summaryrefslogtreecommitdiffstats
path: root/virt
AgeCommit message (Collapse)Author
2020-08-26KVM: arm64: Only reschedule if MMU_NOTIFIER_RANGE_BLOCKABLE is not setWill Deacon
commit b5331379bc62611d1026173a09c73573384201d9 upstream. When an MMU notifier call results in unmapping a range that spans multiple PGDs, we end up calling into cond_resched_lock() when crossing a PGD boundary, since this avoids running into RCU stalls during VM teardown. Unfortunately, if the VM is destroyed as a result of OOM, then blocking is not permitted and the call to the scheduler triggers the following BUG(): | BUG: sleeping function called from invalid context at arch/arm64/kvm/mmu.c:394 | in_atomic(): 1, irqs_disabled(): 0, non_block: 1, pid: 36, name: oom_reaper | INFO: lockdep is turned off. | CPU: 3 PID: 36 Comm: oom_reaper Not tainted 5.8.0 #1 | Hardware name: QEMU QEMU Virtual Machine, BIOS 0.0.0 02/06/2015 | Call trace: | dump_backtrace+0x0/0x284 | show_stack+0x1c/0x28 | dump_stack+0xf0/0x1a4 | ___might_sleep+0x2bc/0x2cc | unmap_stage2_range+0x160/0x1ac | kvm_unmap_hva_range+0x1a0/0x1c8 | kvm_mmu_notifier_invalidate_range_start+0x8c/0xf8 | __mmu_notifier_invalidate_range_start+0x218/0x31c | mmu_notifier_invalidate_range_start_nonblock+0x78/0xb0 | __oom_reap_task_mm+0x128/0x268 | oom_reap_task+0xac/0x298 | oom_reaper+0x178/0x17c | kthread+0x1e4/0x1fc | ret_from_fork+0x10/0x30 Use the new 'flags' argument to kvm_unmap_hva_range() to ensure that we only reschedule if MMU_NOTIFIER_RANGE_BLOCKABLE is set in the notifier flags. Cc: <stable@vger.kernel.org> Fixes: 8b3405e345b5 ("kvm: arm/arm64: Fix locking for kvm_free_stage2_pgd") Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Message-Id: <20200811102725.7121-3-will@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [will: Backport to 4.19; use 'blockable' instead of non-existent MMU_NOTIFIER_RANGE_BLOCKABLE flag] Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-26KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()Will Deacon
commit fdfe7cbd58806522e799e2a50a15aee7f2cbb7b6 upstream. The 'flags' field of 'struct mmu_notifier_range' is used to indicate whether invalidate_range_{start,end}() are permitted to block. In the case of kvm_mmu_notifier_invalidate_range_start(), this field is not forwarded on to the architecture-specific implementation of kvm_unmap_hva_range() and therefore the backend cannot sensibly decide whether or not to block. Add an extra 'flags' parameter to kvm_unmap_hva_range() so that architectures are aware as to whether or not they are permitted to block. Cc: <stable@vger.kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Message-Id: <20200811102725.7121-2-will@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [will: Backport to 4.19; use 'blockable' instead of non-existent range flags] Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22KVM: arm64: Synchronize sysreg state on injecting an AArch32 exceptionMarc Zyngier
commit 0370964dd3ff7d3d406f292cb443a927952cbd05 upstream. On a VHE system, the EL1 state is left in the CPU most of the time, and only syncronized back to memory when vcpu_put() is called (most of the time on preemption). Which means that when injecting an exception, we'd better have a way to either: (1) write directly to the EL1 sysregs (2) synchronize the state back to memory, and do the changes there For an AArch64, we already do (1), so we are safe. Unfortunately, doing the same thing for AArch32 would be pretty invasive. Instead, we can easily implement (2) by calling the put/load architectural backends, and keep preemption disabled. We can then reload the state back into EL1. Cc: stable@vger.kernel.org Reported-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-22KVM: x86: Fix APIC page invalidation raceEiichi Tsukata
[ Upstream commit e649b3f0188f8fd34dd0dde8d43fd3312b902fb2 ] Commit b1394e745b94 ("KVM: x86: fix APIC page invalidation") tried to fix inappropriate APIC page invalidation by re-introducing arch specific kvm_arch_mmu_notifier_invalidate_range() and calling it from kvm_mmu_notifier_invalidate_range_start. However, the patch left a possible race where the VMCS APIC address cache is updated *before* it is unmapped: (Invalidator) kvm_mmu_notifier_invalidate_range_start() (Invalidator) kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD) (KVM VCPU) vcpu_enter_guest() (KVM VCPU) kvm_vcpu_reload_apic_access_page() (Invalidator) actually unmap page Because of the above race, there can be a mismatch between the host physical address stored in the APIC_ACCESS_PAGE VMCS field and the host physical address stored in the EPT entry for the APIC GPA (0xfee0000). When this happens, the processor will not trap APIC accesses, and will instead show the raw contents of the APIC-access page. Because Windows OS periodically checks for unexpected modifications to the LAPIC register, this will show up as a BSOD crash with BugCheck CRITICAL_STRUCTURE_CORRUPTION (109) we are currently seeing in https://bugzilla.redhat.com/show_bug.cgi?id=1751017. The root cause of the issue is that kvm_arch_mmu_notifier_invalidate_range() cannot guarantee that no additional references are taken to the pages in the range before kvm_mmu_notifier_invalidate_range_end(). Fortunately, this case is supported by the MMU notifier API, as documented in include/linux/mmu_notifier.h: * If the subsystem * can't guarantee that no additional references are taken to * the pages in the range, it has to implement the * invalidate_range() notifier to remove any references taken * after invalidate_range_start(). The fix therefore is to reload the APIC-access page field in the VMCS from kvm_mmu_notifier_invalidate_range() instead of ..._range_start(). Cc: stable@vger.kernel.org Fixes: b1394e745b94 ("KVM: x86: fix APIC page invalidation") Fixes: https://bugzilla.kernel.org/show_bug.cgi?id=197951 Signed-off-by: Eiichi Tsukata <eiichi.tsukata@nutanix.com> Message-Id: <20200606042627.61070-1-eiichi.tsukata@nutanix.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-05-14KVM: arm64: Fix 32bit PC wrap-aroundMarc Zyngier
commit 0225fd5e0a6a32af7af0aefac45c8ebf19dc5183 upstream. In the unlikely event that a 32bit vcpu traps into the hypervisor on an instruction that is located right at the end of the 32bit range, the emulation of that instruction is going to increment PC past the 32bit range. This isn't great, as userspace can then observe this value and get a bit confused. Conversly, userspace can do things like (in the context of a 64bit guest that is capable of 32bit EL0) setting PSTATE to AArch64-EL0, set PC to a 64bit value, change PSTATE to AArch32-USR, and observe that PC hasn't been truncated. More confusion. Fix both by: - truncating PC increments for 32bit guests - sanitizing all 32bit regs every time a core reg is changed by userspace, and that PSTATE indicates a 32bit mode. Cc: stable@vger.kernel.org Acked-by: Will Deacon <will@kernel.org> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-05-14KVM: arm: vgic: Fix limit condition when writing to GICD_I[CS]ACTIVERMarc Zyngier
commit 1c32ca5dc6d00012f0c964e5fdd7042fcc71efb1 upstream. When deciding whether a guest has to be stopped we check whether this is a private interrupt or not. Unfortunately, there's an off-by-one bug here, and we fail to recognize a whole range of interrupts as being global (GICv2 SPIs 32-63). Fix the condition from > to be >=. Cc: stable@vger.kernel.org Fixes: abd7229626b93 ("KVM: arm/arm64: Simplify active_change_prepare and plug race") Reported-by: André Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-29x86/kvm: Cache gfn to pfn translationBoris Ostrovsky
commit 917248144db5d7320655dbb41d3af0b8a0f3d589 upstream. __kvm_map_gfn()'s call to gfn_to_pfn_memslot() is * relatively expensive * in certain cases (such as when done from atomic context) cannot be called Stashing gfn-to-pfn mapping should help with both cases. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29x86/kvm: Introduce kvm_(un)map_gfn()Boris Ostrovsky
commit 1eff70a9abd46f175defafd29bc17ad456f398a7 upstream. kvm_vcpu_(un)map operates on gfns from any current address space. In certain cases we want to make sure we are not mapping SMRAM and for that we can use kvm_(un)map_gfn() that we are introducing in this patch. This is part of CVE-2019-3016. Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> Reviewed-by: Joao Martins <joao.m.martins@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29KVM: Properly check if "page" is valid in kvm_vcpu_unmapKarimAllah Ahmed
commit b614c6027896ff9ad6757122e84760d938cab15e upstream. The field "page" is initialized to KVM_UNMAPPED_PAGE when it is not used (i.e. when the memory lives outside kernel control). So this check will always end up using kunmap even for memremap regions. Fixes: e45adf665a53 ("KVM: Introduce a new guest mapping API") Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29kvm: fix compile on s390 part 2Christian Borntraeger
commit eb1f2f387db8c0d084581fb26e7faffde700bc8e upstream. We also need to fence the memunmap part. Fixes: e45adf665a53 ("KVM: Introduce a new guest mapping API") Fixes: d30b214d1d0a (kvm: fix compilation on s390) Cc: Michal Kubecek <mkubecek@suse.cz> Cc: KarimAllah Ahmed <karahmed@amazon.de> Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29kvm: fix compilation on s390Paolo Bonzini
commit d30b214d1d0addb7b2c9c78178d1501cd39a01fb upstream. s390 does not have memremap, even though in this particular case it would be useful. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29kvm: fix compilation on aarch64Paolo Bonzini
commit c011d23ba046826ccf8c4a4a6c1d01c9ccaa1403 upstream. Commit e45adf665a53 ("KVM: Introduce a new guest mapping API", 2019-01-31) introduced a build failure on aarch64 defconfig: $ make -j$(nproc) ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- O=out defconfig \ Image.gz ... ../arch/arm64/kvm/../../../virt/kvm/kvm_main.c: In function '__kvm_map_gfn': ../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:9: error: implicit declaration of function 'memremap'; did you mean 'memset_p'? ../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1763:46: error: 'MEMREMAP_WB' undeclared (first use in this function) ../arch/arm64/kvm/../../../virt/kvm/kvm_main.c: In function 'kvm_vcpu_unmap': ../arch/arm64/kvm/../../../virt/kvm/kvm_main.c:1795:3: error: implicit declaration of function 'memunmap'; did you mean 'vm_munmap'? because these functions are declared in <linux/io.h> rather than <asm/io.h>, and the former was being pulled in already on x86 but not on aarch64. Reported-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 4.19: adjust context] Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-29KVM: Introduce a new guest mapping APIKarimAllah Ahmed
commit e45adf665a53df0db37f784ed87c6b57ddd81885 upstream. In KVM, specially for nested guests, there is a dominant pattern of: => map guest memory -> do_something -> unmap guest memory In addition to all this unnecessarily noise in the code due to boiler plate code, most of the time the mapping function does not properly handle memory that is not backed by "struct page". This new guest mapping API encapsulate most of this boiler plate code and also handles guest memory that is not backed by "struct page". The current implementation of this API is using memremap for memory that is not backed by a "struct page" which would lead to a huge slow-down if it was used for high-frequency mapping operations. The API does not have any effect on current setups where guest memory is backed by a "struct page". Further patches are going to also introduce a pfn-cache which would significantly improve the performance of the memremap case. Signed-off-by: KarimAllah Ahmed <karahmed@amazon.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [bwh: Backported to 4.19 as dependency of commit 1eff70a9abd4 "x86/kvm: Introduce kvm_(un)map_gfn()"] Signed-off-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-03-05KVM: Check for a bad hva before dropping into the ghc slow pathSean Christopherson
commit fcfbc617547fc6d9552cb6c1c563b6a90ee98085 upstream. When reading/writing using the guest/host cache, check for a bad hva before checking for a NULL memslot, which triggers the slow path for handing cross-page accesses. Because the memslot is nullified on error by __kvm_gfn_to_hva_cache_init(), if the bad hva is encountered after crossing into a new page, then the kvm_{read,write}_guest() slow path could potentially write/access the first chunk prior to detecting the bad hva. Arguably, performing a partial access is semantically correct from an architectural perspective, but that behavior is certainly not intended. In the original implementation, memslot was not explicitly nullified and therefore the partial access behavior varied based on whether the memslot itself was null, or if the hva was simply bad. The current behavior was introduced as a seemingly unintentional side effect in commit f1b9dd5eb86c ("kvm: Disallow wraparound in kvm_gfn_to_hva_cache_init"), which justified the change with "since some callers don't check the return code from this function, it sit seems prudent to clear ghc->memslot in the event of an error". Regardless of intent, the partial access is dependent on _not_ checking the result of the cache initialization, which is arguably a bug in its own right, at best simply weird. Fixes: 8f964525a121 ("KVM: Allow cross page reads and writes from cached translations.") Cc: Jim Mattson <jmattson@google.com> Cc: Andrew Honig <ahonig@google.com> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14KVM: arm64: pmu: Don't increment SW_INCR if PMCR.E is unsetEric Auger
commit 3837407c1aa1101ed5e214c7d6041e7a23335c6e upstream. The specification says PMSWINC increments PMEVCNTR<n>_EL1 by 1 if PMEVCNTR<n>_EL0 is enabled and configured to count SW_INCR. For PMEVCNTR<n>_EL0 to be enabled, we need both PMCNTENSET to be set for the corresponding event counter but we also need the PMCR.E bit to be set. Fixes: 7a0adc7064b8 ("arm64: KVM: Add access handler for PMSWINC register") Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Andrew Murray <andrew.murray@arm.com> Acked-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200124142535.29386-2-eric.auger@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14KVM: arm: Make inject_abt32() inject an external abort insteadJames Morse
commit 21aecdbd7f3ab02c9b82597dc733ee759fb8b274 upstream. KVM's inject_abt64() injects an external-abort into an aarch64 guest. The KVM_CAP_ARM_INJECT_EXT_DABT is intended to do exactly this, but for an aarch32 guest inject_abt32() injects an implementation-defined exception, 'Lockdown fault'. Change this to external abort. For non-LPAE we now get the documented: | Unhandled fault: external abort on non-linefetch (0x008) at 0x9c800f00 and for LPAE: | Unhandled fault: synchronous external abort (0x210) at 0x9c800f00 Fixes: 74a64a981662a ("KVM: arm/arm64: Unify 32bit fault injection") Reported-by: Beata Michalska <beata.michalska@linaro.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121123356.203000-3-james.morse@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14KVM: arm: Fix DFSR setting for non-LPAE aarch32 guestsJames Morse
commit 018f22f95e8a6c3e27188b7317ef2c70a34cb2cd upstream. Beata reports that KVM_SET_VCPU_EVENTS doesn't inject the expected exception to a non-LPAE aarch32 guest. The host intends to inject DFSR.FS=0x14 "IMPLEMENTATION DEFINED fault (Lockdown fault)", but the guest receives DFSR.FS=0x04 "Fault on instruction cache maintenance". This fault is hooked by do_translation_fault() since ARMv6, which goes on to silently 'handle' the exception, and restart the faulting instruction. It turns out, when TTBCR.EAE is clear DFSR is split, and FS[4] has to shuffle up to DFSR[10]. As KVM only does this in one place, fix up the static values. We now get the expected: | Unhandled fault: lock abort (0x404) at 0x9c800f00 Fixes: 74a64a981662a ("KVM: arm/arm64: Unify 32bit fault injection") Reported-by: Beata Michalska <beata.michalska@linaro.org> Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121123356.203000-2-james.morse@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14KVM: arm/arm64: Fix young bit from mmu notifierGavin Shan
commit cf2d23e0bac9f6b5cd1cba8898f5f05ead40e530 upstream. kvm_test_age_hva() is called upon mmu_notifier_test_young(), but wrong address range has been passed to handle_hva_to_gpa(). With the wrong address range, no young bits will be checked in handle_hva_to_gpa(). It means zero is always returned from mmu_notifier_test_young(). This fixes the issue by passing correct address range to the underly function handle_hva_to_gpa(), so that the hardware young (access) bit will be visited. Fixes: 35307b9a5f7e ("arm/arm64: KVM: Implement Stage-2 page aging") Signed-off-by: Gavin Shan <gshan@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Link: https://lore.kernel.org/r/20200121055659.19560-1-gshan@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-14KVM: arm/arm64: vgic-its: Fix restoration of unmapped collectionsEric Auger
commit 8c58be34494b7f1b2adb446e2d8beeb90e5de65b upstream. Saving/restoring an unmapped collection is a valid scenario. For example this happens if a MAPTI command was sent, featuring an unmapped collection. At the moment the CTE fails to be restored. Only compare against the number of online vcpus if the rdist base is set. Fixes: ea1ad53e1e31a ("KVM: arm64: vgic-its: Collection table save/restore") Signed-off-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Zenghui Yu <yuzenghui@huawei.com> Link: https://lore.kernel.org/r/20191213094237.19627-1-eric.auger@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11KVM: Play nice with read-only memslots when querying host page sizeSean Christopherson
[ Upstream commit 42cde48b2d39772dba47e680781a32a6c4b7dc33 ] Avoid the "writable" check in __gfn_to_hva_many(), which will always fail on read-only memslots due to gfn_to_hva() assuming writes. Functionally, this allows x86 to create large mappings for read-only memslots that are backed by HugeTLB mappings. Note, the changelog for commit 05da45583de9 ("KVM: MMU: large page support") states "If the largepage contains write-protected pages, a large pte is not used.", but "write-protected" refers to pages that are temporarily read-only, e.g. read-only memslots didn't even exist at the time. Fixes: 4d8b81abc47b ("KVM: introduce readonly memslot") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> [Redone using kvm_vcpu_gfn_to_memslot_prot. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-11KVM: Use vcpu-specific gva->hva translation when querying host page sizeSean Christopherson
[ Upstream commit f9b84e19221efc5f493156ee0329df3142085f28 ] Use kvm_vcpu_gfn_to_hva() when retrieving the host page size so that the correct set of memslots is used when handling x86 page faults in SMM. Fixes: 54bf36aac520 ("KVM: x86: use vcpu-specific functions to read/write/translate GFNs") Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-11KVM: x86: Use gpa_t for cr2/gpa to fix TDP support on 32-bit KVMSean Christopherson
[ Upstream commit 736c291c9f36b07f8889c61764c28edce20e715d ] Convert a plethora of parameters and variables in the MMU and page fault flows from type gva_t to gpa_t to properly handle TDP on 32-bit KVM. Thanks to PSE and PAE paging, 32-bit kernels can access 64-bit physical addresses. When TDP is enabled, the fault address is a guest physical address and thus can be a 64-bit value, even when both KVM and its guest are using 32-bit virtual addressing, e.g. VMX's VMCS.GUEST_PHYSICAL is a 64-bit field, not a natural width field. Using a gva_t for the fault address means KVM will incorrectly drop the upper 32-bits of the GPA. Ditto for gva_to_gpa() when it is used to translate L2 GPAs to L1 GPAs. Opportunistically rename variables and parameters to better reflect the dual address modes, e.g. use "cr2_or_gpa" for fault addresses and plain "addr" instead of "vaddr" when the address may be either a GVA or an L2 GPA. Similarly, use "gpa" in the nonpaging_page_fault() flows to avoid a confusing "gpa_t gva" declaration; this also sets the stage for a future patch to combing nonpaging_page_fault() and tdp_page_fault() with minimal churn. Sprinkle in a few comments to document flows where an address is known to be a GVA and thus can be safely truncated to a 32-bit value. Add WARNs in kvm_handle_page_fault() and FNAME(gva_to_gpa_nested)() to help document such cases and detect bugs. Cc: stable@vger.kernel.org Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-02-11KVM: arm64: Only sign-extend MMIO up to register widthChristoffer Dall
commit b6ae256afd32f96bec0117175b329d0dd617655e upstream. On AArch64 you can do a sign-extended load to either a 32-bit or 64-bit register, and we should only sign extend the register up to the width of the register as specified in the operation (by using the 32-bit Wn or 64-bit Xn register specifier). As it turns out, the architecture provides this decoding information in the SF ("Sixty-Four" -- how cute...) bit. Let's take advantage of this with the usual 32-bit/64-bit header file dance and do the right thing on AArch64 hosts. Signed-off-by: Christoffer Dall <christoffer.dall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20191212195055.5541-1-christoffer.dall@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11KVM: arm/arm64: Correct AArch32 SPSR on exception entryMark Rutland
commit 1cfbb484de158e378e8971ac40f3082e53ecca55 upstream. Confusingly, there are three SPSR layouts that a kernel may need to deal with: (1) An AArch64 SPSR_ELx view of an AArch64 pstate (2) An AArch64 SPSR_ELx view of an AArch32 pstate (3) An AArch32 SPSR_* view of an AArch32 pstate When the KVM AArch32 support code deals with SPSR_{EL2,HYP}, it's either dealing with #2 or #3 consistently. On arm64 the PSR_AA32_* definitions match the AArch64 SPSR_ELx view, and on arm the PSR_AA32_* definitions match the AArch32 SPSR_* view. However, when we inject an exception into an AArch32 guest, we have to synthesize the AArch32 SPSR_* that the guest will see. Thus, an AArch64 host needs to synthesize layout #3 from layout #2. This patch adds a new host_spsr_to_spsr32() helper for this, and makes use of it in the KVM AArch32 support code. For arm64 we need to shuffle the DIT bit around, and remove the SS bit, while for arm we can use the value as-is. I've open-coded the bit manipulation for now to avoid having to rework the existing PSR_* definitions into PSR64_AA32_* and PSR32_AA32_* definitions. I hope to perform a more thorough refactoring in future so that we can handle pstate view manipulation more consistently across the kernel tree. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20200108134324.46500-4-mark.rutland@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-11KVM: arm/arm64: Correct CPSR on exception entryMark Rutland
commit 3c2483f15499b877ccb53250d88addb8c91da147 upstream. When KVM injects an exception into a guest, it generates the CPSR value from scratch, configuring CPSR.{M,A,I,T,E}, and setting all other bits to zero. This isn't correct, as the architecture specifies that some CPSR bits are (conditionally) cleared or set upon an exception, and others are unchanged from the original context. This patch adds logic to match the architectural behaviour. To make this simple to follow/audit/extend, documentation references are provided, and bits are configured in order of their layout in SPSR_EL2. This layout can be seen in the diagram on ARM DDI 0487E.a page C5-426. Note that this code is used by both arm and arm64, and is intended to fuction with the SPSR_EL2 and SPSR_HYP layouts. Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Reviewed-by: Alexandru Elisei <alexandru.elisei@arm.com> Cc: stable@vger.kernel.org Link: https://lore.kernel.org/r/20200108134324.46500-3-mark.rutland@arm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-13KVM: arm/arm64: vgic: Don't rely on the wrong pending tableZenghui Yu
commit ca185b260951d3b55108c0b95e188682d8a507b7 upstream. It's possible that two LPIs locate in the same "byte_offset" but target two different vcpus, where their pending status are indicated by two different pending tables. In such a scenario, using last_byte_offset optimization will lead KVM relying on the wrong pending table entry. Let us use last_ptr instead, which can be treated as a byte index into a pending table and also, can be vcpu specific. Fixes: 280771252c1b ("KVM: arm64: vgic-v3: KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES") Cc: stable@vger.kernel.org Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Acked-by: Eric Auger <eric.auger@redhat.com> Link: https://lore.kernel.org/r/20191029071919.177-4-yuzenghui@huawei.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-05kvm: properly check debugfs dentry before using itGreg Kroah-Hartman
[ Upstream commit 8ed0579c12b2fe56a1fac2f712f58fc26c1dc49b ] debugfs can now report an error code if something went wrong instead of just NULL. So if the return value is to be used as a "real" dentry, it needs to be checked if it is an error before dereferencing it. This is now happening because of ff9fb72bc077 ("debugfs: return error values, not NULL"). syzbot has found a way to trigger multiple debugfs files attempting to be created, which fails, and then the error code gets passed to dentry_path_raw() which obviously does not like it. Reported-by: Eric Biggers <ebiggers@kernel.org> Reported-and-tested-by: syzbot+7857962b4d45e602b8ad@syzkaller.appspotmail.com Cc: "Radim Krčmář" <rkrcmar@redhat.com> Cc: kvm@vger.kernel.org Acked-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01KVM: MMU: Do not treat ZONE_DEVICE pages as being reservedSean Christopherson
commit a78986aae9b2988f8493f9f65a587ee433e83bc3 upstream. Explicitly exempt ZONE_DEVICE pages from kvm_is_reserved_pfn() and instead manually handle ZONE_DEVICE on a case-by-case basis. For things like page refcounts, KVM needs to treat ZONE_DEVICE pages like normal pages, e.g. put pages grabbed via gup(). But for flows such as setting A/D bits or shifting refcounts for transparent huge pages, KVM needs to to avoid processing ZONE_DEVICE pages as the flows in question lack the underlying machinery for proper handling of ZONE_DEVICE pages. This fixes a hang reported by Adam Borowski[*] in dev_pagemap_cleanup() when running a KVM guest backed with /dev/dax memory, as KVM straight up doesn't put any references to ZONE_DEVICE pages acquired by gup(). Note, Dan Williams proposed an alternative solution of doing put_page() on ZONE_DEVICE pages immediately after gup() in order to simplify the auditing needed to ensure is_zone_device_page() is called if and only if the backing device is pinned (via gup()). But that approach would break kvm_vcpu_{un}map() as KVM requires the page to be pinned from map() 'til unmap() when accessing guest memory, unlike KVM's secondary MMU, which coordinates with mmu_notifier invalidations to avoid creating stale page references, i.e. doesn't rely on pages being pinned. [*] http://lkml.kernel.org/r/20190919115547.GA17963@angband.pl Reported-by: Adam Borowski <kilobyte@angband.pl> Analyzed-by: David Hildenbrand <david@redhat.com> Acked-by: Dan Williams <dan.j.williams@intel.com> Cc: stable@vger.kernel.org Fixes: 3565fce3a659 ("mm, x86: get_user_pages() for dax mappings") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [sean: backport to 4.x; resolve conflict in mmu.c] Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-24kvm: arm/arm64: Fix stage2_flush_memslot for 4 level page tableSuzuki K Poulose
[ Upstream commit d2db7773ba864df6b4e19643dfc54838550d8049 ] So far we have only supported 3 level page table with fixed IPA of 40bits, where PUD is folded. With 4 level page tables, we need to check if the PUD entry is valid or not. Fix stage2_flush_memslot() to do this check, before walking down the table. Acked-by: Christoffer Dall <cdall@kernel.org> Acked-by: Marc Zyngier <marc.zyngier@arm.com> Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Suzuki K Poulose <suzuki.poulose@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-12kvm: x86: mmu: Recovery of shattered NX large pagesJunaid Shahid
commit 1aa9b9572b10529c2e64e2b8f44025d86e124308 upstream. The page table pages corresponding to broken down large pages are zapped in FIFO order, so that the large page can potentially be recovered, if it is not longer being used for execution. This removes the performance penalty for walking deeper EPT page tables. By default, one large page will last about one hour once the guest reaches a steady state. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: Add helper function for creating VM worker threadsJunaid Shahid
commit c57c80467f90e5504c8df9ad3555d2c78800bf94 upstream. Add a function to create a kernel thread associated with a given VM. In particular, it ensures that the worker thread inherits the priority and cgroups of the calling thread. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: Convert kvm_lock to a mutexJunaid Shahid
commit 0d9ce162cf46c99628cc5da9510b959c7976735b upstream. It doesn't seem as if there is any particular need for kvm_lock to be a spinlock, so convert the lock to a mutex so that sleepable functions (in particular cond_resched()) can be called while holding it. Signed-off-by: Junaid Shahid <junaids@google.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12kvm: x86, powerpc: do not allow clearing largepages debugfs entryPaolo Bonzini
commit 833b45de69a6016c4b0cebe6765d526a31a81580 upstream. The largepages debugfs entry is incremented/decremented as shadow pages are created or destroyed. Clearing it will result in an underflow, which is harmless to KVM but ugly (and could be misinterpreted by tools that use debugfs information), so make this particular statistic read-only. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: kvm-ppc@vger.kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-21KVM: coalesced_mmio: add bounds checkingMatt Delco
commit b60fe990c6b07ef6d4df67bc0530c7c90a62623a upstream. The first/last indexes are typically shared with a user app. The app can change the 'last' index that the kernel uses to store the next result. This change sanity checks the index before using it for writing to a potentially arbitrary address. This fixes CVE-2019-14821. Cc: stable@vger.kernel.org Fixes: 5f94c1741bdc ("KVM: Add coalesced MMIO support (common part)") Signed-off-by: Matt Delco <delco@chromium.org> Signed-off-by: Jim Mattson <jmattson@google.com> Reported-by: syzbot+983c866c3dd6efa3662a@syzkaller.appspotmail.com [Use READ_ONCE. - Paolo] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-09-16kvm: Check irqchip mode before assign irqfdPeter Xu
[ Upstream commit 654f1f13ea56b92bacade8ce2725aea0457f91c0 ] When assigning kvm irqfd we didn't check the irqchip mode but we allow KVM_IRQFD to succeed with all the irqchip modes. However it does not make much sense to create irqfd even without the kernel chips. Let's provide a arch-dependent helper to check whether a specific irqfd is allowed by the arch. At least for x86, it should make sense to check: - when irqchip mode is NONE, all irqfds should be disallowed, and, - when irqchip mode is SPLIT, irqfds that are with resamplefd should be disallowed. For either of the case, previously we'll silently ignore the irq or the irq ack event if the irqchip mode is incorrect. However that can cause misterious guest behaviors and it can be hard to triage. Let's fail KVM_IRQFD even earlier to detect these incorrect configurations. CC: Paolo Bonzini <pbonzini@redhat.com> CC: Radim Krčmář <rkrcmar@redhat.com> CC: Alex Williamson <alex.williamson@redhat.com> CC: Eduardo Habkost <ehabkost@redhat.com> Signed-off-by: Peter Xu <peterx@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-10KVM: arm/arm64: VGIC: Properly initialise private IRQ affinityAndre Przywara
[ Upstream commit 2e16f3e926ed48373c98edea85c6ad0ef69425d1 ] At the moment we initialise the target *mask* of a virtual IRQ to the VCPU it belongs to, even though this mask is only defined for GICv2 and quickly runs out of bits for many GICv3 guests. This behaviour triggers an UBSAN complaint for more than 32 VCPUs: ------ [ 5659.462377] UBSAN: Undefined behaviour in virt/kvm/arm/vgic/vgic-init.c:223:21 [ 5659.471689] shift exponent 32 is too large for 32-bit type 'unsigned int' ------ Also for GICv3 guests the reporting of TARGET in the "vgic-state" debugfs dump is wrong, due to this very same problem. Because there is no requirement to create the VGIC device before the VCPUs (and QEMU actually does it the other way round), we can't safely initialise mpidr or targets in kvm_vgic_vcpu_init(). But since we touch every private IRQ for each VCPU anyway later (in vgic_init()), we can just move the initialisation of those fields into there, where we definitely know the VGIC type. On the way make sure we really have either a VGICv2 or a VGICv3 device, since the existing code is just checking for "VGICv3 or not", silently ignoring the uninitialised case. Signed-off-by: Andre Przywara <andre.przywara@arm.com> Reported-by: Dave Martin <dave.martin@arm.com> Tested-by: Julien Grall <julien.grall@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-10KVM: arm/arm64: Only skip MMIO insn onceAndrew Jones
[ Upstream commit 2113c5f62b7423e4a72b890bd479704aa85c81ba ] If after an MMIO exit to userspace a VCPU is immediately run with an immediate_exit request, such as when a signal is delivered or an MMIO emulation completion is needed, then the VCPU completes the MMIO emulation and immediately returns to userspace. As the exit_reason does not get changed from KVM_EXIT_MMIO in these cases we have to be careful not to complete the MMIO emulation again, when the VCPU is eventually run again, because the emulation does an instruction skip (and doing too many skips would be a waste of guest code :-) We need to use additional VCPU state to track if the emulation is complete. As luck would have it, we already have 'mmio_needed', which even appears to be used in this way by other architectures already. Fixes: 0d640732dbeb ("arm64: KVM: Skip MMIO insn after emulation") Acked-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Andrew Jones <drjones@redhat.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-06KVM: arm/arm64: vgic-v2: Handle SGI bits in GICD_I{S,C}PENDR0 as WIMarc Zyngier
[ Upstream commit 82e40f558de566fdee214bec68096bbd5e64a6a4 ] A guest is not allowed to inject a SGI (or clear its pending state) by writing to GICD_ISPENDR0 (resp. GICD_ICPENDR0), as these bits are defined as WI (as per ARM IHI 0048B 4.3.7 and 4.3.8). Make sure we correctly emulate the architecture. Fixes: 96b298000db4 ("KVM: arm/arm64: vgic-new: Add PENDING registers handlers") Cc: stable@vger.kernel.org # 4.7+ Reported-by: Andre Przywara <andre.przywara@arm.com> Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-06KVM: arm/arm64: vgic: Fix potential deadlock when ap_list is longHeyi Guo
[ Upstream commit d4a8061a7c5f7c27a2dc002ee4cb89b3e6637e44 ] If the ap_list is longer than 256 entries, merge_final() in list_sort() will call the comparison callback with the same element twice, causing a deadlock in vgic_irq_cmp(). Fix it by returning early when irqa == irqb. Cc: stable@vger.kernel.org # 4.7+ Fixes: 8e4447457965 ("KVM: arm/arm64: vgic-new: Add IRQ sorting") Signed-off-by: Zenghui Yu <yuzenghui@huawei.com> Signed-off-by: Heyi Guo <guoheyi@huawei.com> [maz: massaged commit log and patch, added Fixes and Cc-stable] Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-08-25KVM: arm/arm64: Sync ICH_VMCR_EL2 back when about to blockMarc Zyngier
commit 5eeaf10eec394b28fad2c58f1f5c3a5da0e87d1c upstream. Since commit commit 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put"), we leave ICH_VMCR_EL2 (or its GICv2 equivalent) loaded as long as we can, only syncing it back when we're scheduled out. There is a small snag with that though: kvm_vgic_vcpu_pending_irq(), which is indirectly called from kvm_vcpu_check_block(), needs to evaluate the guest's view of ICC_PMR_EL1. At the point were we call kvm_vcpu_check_block(), the vcpu is still loaded, and whatever changes to PMR is not visible in memory until we do a vcpu_put(). Things go really south if the guest does the following: mov x0, #0 // or any small value masking interrupts msr ICC_PMR_EL1, x0 [vcpu preempted, then rescheduled, VMCR sampled] mov x0, #ff // allow all interrupts msr ICC_PMR_EL1, x0 wfi // traps to EL2, so samping of VMCR [interrupt arrives just after WFI] Here, the hypervisor's view of PMR is zero, while the guest has enabled its interrupts. kvm_vgic_vcpu_pending_irq() will then say that no interrupts are pending (despite an interrupt being received) and we'll block for no reason. If the guest doesn't have a periodic interrupt firing once it has blocked, it will stay there forever. To avoid this unfortuante situation, let's resync VMCR from kvm_arch_vcpu_blocking(), ensuring that a following kvm_vcpu_check_block() will observe the latest value of PMR. This has been found by booting an arm64 Linux guest with the pseudo NMI feature, and thus using interrupt priorities to mask interrupts instead of the usual PSTATE masking. Cc: stable@vger.kernel.org # 4.12 Fixes: 328e56647944 ("KVM: arm/arm64: vgic: Defer touching GICH_VMCR to vcpu_load/put") Signed-off-by: Marc Zyngier <maz@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-16KVM: Fix leak vCPU's VMCS value into other pCPUWanpeng Li
commit 17e433b54393a6269acbcb792da97791fe1592d8 upstream. After commit d73eb57b80b (KVM: Boost vCPUs that are delivering interrupts), a five years old bug is exposed. Running ebizzy benchmark in three 80 vCPUs VMs on one 80 pCPUs Skylake server, a lot of rcu_sched stall warning splatting in the VMs after stress testing: INFO: rcu_sched detected stalls on CPUs/tasks: { 4 41 57 62 77} (detected by 15, t=60004 jiffies, g=899, c=898, q=15073) Call Trace: flush_tlb_mm_range+0x68/0x140 tlb_flush_mmu.part.75+0x37/0xe0 tlb_finish_mmu+0x55/0x60 zap_page_range+0x142/0x190 SyS_madvise+0x3cd/0x9c0 system_call_fastpath+0x1c/0x21 swait_active() sustains to be true before finish_swait() is called in kvm_vcpu_block(), voluntarily preempted vCPUs are taken into account by kvm_vcpu_on_spin() loop greatly increases the probability condition kvm_arch_vcpu_runnable(vcpu) is checked and can be true, when APICv is enabled the yield-candidate vCPU's VMCS RVI field leaks(by vmx_sync_pir_to_irr()) into spinning-on-a-taken-lock vCPU's current VMCS. This patch fixes it by checking conservatively a subset of events. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Marc Zyngier <Marc.Zyngier@arm.com> Cc: stable@vger.kernel.org Fixes: 98f4a1467 (KVM: add kvm_arch_vcpu_runnable() test to kvm_vcpu_on_spin() loop) Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-14KVM: arm/arm64: vgic: Fix kvm_device leak in vgic_its_destroyDave Martin
[ Upstream commit 4729ec8c1e1145234aeeebad5d96d77f4ccbb00a ] kvm_device->destroy() seems to be supposed to free its kvm_device struct, but vgic_its_destroy() is not currently doing this, resulting in a memory leak, resulting in kmemleak reports such as the following: unreferenced object 0xffff800aeddfe280 (size 128): comm "qemu-system-aar", pid 13799, jiffies 4299827317 (age 1569.844s) [...] backtrace: [<00000000a08b80e2>] kmem_cache_alloc+0x178/0x208 [<00000000dcad2bd3>] kvm_vm_ioctl+0x350/0xbc0 Fix it. Cc: Andre Przywara <andre.przywara@arm.com> Fixes: 1085fdc68c60 ("KVM: arm64: vgic-its: Introduce new KVM ITS device") Signed-off-by: Dave Martin <Dave.Martin@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-19KVM: arm/arm64: Move cc/it checks under hyp's Makefile to avoid instrumentationJames Morse
[ Upstream commit 623e1528d4090bd1abaf93ec46f047dee9a6fb32 ] KVM has helpers to handle the condition codes of trapped aarch32 instructions. These are marked __hyp_text and used from HYP, but they aren't built by the 'hyp' Makefile, which has all the runes to avoid ASAN and KCOV instrumentation. Move this code to a new hyp/aarch32.c to avoid a hyp-panic when starting an aarch32 guest on a host built with the ASAN/KCOV debug options. Fixes: 021234ef3752f ("KVM: arm64: Make kvm_condition_valid32() accessible from EL2") Fixes: 8cebe750c4d9a ("arm64: KVM: Make kvm_skip_instr32 available to HYP") Signed-off-by: James Morse <james.morse@arm.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-09KVM: s390: Do not report unusabled IDs via KVM_CAP_MAX_VCPU_IDThomas Huth
commit a86cb413f4bf273a9d341a3ab2c2ca44e12eb317 upstream. KVM_CAP_MAX_VCPU_ID is currently always reporting KVM_MAX_VCPU_ID on all architectures. However, on s390x, the amount of usable CPUs is determined during runtime - it is depending on the features of the machine the code is running on. Since we are using the vcpu_id as an index into the SCA structures that are defined by the hardware (see e.g. the sca_add_vcpu() function), it is not only the amount of CPUs that is limited by the hard- ware, but also the range of IDs that we can use. Thus KVM_CAP_MAX_VCPU_ID must be determined during runtime on s390x, too. So the handling of KVM_CAP_MAX_VCPU_ID has to be moved from the common code into the architecture specific code, and on s390x we have to return the same value here as for KVM_CAP_MAX_VCPUS. This problem has been discovered with the kvm_create_max_vcpus selftest. With this change applied, the selftest now passes on s390x, too. Reviewed-by: Andrew Jones <drjones@redhat.com> Reviewed-by: Cornelia Huck <cohuck@redhat.com> Reviewed-by: David Hildenbrand <david@redhat.com> Signed-off-by: Thomas Huth <thuth@redhat.com> Message-Id: <20190523164309.13345-9-thuth@redhat.com> Cc: stable@vger.kernel.org Signed-off-by: Christian Borntraeger <borntraeger@de.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25KVM: arm/arm64: Ensure vcpu target is unset on reset failureAndrew Jones
[ Upstream commit 811328fc3222f7b55846de0cd0404339e2e1e6d7 ] A failed KVM_ARM_VCPU_INIT should not set the vcpu target, as the vcpu target is used by kvm_vcpu_initialized() to determine if other vcpu ioctls may proceed. We need to set the target before calling kvm_reset_vcpu(), but if that call fails, we should then unset it and clear the feature bitmap while we're at it. Signed-off-by: Andrew Jones <drjones@redhat.com> [maz: Simplified patch, completed commit message] Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-16KVM: fix spectrev1 gadgetsPaolo Bonzini
[ Upstream commit 1d487e9bf8ba66a7174c56a0029c54b1eca8f99c ] These were found with smatch, and then generalized when applicable. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-04KVM: arm/arm64: vgic-its: Take the srcu lock when parsing the memslotsMarc Zyngier
[ Upstream commit 7494cec6cb3ba7385a6a223b81906384f15aae34 ] Calling kvm_is_visible_gfn() implies that we're parsing the memslots, and doing this without the srcu lock is frown upon: [12704.164532] ============================= [12704.164544] WARNING: suspicious RCU usage [12704.164560] 5.1.0-rc1-00008-g600025238f51-dirty #16 Tainted: G W [12704.164573] ----------------------------- [12704.164589] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [12704.164602] other info that might help us debug this: [12704.164616] rcu_scheduler_active = 2, debug_locks = 1 [12704.164631] 6 locks held by qemu-system-aar/13968: [12704.164644] #0: 000000007ebdae4f (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [12704.164691] #1: 000000007d751022 (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [12704.164726] #2: 00000000219d2706 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164761] #3: 00000000a760aecd (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164794] #4: 000000000ef8e31d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164827] #5: 000000007a872093 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [12704.164861] stack backtrace: [12704.164878] CPU: 2 PID: 13968 Comm: qemu-system-aar Tainted: G W 5.1.0-rc1-00008-g600025238f51-dirty #16 [12704.164887] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [12704.164896] Call trace: [12704.164910] dump_backtrace+0x0/0x138 [12704.164920] show_stack+0x24/0x30 [12704.164934] dump_stack+0xbc/0x104 [12704.164946] lockdep_rcu_suspicious+0xcc/0x110 [12704.164958] gfn_to_memslot+0x174/0x190 [12704.164969] kvm_is_visible_gfn+0x28/0x70 [12704.164980] vgic_its_check_id.isra.0+0xec/0x1e8 [12704.164991] vgic_its_save_tables_v0+0x1ac/0x330 [12704.165001] vgic_its_set_attr+0x298/0x3a0 [12704.165012] kvm_device_ioctl_attr+0x9c/0xd8 [12704.165022] kvm_device_ioctl+0x8c/0xf8 [12704.165035] do_vfs_ioctl+0xc8/0x960 [12704.165045] ksys_ioctl+0x8c/0xa0 [12704.165055] __arm64_sys_ioctl+0x28/0x38 [12704.165067] el0_svc_common+0xd8/0x138 [12704.165078] el0_svc_handler+0x38/0x78 [12704.165089] el0_svc+0x8/0xc Make sure the lock is taken when doing this. Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Reviewed-by: Eric Auger <eric.auger@redhat.com> Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-05-04KVM: arm/arm64: vgic-its: Take the srcu lock when writing to guest memoryMarc Zyngier
[ Upstream commit a6ecfb11bf37743c1ac49b266595582b107b61d4 ] When halting a guest, QEMU flushes the virtual ITS caches, which amounts to writing to the various tables that the guest has allocated. When doing this, we fail to take the srcu lock, and the kernel shouts loudly if running a lockdep kernel: [ 69.680416] ============================= [ 69.680819] WARNING: suspicious RCU usage [ 69.681526] 5.1.0-rc1-00008-g600025238f51-dirty #18 Not tainted [ 69.682096] ----------------------------- [ 69.682501] ./include/linux/kvm_host.h:605 suspicious rcu_dereference_check() usage! [ 69.683225] [ 69.683225] other info that might help us debug this: [ 69.683225] [ 69.683975] [ 69.683975] rcu_scheduler_active = 2, debug_locks = 1 [ 69.684598] 6 locks held by qemu-system-aar/4097: [ 69.685059] #0: 0000000034196013 (&kvm->lock){+.+.}, at: vgic_its_set_attr+0x244/0x3a0 [ 69.686087] #1: 00000000f2ed935e (&its->its_lock){+.+.}, at: vgic_its_set_attr+0x250/0x3a0 [ 69.686919] #2: 000000005e71ea54 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.687698] #3: 00000000c17e548d (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.688475] #4: 00000000ba386017 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.689978] #5: 00000000c2c3c335 (&vcpu->mutex){+.+.}, at: lock_all_vcpus+0x64/0xd0 [ 69.690729] [ 69.690729] stack backtrace: [ 69.691151] CPU: 2 PID: 4097 Comm: qemu-system-aar Not tainted 5.1.0-rc1-00008-g600025238f51-dirty #18 [ 69.691984] Hardware name: rockchip evb_rk3399/evb_rk3399, BIOS 2019.04-rc3-00124-g2feec69fb1 03/15/2019 [ 69.692831] Call trace: [ 69.694072] lockdep_rcu_suspicious+0xcc/0x110 [ 69.694490] gfn_to_memslot+0x174/0x190 [ 69.694853] kvm_write_guest+0x50/0xb0 [ 69.695209] vgic_its_save_tables_v0+0x248/0x330 [ 69.695639] vgic_its_set_attr+0x298/0x3a0 [ 69.696024] kvm_device_ioctl_attr+0x9c/0xd8 [ 69.696424] kvm_device_ioctl+0x8c/0xf8 [ 69.696788] do_vfs_ioctl+0xc8/0x960 [ 69.697128] ksys_ioctl+0x8c/0xa0 [ 69.697445] __arm64_sys_ioctl+0x28/0x38 [ 69.697817] el0_svc_common+0xd8/0x138 [ 69.698173] el0_svc_handler+0x38/0x78 [ 69.698528] el0_svc+0x8/0xc The fix is to obviously take the srcu lock, just like we do on the read side of things since bf308242ab98. One wonders why this wasn't fixed at the same time, but hey... Fixes: bf308242ab98 ("KVM: arm/arm64: VGIC/ITS: protect kvm_read_guest() calls with SRCU lock") Signed-off-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-04-03KVM: Reject device ioctls from processes other than the VM's creatorSean Christopherson
commit ddba91801aeb5c160b660caed1800eb3aef403f8 upstream. KVM's API requires thats ioctls must be issued from the same process that created the VM. In other words, userspace can play games with a VM's file descriptors, e.g. fork(), SCM_RIGHTS, etc..., but only the creator can do anything useful. Explicitly reject device ioctls that are issued by a process other than the VM's creator, and update KVM's API documentation to extend its requirements to device ioctls. Fixes: 852b6d57dc7f ("kvm: add device control API") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23KVM: Call kvm_arch_memslots_updated() before updating memslotsSean Christopherson
commit 152482580a1b0accb60676063a1ac57b2d12daf6 upstream. kvm_arch_memslots_updated() is at this point in time an x86-specific hook for handling MMIO generation wraparound. x86 stashes 19 bits of the memslots generation number in its MMIO sptes in order to avoid full page fault walks for repeat faults on emulated MMIO addresses. Because only 19 bits are used, wrapping the MMIO generation number is possible, if unlikely. kvm_arch_memslots_updated() alerts x86 that the generation has changed so that it can invalidate all MMIO sptes in case the effective MMIO generation has wrapped so as to avoid using a stale spte, e.g. a (very) old spte that was created with generation==0. Given that the purpose of kvm_arch_memslots_updated() is to prevent consuming stale entries, it needs to be called before the new generation is propagated to memslots. Invalidating the MMIO sptes after updating memslots means that there is a window where a vCPU could dereference the new memslots generation, e.g. 0, and incorrectly reuse an old MMIO spte that was created with (pre-wrap) generation==0. Fixes: e59dbe09f8e6 ("KVM: Introduce kvm_arch_memslots_updated()") Cc: <stable@vger.kernel.org> Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>