to the spi controller data structure
 */
static void stm32h7_spi_set_bpw(struct stm32_spi *spi)
{
	u32 bpw, fthlv;
	u32 cfg1_clrb = 0, cfg1_setb = 0;

	bpw = spi->cur_bpw - 1;

	cfg1_clrb |= STM32H7_SPI_CFG1_DSIZE;
	cfg1_setb |= (bpw << STM32H7_SPI_CFG1_DSIZE_SHIFT) &
		     STM32H7_SPI_CFG1_DSIZE;

	spi->cur_fthlv = stm32h7_spi_prepare_fthlv(spi);
	fthlv = spi->cur_fthlv - 1;

	cfg1_clrb |= STM32H7_SPI_CFG1_FTHLV;
	cfg1_setb |= (fthlv << STM32H7_SPI_CFG1_FTHLV_SHIFT) &
		     STM32H7_SPI_CFG1_FTHLV;

	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG1) &
		 ~cfg1_clrb) | cfg1_setb,
		spi->base + STM32H7_SPI_CFG1);
}

/**
 * stm32_spi_set_mbr - Configure baud rate divisor in master mode
 * @spi: pointer to the spi controller data structure
 * @mbrdiv: baud rate divisor value
 */
static void stm32_spi_set_mbr(struct stm32_spi *spi, u32 mbrdiv)
{
	u32 clrb = 0, setb = 0;

	clrb |= spi->cfg->regs->br.mask;
	setb |= ((u32)mbrdiv << spi->cfg->regs->br.shift) &
		spi->cfg->regs->br.mask;

	writel_relaxed((readl_relaxed(spi->base + spi->cfg->regs->br.reg) &
			~clrb) | setb,
		       spi->base + spi->cfg->regs->br.reg);
}

/**
 * stm32_spi_communication_type - return transfer communication type
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
 */
static unsigned int stm32_spi_communication_type(struct spi_device *spi_dev,
						 struct spi_transfer *transfer)
{
	unsigned int type = SPI_FULL_DUPLEX;

	if (spi_dev->mode & SPI_3WIRE) { /* MISO/MOSI signals shared */
		/*
		 * SPI_3WIRE and xfer->tx_buf != NULL and xfer->rx_buf != NULL
		 * is forbidden and unvalidated by SPI subsystem so depending
		 * on the valid buffer, we can determine the direction of the
		 * transfer.
		 */
		if (!transfer->tx_buf)
			type = SPI_3WIRE_RX;
		else
			type = SPI_3WIRE_TX;
	} else {
		if (!transfer->tx_buf)
			type = SPI_SIMPLEX_RX;
		else if (!transfer->rx_buf)
			type = SPI_SIMPLEX_TX;
	}

	return type;
}

/**
 * stm32f4_spi_set_mode - configure communication mode
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
static int stm32f4_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
	if (comm_type == SPI_3WIRE_TX || comm_type == SPI_SIMPLEX_TX) {
		stm32_spi_set_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
	} else if (comm_type == SPI_FULL_DUPLEX) {
		stm32_spi_clr_bits(spi, STM32F4_SPI_CR1,
					STM32F4_SPI_CR1_BIDIMODE |
					STM32F4_SPI_CR1_BIDIOE);
	} else {
		return -EINVAL;
	}

	return 0;
}

/**
 * stm32h7_spi_set_mode - configure communication mode
 * @spi: pointer to the spi controller data structure
 * @comm_type: type of communication to configure
 */
static int stm32h7_spi_set_mode(struct stm32_spi *spi, unsigned int comm_type)
{
	u32 mode;
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	if (comm_type == SPI_3WIRE_RX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_clr_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_3WIRE_TX) {
		mode = STM32H7_SPI_HALF_DUPLEX;
		stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_HDDIR);
	} else if (comm_type == SPI_SIMPLEX_RX) {
		mode = STM32H7_SPI_SIMPLEX_RX;
	} else if (comm_type == SPI_SIMPLEX_TX) {
		mode = STM32H7_SPI_SIMPLEX_TX;
	} else {
		mode = STM32H7_SPI_FULL_DUPLEX;
	}

	cfg2_clrb |= STM32H7_SPI_CFG2_COMM;
	cfg2_setb |= (mode << STM32H7_SPI_CFG2_COMM_SHIFT) &
		     STM32H7_SPI_CFG2_COMM;

	writel_relaxed(
		(readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
		 ~cfg2_clrb) | cfg2_setb,
		spi->base + STM32H7_SPI_CFG2);

	return 0;
}

/**
 * stm32h7_spi_data_idleness - configure minimum time delay inserted between two
 *			       consecutive data frames in master mode
 * @spi: pointer to the spi controller data structure
 * @len: transfer len
 */
static void stm32h7_spi_data_idleness(struct stm32_spi *spi, u32 len)
{
	u32 cfg2_clrb = 0, cfg2_setb = 0;

	cfg2_clrb |= STM32H7_SPI_CFG2_MIDI;
	if ((len > 1) && (spi->cur_midi > 0)) {
		u32 sck_period_ns = DIV_ROUND_UP(SPI_1HZ_NS, spi->cur_speed);
		u32 midi = min((u32)DIV_ROUND_UP(spi->cur_midi, sck_period_ns),
			       (u32)STM32H7_SPI_CFG2_MIDI >>
			       STM32H7_SPI_CFG2_MIDI_SHIFT);

		dev_dbg(spi->dev, "period=%dns, midi=%d(=%dns)\n",
			sck_period_ns, midi, midi * sck_period_ns);
		cfg2_setb |= (midi << STM32H7_SPI_CFG2_MIDI_SHIFT) &
			     STM32H7_SPI_CFG2_MIDI;
	}

	writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CFG2) &
			~cfg2_clrb) | cfg2_setb,
		       spi->base + STM32H7_SPI_CFG2);
}

/**
 * stm32h7_spi_number_of_data - configure number of data at current transfer
 * @spi: pointer to the spi controller data structure
 * @nb_words: transfer length (in words)
 */
static int stm32h7_spi_number_of_data(struct stm32_spi *spi, u32 nb_words)
{
	u32 cr2_clrb = 0, cr2_setb = 0;

	if (nb_words <= (STM32H7_SPI_CR2_TSIZE >>
			 STM32H7_SPI_CR2_TSIZE_SHIFT)) {
		cr2_clrb |= STM32H7_SPI_CR2_TSIZE;
		cr2_setb = nb_words << STM32H7_SPI_CR2_TSIZE_SHIFT;
		writel_relaxed((readl_relaxed(spi->base + STM32H7_SPI_CR2) &
				~cr2_clrb) | cr2_setb,
			       spi->base + STM32H7_SPI_CR2);
	} else {
		return -EMSGSIZE;
	}

	return 0;
}

/**
 * stm32_spi_transfer_one_setup - common setup to transfer a single
 *				  spi_transfer either using DMA or
 *				  interrupts.
 * @spi: pointer to the spi controller data structure
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
 */
static int stm32_spi_transfer_one_setup(struct stm32_spi *spi,
					struct spi_device *spi_dev,
					struct spi_transfer *transfer)
{
	unsigned long flags;
	unsigned int comm_type;
	int nb_words, ret = 0;

	spin_lock_irqsave(&spi->lock, flags);

	if (spi->cur_bpw != transfer->bits_per_word) {
		spi->cur_bpw = transfer->bits_per_word;
		spi->cfg->set_bpw(spi);
	}

	if (spi->cur_speed != transfer->speed_hz) {
		int mbr;

		/* Update spi->cur_speed with real clock speed */
		mbr = stm32_spi_prepare_mbr(spi, transfer->speed_hz,
					    spi->cfg->baud_rate_div_min,
					    spi->cfg->baud_rate_div_max);
		if (mbr < 0) {
			ret = mbr;
			goto out;
		}

		transfer->speed_hz = spi->cur_speed;
		stm32_spi_set_mbr(spi, mbr);
	}

	comm_type = stm32_spi_communication_type(spi_dev, transfer);
	if (spi->cur_comm != comm_type) {
		ret = spi->cfg->set_mode(spi, comm_type);

		if (ret < 0)
			goto out;

		spi->cur_comm = comm_type;
	}

	if (spi->cfg->set_data_idleness)
		spi->cfg->set_data_idleness(spi, transfer->len);

	if (spi->cur_bpw <= 8)
		nb_words = transfer->len;
	else if (spi->cur_bpw <= 16)
		nb_words = DIV_ROUND_UP(transfer->len * 8, 16);
	else
		nb_words = DIV_ROUND_UP(transfer->len * 8, 32);

	if (spi->cfg->set_number_of_data) {
		ret = spi->cfg->set_number_of_data(spi, nb_words);
		if (ret < 0)
			goto out;
	}

	spi->cur_xferlen = transfer->len;

	dev_dbg(spi->dev, "transfer communication mode set to %d\n",
		spi->cur_comm);
	dev_dbg(spi->dev,
		"data frame of %d-bit, data packet of %d data frames\n",
		spi->cur_bpw, spi->cur_fthlv);
	dev_dbg(spi->dev, "speed set to %dHz\n", spi->cur_speed);
	dev_dbg(spi->dev, "transfer of %d bytes (%d data frames)\n",
		spi->cur_xferlen, nb_words);
	dev_dbg(spi->dev, "dma %s\n",
		(spi->cur_usedma) ? "enabled" : "disabled");

out:
	spin_unlock_irqrestore(&spi->lock, flags);

	return ret;
}

/**
 * stm32_spi_transfer_one - transfer a single spi_transfer
 * @master: controller master interface
 * @spi_dev: pointer to the spi device
 * @transfer: pointer to spi transfer
 *
 * It must return 0 if the transfer is finished or 1 if the transfer is still
 * in progress.
 */
static int stm32_spi_transfer_one(struct spi_master *master,
				  struct spi_device *spi_dev,
				  struct spi_transfer *transfer)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	spi->tx_buf = transfer->tx_buf;
	spi->rx_buf = transfer->rx_buf;
	spi->tx_len = spi->tx_buf ? transfer->len : 0;
	spi->rx_len = spi->rx_buf ? transfer->len : 0;

	spi->cur_usedma = (master->can_dma &&
			   master->can_dma(master, spi_dev, transfer));

	ret = stm32_spi_transfer_one_setup(spi, spi_dev, transfer);
	if (ret) {
		dev_err(spi->dev, "SPI transfer setup failed\n");
		return ret;
	}

	if (spi->cur_usedma)
		return stm32_spi_transfer_one_dma(spi, transfer);
	else
		return spi->cfg->transfer_one_irq(spi);
}

/**
 * stm32_spi_unprepare_msg - relax the hardware
 * @master: controller master interface
 * @msg: pointer to the spi message
 */
static int stm32_spi_unprepare_msg(struct spi_master *master,
				   struct spi_message *msg)
{
	struct stm32_spi *spi = spi_master_get_devdata(master);

	spi->cfg->disable(spi);

	return 0;
}

/**
 * stm32f4_spi_config - Configure SPI controller as SPI master
 * @spi: pointer to the spi controller data structure
 */
static int stm32f4_spi_config(struct stm32_spi *spi)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
	stm32_spi_clr_bits(spi, STM32F4_SPI_I2SCFGR,
			   STM32F4_SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 */
	stm32_spi_set_bits(spi, STM32F4_SPI_CR1, STM32F4_SPI_CR1_SSI |
						 STM32F4_SPI_CR1_BIDIOE |
						 STM32F4_SPI_CR1_MSTR |
						 STM32F4_SPI_CR1_SSM);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

/**
 * stm32h7_spi_config - Configure SPI controller as SPI master
 * @spi: pointer to the spi controller data structure
 */
static int stm32h7_spi_config(struct stm32_spi *spi)
{
	unsigned long flags;

	spin_lock_irqsave(&spi->lock, flags);

	/* Ensure I2SMOD bit is kept cleared */
	stm32_spi_clr_bits(spi, STM32H7_SPI_I2SCFGR,
			   STM32H7_SPI_I2SCFGR_I2SMOD);

	/*
	 * - SS input value high
	 * - transmitter half duplex direction
	 * - automatic communication suspend when RX-Fifo is full
	 */
	stm32_spi_set_bits(spi, STM32H7_SPI_CR1, STM32H7_SPI_CR1_SSI |
						 STM32H7_SPI_CR1_HDDIR |
						 STM32H7_SPI_CR1_MASRX);

	/*
	 * - Set the master mode (default Motorola mode)
	 * - Consider 1 master/n slaves configuration and
	 *   SS input value is determined by the SSI bit
	 * - keep control of all associated GPIOs
	 */
	stm32_spi_set_bits(spi, STM32H7_SPI_CFG2, STM32H7_SPI_CFG2_MASTER |
						  STM32H7_SPI_CFG2_SSM |
						  STM32H7_SPI_CFG2_AFCNTR);

	spin_unlock_irqrestore(&spi->lock, flags);

	return 0;
}

static const struct stm32_spi_cfg stm32f4_spi_cfg = {
	.regs = &stm32f4_spi_regspec,
	.get_bpw_mask = stm32f4_spi_get_bpw_mask,
	.disable = stm32f4_spi_disable,
	.config = stm32f4_spi_config,
	.set_bpw = stm32f4_spi_set_bpw,
	.set_mode = stm32f4_spi_set_mode,
	.transfer_one_dma_start = stm32f4_spi_transfer_one_dma_start,
	.dma_tx_cb = stm32f4_spi_dma_tx_cb,
	.dma_rx_cb = stm32f4_spi_dma_rx_cb,
	.transfer_one_irq = stm32f4_spi_transfer_one_irq,
	.irq_handler_event = stm32f4_spi_irq_event,
	.irq_handler_thread = stm32f4_spi_irq_thread,
	.baud_rate_div_min = STM32F4_SPI_BR_DIV_MIN,
	.baud_rate_div_max = STM32F4_SPI_BR_DIV_MAX,
	.has_fifo = false,
};

static const struct stm32_spi_cfg stm32h7_spi_cfg = {
	.regs = &stm32h7_spi_regspec,
	.get_fifo_size = stm32h7_spi_get_fifo_size,
	.get_bpw_mask = stm32h7_spi_get_bpw_mask,
	.disable = stm32h7_spi_disable,
	.config = stm32h7_spi_config,
	.set_bpw = stm32h7_spi_set_bpw,
	.set_mode = stm32h7_spi_set_mode,
	.set_data_idleness = stm32h7_spi_data_idleness,
	.set_number_of_data = stm32h7_spi_number_of_data,
	.transfer_one_dma_start = stm32h7_spi_transfer_one_dma_start,
	.dma_rx_cb = stm32h7_spi_dma_cb,
	.dma_tx_cb = stm32h7_spi_dma_cb,
	.transfer_one_irq = stm32h7_spi_transfer_one_irq,
	.irq_handler_thread = stm32h7_spi_irq_thread,
	.baud_rate_div_min = STM32H7_SPI_MBR_DIV_MIN,
	.baud_rate_div_max = STM32H7_SPI_MBR_DIV_MAX,
	.has_fifo = true,
};

static const struct of_device_id stm32_spi_of_match[] = {
	{ .compatible = "st,stm32h7-spi", .data = (void *)&stm32h7_spi_cfg },
	{ .compatible = "st,stm32f4-spi", .data = (void *)&stm32f4_spi_cfg },
	{},
};
MODULE_DEVICE_TABLE(of, stm32_spi_of_match);

static int stm32_spi_probe(struct platform_device *pdev)
{
	struct spi_master *master;
	struct stm32_spi *spi;
	struct resource *res;
	int ret;

	master = spi_alloc_master(&pdev->dev, sizeof(struct stm32_spi));
	if (!master) {
		dev_err(&pdev->dev, "spi master allocation failed\n");
		return -ENOMEM;
	}
	platform_set_drvdata(pdev, master);

	spi = spi_master_get_devdata(master);
	spi->dev = &pdev->dev;
	spi->master = master;
	spin_lock_init(&spi->lock);

	spi->cfg = (const struct stm32_spi_cfg *)
		of_match_device(pdev->dev.driver->of_match_table,
				&pdev->dev)->data;

	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	spi->base = devm_ioremap_resource(&pdev->dev, res);
	if (IS_ERR(spi->base)) {
		ret = PTR_ERR(spi->base);
		goto err_master_put;
	}

	spi->phys_addr = (dma_addr_t)res->start;

	spi->irq = platform_get_irq(pdev, 0);
	if (spi->irq <= 0) {
		ret = spi->irq;
		if (ret != -EPROBE_DEFER)
			dev_err(&pdev->dev, "failed to get irq: %d\n", ret);
		goto err_master_put;
	}
	ret = devm_request_threaded_irq(&pdev->dev, spi->irq,
					spi->cfg->irq_handler_event,
					spi->cfg->irq_handler_thread,
					IRQF_ONESHOT, pdev->name, master);
	if (ret) {
		dev_err(&pdev->dev, "irq%d request failed: %d\n", spi->irq,
			ret);
		goto err_master_put;
	}

	spi->clk = devm_clk_get(&pdev->dev, NULL);
	if (IS_ERR(spi->clk)) {
		ret = PTR_ERR(spi->clk);
		dev_err(&pdev->dev, "clk get failed: %d\n", ret);
		goto err_master_put;
	}

	ret = clk_prepare_enable(spi->clk);
	if (ret) {
		dev_err(&pdev->dev, "clk enable failed: %d\n", ret);
		goto err_master_put;
	}
	spi->clk_rate = clk_get_rate(spi->clk);
	if (!spi->clk_rate) {
		dev_err(&pdev->dev, "clk rate = 0\n");
		ret = -EINVAL;
		goto err_clk_disable;
	}

	spi->rst = devm_reset_control_get_exclusive(&pdev->dev, NULL);
	if (!IS_ERR(spi->rst)) {
		reset_control_assert(spi->rst);
		udelay(2);
		reset_control_deassert(spi->rst);
	}

	if (spi->cfg->has_fifo)
		spi->fifo_size = spi->cfg->get_fifo_size(spi);

	ret = spi->cfg->config(spi);
	if (ret) {
		dev_err(&pdev->dev, "controller configuration failed: %d\n",
			ret);
		goto err_clk_disable;
	}

	master->dev.of_node = pdev->dev.of_node;
	master->auto_runtime_pm = true;
	master->bus_num = pdev->id;
	master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST |
			    SPI_3WIRE;
	master->bits_per_word_mask = spi->cfg->get_bpw_mask(spi);
	master->max_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_min;
	master->min_speed_hz = spi->clk_rate / spi->cfg->baud_rate_div_max;
	master->use_gpio_descriptors = true;
	master->prepare_message = stm32_spi_prepare_msg;
	master->transfer_one = stm32_spi_transfer_one;
	master->unprepare_message = stm32_spi_unprepare_msg;

	spi->dma_tx = dma_request_chan(spi->dev, "tx");
	if (IS_ERR(spi->dma_tx)) {
		ret = PTR_ERR(spi->dma_tx);
		spi->dma_tx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_clk_disable;

		dev_warn(&pdev->dev, "failed to request tx dma channel\n");
	} else {
		master->dma_tx = spi->dma_tx;
	}

	spi->dma_rx = dma_request_chan(spi->dev, "rx");
	if (IS_ERR(spi->dma_rx)) {
		ret = PTR_ERR(spi->dma_rx);
		spi->dma_rx = NULL;
		if (ret == -EPROBE_DEFER)
			goto err_dma_release;

		dev_warn(&pdev->dev, "failed to request rx dma channel\n");
	} else {
		master->dma_rx = spi->dma_rx;
	}

	if (spi->dma_tx || spi->dma_rx)
		master->can_dma = stm32_spi_can_dma;

	pm_runtime_set_active(&pdev->dev);
	pm_runtime_enable(&pdev->dev);

	ret = devm_spi_register_master(&pdev->dev, master);
	if (ret) {
		dev_err(&pdev->dev, "spi master registration failed: %d\n",
			ret);
		goto err_pm_disable;
	}

	if (!master->cs_gpiods) {
		dev_err(&pdev->dev, "no CS gpios available\n");
		ret = -EINVAL;
		goto err_pm_disable;
	}

	dev_info(&pdev->dev, "driver initialized\n");

	return 0;

err_pm_disable:
	pm_runtime_disable(&pdev->dev);
err_dma_release:
	if (spi->dma_tx)
		dma_release_channel(spi->dma_tx);
	if (spi->dma_rx)
		dma_release_channel(spi->dma_rx);
err_clk_disable:
	clk_disable_unprepare(spi->clk);
err_master_put:
	spi_master_put(master);

	return ret;
}

static int stm32_spi_remove(struct platform_device *pdev)
{
	struct spi_master *master = platform_get_drvdata(pdev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	spi->cfg->disable(spi);

	if (master->dma_tx)
		dma_release_channel(master->dma_tx);
	if (master->dma_rx)
		dma_release_channel(master->dma_rx);

	clk_disable_unprepare(spi->clk);

	pm_runtime_disable(&pdev->dev);

	pinctrl_pm_select_sleep_state(&pdev->dev);

	return 0;
}

#ifdef CONFIG_PM
static int stm32_spi_runtime_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);

	clk_disable_unprepare(spi->clk);

	return pinctrl_pm_select_sleep_state(dev);
}

static int stm32_spi_runtime_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		return ret;

	return clk_prepare_enable(spi->clk);
}
#endif

#ifdef CONFIG_PM_SLEEP
static int stm32_spi_suspend(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	int ret;

	ret = spi_master_suspend(master);
	if (ret)
		return ret;

	return pm_runtime_force_suspend(dev);
}

static int stm32_spi_resume(struct device *dev)
{
	struct spi_master *master = dev_get_drvdata(dev);
	struct stm32_spi *spi = spi_master_get_devdata(master);
	int ret;

	ret = pm_runtime_force_resume(dev);
	if (ret)
		return ret;

	ret = spi_master_resume(master);
	if (ret) {
		clk_disable_unprepare(spi->clk);
		return ret;
	}

	ret = pm_runtime_get_sync(dev);
	if (ret) {
		dev_err(dev, "Unable to power device:%d\n", ret);
		return ret;
	}

	spi->cfg->config(spi);

	pm_runtime_mark_last_busy(dev);
	pm_runtime_put_autosuspend(dev);

	return 0;
}
#endif

static const struct dev_pm_ops stm32_spi_pm_ops = {
	SET_SYSTEM_SLEEP_PM_OPS(stm32_spi_suspend, stm32_spi_resume)
	SET_RUNTIME_PM_OPS(stm32_spi_runtime_suspend,
			   stm32_spi_runtime_resume, NULL)
};

static struct platform_driver stm32_spi_driver = {
	.probe = stm32_spi_probe,
	.remove = stm32_spi_remove,
	.driver = {
		.name = DRIVER_NAME,
		.pm = &stm32_spi_pm_ops,
		.of_match_table = stm32_spi_of_match,
	},
};

module_platform_driver(stm32_spi_driver);

MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_DESCRIPTION("STMicroelectronics STM32 SPI Controller driver");
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_LICENSE("GPL v2");