aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/clocksource/timer-atmel-tcb.c
blob: 63ce3b69338a08543a53ac7c91c8a2860c668a0f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
// SPDX-License-Identifier: GPL-2.0
#include <linux/clk.h>
#include <linux/clockchips.h>
#include <linux/clocksource.h>
#include <linux/interrupt.h>
#include <linux/kernel.h>
#include <linux/mfd/syscon.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/regmap.h>
#include <linux/sched_clock.h>
#include <soc/at91/atmel_tcb.h>

struct atmel_tcb_clksrc {
	struct clocksource clksrc;
	struct clock_event_device clkevt;
	struct regmap *regmap;
	void __iomem *base;
	struct clk *clk[2];
	char name[20];
	int channels[2];
	int bits;
	int irq;
	struct {
		u32 cmr;
		u32 imr;
		u32 rc;
		bool clken;
	} cache[2];
	u32 bmr_cache;
	bool registered;
	bool clk_enabled;
};

static struct atmel_tcb_clksrc tc, tce;

static struct clk *tcb_clk_get(struct device_node *node, int channel)
{
	struct clk *clk;
	char clk_name[] = "t0_clk";

	clk_name[1] += channel;
	clk = of_clk_get_by_name(node->parent, clk_name);
	if (!IS_ERR(clk))
		return clk;

	return of_clk_get_by_name(node->parent, "t0_clk");
}

/*
 * Clockevent device using its own channel
 */

static void tc_clkevt2_clk_disable(struct clock_event_device *d)
{
	clk_disable(tce.clk[0]);
	tce.clk_enabled = false;
}

static void tc_clkevt2_clk_enable(struct clock_event_device *d)
{
	if (tce.clk_enabled)
		return;
	clk_enable(tce.clk[0]);
	tce.clk_enabled = true;
}

static int tc_clkevt2_stop(struct clock_event_device *d)
{
	writel(0xff, tce.base + ATMEL_TC_IDR(tce.channels[0]));
	writel(ATMEL_TC_CCR_CLKDIS, tce.base + ATMEL_TC_CCR(tce.channels[0]));

	return 0;
}

static int tc_clkevt2_shutdown(struct clock_event_device *d)
{
	tc_clkevt2_stop(d);
	if (!clockevent_state_detached(d))
		tc_clkevt2_clk_disable(d);

	return 0;
}

/* For now, we always use the 32K clock ... this optimizes for NO_HZ,
 * because using one of the divided clocks would usually mean the
 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
 *
 * A divided clock could be good for high resolution timers, since
 * 30.5 usec resolution can seem "low".
 */
static int tc_clkevt2_set_oneshot(struct clock_event_device *d)
{
	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
		tc_clkevt2_stop(d);

	tc_clkevt2_clk_enable(d);

	/* slow clock, count up to RC, then irq and stop */
	writel(ATMEL_TC_CMR_TCLK(4) | ATMEL_TC_CMR_CPCSTOP |
	       ATMEL_TC_CMR_WAVE | ATMEL_TC_CMR_WAVESEL_UPRC,
	       tce.base + ATMEL_TC_CMR(tce.channels[0]));
	writel(ATMEL_TC_CPCS, tce.base + ATMEL_TC_IER(tce.channels[0]));

	return 0;
}

static int tc_clkevt2_set_periodic(struct clock_event_device *d)
{
	if (clockevent_state_oneshot(d) || clockevent_state_periodic(d))
		tc_clkevt2_stop(d);

	/* By not making the gentime core emulate periodic mode on top
	 * of oneshot, we get lower overhead and improved accuracy.
	 */
	tc_clkevt2_clk_enable(d);

	/* slow clock, count up to RC, then irq and restart */
	writel(ATMEL_TC_CMR_TCLK(4) | ATMEL_TC_CMR_WAVE |
	       ATMEL_TC_CMR_WAVESEL_UPRC,
	       tce.base + ATMEL_TC_CMR(tce.channels[0]));
	writel((32768 + HZ / 2) / HZ, tce.base + ATMEL_TC_RC(tce.channels[0]));

	/* Enable clock and interrupts on RC compare */
	writel(ATMEL_TC_CPCS, tce.base + ATMEL_TC_IER(tce.channels[0]));
	writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
	       tce.base + ATMEL_TC_CCR(tce.channels[0]));

	return 0;
}

static int tc_clkevt2_next_event(unsigned long delta,
				 struct clock_event_device *d)
{
	writel(delta, tce.base + ATMEL_TC_RC(tce.channels[0]));
	writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
	       tce.base + ATMEL_TC_CCR(tce.channels[0]));

	return 0;
}

static irqreturn_t tc_clkevt2_irq(int irq, void *handle)
{
	unsigned int sr;

	sr = readl(tce.base + ATMEL_TC_SR(tce.channels[0]));
	if (sr & ATMEL_TC_CPCS) {
		tce.clkevt.event_handler(&tce.clkevt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static void tc_clkevt2_suspend(struct clock_event_device *d)
{
	tce.cache[0].cmr = readl(tce.base + ATMEL_TC_CMR(tce.channels[0]));
	tce.cache[0].imr = readl(tce.base + ATMEL_TC_IMR(tce.channels[0]));
	tce.cache[0].rc = readl(tce.base + ATMEL_TC_RC(tce.channels[0]));
	tce.cache[0].clken = !!(readl(tce.base + ATMEL_TC_SR(tce.channels[0])) &
				ATMEL_TC_CLKSTA);
}

static void tc_clkevt2_resume(struct clock_event_device *d)
{
	/* Restore registers for the channel, RA and RB are not used  */
	writel(tce.cache[0].cmr, tc.base + ATMEL_TC_CMR(tce.channels[0]));
	writel(tce.cache[0].rc, tc.base + ATMEL_TC_RC(tce.channels[0]));
	writel(0, tc.base + ATMEL_TC_RA(tce.channels[0]));
	writel(0, tc.base + ATMEL_TC_RB(tce.channels[0]));
	/* Disable all the interrupts */
	writel(0xff, tc.base + ATMEL_TC_IDR(tce.channels[0]));
	/* Reenable interrupts that were enabled before suspending */
	writel(tce.cache[0].imr, tc.base + ATMEL_TC_IER(tce.channels[0]));

	/* Start the clock if it was used */
	if (tce.cache[0].clken)
		writel(ATMEL_TC_CCR_CLKEN | ATMEL_TC_CCR_SWTRG,
		       tc.base + ATMEL_TC_CCR(tce.channels[0]));
}

static int __init tc_clkevt_register(struct device_node *node,
				     struct regmap *regmap, void __iomem *base,
				     int channel, int irq, int bits)
{
	int ret;
	struct clk *slow_clk;

	tce.regmap = regmap;
	tce.base = base;
	tce.channels[0] = channel;
	tce.irq = irq;

	slow_clk = of_clk_get_by_name(node->parent, "slow_clk");
	if (IS_ERR(slow_clk))
		return PTR_ERR(slow_clk);

	ret = clk_prepare_enable(slow_clk);
	if (ret)
		return ret;

	tce.clk[0] = tcb_clk_get(node, tce.channels[0]);
	if (IS_ERR(tce.clk[0])) {
		ret = PTR_ERR(tce.clk[0]);
		goto err_slow;
	}

	snprintf(tce.name, sizeof(tce.name), "%s:%d",
		 kbasename(node->parent->full_name), channel);
	tce.clkevt.cpumask = cpumask_of(0);
	tce.clkevt.name = tce.name;
	tce.clkevt.set_next_event = tc_clkevt2_next_event,
	tce.clkevt.set_state_shutdown = tc_clkevt2_shutdown,
	tce.clkevt.set_state_periodic = tc_clkevt2_set_periodic,
	tce.clkevt.set_state_oneshot = tc_clkevt2_set_oneshot,
	tce.clkevt.suspend = tc_clkevt2_suspend,
	tce.clkevt.resume = tc_clkevt2_resume,
	tce.clkevt.features = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT;
	tce.clkevt.rating = 140;

	/* try to enable clk to avoid future errors in mode change */
	ret = clk_prepare_enable(tce.clk[0]);
	if (ret)
		goto err_slow;
	clk_disable(tce.clk[0]);

	clockevents_config_and_register(&tce.clkevt, 32768, 1,
					CLOCKSOURCE_MASK(bits));

	ret = request_irq(tce.irq, tc_clkevt2_irq, IRQF_TIMER | IRQF_SHARED,
			  tce.clkevt.name, &tce);
	if (ret)
		goto err_clk;

	tce.registered = true;

	return 0;

err_clk:
	clk_unprepare(tce.clk[0]);
err_slow:
	clk_disable_unprepare(slow_clk);

	return ret;
}

/*
 * Clocksource and clockevent using the same channel(s)
 */
static u64 tc_get_cycles(struct clocksource *cs)
{
	u32 lower, upper;

	do {
		upper = readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[1]));
		lower = readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[0]));
	} while (upper != readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[1])));

	return (upper << 16) | lower;
}

static u64 tc_get_cycles32(struct clocksource *cs)
{
	return readl_relaxed(tc.base + ATMEL_TC_CV(tc.channels[0]));
}

static u64 notrace tc_sched_clock_read(void)
{
	return tc_get_cycles(&tc.clksrc);
}

static u64 notrace tc_sched_clock_read32(void)
{
	return tc_get_cycles32(&tc.clksrc);
}

static int tcb_clkevt_next_event(unsigned long delta,
				 struct clock_event_device *d)
{
	u32 old, next, cur;

	old = readl(tc.base + ATMEL_TC_CV(tc.channels[0]));
	next = old + delta;
	writel(next, tc.base + ATMEL_TC_RC(tc.channels[0]));
	cur = readl(tc.base + ATMEL_TC_CV(tc.channels[0]));

	/* check whether the delta elapsed while setting the register */
	if ((next < old && cur < old && cur > next) ||
	    (next > old && (cur < old || cur > next))) {
		/*
		 * Clear the CPCS bit in the status register to avoid
		 * generating a spurious interrupt next time a valid
		 * timer event is configured.
		 */
		old = readl(tc.base + ATMEL_TC_SR(tc.channels[0]));
		return -ETIME;
	}

	writel(ATMEL_TC_CPCS, tc.base + ATMEL_TC_IER(tc.channels[0]));

	return 0;
}

static irqreturn_t tc_clkevt_irq(int irq, void *handle)
{
	unsigned int sr;

	sr = readl(tc.base + ATMEL_TC_SR(tc.channels[0]));
	if (sr & ATMEL_TC_CPCS) {
		tc.clkevt.event_handler(&tc.clkevt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

static int tcb_clkevt_oneshot(struct clock_event_device *dev)
{
	if (clockevent_state_oneshot(dev))
		return 0;

	/*
	 * Because both clockevent devices may share the same IRQ, we don't want
	 * the less likely one to stay requested
	 */
	return request_irq(tc.irq, tc_clkevt_irq, IRQF_TIMER | IRQF_SHARED,
			   tc.name, &tc);
}

static int tcb_clkevt_shutdown(struct clock_event_device *dev)
{
	writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[0]));
	if (tc.bits == 16)
		writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[1]));

	if (!clockevent_state_detached(dev))
		free_irq(tc.irq, &tc);

	return 0;
}

static void __init tcb_setup_dual_chan(struct atmel_tcb_clksrc *tc,
				       int mck_divisor_idx)
{
	/* first channel: waveform mode, input mclk/8, clock TIOA on overflow */
	writel(mck_divisor_idx			/* likely divide-by-8 */
	       | ATMEL_TC_CMR_WAVE
	       | ATMEL_TC_CMR_WAVESEL_UP	/* free-run */
	       | ATMEL_TC_CMR_ACPA(SET)		/* TIOA rises at 0 */
	       | ATMEL_TC_CMR_ACPC(CLEAR),	/* (duty cycle 50%) */
	       tc->base + ATMEL_TC_CMR(tc->channels[0]));
	writel(0x0000, tc->base + ATMEL_TC_RA(tc->channels[0]));
	writel(0x8000, tc->base + ATMEL_TC_RC(tc->channels[0]));
	writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[0]));	/* no irqs */
	writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[0]));

	/* second channel: waveform mode, input TIOA */
	writel(ATMEL_TC_CMR_XC(tc->channels[1])		/* input: TIOA */
	       | ATMEL_TC_CMR_WAVE
	       | ATMEL_TC_CMR_WAVESEL_UP,		/* free-run */
	       tc->base + ATMEL_TC_CMR(tc->channels[1]));
	writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[1]));	/* no irqs */
	writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[1]));

	/* chain both channel, we assume the previous channel */
	regmap_write(tc->regmap, ATMEL_TC_BMR,
		     ATMEL_TC_BMR_TCXC(1 + tc->channels[1], tc->channels[1]));
	/* then reset all the timers */
	regmap_write(tc->regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
}

static void __init tcb_setup_single_chan(struct atmel_tcb_clksrc *tc,
					 int mck_divisor_idx)
{
	/* channel 0:  waveform mode, input mclk/8 */
	writel(mck_divisor_idx			/* likely divide-by-8 */
	       | ATMEL_TC_CMR_WAVE
	       | ATMEL_TC_CMR_WAVESEL_UP,	/* free-run */
	       tc->base + ATMEL_TC_CMR(tc->channels[0]));
	writel(0xff, tc->base + ATMEL_TC_IDR(tc->channels[0]));	/* no irqs */
	writel(ATMEL_TC_CCR_CLKEN, tc->base + ATMEL_TC_CCR(tc->channels[0]));

	/* then reset all the timers */
	regmap_write(tc->regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
}

static void tc_clksrc_suspend(struct clocksource *cs)
{
	int i;

	for (i = 0; i < 1 + (tc.bits == 16); i++) {
		tc.cache[i].cmr = readl(tc.base + ATMEL_TC_CMR(tc.channels[i]));
		tc.cache[i].imr = readl(tc.base + ATMEL_TC_IMR(tc.channels[i]));
		tc.cache[i].rc = readl(tc.base + ATMEL_TC_RC(tc.channels[i]));
		tc.cache[i].clken = !!(readl(tc.base +
					     ATMEL_TC_SR(tc.channels[i])) &
				       ATMEL_TC_CLKSTA);
	}

	if (tc.bits == 16)
		regmap_read(tc.regmap, ATMEL_TC_BMR, &tc.bmr_cache);
}

static void tc_clksrc_resume(struct clocksource *cs)
{
	int i;

	for (i = 0; i < 1 + (tc.bits == 16); i++) {
		/* Restore registers for the channel, RA and RB are not used  */
		writel(tc.cache[i].cmr, tc.base + ATMEL_TC_CMR(tc.channels[i]));
		writel(tc.cache[i].rc, tc.base + ATMEL_TC_RC(tc.channels[i]));
		writel(0, tc.base + ATMEL_TC_RA(tc.channels[i]));
		writel(0, tc.base + ATMEL_TC_RB(tc.channels[i]));
		/* Disable all the interrupts */
		writel(0xff, tc.base + ATMEL_TC_IDR(tc.channels[i]));
		/* Reenable interrupts that were enabled before suspending */
		writel(tc.cache[i].imr, tc.base + ATMEL_TC_IER(tc.channels[i]));

		/* Start the clock if it was used */
		if (tc.cache[i].clken)
			writel(ATMEL_TC_CCR_CLKEN, tc.base +
			       ATMEL_TC_CCR(tc.channels[i]));
	}

	/* in case of dual channel, chain channels */
	if (tc.bits == 16)
		regmap_write(tc.regmap, ATMEL_TC_BMR, tc.bmr_cache);
	/* Finally, trigger all the channels*/
	regmap_write(tc.regmap, ATMEL_TC_BCR, ATMEL_TC_BCR_SYNC);
}

static int __init tcb_clksrc_register(struct device_node *node,
				      struct regmap *regmap, void __iomem *base,
				      int channel, int channel1, int irq,
				      int bits)
{
	u32 rate, divided_rate = 0;
	int best_divisor_idx = -1;
	int i, err = -1;
	u64 (*tc_sched_clock)(void);

	tc.regmap = regmap;
	tc.base = base;
	tc.channels[0] = channel;
	tc.channels[1] = channel1;
	tc.irq = irq;
	tc.bits = bits;

	tc.clk[0] = tcb_clk_get(node, tc.channels[0]);
	if (IS_ERR(tc.clk[0]))
		return PTR_ERR(tc.clk[0]);
	err = clk_prepare_enable(tc.clk[0]);
	if (err) {
		pr_debug("can't enable T0 clk\n");
		goto err_clk;
	}

	/* How fast will we be counting?  Pick something over 5 MHz.  */
	rate = (u32)clk_get_rate(tc.clk[0]);
	for (i = 0; i < 5; i++) {
		unsigned int divisor = atmel_tc_divisors[i];
		unsigned int tmp;

		if (!divisor)
			continue;

		tmp = rate / divisor;
		pr_debug("TC: %u / %-3u [%d] --> %u\n", rate, divisor, i, tmp);
		if (best_divisor_idx > 0) {
			if (tmp < 5 * 1000 * 1000)
				continue;
		}
		divided_rate = tmp;
		best_divisor_idx = i;
	}

	if (tc.bits == 32) {
		tc.clksrc.read = tc_get_cycles32;
		tcb_setup_single_chan(&tc, best_divisor_idx);
		tc_sched_clock = tc_sched_clock_read32;
		snprintf(tc.name, sizeof(tc.name), "%s:%d",
			 kbasename(node->parent->full_name), tc.channels[0]);
	} else {
		tc.clk[1] = tcb_clk_get(node, tc.channels[1]);
		if (IS_ERR(tc.clk[1]))
			goto err_disable_t0;

		err = clk_prepare_enable(tc.clk[1]);
		if (err) {
			pr_debug("can't enable T1 clk\n");
			goto err_clk1;
		}
		tc.clksrc.read = tc_get_cycles,
		tcb_setup_dual_chan(&tc, best_divisor_idx);
		tc_sched_clock = tc_sched_clock_read;
		snprintf(tc.name, sizeof(tc.name), "%s:%d,%d",
			 kbasename(node->parent->full_name), tc.channels[0],
			 tc.channels[1]);
	}

	pr_debug("%s at %d.%03d MHz\n", tc.name,
		 divided_rate / 1000000,
		 ((divided_rate + 500000) % 1000000) / 1000);

	tc.clksrc.name = tc.name;
	tc.clksrc.suspend = tc_clksrc_suspend;
	tc.clksrc.resume = tc_clksrc_resume;
	tc.clksrc.rating = 200;
	tc.clksrc.mask = CLOCKSOURCE_MASK(32);
	tc.clksrc.flags = CLOCK_SOURCE_IS_CONTINUOUS;

	err = clocksource_register_hz(&tc.clksrc, divided_rate);
	if (err)
		goto err_disable_t1;

	sched_clock_register(tc_sched_clock, 32, divided_rate);

	tc.registered = true;

	/* Set up and register clockevents */
	tc.clkevt.name = tc.name;
	tc.clkevt.cpumask = cpumask_of(0);
	tc.clkevt.set_next_event = tcb_clkevt_next_event;
	tc.clkevt.set_state_oneshot = tcb_clkevt_oneshot;
	tc.clkevt.set_state_shutdown = tcb_clkevt_shutdown;
	tc.clkevt.features = CLOCK_EVT_FEAT_ONESHOT;
	tc.clkevt.rating = 125;

	clockevents_config_and_register(&tc.clkevt, divided_rate, 1,
					BIT(tc.bits) - 1);

	return 0;

err_disable_t1:
	if (tc.bits == 16)
		clk_disable_unprepare(tc.clk[1]);

err_clk1:
	if (tc.bits == 16)
		clk_put(tc.clk[1]);

err_disable_t0:
	clk_disable_unprepare(tc.clk[0]);

err_clk:
	clk_put(tc.clk[0]);

	pr_err("%s: unable to register clocksource/clockevent\n",
	       tc.clksrc.name);

	return err;
}

static int __init tcb_clksrc_init(struct device_node *node)
{
	const struct of_device_id *match;
	struct regmap *regmap;
	void __iomem *tcb_base;
	u32 channel;
	int irq, err, chan1 = -1;
	unsigned bits;

	if (tc.registered && tce.registered)
		return -ENODEV;

	/*
	 * The regmap has to be used to access registers that are shared
	 * between channels on the same TCB but we keep direct IO access for
	 * the counters to avoid the impact on performance
	 */
	regmap = syscon_node_to_regmap(node->parent);
	if (IS_ERR(regmap))
		return PTR_ERR(regmap);

	tcb_base = of_iomap(node->parent, 0);
	if (!tcb_base) {
		pr_err("%s +%d %s\n", __FILE__, __LINE__, __func__);
		return -ENXIO;
	}

	match = of_match_node(atmel_tcb_dt_ids, node->parent);
	bits = (uintptr_t)match->data;

	err = of_property_read_u32_index(node, "reg", 0, &channel);
	if (err)
		return err;

	irq = of_irq_get(node->parent, channel);
	if (irq < 0) {
		irq = of_irq_get(node->parent, 0);
		if (irq < 0)
			return irq;
	}

	if (tc.registered)
		return tc_clkevt_register(node, regmap, tcb_base, channel, irq,
					  bits);

	if (bits == 16) {
		of_property_read_u32_index(node, "reg", 1, &chan1);
		if (chan1 == -1) {
			if (tce.registered) {
				pr_err("%s: clocksource needs two channels\n",
				       node->parent->full_name);
				return -EINVAL;
			} else {
				return tc_clkevt_register(node, regmap,
							  tcb_base, channel,
							  irq, bits);
			}
		}
	}

	return tcb_clksrc_register(node, regmap, tcb_base, channel, chan1, irq,
				   bits);
}
TIMER_OF_DECLARE(atmel_tcb_clksrc, "atmel,tcb-timer", tcb_clksrc_init);