summaryrefslogtreecommitdiffstats
path: root/virt
AgeCommit message (Collapse)Author
2019-08-25KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to blockMarc Zyngier
commit 5eeaf10eec394b28fad2c58f1f5c3a5da0e87d1c upstream. Since commit commit 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or its GICv2 equivalent) loaded as long as we can, only syncing it back when we're scheduled out. There is a small snag with that though: kvm_vgic_vcpu_pending_irq(), which is indirectly called from kvm_vcpu_check_block(), needs to evaluate the guest's view of ICC_PMR_EL1. At the point were we call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever changes to PMR is not visible in memory until we do a vcpu_put(). Things go really south if the guest does the following: mov x0, #0 // or any small value masking interrupts msr ICC_PMR_EL1, x0 [vcpu preempted, then rescheduled, VMCR sampled] mov x0, #ff // allow all interrupts msr ICC_PMR_EL1, x0 wfi // traps to EL2, so samping of VMCR [interrupt arrives just after WFI] Here, the hypervisor's view of PMR is zero, while the guest has enabled its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no interrupts are pending (despite an interrupt being received) and we'll block for no reason. If the guest doesn't have a periodic interrupt firing once it has blocked, it will stay there forever. To avoid this unfortuante situation, let's resync VMCR from kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block() will observe the latest value of PMR. This has been found by booting an arm64 Linux guest with the pseudo NMI feature, and thus using interrupt priorities to mask interrupts instead of the usual PSTATE masking. Cc: stable@vger.kernel.org # 4.12 Fixes: 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put") Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-14KVM: arm/arm64: vgic: Fix kvm_device leak in vgic_its_destroyDave Martin
[ Upstream commit 4729ec8c1e1145234aeeebad5d96d77f4ccbb00a ] kvm_device->destroy() seems to be supposed to free its kvm_device struct, but vgic_its_destroy() is not currently doing this, resulting in a memory leak, resulting in kmemleak reports such as the following: unreferenced object 0xffff800aeddfe280 (size 128): comm "qemu-system-aar", pid 13799, jiffies 4299827317 (age 1569.844s) [...] backtrace: [<00000000a08b80e2>] kmem_cache_alloc+0x178/0x208 [<00000000dcad2bd3>] kvm_vm_ioctl+0x350/0xbc0 Fix it. Cc: Andre Przywara <andre.przywara@arm.com> Fixes: 1085fdc68c60 ("KVM: arm64: vgic-its: Introduce new KVM ITS device") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-19KVM: arm/arm64: Move cc/it checks under hyp's Makefile to avoid instrumentationJames Morse
[ Upstream commit 623e1528d4090bd1abaf93ec46f047dee9a6fb32 ] KVM has helpers to handle the condition codes of trapped aarch32 instructions. These are marked __hyp_text and used from HYP, but they aren't built by the 'hyp' Makefile, which has all the runes to avoid ASAN and KCOV instrumentation. Move this code to a new hyp/aarch32.c to avoid a hyp-panic when starting an aarch32 guest on a host built with the ASAN/KCOV debug options. Fixes: 021234ef3752f ("KVM: arm64: Make kvm_condition_valid32() accessible from EL2") Fixes: 8cebe750c4d9a ("arm64: KVM: Make kvm_skip_instr32 available to HYP") Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-09KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_IDThomas Huth
commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream. KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25KVM: arm/arm64: Ensure vcpu target is unset on reset failureAndrew Jones
[ Upstream commit 811328fc3222f7b55846de0cd0404339e2e1e6d7 ] A failed KVM_ARM_VCPU_INIT should not set the vcpu target, as the vcpu target is used by kvm_vcpu_initialized() to determine if other vcpu ioctls may proceed. We need to set the target before calling kvm_reset_vcpu(), but if that call fails, we should then unset it and clear the feature bitmap while we're at it. Signed-off-by: Andrew Jones <drjones@redhat.com> [maz: Simplified patch, completed commit message] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-16KVM: fix spectrev1 gadgetsPaolo Bonzini
[ Upstream commit 1d487e9bf8ba66a7174c56a0029c54b1eca8f99c ] These were found with smatch, and then generalized when applicable. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-04KVM: arm/arm64: vgic-its: Take the srcu lock when parsing the memslotsMarc Zyngier
[ Upstream commit 7494cec6cb3ba7385a6a223b81906384f15aae34 ] Calling kvm_is_visible_gfn() implies that we're parsing the memslots, and doing this without the srcu lock is frown upon: [12704.164532] ============================= [12704.164544] WARNING: suspicious RCU usage [12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G W [12704.164573] ----------------------------- [12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [12704.164602] other info that might help us debug this: [12704.164616] rcu_scheduler_active = 2, debug_locks = 1 [12704.164631] 6 locks held by qemu-system-aar/13968: [12704.164644] #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [12704.164691] #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [12704.164726] #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164761] #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164794] #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164827] #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164861] stack backtrace: [12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G W 5.1.0-rc1-00008-g600025238f51-dirty #16 [12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [12704.164896] Call trace: [12704.164910] dump_backtrace+0x0/0x138 [12704.164920] show_stack+0x24/0x30 [12704.164934] dump_stack+0xbc/0x104 [12704.164946] lockdep_rcu_suspicious+0xcc/0x110 [12704.164958] gfn_to_memslot+0x174/0x190 [12704.164969] kvm_is_visible_gfn+0x28/0x70 [12704.164980] vgic_its_check_id.isra.0+0xec/0x1e8 [12704.164991] vgic_its_save_tables_v0+0x1ac/0x330 [12704.165001] vgic_its_set_attr+0x298/0x3a0 [12704.165012] kvm_device_ioctl_attr+0x9c/0xd8 [12704.165022] kvm_device_ioctl+0x8c/0xf8 [12704.165035] do_vfs_ioctl+0xc8/0x960 [12704.165045] ksys_ioctl+0x8c/0xa0 [12704.165055] __arm64_sys_ioctl+0x28/0x38 [12704.165067] el0_svc_common+0xd8/0x138 [12704.165078] el0_svc_handler+0x38/0x78 [12704.165089] el0_svc+0x8/0xc Make sure the lock is taken when doing this. Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-05-04KVM: arm/arm64: vgic-its: Take the srcu lock when writing to guest memoryMarc Zyngier
[ Upstream commit a6ecfb11bf37743c1ac49b266595582b107b61d4 ] When halting a guest, QEMU flushes the virtual ITS caches, which amounts to writing to the various tables that the guest has allocated. When doing this, we fail to take the srcu lock, and the kernel shouts loudly if running a lockdep kernel: [ 69.680416] ============================= [ 69.680819] WARNING: suspicious RCU usage [ 69.681526] 5.1.0-rc1-00008-g600025238f51-dirty #18 Not tainted [ 69.682096] ----------------------------- [ 69.682501] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [ 69.683225] [ 69.683225] other info that might help us debug this: [ 69.683225] [ 69.683975] [ 69.683975] rcu_scheduler_active = 2, debug_locks = 1 [ 69.684598] 6 locks held by qemu-system-aar/4097: [ 69.685059] #0: 0000000034196013 (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [ 69.686087] #1: 00000000f2ed935e (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [ 69.686919] #2: 000000005e71ea54 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.687698] #3: 00000000c17e548d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.688475] #4: 00000000ba386017 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.689978] #5: 00000000c2c3c335 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.690729] [ 69.690729] stack backtrace: [ 69.691151] CPU: 2 PID: 4097 Comm: qemu-system-aar Not tainted 5.1.0-rc1-00008-g600025238f51-dirty #18 [ 69.691984] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [ 69.692831] Call trace: [ 69.694072] lockdep_rcu_suspicious+0xcc/0x110 [ 69.694490] gfn_to_memslot+0x174/0x190 [ 69.694853] kvm_write_guest+0x50/0xb0 [ 69.695209] vgic_its_save_tables_v0+0x248/0x330 [ 69.695639] vgic_its_set_attr+0x298/0x3a0 [ 69.696024] kvm_device_ioctl_attr+0x9c/0xd8 [ 69.696424] kvm_device_ioctl+0x8c/0xf8 [ 69.696788] do_vfs_ioctl+0xc8/0x960 [ 69.697128] ksys_ioctl+0x8c/0xa0 [ 69.697445] __arm64_sys_ioctl+0x28/0x38 [ 69.697817] el0_svc_common+0xd8/0x138 [ 69.698173] el0_svc_handler+0x38/0x78 [ 69.698528] el0_svc+0x8/0xc The fix is to obviously take the srcu lock, just like we do on the read side of things since bf308242ab98. One wonders why this wasn't fixed at the same time, but hey... Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-04-03KVM: Reject device ioctls from processes other than the VM's creatorSean Christopherson
commit ddba91801aeb5c160b660caed1800eb3aef403f8 upstream. KVM's API requires thats ioctls must be issued from the same process that created the VM. In other words, userspace can play games with a VM's file descriptors, e.g. fork(), SCM_RIGHTS, etc..., but only the creator can do anything useful. Explicitly reject device ioctls that are issued by a process other than the VM's creator, and update KVM's API documentation to extend its requirements to device ioctls. Fixes: 852b6d57dc7f ("kvm: add device control API") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23KVM: Call kvm_arch_memslots_updated() before updating memslotsSean Christopherson
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09f8e6 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23KVM: arm/arm64: vgic: Always initialize the group of private IRQsChristoffer Dall
[ Upstream commit ab2d5eb03dbb7b37a1c6356686fb48626ab0c93e ] We currently initialize the group of private IRQs during kvm_vgic_vcpu_init, and the value of the group depends on the GIC model we are emulating. However, CPUs created before creating (and initializing) the VGIC might end up with the wrong group if the VGIC is created as GICv3 later. Since we have no enforced ordering of creating the VGIC and creating VCPUs, we can end up with part the VCPUs being properly intialized and the remaining incorrectly initialized. That also means that we have no single place to do the per-cpu data structure initialization which depends on knowing the emulated GIC model (which is only the group field). This patch removes the incorrect comment from kvm_vgic_vcpu_init and initializes the group of all previously created VCPUs's private interrupts in vgic_init in addition to the existing initialization in kvm_vgic_vcpu_init. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23arm/arm64: KVM: Allow a VCPU to fully reset itselfMarc Zyngier
[ Upstream commit 358b28f09f0ab074d781df72b8a671edb1547789 ] The current kvm_psci_vcpu_on implementation will directly try to manipulate the state of the VCPU to reset it. However, since this is not done on the thread that runs the VCPU, we can end up in a strangely corrupted state when the source and target VCPUs are running at the same time. Fix this by factoring out all reset logic from the PSCI implementation and forwarding the required information along with a request to the target VCPU. Reviewed-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23KVM: arm/arm64: vgic: Make vgic_dist->lpi_list_lock a raw_spinlockJulien Thierry
[ Upstream commit fc3bc475231e12e9c0142f60100cf84d077c79e1 ] vgic_dist->lpi_list_lock must always be taken with interrupts disabled as it is used in interrupt context. For configurations such as PREEMPT_RT_FULL, this means that it should be a raw_spinlock since RT spinlocks are interruptible. Signed-off-by: Julien Thierry <julien.thierry@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12kvm: fix kvm_ioctl_create_device() reference counting (CVE-2019-6974)Jann Horn
commit cfa39381173d5f969daf43582c95ad679189cbc9 upstream. kvm_ioctl_create_device() does the following: 1. creates a device that holds a reference to the VM object (with a borrowed reference, the VM's refcount has not been bumped yet) 2. initializes the device 3. transfers the reference to the device to the caller's file descriptor table 4. calls kvm_get_kvm() to turn the borrowed reference to the VM into a real reference The ownership transfer in step 3 must not happen before the reference to the VM becomes a proper, non-borrowed reference, which only happens in step 4. After step 3, an attacker can close the file descriptor and drop the borrowed reference, which can cause the refcount of the kvm object to drop to zero. This means that we need to grab a reference for the device before anon_inode_getfd(), otherwise the VM can disappear from under us. Fixes: 852b6d57dc7f ("kvm: add device control API") Cc: stable@kernel.org Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12kvm: Change offset in kvm_write_guest_offset_cached to unsignedJim Mattson
[ Upstream commit 7a86dab8cf2f0fdf508f3555dddfc236623bff60 ] Since the offset is added directly to the hva from the gfn_to_hva_cache, a negative offset could result in an out of bounds write. The existing BUG_ON only checks for addresses beyond the end of the gfn_to_hva_cache, not for addresses before the start of the gfn_to_hva_cache. Note that all current call sites have non-negative offsets. Fixes: 4ec6e8636256 ("kvm: Introduce kvm_write_guest_offset_cached()") Reported-by: Cfir Cohen <cfir@google.com> Signed-off-by: Jim Mattson <jmattson@google.com> Reviewed-by: Cfir Cohen <cfir@google.com> Reviewed-by: Peter Shier <pshier@google.com> Reviewed-by: Krish Sadhukhan <krish.sadhukhan@oracle.com> Reviewed-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12arm64: KVM: Skip MMIO insn after emulationMark Rutland
[ Upstream commit 0d640732dbebed0f10f18526de21652931f0b2f2 ] When we emulate an MMIO instruction, we advance the CPU state within decode_hsr(), before emulating the instruction effects. Having this logic in decode_hsr() is opaque, and advancing the state before emulation is problematic. It gets in the way of applying consistent single-step logic, and it prevents us from being able to fail an MMIO instruction with a synchronous exception. Clean this up by only advancing the CPU state *after* the effects of the instruction are emulated. Cc: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Alex Bennée <alex.bennee@linaro.org> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-16KVM: arm/arm64: Fix VMID alloc race by reverting to lock-lessChristoffer Dall
commit fb544d1ca65a89f7a3895f7531221ceeed74ada7 upstream. We recently addressed a VMID generation race by introducing a read/write lock around accesses and updates to the vmid generation values. However, kvm_arch_vcpu_ioctl_run() also calls need_new_vmid_gen() but does so without taking the read lock. As far as I can tell, this can lead to the same kind of race: VM 0, VCPU 0 VM 0, VCPU 1 ------------ ------------ update_vttbr (vmid 254) update_vttbr (vmid 1) // roll over read_lock(kvm_vmid_lock); force_vm_exit() local_irq_disable need_new_vmid_gen == false //because vmid gen matches enter_guest (vmid 254) kvm_arch.vttbr = <PGD>:<VMID 1> read_unlock(kvm_vmid_lock); enter_guest (vmid 1) Which results in running two VCPUs in the same VM with different VMIDs and (even worse) other VCPUs from other VMs could now allocate clashing VMID 254 from the new generation as long as VCPU 0 is not exiting. Attempt to solve this by making sure vttbr is updated before another CPU can observe the updated VMID generation. Cc: stable@vger.kernel.org Fixes: f0cf47d939d0 "KVM: arm/arm64: Close VMID generation race" Reviewed-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09KVM: arm/arm64: vgic: Fix off-by-one bug in vgic_get_irq()Gustavo A. R. Silva
commit c23b2e6fc4ca346018618266bcabd335c0a8a49e upstream. When using the nospec API, it should be taken into account that: "...if the CPU speculates past the bounds check then * array_index_nospec() will clamp the index within the range of [0, * size)." The above is part of the header for macro array_index_nospec() in linux/nospec.h Now, in this particular case, if intid evaluates to exactly VGIC_MAX_SPI or to exaclty VGIC_MAX_PRIVATE, the array_index_nospec() macro ends up returning VGIC_MAX_SPI - 1 or VGIC_MAX_PRIVATE - 1 respectively, instead of VGIC_MAX_SPI or VGIC_MAX_PRIVATE, which, based on the original logic: /* SGIs and PPIs */ if (intid <= VGIC_MAX_PRIVATE) return &vcpu->arch.vgic_cpu.private_irqs[intid]; /* SPIs */ if (intid <= VGIC_MAX_SPI) return &kvm->arch.vgic.spis[intid - VGIC_NR_PRIVATE_IRQS]; are valid values for intid. Fix this by calling array_index_nospec() macro with VGIC_MAX_PRIVATE + 1 and VGIC_MAX_SPI + 1 as arguments for its parameter size. Fixes: 41b87599c743 ("KVM: arm/arm64: vgic: fix possible spectre-v1 in vgic_get_irq()") Cc: stable@vger.kernel.org Signed-off-by: Gustavo A. R. Silva <gustavo@embeddedor.com> [dropped the SPI part which was fixed separately] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09KVM: arm/arm64: vgic-v2: Set active_source to 0 when restoring stateChristoffer Dall
commit 60c3ab30d8c2ff3a52606df03f05af2aae07dc6b upstream. When restoring the active state from userspace, we don't know which CPU was the source for the active state, and this is not architecturally exposed in any of the register state. Set the active_source to 0 in this case. In the future, we can expand on this and exposse the information as additional information to userspace for GICv2 if anyone cares. Cc: stable@vger.kernel.org Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09KVM: arm/arm64: vgic: Cap SPIs to the VM-defined maximumMarc Zyngier
commit bea2ef803ade3359026d5d357348842bca9edcf1 upstream. SPIs should be checked against the VMs specific configuration, and not the architectural maximum. Cc: stable@vger.kernel.org Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09KVM: arm/arm64: vgic: Do not cond_resched_lock() with IRQs disabledJulien Thierry
commit 2e2f6c3c0b08eed3fcf7de3c7684c940451bdeb1 upstream. To change the active state of an MMIO, halt is requested for all vcpus of the affected guest before modifying the IRQ state. This is done by calling cond_resched_lock() in vgic_mmio_change_active(). However interrupts are disabled at this point and we cannot reschedule a vcpu. We actually don't need any of this, as kvm_arm_halt_guest ensures that all the other vcpus are out of the guest. Let's just drop that useless code. Signed-off-by: Julien Thierry <julien.thierry@arm.com> Suggested-by: Christoffer Dall <christoffer.dall@arm.com> Cc: stable@vger.kernel.org Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-09arm/arm64: KVM: vgic: Force VM halt when changing the active state of GICv3 ↵Marc Zyngier
PPIs/SGIs commit 107352a24900fb458152b92a4e72fbdc83fd5510 upstream. We currently only halt the guest when a vCPU messes with the active state of an SPI. This is perfectly fine for GICv2, but isn't enough for GICv3, where all vCPUs can access the state of any other vCPU. Let's broaden the condition to include any GICv3 interrupt that has an active state (i.e. all but LPIs). Cc: stable@vger.kernel.org Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13KVM: arm64: Fix caching of host MDCR_EL2 valueMark Rutland
commit da5a3ce66b8bb51b0ea8a89f42aac153903f90fb upstream. At boot time, KVM stashes the host MDCR_EL2 value, but only does this when the kernel is not running in hyp mode (i.e. is non-VHE). In these cases, the stashed value of MDCR_EL2.HPMN happens to be zero, which can lead to CONSTRAINED UNPREDICTABLE behaviour. Since we use this value to derive the MDCR_EL2 value when switching to/from a guest, after a guest have been run, the performance counters do not behave as expected. This has been observed to result in accesses via PMXEVTYPER_EL0 and PMXEVCNTR_EL0 not affecting the relevant counters, resulting in events not being counted. In these cases, only the fixed-purpose cycle counter appears to work as expected. Fix this by always stashing the host MDCR_EL2 value, regardless of VHE. Cc: Christopher Dall <christoffer.dall@arm.com> Cc: James Morse <james.morse@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: stable@vger.kernel.org Fixes: 1e947bad0b63b351 ("arm64: KVM: Skip HYP setup when already running in HYP") Tested-by: Robin Murphy <robin.murphy@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13KVM: arm/arm64: Ensure only THP is candidate for adjustmentPunit Agrawal
commit fd2ef358282c849c193aa36dadbf4f07f7dcd29b upstream. PageTransCompoundMap() returns true for hugetlbfs and THP hugepages. This behaviour incorrectly leads to stage 2 faults for unsupported hugepage sizes (e.g., 64K hugepage with 4K pages) to be treated as THP faults. Tighten the check to filter out hugetlbfs pages. This also leads to consistently mapping all unsupported hugepage sizes as PTE level entries at stage 2. Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: stable@vger.kernel.org # v4.13+ Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-07KVM: Remove obsolete kvm_unmap_hva notifier backendMarc Zyngier
kvm_unmap_hva is long gone, and we only have kvm_unmap_hva_range to deal with. Drop the now obsolete code. Fixes: fb1522e099f0 ("KVM: update to new mmu_notifier semantic v2") Cc: James Hogan <jhogan@kernel.org> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2018-09-07KVM: arm/arm64: Clean dcache to PoC when changing PTE due to CoWMarc Zyngier
When triggering a CoW, we unmap the RO page via an MMU notifier (invalidate_range_start), and then populate the new PTE using another one (change_pte). In the meantime, we'll have copied the old page into the new one. The problem is that the data for the new page is sitting in the cache, and should the guest have an uncached mapping to that page (or its MMU off), following accesses will bypass the cache. In a way, this is similar to what happens on a translation fault: We need to clean the page to the PoC before mapping it. So let's just do that. This fixes a KVM unit test regression observed on a HiSilicon platform, and subsequently reproduced on Seattle. Fixes: a9c0e12ebee5 ("KVM: arm/arm64: Only clean the dcache on translation fault") Cc: stable@vger.kernel.org # v4.16+ Reported-by: Mike Galbraith <efault@gmx.de> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@arm.com>
2018-08-22Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull second set of KVM updates from Paolo Bonzini: "ARM: - Support for Group0 interrupts in guests - Cache management optimizations for ARMv8.4 systems - Userspace interface for RAS - Fault path optimization - Emulated physical timer fixes - Random cleanups x86: - fixes for L1TF - a new test case - non-support for SGX (inject the right exception in the guest) - fix lockdep false positive" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (49 commits) KVM: VMX: fixes for vmentry_l1d_flush module parameter kvm: selftest: add dirty logging test kvm: selftest: pass in extra memory when create vm kvm: selftest: include the tools headers kvm: selftest: unify the guest port macros tools: introduce test_and_clear_bit KVM: x86: SVM: Call x86_spec_ctrl_set_guest/host() with interrupts disabled KVM: vmx: Inject #UD for SGX ENCLS instruction in guest KVM: vmx: Add defines for SGX ENCLS exiting x86/kvm/vmx: Fix coding style in vmx_setup_l1d_flush() x86: kvm: avoid unused variable warning KVM: Documentation: rename the capability of KVM_CAP_ARM_SET_SERROR_ESR KVM: arm/arm64: Skip updating PTE entry if no change KVM: arm/arm64: Skip updating PMD entry if no change KVM: arm: Use true and false for boolean values KVM: arm/arm64: vgic: Do not use spin_lock_irqsave/restore with irq disabled KVM: arm/arm64: vgic: Move DEBUG_SPINLOCK_BUG_ON to vgic.h KVM: arm: vgic-v3: Add support for ICC_SGI0R and ICC_ASGI1R accesses KVM: arm64: vgic-v3: Add support for ICC_SGI0R_EL1 and ICC_ASGI1R_EL1 accesses KVM: arm/arm64: vgic-v3: Add core support for Group0 SGIs ...
2018-08-22Merge branch 'akpm' (patches from Andrew)Linus Torvalds
Merge more updates from Andrew Morton: - the rest of MM - procfs updates - various misc things - more y2038 fixes - get_maintainer updates - lib/ updates - checkpatch updates - various epoll updates - autofs updates - hfsplus - some reiserfs work - fatfs updates - signal.c cleanups - ipc/ updates * emailed patches from Andrew Morton <akpm@linux-foundation.org>: (166 commits) ipc/util.c: update return value of ipc_getref from int to bool ipc/util.c: further variable name cleanups ipc: simplify ipc initialization ipc: get rid of ids->tables_initialized hack lib/rhashtable: guarantee initial hashtable allocation lib/rhashtable: simplify bucket_table_alloc() ipc: drop ipc_lock() ipc/util.c: correct comment in ipc_obtain_object_check ipc: rename ipcctl_pre_down_nolock() ipc/util.c: use ipc_rcu_putref() for failues in ipc_addid() ipc: reorganize initialization of kern_ipc_perm.seq ipc: compute kern_ipc_perm.id under the ipc lock init/Kconfig: remove EXPERT from CHECKPOINT_RESTORE fs/sysv/inode.c: use ktime_get_real_seconds() for superblock stamp adfs: use timespec64 for time conversion kernel/sysctl.c: fix typos in comments drivers/rapidio/devices/rio_mport_cdev.c: remove redundant pointer md fork: don't copy inconsistent signal handler state to child signal: make get_signal() return bool signal: make sigkill_pending() return bool ...
2018-08-22mm, oom: distinguish blockable mode for mmu notifiersMichal Hocko
There are several blockable mmu notifiers which might sleep in mmu_notifier_invalidate_range_start and that is a problem for the oom_reaper because it needs to guarantee a forward progress so it cannot depend on any sleepable locks. Currently we simply back off and mark an oom victim with blockable mmu notifiers as done after a short sleep. That can result in selecting a new oom victim prematurely because the previous one still hasn't torn its memory down yet. We can do much better though. Even if mmu notifiers use sleepable locks there is no reason to automatically assume those locks are held. Moreover majority of notifiers only care about a portion of the address space and there is absolutely zero reason to fail when we are unmapping an unrelated range. Many notifiers do really block and wait for HW which is harder to handle and we have to bail out though. This patch handles the low hanging fruit. __mmu_notifier_invalidate_range_start gets a blockable flag and callbacks are not allowed to sleep if the flag is set to false. This is achieved by using trylock instead of the sleepable lock for most callbacks and continue as long as we do not block down the call chain. I think we can improve that even further because there is a common pattern to do a range lookup first and then do something about that. The first part can be done without a sleeping lock in most cases AFAICS. The oom_reaper end then simply retries if there is at least one notifier which couldn't make any progress in !blockable mode. A retry loop is already implemented to wait for the mmap_sem and this is basically the same thing. The simplest way for driver developers to test this code path is to wrap userspace code which uses these notifiers into a memcg and set the hard limit to hit the oom. This can be done e.g. after the test faults in all the mmu notifier managed memory and set the hard limit to something really small. Then we are looking for a proper process tear down. [akpm@linux-foundation.org: coding style fixes] [akpm@linux-foundation.org: minor code simplification] Link: http://lkml.kernel.org/r/20180716115058.5559-1-mhocko@kernel.org Signed-off-by: Michal Hocko <mhocko@suse.com> Acked-by: Christian König <christian.koenig@amd.com> # AMD notifiers Acked-by: Leon Romanovsky <leonro@mellanox.com> # mlx and umem_odp Reported-by: David Rientjes <rientjes@google.com> Cc: "David (ChunMing) Zhou" <David1.Zhou@amd.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Alex Deucher <alexander.deucher@amd.com> Cc: David Airlie <airlied@linux.ie> Cc: Jani Nikula <jani.nikula@linux.intel.com> Cc: Joonas Lahtinen <joonas.lahtinen@linux.intel.com> Cc: Rodrigo Vivi <rodrigo.vivi@intel.com> Cc: Doug Ledford <dledford@redhat.com> Cc: Jason Gunthorpe <jgg@ziepe.ca> Cc: Mike Marciniszyn <mike.marciniszyn@intel.com> Cc: Dennis Dalessandro <dennis.dalessandro@intel.com> Cc: Sudeep Dutt <sudeep.dutt@intel.com> Cc: Ashutosh Dixit <ashutosh.dixit@intel.com> Cc: Dimitri Sivanich <sivanich@sgi.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: "Jérôme Glisse" <jglisse@redhat.com> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Felix Kuehling <felix.kuehling@amd.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2018-08-22Merge tag 'kvmarm-for-v4.19' of ↵Paolo Bonzini
git://git.kernel.org/pub/scm/linux/kernel/git/kvmarm/kvmarm into HEAD KVM/arm updates for 4.19 - Support for Group0 interrupts in guests - Cache management optimizations for ARMv8.4 systems - Userspace interface for RAS, allowing error retrival and injection - Fault path optimization - Emulated physical timer fixes - Random cleanups
2018-08-21Merge branch 'siginfo-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull core signal handling updates from Eric Biederman: "It was observed that a periodic timer in combination with a sufficiently expensive fork could prevent fork from every completing. This contains the changes to remove the need for that restart. This set of changes is split into several parts: - The first part makes PIDTYPE_TGID a proper pid type instead something only for very special cases. The part starts using PIDTYPE_TGID enough so that in __send_signal where signals are actually delivered we know if the signal is being sent to a a group of processes or just a single process. - With that prep work out of the way the logic in fork is modified so that fork logically makes signals received while it is running appear to be received after the fork completes" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (22 commits) signal: Don't send signals to tasks that don't exist signal: Don't restart fork when signals come in. fork: Have new threads join on-going signal group stops fork: Skip setting TIF_SIGPENDING in ptrace_init_task signal: Add calculate_sigpending() fork: Unconditionally exit if a fatal signal is pending fork: Move and describe why the code examines PIDNS_ADDING signal: Push pid type down into complete_signal. signal: Push pid type down into __send_signal signal: Push pid type down into send_signal signal: Pass pid type into do_send_sig_info signal: Pass pid type into send_sigio_to_task & send_sigurg_to_task signal: Pass pid type into group_send_sig_info signal: Pass pid and pid type into send_sigqueue posix-timers: Noralize good_sigevent signal: Use PIDTYPE_TGID to clearly store where file signals will be sent pid: Implement PIDTYPE_TGID pids: Move the pgrp and session pid pointers from task_struct to signal_struct kvm: Don't open code task_pid in kvm_vcpu_ioctl pids: Compute task_tgid using signal->leader_pid ...
2018-08-19Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds
Pull first set of KVM updates from Paolo Bonzini: "PPC: - minor code cleanups x86: - PCID emulation and CR3 caching for shadow page tables - nested VMX live migration - nested VMCS shadowing - optimized IPI hypercall - some optimizations ARM will come next week" * tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (85 commits) kvm: x86: Set highest physical address bits in non-present/reserved SPTEs KVM/x86: Use CC_SET()/CC_OUT in arch/x86/kvm/vmx.c KVM: X86: Implement PV IPIs in linux guest KVM: X86: Add kvm hypervisor init time platform setup callback KVM: X86: Implement "send IPI" hypercall KVM/x86: Move X86_CR4_OSXSAVE check into kvm_valid_sregs() KVM: x86: Skip pae_root shadow allocation if tdp enabled KVM/MMU: Combine flushing remote tlb in mmu_set_spte() KVM: vmx: skip VMWRITE of HOST_{FS,GS}_BASE when possible KVM: vmx: skip VMWRITE of HOST_{FS,GS}_SEL when possible KVM: vmx: always initialize HOST_{FS,GS}_BASE to zero during setup KVM: vmx: move struct host_state usage to struct loaded_vmcs KVM: vmx: compute need to reload FS/GS/LDT on demand KVM: nVMX: remove a misleading comment regarding vmcs02 fields KVM: vmx: rename __vmx_load_host_state() and vmx_save_host_state() KVM: vmx: add dedicated utility to access guest's kernel_gs_base KVM: vmx: track host_state.loaded using a loaded_vmcs pointer KVM: vmx: refactor segmentation code in vmx_save_host_state() kvm: nVMX: Fix fault priority for VMX operations kvm: nVMX: Fix fault vector for VMX operation at CPL > 0 ...
2018-08-14Merge tag 'arm64-upstream' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux Pull arm64 updates from Will Deacon: "A bunch of good stuff in here. Worth noting is that we've pulled in the x86/mm branch from -tip so that we can make use of the core ioremap changes which allow us to put down huge mappings in the vmalloc area without screwing up the TLB. Much of the positive diffstat is because of the rseq selftest for arm64. Summary: - Wire up support for qspinlock, replacing our trusty ticket lock code - Add an IPI to flush_icache_range() to ensure that stale instructions fetched into the pipeline are discarded along with the I-cache lines - Support for the GCC "stackleak" plugin - Support for restartable sequences, plus an arm64 port for the selftest - Kexec/kdump support on systems booting with ACPI - Rewrite of our syscall entry code in C, which allows us to zero the GPRs on entry from userspace - Support for chained PMU counters, allowing 64-bit event counters to be constructed on current CPUs - Ensure scheduler topology information is kept up-to-date with CPU hotplug events - Re-enable support for huge vmalloc/IO mappings now that the core code has the correct hooks to use break-before-make sequences - Miscellaneous, non-critical fixes and cleanups" * tag 'arm64-upstream' of git://git.kernel.org/pub/scm/linux/kernel/git/arm64/linux: (90 commits) arm64: alternative: Use true and false for boolean values arm64: kexec: Add comment to explain use of __flush_icache_range() arm64: sdei: Mark sdei stack helper functions as static arm64, kaslr: export offset in VMCOREINFO ELF notes arm64: perf: Add cap_user_time aarch64 efi/libstub: Only disable stackleak plugin for arm64 arm64: drop unused kernel_neon_begin_partial() macro arm64: kexec: machine_kexec should call __flush_icache_range arm64: svc: Ensure hardirq tracing is updated before return arm64: mm: Export __sync_icache_dcache() for xen-privcmd drivers/perf: arm-ccn: Use devm_ioremap_resource() to map memory arm64: Add support for STACKLEAK gcc plugin arm64: Add stack information to on_accessible_stack drivers/perf: hisi: update the sccl_id/ccl_id when MT is supported arm64: fix ACPI dependencies rseq/selftests: Add support for arm64 arm64: acpi: fix alignment fault in accessing ACPI efi/arm: map UEFI memory map even w/o runtime services enabled efi/arm: preserve early mapping of UEFI memory map longer for BGRT drivers: acpi: add dependency of EFI for arm64 ...
2018-08-13KVM: arm/arm64: Skip updating PTE entry if no changePunit Agrawal
When there is contention on faulting in a particular page table entry at stage 2, the break-before-make requirement of the architecture can lead to additional refaulting due to TLB invalidation. Avoid this by skipping a page table update if the new value of the PTE matches the previous value. Cc: stable@vger.kernel.org Fixes: d5d8184d35c9 ("KVM: ARM: Memory virtualization setup") Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-08-13KVM: arm/arm64: Skip updating PMD entry if no changePunit Agrawal
Contention on updating a PMD entry by a large number of vcpus can lead to duplicate work when handling stage 2 page faults. As the page table update follows the break-before-make requirement of the architecture, it can lead to repeated refaults due to clearing the entry and flushing the tlbs. This problem is more likely when - * there are large number of vcpus * the mapping is large block mapping such as when using PMD hugepages (512MB) with 64k pages. Fix this by skipping the page table update if there is no change in the entry being updated. Cc: stable@vger.kernel.org Fixes: ad361f093c1e ("KVM: ARM: Support hugetlbfs backed huge pages") Reviewed-by: Suzuki Poulose <suzuki.poulose@arm.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Punit Agrawal <punit.agrawal@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-08-12KVM: arm/arm64: vgic: Do not use spin_lock_irqsave/restore with irq disabledJia He
kvm_vgic_sync_hwstate is only called with IRQ being disabled. There is thus no need to call spin_lock_irqsave/restore in vgic_fold_lr_state and vgic_prune_ap_list. This patch replace them with the non irq-safe version. Signed-off-by: Jia He <jia.he@hxt-semitech.com> Acked-by: Christoffer Dall <christoffer.dall@arm.com> [maz: commit message tidy-up] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-08-12KVM: arm/arm64: vgic: Move DEBUG_SPINLOCK_BUG_ON to vgic.hJia He
DEBUG_SPINLOCK_BUG_ON can be used with both vgic-v2 and vgic-v3, so let's move it to vgic.h Signed-off-by: Jia He <jia.he@hxt-semitech.com> [maz: commit message tidy-up] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-08-12KVM: arm/arm64: vgic-v3: Add core support for Group0 SGIsMarc Zyngier
Although vgic-v3 now supports Group0 interrupts, it still doesn't deal with Group0 SGIs. As usually with the GIC, nothing is simple: - ICC_SGI1R can signal SGIs of both groups, since GICD_CTLR.DS==1 with KVM (as per 8.1.10, Non-secure EL1 access) - ICC_SGI0R can only generate Group0 SGIs - ICC_ASGI1R sees its scope refocussed to generate only Group0 SGIs (as per the note at the bottom of Table 8-14) We only support Group1 SGIs so far, so no material change. Reviewed-by: Eric Auger <eric.auger@redhat.com> Reviewed-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-08-06KVM: try __get_user_pages_fast even if not in atomic contextPaolo Bonzini
We are currently cutting hva_to_pfn_fast short if we do not want an immediate exit, which is represented by !async && !atomic. However, this is unnecessary, and __get_user_pages_fast is *much* faster because the regular get_user_pages takes pmd_lock/pte_lock. In fact, when many CPUs take a nested vmexit at the same time the contention on those locks is visible, and this patch removes about 25% (compared to 4.18) from vmexit.flat on a 16 vCPU nested guest. Suggested-by: Andrea Arcangeli <aarcange@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06KVM: x86: Add tlb remote flush callback in kvm_x86_ops.Tianyu Lan
This patch is to provide a way for platforms to register hv tlb remote flush callback and this helps to optimize operation of tlb flush among vcpus for nested virtualization case. Signed-off-by: Lan Tianyu <Tianyu.Lan@microsoft.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06kvm: x86: Use fast CR3 switch for nested VMXJunaid Shahid
Use the fast CR3 switch mechanism to locklessly change the MMU root page when switching between L1 and L2. The switch from L2 to L1 should always go through the fast path, while the switch from L1 to L2 should go through the fast path if L1's CR3/EPTP for L2 hasn't changed since the last time. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2018-08-06Merge tag 'v4.18-rc6' into HEADPaolo Bonzini
Pull bug fixes into the KVM development tree to avoid nasty conflicts.
2018-07-31KVM: arm/arm64: Fix lost IRQs from emulated physcial timer when blockedChristoffer Dall
When the VCPU is blocked (for example from WFI) we don't inject the physical timer interrupt if it should fire while the CPU is blocked, but instead we just wake up the VCPU and expect kvm_timer_vcpu_load to take care of injecting the interrupt. Unfortunately, kvm_timer_vcpu_load() doesn't actually do that, it only has support to schedule a soft timer if the emulated phys timer is expected to fire in the future. Follow the same pattern as kvm_timer_update_state() and update the irq state after potentially scheduling a soft timer. Reported-by: Andre Przywara <andre.przywara@arm.com> Cc: Stable <stable@vger.kernel.org> # 4.15+ Fixes: bbdd52cfcba29 ("KVM: arm/arm64: Avoid phys timer emulation in vcpu entry/exit") Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-31KVM: arm/arm64: Fix potential loss of ptimer interruptsChristoffer Dall
kvm_timer_update_state() is called when changing the phys timer configuration registers, either via vcpu reset, as a result of a trap from the guest, or when userspace programs the registers. phys_timer_emulate() is in turn called by kvm_timer_update_state() to either cancel an existing software timer, or program a new software timer, to emulate the behavior of a real phys timer, based on the change in configuration registers. Unfortunately, the interaction between these two functions left a small race; if the conceptual emulated phys timer should actually fire, but the soft timer hasn't executed its callback yet, we cancel the timer in phys_timer_emulate without injecting an irq. This only happens if the check in kvm_timer_update_state is called before the timer should fire, which is relatively unlikely, but possible. The solution is to update the state of the phys timer after calling phys_timer_emulate, which will pick up the pending timer state and update the interrupt value. Note that this leaves the opportunity of raising the interrupt twice, once in the just-programmed soft timer, and once in kvm_timer_update_state. Since this always happens synchronously with the VCPU execution, there is no harm in this, and the guest ever only sees a single timer interrupt. Cc: Stable <stable@vger.kernel.org> # 4.15+ Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-25Merge branch 'sched/urgent' into sched/core, to pick up fixesIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2018-07-24KVM: arm/arm64: vgic: Fix possible spectre-v1 write in vgic_mmio_write_apr()Mark Rutland
It's possible for userspace to control n. Sanitize n when using it as an array index, to inhibit the potential spectre-v1 write gadget. Note that while it appears that n must be bound to the interval [0,3] due to the way it is extracted from addr, we cannot guarantee that compiler transformations (and/or future refactoring) will ensure this is the case, and given this is a slow path it's better to always perform the masking. Found by smatch. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Cc: Christoffer Dall <christoffer.dall@arm.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: kvmarm@lists.cs.columbia.edu Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21kvm: Don't open code task_pid in kvm_vcpu_ioctlEric W. Biederman
Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2018-07-21KVM: arm: Add 32bit get/set events supportJames Morse
arm64's new use of KVMs get_events/set_events API calls isn't just or RAS, it allows an SError that has been made pending by KVM as part of its device emulation to be migrated. Wire this up for 32bit too. We only need to read/write the HCR_VA bit, and check that no esr has been provided, as we don't yet support VDFSR. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Dongjiu Geng <gengdongjiu@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>
2018-07-21KVM: arm64: Share the parts of get/set events useful to 32bitJames Morse
The get/set events helpers to do some work to check reserved and padding fields are zero. This is useful on 32bit too. Move this code into virt/kvm/arm/arm.c, and give the arch code some underscores. This is temporarily hidden behind __KVM_HAVE_VCPU_EVENTS until 32bit is wired up. Signed-off-by: James Morse <james.morse@arm.com> Reviewed-by: Dongjiu Geng <gengdongjiu@huawei.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com>