aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/media/platform/vsp1/vsp1_rpf.c
blob: f8005b60b9d239aa0fdd16a8b54bd1fc8903a5e9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
// SPDX-License-Identifier: GPL-2.0+
/*
 * vsp1_rpf.c  --  R-Car VSP1 Read Pixel Formatter
 *
 * Copyright (C) 2013-2014 Renesas Electronics Corporation
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/device.h>

#include <media/v4l2-subdev.h>

#include "vsp1.h"
#include "vsp1_dl.h"
#include "vsp1_pipe.h"
#include "vsp1_rwpf.h"
#include "vsp1_video.h"

#define RPF_MAX_WIDTH				8190
#define RPF_MAX_HEIGHT				8190

/* Pre extended display list command data structure. */
struct vsp1_extcmd_auto_fld_body {
	u32 top_y0;
	u32 bottom_y0;
	u32 top_c0;
	u32 bottom_c0;
	u32 top_c1;
	u32 bottom_c1;
	u32 reserved0;
	u32 reserved1;
} __packed;

/* -----------------------------------------------------------------------------
 * Device Access
 */

static inline void vsp1_rpf_write(struct vsp1_rwpf *rpf,
				  struct vsp1_dl_body *dlb, u32 reg, u32 data)
{
	vsp1_dl_body_write(dlb, reg + rpf->entity.index * VI6_RPF_OFFSET,
			       data);
}

/* -----------------------------------------------------------------------------
 * V4L2 Subdevice Operations
 */

static const struct v4l2_subdev_ops rpf_ops = {
	.pad    = &vsp1_rwpf_pad_ops,
};

/* -----------------------------------------------------------------------------
 * VSP1 Entity Operations
 */

static void rpf_configure_stream(struct vsp1_entity *entity,
				 struct vsp1_pipeline *pipe,
				 struct vsp1_dl_body *dlb)
{
	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
	const struct v4l2_pix_format_mplane *format = &rpf->format;
	const struct v4l2_mbus_framefmt *source_format;
	const struct v4l2_mbus_framefmt *sink_format;
	unsigned int left = 0;
	unsigned int top = 0;
	u32 pstride;
	u32 infmt;

	/* Stride */
	pstride = format->plane_fmt[0].bytesperline
		<< VI6_RPF_SRCM_PSTRIDE_Y_SHIFT;
	if (format->num_planes > 1)
		pstride |= format->plane_fmt[1].bytesperline
			<< VI6_RPF_SRCM_PSTRIDE_C_SHIFT;

	/*
	 * pstride has both STRIDE_Y and STRIDE_C, but multiplying the whole
	 * of pstride by 2 is conveniently OK here as we are multiplying both
	 * values.
	 */
	if (pipe->interlaced)
		pstride *= 2;

	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_PSTRIDE, pstride);

	/* Format */
	sink_format = vsp1_entity_get_pad_format(&rpf->entity,
						 rpf->entity.config,
						 RWPF_PAD_SINK);
	source_format = vsp1_entity_get_pad_format(&rpf->entity,
						   rpf->entity.config,
						   RWPF_PAD_SOURCE);

	infmt = VI6_RPF_INFMT_CIPM
	      | (fmtinfo->hwfmt << VI6_RPF_INFMT_RDFMT_SHIFT);

	if (fmtinfo->swap_yc)
		infmt |= VI6_RPF_INFMT_SPYCS;
	if (fmtinfo->swap_uv)
		infmt |= VI6_RPF_INFMT_SPUVS;

	if (sink_format->code != source_format->code)
		infmt |= VI6_RPF_INFMT_CSC;

	vsp1_rpf_write(rpf, dlb, VI6_RPF_INFMT, infmt);
	vsp1_rpf_write(rpf, dlb, VI6_RPF_DSWAP, fmtinfo->swap);

	/* Output location */
	if (pipe->brx) {
		const struct v4l2_rect *compose;

		compose = vsp1_entity_get_pad_selection(pipe->brx,
							pipe->brx->config,
							rpf->brx_input,
							V4L2_SEL_TGT_COMPOSE);
		left = compose->left;
		top = compose->top;
	}

	if (pipe->interlaced)
		top /= 2;

	vsp1_rpf_write(rpf, dlb, VI6_RPF_LOC,
		       (left << VI6_RPF_LOC_HCOORD_SHIFT) |
		       (top << VI6_RPF_LOC_VCOORD_SHIFT));

	/*
	 * On Gen2 use the alpha channel (extended to 8 bits) when available or
	 * a fixed alpha value set through the V4L2_CID_ALPHA_COMPONENT control
	 * otherwise.
	 *
	 * The Gen3 RPF has extended alpha capability and can both multiply the
	 * alpha channel by a fixed global alpha value, and multiply the pixel
	 * components to convert the input to premultiplied alpha.
	 *
	 * As alpha premultiplication is available in the BRx for both Gen2 and
	 * Gen3 we handle it there and use the Gen3 alpha multiplier for global
	 * alpha multiplication only. This however prevents conversion to
	 * premultiplied alpha if no BRx is present in the pipeline. If that use
	 * case turns out to be useful we will revisit the implementation (for
	 * Gen3 only).
	 *
	 * We enable alpha multiplication on Gen3 using the fixed alpha value
	 * set through the V4L2_CID_ALPHA_COMPONENT control when the input
	 * contains an alpha channel. On Gen2 the global alpha is ignored in
	 * that case.
	 *
	 * In all cases, disable color keying.
	 */
	vsp1_rpf_write(rpf, dlb, VI6_RPF_ALPH_SEL, VI6_RPF_ALPH_SEL_AEXT_EXT |
		       (fmtinfo->alpha ? VI6_RPF_ALPH_SEL_ASEL_PACKED
				       : VI6_RPF_ALPH_SEL_ASEL_FIXED));

	if (entity->vsp1->info->gen == 3) {
		u32 mult;

		if (fmtinfo->alpha) {
			/*
			 * When the input contains an alpha channel enable the
			 * alpha multiplier. If the input is premultiplied we
			 * need to multiply both the alpha channel and the pixel
			 * components by the global alpha value to keep them
			 * premultiplied. Otherwise multiply the alpha channel
			 * only.
			 */
			bool premultiplied = format->flags
					   & V4L2_PIX_FMT_FLAG_PREMUL_ALPHA;

			mult = VI6_RPF_MULT_ALPHA_A_MMD_RATIO
			     | (premultiplied ?
				VI6_RPF_MULT_ALPHA_P_MMD_RATIO :
				VI6_RPF_MULT_ALPHA_P_MMD_NONE);
		} else {
			/*
			 * When the input doesn't contain an alpha channel the
			 * global alpha value is applied in the unpacking unit,
			 * the alpha multiplier isn't needed and must be
			 * disabled.
			 */
			mult = VI6_RPF_MULT_ALPHA_A_MMD_NONE
			     | VI6_RPF_MULT_ALPHA_P_MMD_NONE;
		}

		rpf->mult_alpha = mult;
	}

	vsp1_rpf_write(rpf, dlb, VI6_RPF_MSK_CTRL, 0);
	vsp1_rpf_write(rpf, dlb, VI6_RPF_CKEY_CTRL, 0);

}

static void vsp1_rpf_configure_autofld(struct vsp1_rwpf *rpf,
				       struct vsp1_dl_list *dl)
{
	const struct v4l2_pix_format_mplane *format = &rpf->format;
	struct vsp1_dl_ext_cmd *cmd;
	struct vsp1_extcmd_auto_fld_body *auto_fld;
	u32 offset_y, offset_c;

	cmd = vsp1_dl_get_pre_cmd(dl);
	if (WARN_ONCE(!cmd, "Failed to obtain an autofld cmd"))
		return;

	/* Re-index our auto_fld to match the current RPF. */
	auto_fld = cmd->data;
	auto_fld = &auto_fld[rpf->entity.index];

	auto_fld->top_y0 = rpf->mem.addr[0];
	auto_fld->top_c0 = rpf->mem.addr[1];
	auto_fld->top_c1 = rpf->mem.addr[2];

	offset_y = format->plane_fmt[0].bytesperline;
	offset_c = format->plane_fmt[1].bytesperline;

	auto_fld->bottom_y0 = rpf->mem.addr[0] + offset_y;
	auto_fld->bottom_c0 = rpf->mem.addr[1] + offset_c;
	auto_fld->bottom_c1 = rpf->mem.addr[2] + offset_c;

	cmd->flags |= VI6_DL_EXT_AUTOFLD_INT | BIT(16 + rpf->entity.index);
}

static void rpf_configure_frame(struct vsp1_entity *entity,
				struct vsp1_pipeline *pipe,
				struct vsp1_dl_list *dl,
				struct vsp1_dl_body *dlb)
{
	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);

	vsp1_rpf_write(rpf, dlb, VI6_RPF_VRTCOL_SET,
		       rpf->alpha << VI6_RPF_VRTCOL_SET_LAYA_SHIFT);
	vsp1_rpf_write(rpf, dlb, VI6_RPF_MULT_ALPHA, rpf->mult_alpha |
		       (rpf->alpha << VI6_RPF_MULT_ALPHA_RATIO_SHIFT));

	vsp1_pipeline_propagate_alpha(pipe, dlb, rpf->alpha);
}

static void rpf_configure_partition(struct vsp1_entity *entity,
				    struct vsp1_pipeline *pipe,
				    struct vsp1_dl_list *dl,
				    struct vsp1_dl_body *dlb)
{
	struct vsp1_rwpf *rpf = to_rwpf(&entity->subdev);
	struct vsp1_rwpf_memory mem = rpf->mem;
	struct vsp1_device *vsp1 = rpf->entity.vsp1;
	const struct vsp1_format_info *fmtinfo = rpf->fmtinfo;
	const struct v4l2_pix_format_mplane *format = &rpf->format;
	struct v4l2_rect crop;

	/*
	 * Source size and crop offsets.
	 *
	 * The crop offsets correspond to the location of the crop
	 * rectangle top left corner in the plane buffer. Only two
	 * offsets are needed, as planes 2 and 3 always have identical
	 * strides.
	 */
	crop = *vsp1_rwpf_get_crop(rpf, rpf->entity.config);

	/*
	 * Partition Algorithm Control
	 *
	 * The partition algorithm can split this frame into multiple
	 * slices. We must scale our partition window based on the pipe
	 * configuration to match the destination partition window.
	 * To achieve this, we adjust our crop to provide a 'sub-crop'
	 * matching the expected partition window. Only 'left' and
	 * 'width' need to be adjusted.
	 */
	if (pipe->partitions > 1) {
		crop.width = pipe->partition->rpf.width;
		crop.left += pipe->partition->rpf.left;
	}

	if (pipe->interlaced) {
		crop.height = round_down(crop.height / 2, fmtinfo->vsub);
		crop.top = round_down(crop.top / 2, fmtinfo->vsub);
	}

	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_BSIZE,
		       (crop.width << VI6_RPF_SRC_BSIZE_BHSIZE_SHIFT) |
		       (crop.height << VI6_RPF_SRC_BSIZE_BVSIZE_SHIFT));
	vsp1_rpf_write(rpf, dlb, VI6_RPF_SRC_ESIZE,
		       (crop.width << VI6_RPF_SRC_ESIZE_EHSIZE_SHIFT) |
		       (crop.height << VI6_RPF_SRC_ESIZE_EVSIZE_SHIFT));

	mem.addr[0] += crop.top * format->plane_fmt[0].bytesperline
		     + crop.left * fmtinfo->bpp[0] / 8;

	if (format->num_planes > 1) {
		unsigned int offset;

		offset = crop.top * format->plane_fmt[1].bytesperline
		       + crop.left / fmtinfo->hsub
		       * fmtinfo->bpp[1] / 8;
		mem.addr[1] += offset;
		mem.addr[2] += offset;
	}

	/*
	 * On Gen3 hardware the SPUVS bit has no effect on 3-planar
	 * formats. Swap the U and V planes manually in that case.
	 */
	if (vsp1->info->gen == 3 && format->num_planes == 3 &&
	    fmtinfo->swap_uv)
		swap(mem.addr[1], mem.addr[2]);

	/*
	 * Interlaced pipelines will use the extended pre-cmd to process
	 * SRCM_ADDR_{Y,C0,C1}
	 */
	if (pipe->interlaced) {
		vsp1_rpf_configure_autofld(rpf, dl);
	} else {
		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_Y, mem.addr[0]);
		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C0, mem.addr[1]);
		vsp1_rpf_write(rpf, dlb, VI6_RPF_SRCM_ADDR_C1, mem.addr[2]);
	}
}

static void rpf_partition(struct vsp1_entity *entity,
			  struct vsp1_pipeline *pipe,
			  struct vsp1_partition *partition,
			  unsigned int partition_idx,
			  struct vsp1_partition_window *window)
{
	partition->rpf = *window;
}

static const struct vsp1_entity_operations rpf_entity_ops = {
	.configure_stream = rpf_configure_stream,
	.configure_frame = rpf_configure_frame,
	.configure_partition = rpf_configure_partition,
	.partition = rpf_partition,
};

/* -----------------------------------------------------------------------------
 * Initialization and Cleanup
 */

struct vsp1_rwpf *vsp1_rpf_create(struct vsp1_device *vsp1, unsigned int index)
{
	struct vsp1_rwpf *rpf;
	char name[6];
	int ret;

	rpf = devm_kzalloc(vsp1->dev, sizeof(*rpf), GFP_KERNEL);
	if (rpf == NULL)
		return ERR_PTR(-ENOMEM);

	rpf->max_width = RPF_MAX_WIDTH;
	rpf->max_height = RPF_MAX_HEIGHT;

	rpf->entity.ops = &rpf_entity_ops;
	rpf->entity.type = VSP1_ENTITY_RPF;
	rpf->entity.index = index;

	sprintf(name, "rpf.%u", index);
	ret = vsp1_entity_init(vsp1, &rpf->entity, name, 2, &rpf_ops,
			       MEDIA_ENT_F_PROC_VIDEO_PIXEL_FORMATTER);
	if (ret < 0)
		return ERR_PTR(ret);

	/* Initialize the control handler. */
	ret = vsp1_rwpf_init_ctrls(rpf, 0);
	if (ret < 0) {
		dev_err(vsp1->dev, "rpf%u: failed to initialize controls\n",
			index);
		goto error;
	}

	v4l2_ctrl_handler_setup(&rpf->ctrls);

	return rpf;

error:
	vsp1_entity_destroy(&rpf->entity);
	return ERR_PTR(ret);
}