aboutsummaryrefslogtreecommitdiffstats
path: root/arch/x86/boot/compressed/head_64.S
blob: d8164e6abaaffafa58a0bd1c877f8380e36b0ca0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
/* SPDX-License-Identifier: GPL-2.0 */
/*
 *  linux/boot/head.S
 *
 *  Copyright (C) 1991, 1992, 1993  Linus Torvalds
 */

/*
 *  head.S contains the 32-bit startup code.
 *
 * NOTE!!! Startup happens at absolute address 0x00001000, which is also where
 * the page directory will exist. The startup code will be overwritten by
 * the page directory. [According to comments etc elsewhere on a compressed
 * kernel it will end up at 0x1000 + 1Mb I hope so as I assume this. - AC]
 *
 * Page 0 is deliberately kept safe, since System Management Mode code in 
 * laptops may need to access the BIOS data stored there.  This is also
 * useful for future device drivers that either access the BIOS via VM86 
 * mode.
 */

/*
 * High loaded stuff by Hans Lermen & Werner Almesberger, Feb. 1996
 */
	.code32
	.text

#include <linux/init.h>
#include <linux/linkage.h>
#include <asm/segment.h>
#include <asm/boot.h>
#include <asm/msr.h>
#include <asm/processor-flags.h>
#include <asm/asm-offsets.h>
#include <asm/bootparam.h>
#include "pgtable.h"

/*
 * Locally defined symbols should be marked hidden:
 */
	.hidden _bss
	.hidden _ebss
	.hidden _got
	.hidden _egot
	.hidden _end

	__HEAD
	.code32
ENTRY(startup_32)
	/*
	 * 32bit entry is 0 and it is ABI so immutable!
	 * If we come here directly from a bootloader,
	 * kernel(text+data+bss+brk) ramdisk, zero_page, command line
	 * all need to be under the 4G limit.
	 */
	cld
	/*
	 * Test KEEP_SEGMENTS flag to see if the bootloader is asking
	 * us to not reload segments
	 */
	testb $KEEP_SEGMENTS, BP_loadflags(%esi)
	jnz 1f

	cli
	movl	$(__BOOT_DS), %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
1:

/*
 * Calculate the delta between where we were compiled to run
 * at and where we were actually loaded at.  This can only be done
 * with a short local call on x86.  Nothing  else will tell us what
 * address we are running at.  The reserved chunk of the real-mode
 * data at 0x1e4 (defined as a scratch field) are used as the stack
 * for this calculation. Only 4 bytes are needed.
 */
	leal	(BP_scratch+4)(%esi), %esp
	call	1f
1:	popl	%ebp
	subl	$1b, %ebp

/* setup a stack and make sure cpu supports long mode. */
	movl	$boot_stack_end, %eax
	addl	%ebp, %eax
	movl	%eax, %esp

	call	verify_cpu
	testl	%eax, %eax
	jnz	.Lno_longmode

/*
 * Compute the delta between where we were compiled to run at
 * and where the code will actually run at.
 *
 * %ebp contains the address we are loaded at by the boot loader and %ebx
 * contains the address where we should move the kernel image temporarily
 * for safe in-place decompression.
 */

#ifdef CONFIG_RELOCATABLE
	movl	%ebp, %ebx
	movl	BP_kernel_alignment(%esi), %eax
	decl	%eax
	addl	%eax, %ebx
	notl	%eax
	andl	%eax, %ebx
	cmpl	$LOAD_PHYSICAL_ADDR, %ebx
	jae	1f
#endif
	movl	$LOAD_PHYSICAL_ADDR, %ebx
1:

	/* Target address to relocate to for decompression */
	movl	BP_init_size(%esi), %eax
	subl	$_end, %eax
	addl	%eax, %ebx

/*
 * Prepare for entering 64 bit mode
 */

	/* Load new GDT with the 64bit segments using 32bit descriptor */
	addl	%ebp, gdt+2(%ebp)
	lgdt	gdt(%ebp)

	/* Enable PAE mode */
	movl	%cr4, %eax
	orl	$X86_CR4_PAE, %eax
	movl	%eax, %cr4

 /*
  * Build early 4G boot pagetable
  */
	/*
	 * If SEV is active then set the encryption mask in the page tables.
	 * This will insure that when the kernel is copied and decompressed
	 * it will be done so encrypted.
	 */
	call	get_sev_encryption_bit
	xorl	%edx, %edx
	testl	%eax, %eax
	jz	1f
	subl	$32, %eax	/* Encryption bit is always above bit 31 */
	bts	%eax, %edx	/* Set encryption mask for page tables */
1:

	/* Initialize Page tables to 0 */
	leal	pgtable(%ebx), %edi
	xorl	%eax, %eax
	movl	$(BOOT_INIT_PGT_SIZE/4), %ecx
	rep	stosl

	/* Build Level 4 */
	leal	pgtable + 0(%ebx), %edi
	leal	0x1007 (%edi), %eax
	movl	%eax, 0(%edi)
	addl	%edx, 4(%edi)

	/* Build Level 3 */
	leal	pgtable + 0x1000(%ebx), %edi
	leal	0x1007(%edi), %eax
	movl	$4, %ecx
1:	movl	%eax, 0x00(%edi)
	addl	%edx, 0x04(%edi)
	addl	$0x00001000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Build Level 2 */
	leal	pgtable + 0x2000(%ebx), %edi
	movl	$0x00000183, %eax
	movl	$2048, %ecx
1:	movl	%eax, 0(%edi)
	addl	%edx, 4(%edi)
	addl	$0x00200000, %eax
	addl	$8, %edi
	decl	%ecx
	jnz	1b

	/* Enable the boot page tables */
	leal	pgtable(%ebx), %eax
	movl	%eax, %cr3

	/* Enable Long mode in EFER (Extended Feature Enable Register) */
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr

	/* After gdt is loaded */
	xorl	%eax, %eax
	lldt	%ax
	movl    $__BOOT_TSS, %eax
	ltr	%ax

	/*
	 * Setup for the jump to 64bit mode
	 *
	 * When the jump is performend we will be in long mode but
	 * in 32bit compatibility mode with EFER.LME = 1, CS.L = 0, CS.D = 1
	 * (and in turn EFER.LMA = 1).	To jump into 64bit mode we use
	 * the new gdt/idt that has __KERNEL_CS with CS.L = 1.
	 * We place all of the values on our mini stack so lret can
	 * used to perform that far jump.
	 */
	pushl	$__KERNEL_CS
	leal	startup_64(%ebp), %eax
#ifdef CONFIG_EFI_MIXED
	movl	efi32_config(%ebp), %ebx
	cmp	$0, %ebx
	jz	1f
	leal	handover_entry(%ebp), %eax
1:
#endif
	pushl	%eax

	/* Enter paged protected Mode, activating Long Mode */
	movl	$(X86_CR0_PG | X86_CR0_PE), %eax /* Enable Paging and Protected mode */
	movl	%eax, %cr0

	/* Jump from 32bit compatibility mode into 64bit mode. */
	lret
ENDPROC(startup_32)

#ifdef CONFIG_EFI_MIXED
	.org 0x190
ENTRY(efi32_stub_entry)
	add	$0x4, %esp		/* Discard return address */
	popl	%ecx
	popl	%edx
	popl	%esi

	leal	(BP_scratch+4)(%esi), %esp
	call	1f
1:	pop	%ebp
	subl	$1b, %ebp

	movl	%ecx, efi32_config(%ebp)
	movl	%edx, efi32_config+8(%ebp)
	sgdtl	efi32_boot_gdt(%ebp)

	leal	efi32_config(%ebp), %eax
	movl	%eax, efi_config(%ebp)

	/* Disable paging */
	movl	%cr0, %eax
	btrl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

	jmp	startup_32
ENDPROC(efi32_stub_entry)
#endif

	.code64
	.org 0x200
ENTRY(startup_64)
	/*
	 * 64bit entry is 0x200 and it is ABI so immutable!
	 * We come here either from startup_32 or directly from a
	 * 64bit bootloader.
	 * If we come here from a bootloader, kernel(text+data+bss+brk),
	 * ramdisk, zero_page, command line could be above 4G.
	 * We depend on an identity mapped page table being provided
	 * that maps our entire kernel(text+data+bss+brk), zero page
	 * and command line.
	 */

	/* Setup data segments. */
	xorl	%eax, %eax
	movl	%eax, %ds
	movl	%eax, %es
	movl	%eax, %ss
	movl	%eax, %fs
	movl	%eax, %gs

	/*
	 * Compute the decompressed kernel start address.  It is where
	 * we were loaded at aligned to a 2M boundary. %rbp contains the
	 * decompressed kernel start address.
	 *
	 * If it is a relocatable kernel then decompress and run the kernel
	 * from load address aligned to 2MB addr, otherwise decompress and
	 * run the kernel from LOAD_PHYSICAL_ADDR
	 *
	 * We cannot rely on the calculation done in 32-bit mode, since we
	 * may have been invoked via the 64-bit entry point.
	 */

	/* Start with the delta to where the kernel will run at. */
#ifdef CONFIG_RELOCATABLE
	leaq	startup_32(%rip) /* - $startup_32 */, %rbp
	movl	BP_kernel_alignment(%rsi), %eax
	decl	%eax
	addq	%rax, %rbp
	notq	%rax
	andq	%rax, %rbp
	cmpq	$LOAD_PHYSICAL_ADDR, %rbp
	jae	1f
#endif
	movq	$LOAD_PHYSICAL_ADDR, %rbp
1:

	/* Target address to relocate to for decompression */
	movl	BP_init_size(%rsi), %ebx
	subl	$_end, %ebx
	addq	%rbp, %rbx

	/* Set up the stack */
	leaq	boot_stack_end(%rbx), %rsp

	/*
	 * paging_prepare() and cleanup_trampoline() below can have GOT
	 * references. Adjust the table with address we are running at.
	 *
	 * Zero RAX for adjust_got: the GOT was not adjusted before;
	 * there's no adjustment to undo.
	 */
	xorq	%rax, %rax

	/*
	 * Calculate the address the binary is loaded at and use it as
	 * a GOT adjustment.
	 */
	call	1f
1:	popq	%rdi
	subq	$1b, %rdi

	call	.Ladjust_got

	/*
	 * At this point we are in long mode with 4-level paging enabled,
	 * but we might want to enable 5-level paging or vice versa.
	 *
	 * The problem is that we cannot do it directly. Setting or clearing
	 * CR4.LA57 in long mode would trigger #GP. So we need to switch off
	 * long mode and paging first.
	 *
	 * We also need a trampoline in lower memory to switch over from
	 * 4- to 5-level paging for cases when the bootloader puts the kernel
	 * above 4G, but didn't enable 5-level paging for us.
	 *
	 * The same trampoline can be used to switch from 5- to 4-level paging
	 * mode, like when starting 4-level paging kernel via kexec() when
	 * original kernel worked in 5-level paging mode.
	 *
	 * For the trampoline, we need the top page table to reside in lower
	 * memory as we don't have a way to load 64-bit values into CR3 in
	 * 32-bit mode.
	 *
	 * We go though the trampoline even if we don't have to: if we're
	 * already in a desired paging mode. This way the trampoline code gets
	 * tested on every boot.
	 */

	/* Make sure we have GDT with 32-bit code segment */
	leaq	gdt(%rip), %rax
	movq	%rax, gdt64+2(%rip)
	lgdt	gdt64(%rip)

	/*
	 * paging_prepare() sets up the trampoline and checks if we need to
	 * enable 5-level paging.
	 *
	 * paging_prepare() returns a two-quadword structure which lands
	 * into RDX:RAX:
	 *   - Address of the trampoline is returned in RAX.
	 *   - Non zero RDX means trampoline needs to enable 5-level
	 *     paging.
	 *
	 * RSI holds real mode data and needs to be preserved across
	 * this function call.
	 */
	pushq	%rsi
	movq	%rsi, %rdi		/* real mode address */
	call	paging_prepare
	popq	%rsi

	/* Save the trampoline address in RCX */
	movq	%rax, %rcx

	/* Set up 32-bit addressable stack */
	leaq	TRAMPOLINE_32BIT_STACK_END(%rcx), %rsp

	/*
	 * Preserve live 64-bit registers on the stack: this is necessary
	 * because the architecture does not guarantee that GPRs will retain
	 * their full 64-bit values across a 32-bit mode switch.
	 */
	pushq	%rbp
	pushq	%rbx
	pushq	%rsi

	/*
	 * Push the 64-bit address of trampoline_return() onto the new stack.
	 * It will be used by the trampoline to return to the main code. Due to
	 * the 32-bit mode switch, it cannot be kept it in a register either.
	 */
	leaq	trampoline_return(%rip), %rdi
	pushq	%rdi

	/* Switch to compatibility mode (CS.L = 0 CS.D = 1) via far return */
	pushq	$__KERNEL32_CS
	leaq	TRAMPOLINE_32BIT_CODE_OFFSET(%rax), %rax
	pushq	%rax
	lretq
trampoline_return:
	/* Restore live 64-bit registers */
	popq	%rsi
	popq	%rbx
	popq	%rbp

	/* Restore the stack, the 32-bit trampoline uses its own stack */
	leaq	boot_stack_end(%rbx), %rsp

	/*
	 * cleanup_trampoline() would restore trampoline memory.
	 *
	 * RDI is address of the page table to use instead of page table
	 * in trampoline memory (if required).
	 *
	 * RSI holds real mode data and needs to be preserved across
	 * this function call.
	 */
	pushq	%rsi
	leaq	top_pgtable(%rbx), %rdi
	call	cleanup_trampoline
	popq	%rsi

	/* Zero EFLAGS */
	pushq	$0
	popfq

	/*
	 * Previously we've adjusted the GOT with address the binary was
	 * loaded at. Now we need to re-adjust for relocation address.
	 *
	 * Calculate the address the binary is loaded at, so that we can
	 * undo the previous GOT adjustment.
	 */
	call	1f
1:	popq	%rax
	subq	$1b, %rax

	/* The new adjustment is the relocation address */
	movq	%rbx, %rdi
	call	.Ladjust_got

/*
 * Copy the compressed kernel to the end of our buffer
 * where decompression in place becomes safe.
 */
	pushq	%rsi
	leaq	(_bss-8)(%rip), %rsi
	leaq	(_bss-8)(%rbx), %rdi
	movq	$_bss /* - $startup_32 */, %rcx
	shrq	$3, %rcx
	std
	rep	movsq
	cld
	popq	%rsi

/*
 * Jump to the relocated address.
 */
	leaq	.Lrelocated(%rbx), %rax
	jmp	*%rax

#ifdef CONFIG_EFI_STUB

/* The entry point for the PE/COFF executable is efi_pe_entry. */
ENTRY(efi_pe_entry)
	movq	%rcx, efi64_config(%rip)	/* Handle */
	movq	%rdx, efi64_config+8(%rip) /* EFI System table pointer */

	leaq	efi64_config(%rip), %rax
	movq	%rax, efi_config(%rip)

	call	1f
1:	popq	%rbp
	subq	$1b, %rbp

	/*
	 * Relocate efi_config->call().
	 */
	addq	%rbp, efi64_config+40(%rip)

	movq	%rax, %rdi
	call	make_boot_params
	cmpq	$0,%rax
	je	fail
	mov	%rax, %rsi
	leaq	startup_32(%rip), %rax
	movl	%eax, BP_code32_start(%rsi)
	jmp	2f		/* Skip the relocation */

handover_entry:
	call	1f
1:	popq	%rbp
	subq	$1b, %rbp

	/*
	 * Relocate efi_config->call().
	 */
	movq	efi_config(%rip), %rax
	addq	%rbp, 40(%rax)
2:
	movq	efi_config(%rip), %rdi
	call	efi_main
	movq	%rax,%rsi
	cmpq	$0,%rax
	jne	2f
fail:
	/* EFI init failed, so hang. */
	hlt
	jmp	fail
2:
	movl	BP_code32_start(%esi), %eax
	leaq	startup_64(%rax), %rax
	jmp	*%rax
ENDPROC(efi_pe_entry)

	.org 0x390
ENTRY(efi64_stub_entry)
	movq	%rdi, efi64_config(%rip)	/* Handle */
	movq	%rsi, efi64_config+8(%rip) /* EFI System table pointer */

	leaq	efi64_config(%rip), %rax
	movq	%rax, efi_config(%rip)

	movq	%rdx, %rsi
	jmp	handover_entry
ENDPROC(efi64_stub_entry)
#endif

	.text
SYM_FUNC_START_LOCAL_NOALIGN(.Lrelocated)

/*
 * Clear BSS (stack is currently empty)
 */
	xorl	%eax, %eax
	leaq    _bss(%rip), %rdi
	leaq    _ebss(%rip), %rcx
	subq	%rdi, %rcx
	shrq	$3, %rcx
	rep	stosq

/*
 * Do the extraction, and jump to the new kernel..
 */
	pushq	%rsi			/* Save the real mode argument */
	movq	%rsi, %rdi		/* real mode address */
	leaq	boot_heap(%rip), %rsi	/* malloc area for uncompression */
	leaq	input_data(%rip), %rdx  /* input_data */
	movl	$z_input_len, %ecx	/* input_len */
	movq	%rbp, %r8		/* output target address */
	movq	$z_output_len, %r9	/* decompressed length, end of relocs */
	call	extract_kernel		/* returns kernel location in %rax */
	popq	%rsi

/*
 * Jump to the decompressed kernel.
 */
	jmp	*%rax
SYM_FUNC_END(.Lrelocated)

/*
 * Adjust the global offset table
 *
 * RAX is the previous adjustment of the table to undo (use 0 if it's the
 * first time we touch GOT).
 * RDI is the new adjustment to apply.
 */
.Ladjust_got:
	/* Walk through the GOT adding the address to the entries */
	leaq	_got(%rip), %rdx
	leaq	_egot(%rip), %rcx
1:
	cmpq	%rcx, %rdx
	jae	2f
	subq	%rax, (%rdx)	/* Undo previous adjustment */
	addq	%rdi, (%rdx)	/* Apply the new adjustment */
	addq	$8, %rdx
	jmp	1b
2:
	ret

	.code32
/*
 * This is the 32-bit trampoline that will be copied over to low memory.
 *
 * Return address is at the top of the stack (might be above 4G).
 * ECX contains the base address of the trampoline memory.
 * Non zero RDX means trampoline needs to enable 5-level paging.
 */
ENTRY(trampoline_32bit_src)
	/* Set up data and stack segments */
	movl	$__KERNEL_DS, %eax
	movl	%eax, %ds
	movl	%eax, %ss

	/* Disable paging */
	movl	%cr0, %eax
	btrl	$X86_CR0_PG_BIT, %eax
	movl	%eax, %cr0

	/* Check what paging mode we want to be in after the trampoline */
	cmpl	$0, %edx
	jz	1f

	/* We want 5-level paging: don't touch CR3 if it already points to 5-level page tables */
	movl	%cr4, %eax
	testl	$X86_CR4_LA57, %eax
	jnz	3f
	jmp	2f
1:
	/* We want 4-level paging: don't touch CR3 if it already points to 4-level page tables */
	movl	%cr4, %eax
	testl	$X86_CR4_LA57, %eax
	jz	3f
2:
	/* Point CR3 to the trampoline's new top level page table */
	leal	TRAMPOLINE_32BIT_PGTABLE_OFFSET(%ecx), %eax
	movl	%eax, %cr3
3:
	/* Set EFER.LME=1 as a precaution in case hypervsior pulls the rug */
	pushl	%ecx
	pushl	%edx
	movl	$MSR_EFER, %ecx
	rdmsr
	btsl	$_EFER_LME, %eax
	wrmsr
	popl	%edx
	popl	%ecx

	/* Enable PAE and LA57 (if required) paging modes */
	movl	$X86_CR4_PAE, %eax
	cmpl	$0, %edx
	jz	1f
	orl	$X86_CR4_LA57, %eax
1:
	movl	%eax, %cr4

	/* Calculate address of paging_enabled() once we are executing in the trampoline */
	leal	.Lpaging_enabled - trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_OFFSET(%ecx), %eax

	/* Prepare the stack for far return to Long Mode */
	pushl	$__KERNEL_CS
	pushl	%eax

	/* Enable paging again */
	movl	$(X86_CR0_PG | X86_CR0_PE), %eax
	movl	%eax, %cr0

	lret

	.code64
SYM_FUNC_START_LOCAL_NOALIGN(.Lpaging_enabled)
	/* Return from the trampoline */
	retq
SYM_FUNC_END(.Lpaging_enabled)

	/*
         * The trampoline code has a size limit.
         * Make sure we fail to compile if the trampoline code grows
         * beyond TRAMPOLINE_32BIT_CODE_SIZE bytes.
	 */
	.org	trampoline_32bit_src + TRAMPOLINE_32BIT_CODE_SIZE

	.code32
SYM_FUNC_START_LOCAL_NOALIGN(.Lno_longmode)
	/* This isn't an x86-64 CPU, so hang intentionally, we cannot continue */
1:
	hlt
	jmp     1b
SYM_FUNC_END(.Lno_longmode)

#include "../../kernel/verify_cpu.S"

	.data
gdt64:
	.word	gdt_end - gdt
	.quad   0
	.balign	8
gdt:
	.word	gdt_end - gdt
	.long	gdt
	.word	0
	.quad	0x00cf9a000000ffff	/* __KERNEL32_CS */
	.quad	0x00af9a000000ffff	/* __KERNEL_CS */
	.quad	0x00cf92000000ffff	/* __KERNEL_DS */
	.quad	0x0080890000000000	/* TS descriptor */
	.quad   0x0000000000000000	/* TS continued */
gdt_end:

#ifdef CONFIG_EFI_STUB
efi_config:
	.quad	0

#ifdef CONFIG_EFI_MIXED
	.global efi32_config
efi32_config:
	.fill	5,8,0
	.quad	efi64_thunk
	.byte	0
#endif

	.global efi64_config
efi64_config:
	.fill	5,8,0
	.quad	efi_call
	.byte	1
#endif /* CONFIG_EFI_STUB */

/*
 * Stack and heap for uncompression
 */
	.bss
	.balign 4
boot_heap:
	.fill BOOT_HEAP_SIZE, 1, 0
boot_stack:
	.fill BOOT_STACK_SIZE, 1, 0
boot_stack_end:

/*
 * Space for page tables (not in .bss so not zeroed)
 */
	.section ".pgtable","a",@nobits
	.balign 4096
pgtable:
	.fill BOOT_PGT_SIZE, 1, 0

/*
 * The page table is going to be used instead of page table in the trampoline
 * memory.
 */
top_pgtable:
	.fill PAGE_SIZE, 1, 0
span class="cm"> * @filp: file handle being closed * * Called on the final close of a SEP device. As the open protects against * multiple simultaenous opens that means this method is called when the * final reference to the open handle is dropped. */ static int sep_release(struct inode *inode, struct file *filp) { struct sep_device *sep = filp->private_data; #if 0 /*!SEP_DRIVER_POLLING_MODE */ /* close IMR */ sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, 0x7FFF); /* release IRQ line */ free_irq(SEP_DIRVER_IRQ_NUM, sep); #endif /* Ensure any blocked open progresses */ clear_bit(0, &sep->in_use); wake_up(&sep_event); return 0; } /*--------------------------------------------------------------- map function - this functions maps the message shared area -----------------------------------------------------------------*/ static int sep_mmap(struct file *filp, struct vm_area_struct *vma) { dma_addr_t bus_addr; struct sep_device *sep = filp->private_data; dbg("-------->SEP Driver: mmap start\n"); /* check that the size of the mapped range is as the size of the message shared area */ if ((vma->vm_end - vma->vm_start) > SEP_DRIVER_MMMAP_AREA_SIZE) { edbg("SEP Driver mmap requested size is more than allowed\n"); printk(KERN_WARNING "SEP Driver mmap requested size is more \ than allowed\n"); printk(KERN_WARNING "SEP Driver vma->vm_end is %08lx\n", vma->vm_end); printk(KERN_WARNING "SEP Driver vma->vm_end is %08lx\n", vma->vm_start); return -EAGAIN; } edbg("SEP Driver:sep->shared_addr is %p\n", sep->shared_addr); /* get bus address */ bus_addr = sep->shared_bus; edbg("SEP Driver: phys_addr is %08llx\n", (unsigned long long)bus_addr); if (remap_pfn_range(vma, vma->vm_start, bus_addr >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot)) { edbg("SEP Driver remap_page_range failed\n"); printk(KERN_WARNING "SEP Driver remap_page_range failed\n"); return -EAGAIN; } dbg("SEP Driver:<-------- mmap end\n"); return 0; } /*----------------------------------------------- poll function *----------------------------------------------*/ static unsigned int sep_poll(struct file *filp, poll_table * wait) { unsigned long count; unsigned int mask = 0; unsigned long retval = 0; /* flow id */ struct sep_device *sep = filp->private_data; dbg("---------->SEP Driver poll: start\n"); #if SEP_DRIVER_POLLING_MODE while (sep->send_ct != (retval & 0x7FFFFFFF)) { retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); for (count = 0; count < 10 * 4; count += 4) edbg("Poll Debug Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES + count))); } sep->reply_ct++; #else /* add the event to the polling wait table */ poll_wait(filp, &sep_event, wait); #endif edbg("sep->send_ct is %lu\n", sep->send_ct); edbg("sep->reply_ct is %lu\n", sep->reply_ct); /* check if the data is ready */ if (sep->send_ct == sep->reply_ct) { for (count = 0; count < 12 * 4; count += 4) edbg("Sep Mesg Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + count))); for (count = 0; count < 10 * 4; count += 4) edbg("Debug Data Word %lu of the message is %lu\n", count, *((unsigned long *) (sep->shared_addr + 0x1800 + count))); retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR2_REG_ADDR); edbg("retval is %lu\n", retval); /* check if the this is sep reply or request */ if (retval >> 31) { edbg("SEP Driver: sep request in\n"); /* request */ mask |= POLLOUT | POLLWRNORM; } else { edbg("SEP Driver: sep reply in\n"); mask |= POLLIN | POLLRDNORM; } } dbg("SEP Driver:<-------- poll exit\n"); return mask; } /** * sep_time_address - address in SEP memory of time * @sep: SEP device we want the address from * * Return the address of the two dwords in memory used for time * setting. */ static u32 *sep_time_address(struct sep_device *sep) { return sep->shared_addr + SEP_DRIVER_SYSTEM_TIME_MEMORY_OFFSET_IN_BYTES; } /** * sep_set_time - set the SEP time * @sep: the SEP we are setting the time for * * Calculates time and sets it at the predefined address. * Called with the sep mutex held. */ static unsigned long sep_set_time(struct sep_device *sep) { struct timeval time; u32 *time_addr; /* address of time as seen by the kernel */ dbg("sep:sep_set_time start\n"); do_gettimeofday(&time); /* set value in the SYSTEM MEMORY offset */ time_addr = sep_time_address(sep); time_addr[0] = SEP_TIME_VAL_TOKEN; time_addr[1] = time.tv_sec; edbg("SEP Driver:time.tv_sec is %lu\n", time.tv_sec); edbg("SEP Driver:time_addr is %p\n", time_addr); edbg("SEP Driver:sep->shared_addr is %p\n", sep->shared_addr); return time.tv_sec; } /** * sep_dump_message - dump the message that is pending * @sep: sep device * * Dump out the message pending in the shared message area */ static void sep_dump_message(struct sep_device *sep) { int count; for (count = 0; count < 12 * 4; count += 4) edbg("Word %d of the message is %u\n", count, *((u32 *) (sep->shared_addr + count))); } /** * sep_send_command_handler - kick off a command * @sep: sep being signalled * * This function raises interrupt to SEP that signals that is has a new * command from the host */ static void sep_send_command_handler(struct sep_device *sep) { dbg("sep:sep_send_command_handler start\n"); mutex_lock(&sep_mutex); sep_set_time(sep); /* FIXME: flush cache */ flush_cache_all(); sep_dump_message(sep); /* update counter */ sep->send_ct++; /* send interrupt to SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2); dbg("SEP Driver:<-------- sep_send_command_handler end\n"); mutex_unlock(&sep_mutex); return; } /** * sep_send_reply_command_handler - kick off a command reply * @sep: sep being signalled * * This function raises interrupt to SEP that signals that is has a new * command from the host */ static void sep_send_reply_command_handler(struct sep_device *sep) { dbg("sep:sep_send_reply_command_handler start\n"); /* flash cache */ flush_cache_all(); sep_dump_message(sep); mutex_lock(&sep_mutex); sep->send_ct++; /* update counter */ /* send the interrupt to SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, sep->send_ct); /* update both counters */ sep->send_ct++; sep->reply_ct++; mutex_unlock(&sep_mutex); dbg("sep: sep_send_reply_command_handler end\n"); } /* This function handles the allocate data pool memory request This function returns calculates the bus address of the allocated memory, and the offset of this area from the mapped address. Therefore, the FVOs in user space can calculate the exact virtual address of this allocated memory */ static int sep_allocate_data_pool_memory_handler(struct sep_device *sep, unsigned long arg) { int error; struct sep_driver_alloc_t command_args; dbg("SEP Driver:--------> sep_allocate_data_pool_memory_handler start\n"); error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_alloc_t)); if (error) goto end_function; /* allocate memory */ if ((sep->data_pool_bytes_allocated + command_args.num_bytes) > SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) { error = -ENOMEM; goto end_function; } /* set the virtual and bus address */ command_args.offset = SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated; command_args.phys_address = sep->shared_bus + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES + sep->data_pool_bytes_allocated; /* write the memory back to the user space */ error = copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_alloc_t)); if (error) goto end_function; /* set the allocation */ sep->data_pool_bytes_allocated += command_args.num_bytes; end_function: dbg("SEP Driver:<-------- sep_allocate_data_pool_memory_handler end\n"); return error; } /* This function handles write into allocated data pool command */ static int sep_write_into_data_pool_handler(struct sep_device *sep, unsigned long arg) { int error; void *virt_address; unsigned long va; unsigned long app_in_address; unsigned long num_bytes; void *data_pool_area_addr; dbg("SEP Driver:--------> sep_write_into_data_pool_handler start\n"); /* get the application address */ error = get_user(app_in_address, &(((struct sep_driver_write_t *) arg)->app_address)); if (error) goto end_function; /* get the virtual kernel address address */ error = get_user(va, &(((struct sep_driver_write_t *) arg)->datapool_address)); if (error) goto end_function; virt_address = (void *)va; /* get the number of bytes */ error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes)); if (error) goto end_function; /* calculate the start of the data pool */ data_pool_area_addr = sep->shared_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES; /* check that the range of the virtual kernel address is correct */ if (virt_address < data_pool_area_addr || virt_address > (data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES)) { error = -EINVAL; goto end_function; } /* copy the application data */ error = copy_from_user(virt_address, (void *) app_in_address, num_bytes); end_function: dbg("SEP Driver:<-------- sep_write_into_data_pool_handler end\n"); return error; } /* this function handles the read from data pool command */ static int sep_read_from_data_pool_handler(struct sep_device *sep, unsigned long arg) { int error; /* virtual address of dest application buffer */ unsigned long app_out_address; /* virtual address of the data pool */ unsigned long va; void *virt_address; unsigned long num_bytes; void *data_pool_area_addr; dbg("SEP Driver:--------> sep_read_from_data_pool_handler start\n"); /* get the application address */ error = get_user(app_out_address, &(((struct sep_driver_write_t *) arg)->app_address)); if (error) goto end_function; /* get the virtual kernel address address */ error = get_user(va, &(((struct sep_driver_write_t *) arg)->datapool_address)); if (error) goto end_function; virt_address = (void *)va; /* get the number of bytes */ error = get_user(num_bytes, &(((struct sep_driver_write_t *) arg)->num_bytes)); if (error) goto end_function; /* calculate the start of the data pool */ data_pool_area_addr = sep->shared_addr + SEP_DRIVER_DATA_POOL_AREA_OFFSET_IN_BYTES; /* FIXME: These are incomplete all over the driver: what about + len and when doing that also overflows */ /* check that the range of the virtual kernel address is correct */ if (virt_address < data_pool_area_addr || virt_address > data_pool_area_addr + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES) { error = -EINVAL; goto end_function; } /* copy the application data */ error = copy_to_user((void *) app_out_address, virt_address, num_bytes); end_function: dbg("SEP Driver:<-------- sep_read_from_data_pool_handler end\n"); return error; } /* This function releases all the application virtual buffer physical pages, that were previously locked */ static int sep_free_dma_pages(struct page **page_array_ptr, unsigned long num_pages, unsigned long dirtyFlag) { unsigned long count; if (dirtyFlag) { for (count = 0; count < num_pages; count++) { /* the out array was written, therefore the data was changed */ if (!PageReserved(page_array_ptr[count])) SetPageDirty(page_array_ptr[count]); page_cache_release(page_array_ptr[count]); } } else { /* free in pages - the data was only read, therefore no update was done on those pages */ for (count = 0; count < num_pages; count++) page_cache_release(page_array_ptr[count]); } if (page_array_ptr) /* free the array */ kfree(page_array_ptr); return 0; } /* This function locks all the physical pages of the kernel virtual buffer and construct a basic lli array, where each entry holds the physical page address and the size that application data holds in this physical pages */ static int sep_lock_kernel_pages(struct sep_device *sep, unsigned long kernel_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr) { int error = 0; /* the the page of the end address of the user space buffer */ unsigned long end_page; /* the page of the start address of the user space buffer */ unsigned long start_page; /* the range in pages */ unsigned long num_pages; struct sep_lli_entry_t *lli_array; /* next kernel address to map */ unsigned long next_kernel_address; unsigned long count; dbg("SEP Driver:--------> sep_lock_kernel_pages start\n"); /* set start and end pages and num pages */ end_page = (kernel_virt_addr + data_size - 1) >> PAGE_SHIFT; start_page = kernel_virt_addr >> PAGE_SHIFT; num_pages = end_page - start_page + 1; edbg("SEP Driver: kernel_virt_addr is %08lx\n", kernel_virt_addr); edbg("SEP Driver: data_size is %lu\n", data_size); edbg("SEP Driver: start_page is %lx\n", start_page); edbg("SEP Driver: end_page is %lx\n", end_page); edbg("SEP Driver: num_pages is %lu\n", num_pages); lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC); if (!lli_array) { edbg("SEP Driver: kmalloc for lli_array failed\n"); error = -ENOMEM; goto end_function; } /* set the start address of the first page - app data may start not at the beginning of the page */ lli_array[0].physical_address = (unsigned long) virt_to_phys((unsigned long *) kernel_virt_addr); /* check that not all the data is in the first page only */ if ((PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK))) >= data_size) lli_array[0].block_size = data_size; else lli_array[0].block_size = PAGE_SIZE - (kernel_virt_addr & (~PAGE_MASK)); /* debug print */ dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size); /* advance the address to the start of the next page */ next_kernel_address = (kernel_virt_addr & PAGE_MASK) + PAGE_SIZE; /* go from the second page to the prev before last */ for (count = 1; count < (num_pages - 1); count++) { lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address); lli_array[count].block_size = PAGE_SIZE; edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size); next_kernel_address += PAGE_SIZE; } /* if more then 1 pages locked - then update for the last page size needed */ if (num_pages > 1) { /* update the address of the last page */ lli_array[count].physical_address = (unsigned long) virt_to_phys((unsigned long *) next_kernel_address); /* set the size of the last page */ lli_array[count].block_size = (kernel_virt_addr + data_size) & (~PAGE_MASK); if (lli_array[count].block_size == 0) { dbg("app_virt_addr is %08lx\n", kernel_virt_addr); dbg("data_size is %lu\n", data_size); while (1); } edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size); } /* set output params */ *lli_array_ptr = lli_array; *num_pages_ptr = num_pages; *page_array_ptr = 0; end_function: dbg("SEP Driver:<-------- sep_lock_kernel_pages end\n"); return 0; } /* This function locks all the physical pages of the application virtual buffer and construct a basic lli array, where each entry holds the physical page address and the size that application data holds in this physical pages */ static int sep_lock_user_pages(struct sep_device *sep, unsigned long app_virt_addr, unsigned long data_size, unsigned long *num_pages_ptr, struct sep_lli_entry_t **lli_array_ptr, struct page ***page_array_ptr) { int error = 0; /* the the page of the end address of the user space buffer */ unsigned long end_page; /* the page of the start address of the user space buffer */ unsigned long start_page; /* the range in pages */ unsigned long num_pages; struct page **page_array; struct sep_lli_entry_t *lli_array; unsigned long count; int result; dbg("SEP Driver:--------> sep_lock_user_pages start\n"); /* set start and end pages and num pages */ end_page = (app_virt_addr + data_size - 1) >> PAGE_SHIFT; start_page = app_virt_addr >> PAGE_SHIFT; num_pages = end_page - start_page + 1; edbg("SEP Driver: app_virt_addr is %08lx\n", app_virt_addr); edbg("SEP Driver: data_size is %lu\n", data_size); edbg("SEP Driver: start_page is %lu\n", start_page); edbg("SEP Driver: end_page is %lu\n", end_page); edbg("SEP Driver: num_pages is %lu\n", num_pages); /* allocate array of pages structure pointers */ page_array = kmalloc(sizeof(struct page *) * num_pages, GFP_ATOMIC); if (!page_array) { edbg("SEP Driver: kmalloc for page_array failed\n"); error = -ENOMEM; goto end_function; } lli_array = kmalloc(sizeof(struct sep_lli_entry_t) * num_pages, GFP_ATOMIC); if (!lli_array) { edbg("SEP Driver: kmalloc for lli_array failed\n"); error = -ENOMEM; goto end_function_with_error1; } /* convert the application virtual address into a set of physical */ down_read(&current->mm->mmap_sem); result = get_user_pages(current, current->mm, app_virt_addr, num_pages, 1, 0, page_array, 0); up_read(&current->mm->mmap_sem); /* check the number of pages locked - if not all then exit with error */ if (result != num_pages) { dbg("SEP Driver: not all pages locked by get_user_pages\n"); error = -ENOMEM; goto end_function_with_error2; } /* flush the cache */ for (count = 0; count < num_pages; count++) flush_dcache_page(page_array[count]); /* set the start address of the first page - app data may start not at the beginning of the page */ lli_array[0].physical_address = ((unsigned long) page_to_phys(page_array[0])) + (app_virt_addr & (~PAGE_MASK)); /* check that not all the data is in the first page only */ if ((PAGE_SIZE - (app_virt_addr & (~PAGE_MASK))) >= data_size) lli_array[0].block_size = data_size; else lli_array[0].block_size = PAGE_SIZE - (app_virt_addr & (~PAGE_MASK)); /* debug print */ dbg("lli_array[0].physical_address is %08lx, lli_array[0].block_size is %lu\n", lli_array[0].physical_address, lli_array[0].block_size); /* go from the second page to the prev before last */ for (count = 1; count < (num_pages - 1); count++) { lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]); lli_array[count].block_size = PAGE_SIZE; edbg("lli_array[%lu].physical_address is %08lx, lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size); } /* if more then 1 pages locked - then update for the last page size needed */ if (num_pages > 1) { /* update the address of the last page */ lli_array[count].physical_address = (unsigned long) page_to_phys(page_array[count]); /* set the size of the last page */ lli_array[count].block_size = (app_virt_addr + data_size) & (~PAGE_MASK); if (lli_array[count].block_size == 0) { dbg("app_virt_addr is %08lx\n", app_virt_addr); dbg("data_size is %lu\n", data_size); while (1); } edbg("lli_array[%lu].physical_address is %08lx, \ lli_array[%lu].block_size is %lu\n", count, lli_array[count].physical_address, count, lli_array[count].block_size); } /* set output params */ *lli_array_ptr = lli_array; *num_pages_ptr = num_pages; *page_array_ptr = page_array; goto end_function; end_function_with_error2: /* release the cache */ for (count = 0; count < num_pages; count++) page_cache_release(page_array[count]); kfree(lli_array); end_function_with_error1: kfree(page_array); end_function: dbg("SEP Driver:<-------- sep_lock_user_pages end\n"); return 0; } /* this function calculates the size of data that can be inserted into the lli table from this array the condition is that either the table is full (all etnries are entered), or there are no more entries in the lli array */ static unsigned long sep_calculate_lli_table_max_size(struct sep_lli_entry_t *lli_in_array_ptr, unsigned long num_array_entries) { unsigned long table_data_size = 0; unsigned long counter; /* calculate the data in the out lli table if till we fill the whole table or till the data has ended */ for (counter = 0; (counter < (SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP - 1)) && (counter < num_array_entries); counter++) table_data_size += lli_in_array_ptr[counter].block_size; return table_data_size; } /* this functions builds ont lli table from the lli_array according to the given size of data */ static void sep_build_lli_table(struct sep_lli_entry_t *lli_array_ptr, struct sep_lli_entry_t *lli_table_ptr, unsigned long *num_processed_entries_ptr, unsigned long *num_table_entries_ptr, unsigned long table_data_size) { unsigned long curr_table_data_size; /* counter of lli array entry */ unsigned long array_counter; dbg("SEP Driver:--------> sep_build_lli_table start\n"); /* init currrent table data size and lli array entry counter */ curr_table_data_size = 0; array_counter = 0; *num_table_entries_ptr = 1; edbg("SEP Driver:table_data_size is %lu\n", table_data_size); /* fill the table till table size reaches the needed amount */ while (curr_table_data_size < table_data_size) { /* update the number of entries in table */ (*num_table_entries_ptr)++; lli_table_ptr->physical_address = lli_array_ptr[array_counter].physical_address; lli_table_ptr->block_size = lli_array_ptr[array_counter].block_size; curr_table_data_size += lli_table_ptr->block_size; edbg("SEP Driver:lli_table_ptr is %08lx\n", (unsigned long) lli_table_ptr); edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address); edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size); /* check for overflow of the table data */ if (curr_table_data_size > table_data_size) { edbg("SEP Driver:curr_table_data_size > table_data_size\n"); /* update the size of block in the table */ lli_table_ptr->block_size -= (curr_table_data_size - table_data_size); /* update the physical address in the lli array */ lli_array_ptr[array_counter].physical_address += lli_table_ptr->block_size; /* update the block size left in the lli array */ lli_array_ptr[array_counter].block_size = (curr_table_data_size - table_data_size); } else /* advance to the next entry in the lli_array */ array_counter++; edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address); edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size); /* move to the next entry in table */ lli_table_ptr++; } /* set the info entry to default */ lli_table_ptr->physical_address = 0xffffffff; lli_table_ptr->block_size = 0; edbg("SEP Driver:lli_table_ptr is %08lx\n", (unsigned long) lli_table_ptr); edbg("SEP Driver:lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address); edbg("SEP Driver:lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size); /* set the output parameter */ *num_processed_entries_ptr += array_counter; edbg("SEP Driver:*num_processed_entries_ptr is %lu\n", *num_processed_entries_ptr); dbg("SEP Driver:<-------- sep_build_lli_table end\n"); return; } /* this function goes over the list of the print created tables and prints all the data */ static void sep_debug_print_lli_tables(struct sep_device *sep, struct sep_lli_entry_t *lli_table_ptr, unsigned long num_table_entries, unsigned long table_data_size) { unsigned long table_count; unsigned long entries_count; dbg("SEP Driver:--------> sep_debug_print_lli_tables start\n"); table_count = 1; while ((unsigned long) lli_table_ptr != 0xffffffff) { edbg("SEP Driver: lli table %08lx, table_data_size is %lu\n", table_count, table_data_size); edbg("SEP Driver: num_table_entries is %lu\n", num_table_entries); /* print entries of the table (without info entry) */ for (entries_count = 0; entries_count < num_table_entries; entries_count++, lli_table_ptr++) { edbg("SEP Driver:lli_table_ptr address is %08lx\n", (unsigned long) lli_table_ptr); edbg("SEP Driver:phys address is %08lx block size is %lu\n", lli_table_ptr->physical_address, lli_table_ptr->block_size); } /* point to the info entry */ lli_table_ptr--; edbg("SEP Driver:phys lli_table_ptr->block_size is %lu\n", lli_table_ptr->block_size); edbg("SEP Driver:phys lli_table_ptr->physical_address is %08lx\n", lli_table_ptr->physical_address); table_data_size = lli_table_ptr->block_size & 0xffffff; num_table_entries = (lli_table_ptr->block_size >> 24) & 0xff; lli_table_ptr = (struct sep_lli_entry_t *) (lli_table_ptr->physical_address); edbg("SEP Driver:phys table_data_size is %lu num_table_entries is %lu lli_table_ptr is%lu\n", table_data_size, num_table_entries, (unsigned long) lli_table_ptr); if ((unsigned long) lli_table_ptr != 0xffffffff) lli_table_ptr = (struct sep_lli_entry_t *) sep_shared_bus_to_virt(sep, (unsigned long) lli_table_ptr); table_count++; } dbg("SEP Driver:<-------- sep_debug_print_lli_tables end\n"); } /* This function prepares only input DMA table for synhronic symmetric operations (HASH) */ static int sep_prepare_input_dma_table(struct sep_device *sep, unsigned long app_virt_addr, unsigned long data_size, unsigned long block_size, unsigned long *lli_table_ptr, unsigned long *num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress) { /* pointer to the info entry of the table - the last entry */ struct sep_lli_entry_t *info_entry_ptr; /* array of pointers ot page */ struct sep_lli_entry_t *lli_array_ptr; /* points to the first entry to be processed in the lli_in_array */ unsigned long current_entry; /* num entries in the virtual buffer */ unsigned long sep_lli_entries; /* lli table pointer */ struct sep_lli_entry_t *in_lli_table_ptr; /* the total data in one table */ unsigned long table_data_size; /* number of entries in lli table */ unsigned long num_entries_in_table; /* next table address */ void *lli_table_alloc_addr; unsigned long result; dbg("SEP Driver:--------> sep_prepare_input_dma_table start\n"); edbg("SEP Driver:data_size is %lu\n", data_size); edbg("SEP Driver:block_size is %lu\n", block_size); /* initialize the pages pointers */ sep->in_page_array = 0; sep->in_num_pages = 0; if (data_size == 0) { /* special case - created 2 entries table with zero data */ in_lli_table_ptr = (struct sep_lli_entry_t *) (sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES); /* FIXME: Should the entry below not be for _bus */ in_lli_table_ptr->physical_address = (unsigned long)sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES; in_lli_table_ptr->block_size = 0; in_lli_table_ptr++; in_lli_table_ptr->physical_address = 0xFFFFFFFF; in_lli_table_ptr->block_size = 0; *lli_table_ptr = sep->shared_bus + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES; *num_entries_ptr = 2; *table_data_size_ptr = 0; goto end_function; } /* check if the pages are in Kernel Virtual Address layout */ if (isKernelVirtualAddress == true) /* lock the pages of the kernel buffer and translate them to pages */ result = sep_lock_kernel_pages(sep, app_virt_addr, data_size, &sep->in_num_pages, &lli_array_ptr, &sep->in_page_array); else /* lock the pages of the user buffer and translate them to pages */ result = sep_lock_user_pages(sep, app_virt_addr, data_size, &sep->in_num_pages, &lli_array_ptr, &sep->in_page_array); if (result) return result; edbg("SEP Driver:output sep->in_num_pages is %lu\n", sep->in_num_pages); current_entry = 0; info_entry_ptr = 0; sep_lli_entries = sep->in_num_pages; /* initiate to point after the message area */ lli_table_alloc_addr = sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES; /* loop till all the entries in in array are not processed */ while (current_entry < sep_lli_entries) { /* set the new input and output tables */ in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr; lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* calculate the maximum size of data for input table */ table_data_size = sep_calculate_lli_table_max_size(&lli_array_ptr[current_entry], (sep_lli_entries - current_entry)); /* now calculate the table size so that it will be module block size */ table_data_size = (table_data_size / block_size) * block_size; edbg("SEP Driver:output table_data_size is %lu\n", table_data_size); /* construct input lli table */ sep_build_lli_table(&lli_array_ptr[current_entry], in_lli_table_ptr, &current_entry, &num_entries_in_table, table_data_size); if (info_entry_ptr == 0) { /* set the output parameters to physical addresses */ *lli_table_ptr = sep_shared_virt_to_bus(sep, in_lli_table_ptr); *num_entries_ptr = num_entries_in_table; *table_data_size_ptr = table_data_size; edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_ptr); } else { /* update the info entry of the previous in table */ info_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, in_lli_table_ptr); info_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size); } /* save the pointer to the info entry of the current tables */ info_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1; } /* print input tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *) sep_shared_bus_to_virt(sep, *lli_table_ptr), *num_entries_ptr, *table_data_size_ptr); /* the array of the pages */ kfree(lli_array_ptr); end_function: dbg("SEP Driver:<-------- sep_prepare_input_dma_table end\n"); return 0; } /* This function creates the input and output dma tables for symmetric operations (AES/DES) according to the block size from LLI arays */ static int sep_construct_dma_tables_from_lli(struct sep_device *sep, struct sep_lli_entry_t *lli_in_array, unsigned long sep_in_lli_entries, struct sep_lli_entry_t *lli_out_array, unsigned long sep_out_lli_entries, unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr) { /* points to the area where next lli table can be allocated: keep void * as there is pointer scaling to fix otherwise */ void *lli_table_alloc_addr; /* input lli table */ struct sep_lli_entry_t *in_lli_table_ptr; /* output lli table */ struct sep_lli_entry_t *out_lli_table_ptr; /* pointer to the info entry of the table - the last entry */ struct sep_lli_entry_t *info_in_entry_ptr; /* pointer to the info entry of the table - the last entry */ struct sep_lli_entry_t *info_out_entry_ptr; /* points to the first entry to be processed in the lli_in_array */ unsigned long current_in_entry; /* points to the first entry to be processed in the lli_out_array */ unsigned long current_out_entry; /* max size of the input table */ unsigned long in_table_data_size; /* max size of the output table */ unsigned long out_table_data_size; /* flag te signifies if this is the first tables build from the arrays */ unsigned long first_table_flag; /* the data size that should be in table */ unsigned long table_data_size; /* number of etnries in the input table */ unsigned long num_entries_in_table; /* number of etnries in the output table */ unsigned long num_entries_out_table; dbg("SEP Driver:--------> sep_construct_dma_tables_from_lli start\n"); /* initiate to pint after the message area */ lli_table_alloc_addr = sep->shared_addr + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_OFFSET_IN_BYTES; current_in_entry = 0; current_out_entry = 0; first_table_flag = 1; info_in_entry_ptr = 0; info_out_entry_ptr = 0; /* loop till all the entries in in array are not processed */ while (current_in_entry < sep_in_lli_entries) { /* set the new input and output tables */ in_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr; lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* set the first output tables */ out_lli_table_ptr = (struct sep_lli_entry_t *) lli_table_alloc_addr; lli_table_alloc_addr += sizeof(struct sep_lli_entry_t) * SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP; /* calculate the maximum size of data for input table */ in_table_data_size = sep_calculate_lli_table_max_size(&lli_in_array[current_in_entry], (sep_in_lli_entries - current_in_entry)); /* calculate the maximum size of data for output table */ out_table_data_size = sep_calculate_lli_table_max_size(&lli_out_array[current_out_entry], (sep_out_lli_entries - current_out_entry)); edbg("SEP Driver:in_table_data_size is %lu\n", in_table_data_size); edbg("SEP Driver:out_table_data_size is %lu\n", out_table_data_size); /* check where the data is smallest */ table_data_size = in_table_data_size; if (table_data_size > out_table_data_size) table_data_size = out_table_data_size; /* now calculate the table size so that it will be module block size */ table_data_size = (table_data_size / block_size) * block_size; dbg("SEP Driver:table_data_size is %lu\n", table_data_size); /* construct input lli table */ sep_build_lli_table(&lli_in_array[current_in_entry], in_lli_table_ptr, &current_in_entry, &num_entries_in_table, table_data_size); /* construct output lli table */ sep_build_lli_table(&lli_out_array[current_out_entry], out_lli_table_ptr, &current_out_entry, &num_entries_out_table, table_data_size); /* if info entry is null - this is the first table built */ if (info_in_entry_ptr == 0) { /* set the output parameters to physical addresses */ *lli_table_in_ptr = sep_shared_virt_to_bus(sep, in_lli_table_ptr); *in_num_entries_ptr = num_entries_in_table; *lli_table_out_ptr = sep_shared_virt_to_bus(sep, out_lli_table_ptr); *out_num_entries_ptr = num_entries_out_table; *table_data_size_ptr = table_data_size; edbg("SEP Driver:output lli_table_in_ptr is %08lx\n", *lli_table_in_ptr); edbg("SEP Driver:output lli_table_out_ptr is %08lx\n", *lli_table_out_ptr); } else { /* update the info entry of the previous in table */ info_in_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, in_lli_table_ptr); info_in_entry_ptr->block_size = ((num_entries_in_table) << 24) | (table_data_size); /* update the info entry of the previous in table */ info_out_entry_ptr->physical_address = sep_shared_virt_to_bus(sep, out_lli_table_ptr); info_out_entry_ptr->block_size = ((num_entries_out_table) << 24) | (table_data_size); } /* save the pointer to the info entry of the current tables */ info_in_entry_ptr = in_lli_table_ptr + num_entries_in_table - 1; info_out_entry_ptr = out_lli_table_ptr + num_entries_out_table - 1; edbg("SEP Driver:output num_entries_out_table is %lu\n", (unsigned long) num_entries_out_table); edbg("SEP Driver:output info_in_entry_ptr is %lu\n", (unsigned long) info_in_entry_ptr); edbg("SEP Driver:output info_out_entry_ptr is %lu\n", (unsigned long) info_out_entry_ptr); } /* print input tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *) sep_shared_bus_to_virt(sep, *lli_table_in_ptr), *in_num_entries_ptr, *table_data_size_ptr); /* print output tables */ sep_debug_print_lli_tables(sep, (struct sep_lli_entry_t *) sep_shared_bus_to_virt(sep, *lli_table_out_ptr), *out_num_entries_ptr, *table_data_size_ptr); dbg("SEP Driver:<-------- sep_construct_dma_tables_from_lli end\n"); return 0; } /* This function builds input and output DMA tables for synhronic symmetric operations (AES, DES). It also checks that each table is of the modular block size */ static int sep_prepare_input_output_dma_table(struct sep_device *sep, unsigned long app_virt_in_addr, unsigned long app_virt_out_addr, unsigned long data_size, unsigned long block_size, unsigned long *lli_table_in_ptr, unsigned long *lli_table_out_ptr, unsigned long *in_num_entries_ptr, unsigned long *out_num_entries_ptr, unsigned long *table_data_size_ptr, bool isKernelVirtualAddress) { /* array of pointers of page */ struct sep_lli_entry_t *lli_in_array; /* array of pointers of page */ struct sep_lli_entry_t *lli_out_array; int result = 0; dbg("SEP Driver:--------> sep_prepare_input_output_dma_table start\n"); /* initialize the pages pointers */ sep->in_page_array = 0; sep->out_page_array = 0; /* check if the pages are in Kernel Virtual Address layout */ if (isKernelVirtualAddress == true) { /* lock the pages of the kernel buffer and translate them to pages */ result = sep_lock_kernel_pages(sep, app_virt_in_addr, data_size, &sep->in_num_pages, &lli_in_array, &sep->in_page_array); if (result) { edbg("SEP Driver: sep_lock_kernel_pages for input virtual buffer failed\n"); goto end_function; } } else { /* lock the pages of the user buffer and translate them to pages */ result = sep_lock_user_pages(sep, app_virt_in_addr, data_size, &sep->in_num_pages, &lli_in_array, &sep->in_page_array); if (result) { edbg("SEP Driver: sep_lock_user_pages for input virtual buffer failed\n"); goto end_function; } } if (isKernelVirtualAddress == true) { result = sep_lock_kernel_pages(sep, app_virt_out_addr, data_size, &sep->out_num_pages, &lli_out_array, &sep->out_page_array); if (result) { edbg("SEP Driver: sep_lock_kernel_pages for output virtual buffer failed\n"); goto end_function_with_error1; } } else { result = sep_lock_user_pages(sep, app_virt_out_addr, data_size, &sep->out_num_pages, &lli_out_array, &sep->out_page_array); if (result) { edbg("SEP Driver: sep_lock_user_pages for output virtual buffer failed\n"); goto end_function_with_error1; } } edbg("sep->in_num_pages is %lu\n", sep->in_num_pages); edbg("sep->out_num_pages is %lu\n", sep->out_num_pages); edbg("SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP is %x\n", SEP_DRIVER_ENTRIES_PER_TABLE_IN_SEP); /* call the fucntion that creates table from the lli arrays */ result = sep_construct_dma_tables_from_lli(sep, lli_in_array, sep->in_num_pages, lli_out_array, sep->out_num_pages, block_size, lli_table_in_ptr, lli_table_out_ptr, in_num_entries_ptr, out_num_entries_ptr, table_data_size_ptr); if (result) { edbg("SEP Driver: sep_construct_dma_tables_from_lli failed\n"); goto end_function_with_error2; } /* fall through - free the lli entry arrays */ dbg("in_num_entries_ptr is %08lx\n", *in_num_entries_ptr); dbg("out_num_entries_ptr is %08lx\n", *out_num_entries_ptr); dbg("table_data_size_ptr is %08lx\n", *table_data_size_ptr); end_function_with_error2: kfree(lli_out_array); end_function_with_error1: kfree(lli_in_array); end_function: dbg("SEP Driver:<-------- sep_prepare_input_output_dma_table end result = %d\n", (int) result); return result; } /* this function handles tha request for creation of the DMA table for the synchronic symmetric operations (AES,DES) */ static int sep_create_sync_dma_tables_handler(struct sep_device *sep, unsigned long arg) { int error; /* command arguments */ struct sep_driver_build_sync_table_t command_args; dbg("SEP Driver:--------> sep_create_sync_dma_tables_handler start\n"); error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_sync_table_t)); if (error) goto end_function; edbg("app_in_address is %08lx\n", command_args.app_in_address); edbg("app_out_address is %08lx\n", command_args.app_out_address); edbg("data_size is %lu\n", command_args.data_in_size); edbg("block_size is %lu\n", command_args.block_size); /* check if we need to build only input table or input/output */ if (command_args.app_out_address) /* prepare input and output tables */ error = sep_prepare_input_output_dma_table(sep, command_args.app_in_address, command_args.app_out_address, command_args.data_in_size, command_args.block_size, &command_args.in_table_address, &command_args.out_table_address, &command_args.in_table_num_entries, &command_args.out_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress); else /* prepare input tables */ error = sep_prepare_input_dma_table(sep, command_args.app_in_address, command_args.data_in_size, command_args.block_size, &command_args.in_table_address, &command_args.in_table_num_entries, &command_args.table_data_size, command_args.isKernelVirtualAddress); if (error) goto end_function; /* copy to user */ if (copy_to_user((void *) arg, (void *) &command_args, sizeof(struct sep_driver_build_sync_table_t))) error = -EFAULT; end_function: dbg("SEP Driver:<-------- sep_create_sync_dma_tables_handler end\n"); return error; } /* this function handles the request for freeing dma table for synhronic actions */ static int sep_free_dma_table_data_handler(struct sep_device *sep) { dbg("SEP Driver:--------> sep_free_dma_table_data_handler start\n"); /* free input pages array */ sep_free_dma_pages(sep->in_page_array, sep->in_num_pages, 0); /* free output pages array if needed */ if (sep->out_page_array) sep_free_dma_pages(sep->out_page_array, sep->out_num_pages, 1); /* reset all the values */ sep->in_page_array = 0; sep->out_page_array = 0; sep->in_num_pages = 0; sep->out_num_pages = 0; dbg("SEP Driver:<-------- sep_free_dma_table_data_handler end\n"); return 0; } /* this function find a space for the new flow dma table */ static int sep_find_free_flow_dma_table_space(struct sep_device *sep, unsigned long **table_address_ptr) { int error = 0; /* pointer to the id field of the flow dma table */ unsigned long *start_table_ptr; /* Do not make start_addr unsigned long * unless fixing the offset computations ! */ void *flow_dma_area_start_addr; unsigned long *flow_dma_area_end_addr; /* maximum table size in words */ unsigned long table_size_in_words; /* find the start address of the flow DMA table area */ flow_dma_area_start_addr = sep->shared_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_OFFSET_IN_BYTES; /* set end address of the flow table area */ flow_dma_area_end_addr = flow_dma_area_start_addr + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES; /* set table size in words */ table_size_in_words = SEP_DRIVER_MAX_FLOW_NUM_ENTRIES_IN_TABLE * (sizeof(struct sep_lli_entry_t) / sizeof(long)) + 2; /* set the pointer to the start address of DMA area */ start_table_ptr = flow_dma_area_start_addr; /* find the space for the next table */ while (((*start_table_ptr & 0x7FFFFFFF) != 0) && start_table_ptr < flow_dma_area_end_addr) start_table_ptr += table_size_in_words; /* check if we reached the end of floa tables area */ if (start_table_ptr >= flow_dma_area_end_addr) error = -1; else *table_address_ptr = start_table_ptr; return error; } /* This function creates one DMA table for flow and returns its data, and pointer to its info entry */ static int sep_prepare_one_flow_dma_table(struct sep_device *sep, unsigned long virt_buff_addr, unsigned long virt_buff_size, struct sep_lli_entry_t *table_data, struct sep_lli_entry_t **info_entry_ptr, struct sep_flow_context_t *flow_data_ptr, bool isKernelVirtualAddress) { int error; /* the range in pages */ unsigned long lli_array_size; struct sep_lli_entry_t *lli_array; struct sep_lli_entry_t *flow_dma_table_entry_ptr; unsigned long *start_dma_table_ptr; /* total table data counter */ unsigned long dma_table_data_count; /* pointer that will keep the pointer to the pages of the virtual buffer */ struct page **page_array_ptr; unsigned long entry_count; /* find the space for the new table */ error = sep_find_free_flow_dma_table_space(sep, &start_dma_table_ptr); if (error) goto end_function; /* check if the pages are in Kernel Virtual Address layout */ if (isKernelVirtualAddress == true) /* lock kernel buffer in the memory */ error = sep_lock_kernel_pages(sep, virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr); else /* lock user buffer in the memory */ error = sep_lock_user_pages(sep, virt_buff_addr, virt_buff_size, &lli_array_size, &lli_array, &page_array_ptr); if (error) goto end_function; /* set the pointer to page array at the beginning of table - this table is now considered taken */ *start_dma_table_ptr = lli_array_size; /* point to the place of the pages pointers of the table */ start_dma_table_ptr++; /* set the pages pointer */ *start_dma_table_ptr = (unsigned long) page_array_ptr; /* set the pointer to the first entry */ flow_dma_table_entry_ptr = (struct sep_lli_entry_t *) (++start_dma_table_ptr); /* now create the entries for table */ for (dma_table_data_count = entry_count = 0; entry_count < lli_array_size; entry_count++) { flow_dma_table_entry_ptr->physical_address = lli_array[entry_count].physical_address; flow_dma_table_entry_ptr->block_size = lli_array[entry_count].block_size; /* set the total data of a table */ dma_table_data_count += lli_array[entry_count].block_size; flow_dma_table_entry_ptr++; } /* set the physical address */ table_data->physical_address = virt_to_phys(start_dma_table_ptr); /* set the num_entries and total data size */ table_data->block_size = ((lli_array_size + 1) << SEP_NUM_ENTRIES_OFFSET_IN_BITS) | (dma_table_data_count); /* set the info entry */ flow_dma_table_entry_ptr->physical_address = 0xffffffff; flow_dma_table_entry_ptr->block_size = 0; /* set the pointer to info entry */ *info_entry_ptr = flow_dma_table_entry_ptr; /* the array of the lli entries */ kfree(lli_array); end_function: return error; } /* This function creates a list of tables for flow and returns the data for the first and last tables of the list */ static int sep_prepare_flow_dma_tables(struct sep_device *sep, unsigned long num_virtual_buffers, unsigned long first_buff_addr, struct sep_flow_context_t *flow_data_ptr, struct sep_lli_entry_t *first_table_data_ptr, struct sep_lli_entry_t *last_table_data_ptr, bool isKernelVirtualAddress) { int error; unsigned long virt_buff_addr; unsigned long virt_buff_size; struct sep_lli_entry_t table_data; struct sep_lli_entry_t *info_entry_ptr; struct sep_lli_entry_t *prev_info_entry_ptr; unsigned long i; /* init vars */ error = 0; prev_info_entry_ptr = 0; /* init the first table to default */ table_data.physical_address = 0xffffffff; first_table_data_ptr->physical_address = 0xffffffff; table_data.block_size = 0; for (i = 0; i < num_virtual_buffers; i++) { /* get the virtual buffer address */ error = get_user(virt_buff_addr, &first_buff_addr); if (error) goto end_function; /* get the virtual buffer size */ first_buff_addr++; error = get_user(virt_buff_size, &first_buff_addr); if (error) goto end_function; /* advance the address to point to the next pair of address|size */ first_buff_addr++; /* now prepare the one flow LLI table from the data */ error = sep_prepare_one_flow_dma_table(sep, virt_buff_addr, virt_buff_size, &table_data, &info_entry_ptr, flow_data_ptr, isKernelVirtualAddress); if (error) goto end_function; if (i == 0) { /* if this is the first table - save it to return to the user application */ *first_table_data_ptr = table_data; /* set the pointer to info entry */ prev_info_entry_ptr = info_entry_ptr; } else { /* not first table - the previous table info entry should be updated */ prev_info_entry_ptr->block_size = (0x1 << SEP_INT_FLAG_OFFSET_IN_BITS) | (table_data.block_size); /* set the pointer to info entry */ prev_info_entry_ptr = info_entry_ptr; } } /* set the last table data */ *last_table_data_ptr = table_data; end_function: return error; } /* this function goes over all the flow tables connected to the given table and deallocate them */ static void sep_deallocated_flow_tables(struct sep_lli_entry_t *first_table_ptr) { /* id pointer */ unsigned long *table_ptr; /* end address of the flow dma area */ unsigned long num_entries; unsigned long num_pages; struct page **pages_ptr; /* maximum table size in words */ struct sep_lli_entry_t *info_entry_ptr; /* set the pointer to the first table */ table_ptr = (unsigned long *) first_table_ptr->physical_address; /* set the num of entries */ num_entries = (first_table_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK; /* go over all the connected tables */ while (*table_ptr != 0xffffffff) { /* get number of pages */ num_pages = *(table_ptr - 2); /* get the pointer to the pages */ pages_ptr = (struct page **) (*(table_ptr - 1)); /* free the pages */ sep_free_dma_pages(pages_ptr, num_pages, 1); /* goto to the info entry */ info_entry_ptr = ((struct sep_lli_entry_t *) table_ptr) + (num_entries - 1); table_ptr = (unsigned long *) info_entry_ptr->physical_address; num_entries = (info_entry_ptr->block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK; } return; } /** * sep_find_flow_context - find a flow * @sep: the SEP we are working with * @flow_id: flow identifier * * Returns a pointer the matching flow, or NULL if the flow does not * exist. */ static struct sep_flow_context_t *sep_find_flow_context(struct sep_device *sep, unsigned long flow_id) { int count; /* * always search for flow with id default first - in case we * already started working on the flow there can be no situation * when 2 flows are with default flag */ for (count = 0; count < SEP_DRIVER_NUM_FLOWS; count++) { if (sep->flows[count].flow_id == flow_id) return &sep->flows[count]; } return NULL; } /* this function handles the request to create the DMA tables for flow */ static int sep_create_flow_dma_tables_handler(struct sep_device *sep, unsigned long arg) { int error; struct sep_driver_build_flow_table_t command_args; /* first table - output */ struct sep_lli_entry_t first_table_data; /* dma table data */ struct sep_lli_entry_t last_table_data; /* pointer to the info entry of the previuos DMA table */ struct sep_lli_entry_t *prev_info_entry_ptr; /* pointer to the flow data strucutre */ struct sep_flow_context_t *flow_context_ptr; dbg("SEP Driver:--------> sep_create_flow_dma_tables_handler start\n"); /* init variables */ prev_info_entry_ptr = 0; first_table_data.physical_address = 0xffffffff; /* find the free structure for flow data */ flow_context_ptr = sep_find_flow_context(sep, SEP_FREE_FLOW_ID); if (flow_context_ptr == NULL) goto end_function; error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_build_flow_table_t)); if (error) goto end_function; /* create flow tables */ error = sep_prepare_flow_dma_tables(sep, command_args.num_virtual_buffers, command_args.virt_buff_data_addr, flow_context_ptr, &first_table_data, &last_table_data, command_args.isKernelVirtualAddress); if (error) goto end_function_with_error; /* check if flow is static */ if (!command_args.flow_type) /* point the info entry of the last to the info entry of the first */ last_table_data = first_table_data; /* set output params */ command_args.first_table_addr = first_table_data.physical_address; command_args.first_table_num_entries = ((first_table_data.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK); command_args.first_table_data_size = (first_table_data.block_size & SEP_TABLE_DATA_SIZE_MASK); /* send the parameters to user application */ error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_build_flow_table_t)); if (error) goto end_function_with_error; /* all the flow created - update the flow entry with temp id */ flow_context_ptr->flow_id = SEP_TEMP_FLOW_ID; /* set the processing tables data in the context */ if (command_args.input_output_flag == SEP_DRIVER_IN_FLAG) flow_context_ptr->input_tables_in_process = first_table_data; else flow_context_ptr->output_tables_in_process = first_table_data; goto end_function; end_function_with_error: /* free the allocated tables */ sep_deallocated_flow_tables(&first_table_data); end_function: dbg("SEP Driver:<-------- sep_create_flow_dma_tables_handler end\n"); return error; } /* this function handles add tables to flow */ static int sep_add_flow_tables_handler(struct sep_device *sep, unsigned long arg) { int error; unsigned long num_entries; struct sep_driver_add_flow_table_t command_args; struct sep_flow_context_t *flow_context_ptr; /* first dma table data */ struct sep_lli_entry_t first_table_data; /* last dma table data */ struct sep_lli_entry_t last_table_data; /* pointer to the info entry of the current DMA table */ struct sep_lli_entry_t *info_entry_ptr; dbg("SEP Driver:--------> sep_add_flow_tables_handler start\n"); /* get input parameters */ error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_add_flow_table_t)); if (error) goto end_function; /* find the flow structure for the flow id */ flow_context_ptr = sep_find_flow_context(sep, command_args.flow_id); if (flow_context_ptr == NULL) goto end_function; /* prepare the flow dma tables */ error = sep_prepare_flow_dma_tables(sep, command_args.num_virtual_buffers, command_args.virt_buff_data_addr, flow_context_ptr, &first_table_data, &last_table_data, command_args.isKernelVirtualAddress); if (error) goto end_function_with_error; /* now check if there is already an existing add table for this flow */ if (command_args.inputOutputFlag == SEP_DRIVER_IN_FLAG) { /* this buffer was for input buffers */ if (flow_context_ptr->input_tables_flag) { /* add table already exists - add the new tables to the end of the previous */ num_entries = (flow_context_ptr->last_input_table.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK; info_entry_ptr = (struct sep_lli_entry_t *) (flow_context_ptr->last_input_table.physical_address + (sizeof(struct sep_lli_entry_t) * (num_entries - 1))); /* connect to list of tables */ *info_entry_ptr = first_table_data; /* set the first table data */ first_table_data = flow_context_ptr->first_input_table; } else { /* set the input flag */ flow_context_ptr->input_tables_flag = 1; /* set the first table data */ flow_context_ptr->first_input_table = first_table_data; } /* set the last table data */ flow_context_ptr->last_input_table = last_table_data; } else { /* this is output tables */ /* this buffer was for input buffers */ if (flow_context_ptr->output_tables_flag) { /* add table already exists - add the new tables to the end of the previous */ num_entries = (flow_context_ptr->last_output_table.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK; info_entry_ptr = (struct sep_lli_entry_t *) (flow_context_ptr->last_output_table.physical_address + (sizeof(struct sep_lli_entry_t) * (num_entries - 1))); /* connect to list of tables */ *info_entry_ptr = first_table_data; /* set the first table data */ first_table_data = flow_context_ptr->first_output_table; } else { /* set the input flag */ flow_context_ptr->output_tables_flag = 1; /* set the first table data */ flow_context_ptr->first_output_table = first_table_data; } /* set the last table data */ flow_context_ptr->last_output_table = last_table_data; } /* set output params */ command_args.first_table_addr = first_table_data.physical_address; command_args.first_table_num_entries = ((first_table_data.block_size >> SEP_NUM_ENTRIES_OFFSET_IN_BITS) & SEP_NUM_ENTRIES_MASK); command_args.first_table_data_size = (first_table_data.block_size & SEP_TABLE_DATA_SIZE_MASK); /* send the parameters to user application */ error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_add_flow_table_t)); end_function_with_error: /* free the allocated tables */ sep_deallocated_flow_tables(&first_table_data); end_function: dbg("SEP Driver:<-------- sep_add_flow_tables_handler end\n"); return error; } /* this function add the flow add message to the specific flow */ static int sep_add_flow_tables_message_handler(struct sep_device *sep, unsigned long arg) { int error; struct sep_driver_add_message_t command_args; struct sep_flow_context_t *flow_context_ptr; dbg("SEP Driver:--------> sep_add_flow_tables_message_handler start\n"); error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_add_message_t)); if (error) goto end_function; /* check input */ if (command_args.message_size_in_bytes > SEP_MAX_ADD_MESSAGE_LENGTH_IN_BYTES) { error = -ENOMEM; goto end_function; } /* find the flow context */ flow_context_ptr = sep_find_flow_context(sep, command_args.flow_id); if (flow_context_ptr == NULL) goto end_function; /* copy the message into context */ flow_context_ptr->message_size_in_bytes = command_args.message_size_in_bytes; error = copy_from_user(flow_context_ptr->message, (void *) command_args.message_address, command_args.message_size_in_bytes); end_function: dbg("SEP Driver:<-------- sep_add_flow_tables_message_handler end\n"); return error; } /* this function returns the bus and virtual addresses of the static pool */ static int sep_get_static_pool_addr_handler(struct sep_device *sep, unsigned long arg) { int error; struct sep_driver_static_pool_addr_t command_args; dbg("SEP Driver:--------> sep_get_static_pool_addr_handler start\n"); /*prepare the output parameters in the struct */ command_args.physical_static_address = sep->shared_bus + SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES; command_args.virtual_static_address = (unsigned long)sep->shared_addr + SEP_DRIVER_STATIC_AREA_OFFSET_IN_BYTES; edbg("SEP Driver:bus_static_address is %08lx, virtual_static_address %08lx\n", command_args.physical_static_address, command_args.virtual_static_address); /* send the parameters to user application */ error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_static_pool_addr_t)); dbg("SEP Driver:<-------- sep_get_static_pool_addr_handler end\n"); return error; } /* this address gets the offset of the physical address from the start of the mapped area */ static int sep_get_physical_mapped_offset_handler(struct sep_device *sep, unsigned long arg) { int error; struct sep_driver_get_mapped_offset_t command_args; dbg("SEP Driver:--------> sep_get_physical_mapped_offset_handler start\n"); error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_get_mapped_offset_t)); if (error) goto end_function; if (command_args.physical_address < sep->shared_bus) { error = -EINVAL; goto end_function; } /*prepare the output parameters in the struct */ command_args.offset = command_args.physical_address - sep->shared_bus; edbg("SEP Driver:bus_address is %08lx, offset is %lu\n", command_args.physical_address, command_args.offset); /* send the parameters to user application */ error = copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_get_mapped_offset_t)); end_function: dbg("SEP Driver:<-------- sep_get_physical_mapped_offset_handler end\n"); return error; } /* ? */ static int sep_start_handler(struct sep_device *sep) { unsigned long reg_val; unsigned long error = 0; dbg("SEP Driver:--------> sep_start_handler start\n"); /* wait in polling for message from SEP */ do reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR); while (!reg_val); /* check the value */ if (reg_val == 0x1) /* fatal error - read error status from GPRO */ error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR); dbg("SEP Driver:<-------- sep_start_handler end\n"); return error; } /* this function handles the request for SEP initialization */ static int sep_init_handler(struct sep_device *sep, unsigned long arg) { unsigned long message_word; unsigned long *message_ptr; struct sep_driver_init_t command_args; unsigned long counter; unsigned long error; unsigned long reg_val; dbg("SEP Driver:--------> sep_init_handler start\n"); error = 0; error = copy_from_user(&command_args, (void *) arg, sizeof(struct sep_driver_init_t)); dbg("SEP Driver:--------> sep_init_handler - finished copy_from_user \n"); if (error) goto end_function; /* PATCH - configure the DMA to single -burst instead of multi-burst */ /*sep_configure_dma_burst(); */ dbg("SEP Driver:--------> sep_init_handler - finished sep_configure_dma_burst \n"); message_ptr = (unsigned long *) command_args.message_addr; /* set the base address of the SRAM */ sep_write_reg(sep, HW_SRAM_ADDR_REG_ADDR, HW_CC_SRAM_BASE_ADDRESS); for (counter = 0; counter < command_args.message_size_in_words; counter++, message_ptr++) { get_user(message_word, message_ptr); /* write data to SRAM */ sep_write_reg(sep, HW_SRAM_DATA_REG_ADDR, message_word); edbg("SEP Driver:message_word is %lu\n", message_word); /* wait for write complete */ sep_wait_sram_write(sep); } dbg("SEP Driver:--------> sep_init_handler - finished getting messages from user space\n"); /* signal SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x1); do reg_val = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR3_REG_ADDR); while (!(reg_val & 0xFFFFFFFD)); dbg("SEP Driver:--------> sep_init_handler - finished waiting for reg_val & 0xFFFFFFFD \n"); /* check the value */ if (reg_val == 0x1) { edbg("SEP Driver:init failed\n"); error = sep_read_reg(sep, 0x8060); edbg("SEP Driver:sw monitor is %lu\n", error); /* fatal error - read erro status from GPRO */ error = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR0_REG_ADDR); edbg("SEP Driver:error is %lu\n", error); } end_function: dbg("SEP Driver:<-------- sep_init_handler end\n"); return error; } /* this function handles the request cache and resident reallocation */ static int sep_realloc_cache_resident_handler(struct sep_device *sep, unsigned long arg) { struct sep_driver_realloc_cache_resident_t command_args; int error; /* copy cache and resident to the their intended locations */ error = sep_load_firmware(sep); if (error) return error; command_args.new_base_addr = sep->shared_bus; /* find the new base address according to the lowest address between cache, resident and shared area */ if (sep->resident_bus < command_args.new_base_addr) command_args.new_base_addr = sep->resident_bus; if (sep->rar_bus < command_args.new_base_addr) command_args.new_base_addr = sep->rar_bus; /* set the return parameters */ command_args.new_cache_addr = sep->rar_bus; command_args.new_resident_addr = sep->resident_bus; /* set the new shared area */ command_args.new_shared_area_addr = sep->shared_bus; edbg("SEP Driver:command_args.new_shared_addr is %08llx\n", command_args.new_shared_area_addr); edbg("SEP Driver:command_args.new_base_addr is %08llx\n", command_args.new_base_addr); edbg("SEP Driver:command_args.new_resident_addr is %08llx\n", command_args.new_resident_addr); edbg("SEP Driver:command_args.new_rar_addr is %08llx\n", command_args.new_cache_addr); /* return to user */ if (copy_to_user((void *) arg, &command_args, sizeof(struct sep_driver_realloc_cache_resident_t))) return -EFAULT; return 0; } /** * sep_get_time_handler - time request from user space * @sep: sep we are to set the time for * @arg: pointer to user space arg buffer * * This function reports back the time and the address in the SEP * shared buffer at which it has been placed. (Do we really need this!!!) */ static int sep_get_time_handler(struct sep_device *sep, unsigned long arg) { struct sep_driver_get_time_t command_args; mutex_lock(&sep_mutex); command_args.time_value = sep_set_time(sep); command_args.time_physical_address = (unsigned long)sep_time_address(sep); mutex_unlock(&sep_mutex); if (copy_to_user((void __user *)arg, &command_args, sizeof(struct sep_driver_get_time_t))) return -EFAULT; return 0; } /* This API handles the end transaction request */ static int sep_end_transaction_handler(struct sep_device *sep, unsigned long arg) { dbg("SEP Driver:--------> sep_end_transaction_handler start\n"); #if 0 /*!SEP_DRIVER_POLLING_MODE */ /* close IMR */ sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, 0x7FFF); /* release IRQ line */ free_irq(SEP_DIRVER_IRQ_NUM, sep); /* lock the sep mutex */ mutex_unlock(&sep_mutex); #endif dbg("SEP Driver:<-------- sep_end_transaction_handler end\n"); return 0; } /** * sep_set_flow_id_handler - handle flow setting * @sep: the SEP we are configuring * @flow_id: the flow we are setting * * This function handler the set flow id command */ static int sep_set_flow_id_handler(struct sep_device *sep, unsigned long flow_id) { int error = 0; struct sep_flow_context_t *flow_data_ptr; /* find the flow data structure that was just used for creating new flow - its id should be default */ mutex_lock(&sep_mutex); flow_data_ptr = sep_find_flow_context(sep, SEP_TEMP_FLOW_ID); if (flow_data_ptr) flow_data_ptr->flow_id = flow_id; /* set flow id */ else error = -EINVAL; mutex_unlock(&sep_mutex); return error; } static int sep_ioctl(struct inode *inode, struct file *filp, unsigned int cmd, unsigned long arg) { int error = 0; struct sep_device *sep = filp->private_data; dbg("------------>SEP Driver: ioctl start\n"); edbg("SEP Driver: cmd is %x\n", cmd); switch (cmd) { case SEP_IOCSENDSEPCOMMAND: /* send command to SEP */ sep_send_command_handler(sep); edbg("SEP Driver: after sep_send_command_handler\n"); break; case SEP_IOCSENDSEPRPLYCOMMAND: /* send reply command to SEP */ sep_send_reply_command_handler(sep); break; case SEP_IOCALLOCDATAPOLL: /* allocate data pool */ error = sep_allocate_data_pool_memory_handler(sep, arg); break; case SEP_IOCWRITEDATAPOLL: /* write data into memory pool */ error = sep_write_into_data_pool_handler(sep, arg); break; case SEP_IOCREADDATAPOLL: /* read data from data pool into application memory */ error = sep_read_from_data_pool_handler(sep, arg); break; case SEP_IOCCREATESYMDMATABLE: /* create dma table for synhronic operation */ error = sep_create_sync_dma_tables_handler(sep, arg); break; case SEP_IOCCREATEFLOWDMATABLE: /* create flow dma tables */ error = sep_create_flow_dma_tables_handler(sep, arg); break; case SEP_IOCFREEDMATABLEDATA: /* free the pages */ error = sep_free_dma_table_data_handler(sep); break; case SEP_IOCSETFLOWID: /* set flow id */ error = sep_set_flow_id_handler(sep, (unsigned long)arg); break; case SEP_IOCADDFLOWTABLE: /* add tables to the dynamic flow */ error = sep_add_flow_tables_handler(sep, arg); break; case SEP_IOCADDFLOWMESSAGE: /* add message of add tables to flow */ error = sep_add_flow_tables_message_handler(sep, arg); break; case SEP_IOCSEPSTART: /* start command to sep */ error = sep_start_handler(sep); break; case SEP_IOCSEPINIT: /* init command to sep */ error = sep_init_handler(sep, arg); break; case SEP_IOCGETSTATICPOOLADDR: /* get the physical and virtual addresses of the static pool */ error = sep_get_static_pool_addr_handler(sep, arg); break; case SEP_IOCENDTRANSACTION: error = sep_end_transaction_handler(sep, arg); break; case SEP_IOCREALLOCCACHERES: error = sep_realloc_cache_resident_handler(sep, arg); break; case SEP_IOCGETMAPPEDADDROFFSET: error = sep_get_physical_mapped_offset_handler(sep, arg); break; case SEP_IOCGETIME: error = sep_get_time_handler(sep, arg); break; default: error = -ENOTTY; break; } dbg("SEP Driver:<-------- ioctl end\n"); return error; } #if !SEP_DRIVER_POLLING_MODE /* handler for flow done interrupt */ static void sep_flow_done_handler(struct work_struct *work) { struct sep_flow_context_t *flow_data_ptr; /* obtain the mutex */ mutex_lock(&sep_mutex); /* get the pointer to context */ flow_data_ptr = (struct sep_flow_context_t *) work; /* free all the current input tables in sep */ sep_deallocated_flow_tables(&flow_data_ptr->input_tables_in_process); /* free all the current tables output tables in SEP (if needed) */ if (flow_data_ptr->output_tables_in_process.physical_address != 0xffffffff) sep_deallocated_flow_tables(&flow_data_ptr->output_tables_in_process); /* check if we have additional tables to be sent to SEP only input flag may be checked */ if (flow_data_ptr->input_tables_flag) { /* copy the message to the shared RAM and signal SEP */ memcpy((void *) flow_data_ptr->message, (void *) sep->shared_addr, flow_data_ptr->message_size_in_bytes); sep_write_reg(sep, HW_HOST_HOST_SEP_GPR2_REG_ADDR, 0x2); } mutex_unlock(&sep_mutex); } /* interrupt handler function */ static irqreturn_t sep_inthandler(int irq, void *dev_id) { irqreturn_t int_error; unsigned long reg_val; unsigned long flow_id; struct sep_flow_context_t *flow_context_ptr; struct sep_device *sep = dev_id; int_error = IRQ_HANDLED; /* read the IRR register to check if this is SEP interrupt */ reg_val = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR); edbg("SEP Interrupt - reg is %08lx\n", reg_val); /* check if this is the flow interrupt */ if (0 /*reg_val & (0x1 << 11) */ ) { /* read GPRO to find out the which flow is done */ flow_id = sep_read_reg(sep, HW_HOST_IRR_REG_ADDR); /* find the contex of the flow */ flow_context_ptr = sep_find_flow_context(sep, flow_id >> 28); if (flow_context_ptr == NULL) goto end_function_with_error; /* queue the work */ INIT_WORK(&flow_context_ptr->flow_wq, sep_flow_done_handler); queue_work(sep->flow_wq, &flow_context_ptr->flow_wq); } else { /* check if this is reply interrupt from SEP */ if (reg_val & (0x1 << 13)) { /* update the counter of reply messages */ sep->reply_ct++; /* wake up the waiting process */ wake_up(&sep_event); } else { int_error = IRQ_NONE; goto end_function; } } end_function_with_error: /* clear the interrupt */ sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, reg_val); end_function: return int_error; } #endif #if 0 static void sep_wait_busy(struct sep_device *sep) { u32 reg; do { reg = sep_read_reg(sep, HW_HOST_SEP_BUSY_REG_ADDR); } while (reg); } /* PATCH for configuring the DMA to single burst instead of multi-burst */ static void sep_configure_dma_burst(struct sep_device *sep) { #define HW_AHB_RD_WR_BURSTS_REG_ADDR 0x0E10UL dbg("SEP Driver:<-------- sep_configure_dma_burst start \n"); /* request access to registers from SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x2); dbg("SEP Driver:<-------- sep_configure_dma_burst finished request access to registers from SEP (write reg) \n"); sep_wait_busy(sep); dbg("SEP Driver:<-------- sep_configure_dma_burst finished request access to registers from SEP (while(revVal) wait loop) \n"); /* set the DMA burst register to single burst */ sep_write_reg(sep, HW_AHB_RD_WR_BURSTS_REG_ADDR, 0x0UL); /* release the sep busy */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR0_REG_ADDR, 0x0UL); sep_wait_busy(sep); dbg("SEP Driver:<-------- sep_configure_dma_burst done \n"); } #endif /* Function that is activaed on the succesful probe of the SEP device */ static int __devinit sep_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { int error = 0; struct sep_device *sep; int counter; int size; /* size of memory for allocation */ edbg("Sep pci probe starting\n"); if (sep_dev != NULL) { dev_warn(&pdev->dev, "only one SEP supported.\n"); return -EBUSY; } /* enable the device */ error = pci_enable_device(pdev); if (error) { edbg("error enabling pci device\n"); goto end_function; } /* set the pci dev pointer */ sep_dev = &sep_instance; sep = &sep_instance; edbg("sep->shared_addr = %p\n", sep->shared_addr); /* transaction counter that coordinates the transactions between SEP and HOST */ sep->send_ct = 0; /* counter for the messages from sep */ sep->reply_ct = 0; /* counter for the number of bytes allocated in the pool for the current transaction */ sep->data_pool_bytes_allocated = 0; /* calculate the total size for allocation */ size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES; /* allocate the shared area */ if (sep_map_and_alloc_shared_area(sep, size)) { error = -ENOMEM; /* allocation failed */ goto end_function_error; } /* now set the memory regions */ #if (SEP_DRIVER_RECONFIG_MESSAGE_AREA == 1) /* Note: this test section will need moving before it could ever work as the registers are not yet mapped ! */ /* send the new SHARED MESSAGE AREA to the SEP */ sep_write_reg(sep, HW_HOST_HOST_SEP_GPR1_REG_ADDR, sep->shared_bus); /* poll for SEP response */ retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR); while (retval != 0xffffffff && retval != sep->shared_bus) retval = sep_read_reg(sep, HW_HOST_SEP_HOST_GPR1_REG_ADDR); /* check the return value (register) */ if (retval != sep->shared_bus) { error = -ENOMEM; goto end_function_deallocate_sep_shared_area; } #endif /* init the flow contextes */ for (counter = 0; counter < SEP_DRIVER_NUM_FLOWS; counter++) sep->flows[counter].flow_id = SEP_FREE_FLOW_ID; sep->flow_wq = create_singlethread_workqueue("sepflowwq"); if (sep->flow_wq == NULL) { error = -ENOMEM; edbg("sep_driver:flow queue creation failed\n"); goto end_function_deallocate_sep_shared_area; } edbg("SEP Driver: create flow workqueue \n"); sep->pdev = pci_dev_get(pdev); sep->reg_addr = pci_ioremap_bar(pdev, 0); if (!sep->reg_addr) { edbg("sep: ioremap of registers failed.\n"); goto end_function_deallocate_sep_shared_area; } edbg("SEP Driver:reg_addr is %p\n", sep->reg_addr); /* load the rom code */ sep_load_rom_code(sep); /* set up system base address and shared memory location */ sep->rar_addr = dma_alloc_coherent(&sep->pdev->dev, 2 * SEP_RAR_IO_MEM_REGION_SIZE, &sep->rar_bus, GFP_KERNEL); if (!sep->rar_addr) { edbg("SEP Driver:can't allocate rar\n"); goto end_function_uniomap; } edbg("SEP Driver:rar_bus is %08llx\n", (unsigned long long)sep->rar_bus); edbg("SEP Driver:rar_virtual is %p\n", sep->rar_addr); #if !SEP_DRIVER_POLLING_MODE edbg("SEP Driver: about to write IMR and ICR REG_ADDR\n"); /* clear ICR register */ sep_write_reg(sep, HW_HOST_ICR_REG_ADDR, 0xFFFFFFFF); /* set the IMR register - open only GPR 2 */ sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13))); edbg("SEP Driver: about to call request_irq\n"); /* get the interrupt line */ error = request_irq(pdev->irq, sep_inthandler, IRQF_SHARED, "sep_driver", sep); if (error) goto end_function_free_res; return 0; edbg("SEP Driver: about to write IMR REG_ADDR"); /* set the IMR register - open only GPR 2 */ sep_write_reg(sep, HW_HOST_IMR_REG_ADDR, (~(0x1 << 13))); end_function_free_res: dma_free_coherent(&sep->pdev->dev, 2 * SEP_RAR_IO_MEM_REGION_SIZE, sep->rar_addr, sep->rar_bus); #endif /* SEP_DRIVER_POLLING_MODE */ end_function_uniomap: iounmap(sep->reg_addr); end_function_deallocate_sep_shared_area: /* de-allocate shared area */ sep_unmap_and_free_shared_area(sep, size); end_function_error: sep_dev = NULL; end_function: return error; } static struct pci_device_id sep_pci_id_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080c)}, {0} }; MODULE_DEVICE_TABLE(pci, sep_pci_id_tbl); /* field for registering driver to PCI device */ static struct pci_driver sep_pci_driver = { .name = "sep_sec_driver", .id_table = sep_pci_id_tbl, .probe = sep_probe /* FIXME: remove handler */ }; /* major and minor device numbers */ static dev_t sep_devno; /* the files operations structure of the driver */ static struct file_operations sep_file_operations = { .owner = THIS_MODULE, .ioctl = sep_ioctl, .poll = sep_poll, .open = sep_open, .release = sep_release, .mmap = sep_mmap, }; /* cdev struct of the driver */ static struct cdev sep_cdev; /* this function registers the driver to the file system */ static int sep_register_driver_to_fs(void) { int ret_val = alloc_chrdev_region(&sep_devno, 0, 1, "sep_sec_driver"); if (ret_val) { edbg("sep: major number allocation failed, retval is %d\n", ret_val); return ret_val; } /* init cdev */ cdev_init(&sep_cdev, &sep_file_operations); sep_cdev.owner = THIS_MODULE; /* register the driver with the kernel */ ret_val = cdev_add(&sep_cdev, sep_devno, 1); if (ret_val) { edbg("sep_driver:cdev_add failed, retval is %d\n", ret_val); /* unregister dev numbers */ unregister_chrdev_region(sep_devno, 1); } return ret_val; } /*-------------------------------------------------------------- init function ----------------------------------------------------------------*/ static int __init sep_init(void) { int ret_val = 0; dbg("SEP Driver:-------->Init start\n"); /* FIXME: Probe can occur before we are ready to survive a probe */ ret_val = pci_register_driver(&sep_pci_driver); if (ret_val) { edbg("sep_driver:sep_driver_to_device failed, ret_val is %d\n", ret_val); goto end_function_unregister_from_fs; } /* register driver to fs */ ret_val = sep_register_driver_to_fs(); if (ret_val) goto end_function_unregister_pci; goto end_function; end_function_unregister_pci: pci_unregister_driver(&sep_pci_driver); end_function_unregister_from_fs: /* unregister from fs */ cdev_del(&sep_cdev); /* unregister dev numbers */ unregister_chrdev_region(sep_devno, 1); end_function: dbg("SEP Driver:<-------- Init end\n"); return ret_val; } /*------------------------------------------------------------- exit function --------------------------------------------------------------*/ static void __exit sep_exit(void) { int size; dbg("SEP Driver:--------> Exit start\n"); /* unregister from fs */ cdev_del(&sep_cdev); /* unregister dev numbers */ unregister_chrdev_region(sep_devno, 1); /* calculate the total size for de-allocation */ size = SEP_DRIVER_MESSAGE_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYNCHRONIC_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_DATA_POOL_SHARED_AREA_SIZE_IN_BYTES + SEP_DRIVER_FLOW_DMA_TABLES_AREA_SIZE_IN_BYTES + SEP_DRIVER_STATIC_AREA_SIZE_IN_BYTES + SEP_DRIVER_SYSTEM_DATA_MEMORY_SIZE_IN_BYTES; /* FIXME: We need to do this in the unload for the device */ /* free shared area */ if (sep_dev) { sep_unmap_and_free_shared_area(sep_dev, size); edbg("SEP Driver: free pages SEP SHARED AREA \n"); iounmap((void *) sep_dev->reg_addr); edbg("SEP Driver: iounmap \n"); } edbg("SEP Driver: release_mem_region \n"); dbg("SEP Driver:<-------- Exit end\n"); } module_init(sep_init); module_exit(sep_exit); MODULE_LICENSE("GPL");