summaryrefslogtreecommitdiffstats
path: root/kernel
AgeCommit message (Collapse)Author
2019-03-05locking/rwsem: Fix (possible) missed wakeupXie Yongji
[ Upstream commit e158488be27b157802753a59b336142dc0eb0380 ] Because wake_q_add() can imply an immediate wakeup (cmpxchg failure case), we must not rely on the wakeup being delayed. However, commit: e38513905eea ("locking/rwsem: Rework zeroing reader waiter->task") relies on exactly that behaviour in that the wakeup must not happen until after we clear waiter->task. [ peterz: Added changelog. ] Signed-off-by: Xie Yongji <xieyongji@baidu.com> Signed-off-by: Zhang Yu <zhangyu31@baidu.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: e38513905eea ("locking/rwsem: Rework zeroing reader waiter->task") Link: https://lkml.kernel.org/r/1543495830-2644-1-git-send-email-xieyongji@baidu.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-05futex: Fix (possible) missed wakeupPeter Zijlstra
[ Upstream commit b061c38bef43406df8e73c5be06cbfacad5ee6ad ] We must not rely on wake_q_add() to delay the wakeup; in particular commit: 1d0dcb3ad9d3 ("futex: Implement lockless wakeups") moved wake_q_add() before smp_store_release(&q->lock_ptr, NULL), which could result in futex_wait() waking before observing ->lock_ptr == NULL and going back to sleep again. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 1d0dcb3ad9d3 ("futex: Implement lockless wakeups") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-05sched/wake_q: Fix wakeup ordering for wake_qPeter Zijlstra
[ Upstream commit 4c4e3731564c8945ac5ac90fc2a1e1f21cb79c92 ] Notable cmpxchg() does not provide ordering when it fails, however wake_q_add() requires ordering in this specific case too. Without this it would be possible for the concurrent wakeup to not observe our prior state. Andrea Parri provided: C wake_up_q-wake_q_add { int next = 0; int y = 0; } P0(int *next, int *y) { int r0; /* in wake_up_q() */ WRITE_ONCE(*next, 1); /* node->next = NULL */ smp_mb(); /* implied by wake_up_process() */ r0 = READ_ONCE(*y); } P1(int *next, int *y) { int r1; /* in wake_q_add() */ WRITE_ONCE(*y, 1); /* wake_cond = true */ smp_mb__before_atomic(); r1 = cmpxchg_relaxed(next, 1, 2); } exists (0:r0=0 /\ 1:r1=0) This "exists" clause cannot be satisfied according to the LKMM: Test wake_up_q-wake_q_add Allowed States 3 0:r0=0; 1:r1=1; 0:r0=1; 1:r1=0; 0:r0=1; 1:r1=1; No Witnesses Positive: 0 Negative: 3 Condition exists (0:r0=0 /\ 1:r1=0) Observation wake_up_q-wake_q_add Never 0 3 Reported-by: Yongji Xie <elohimes@gmail.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Davidlohr Bueso <dave@stgolabs.net> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Waiman Long <longman@redhat.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-05sched/wait: Fix rcuwait_wake_up() orderingPrateek Sood
[ Upstream commit 6dc080eeb2ba01973bfff0d79844d7a59e12542e ] For some peculiar reason rcuwait_wake_up() has the right barrier in the comment, but not in the code. This mistake has been observed to cause a deadlock in the following situation: P1 P2 percpu_up_read() percpu_down_write() rcu_sync_is_idle() // false rcu_sync_enter() ... __percpu_up_read() [S] ,- __this_cpu_dec(*sem->read_count) | smp_rmb(); [L] | task = rcu_dereference(w->task) // NULL | | [S] w->task = current | smp_mb(); | [L] readers_active_check() // fail `-> <store happens here> Where the smp_rmb() (obviously) fails to constrain the store. [ peterz: Added changelog. ] Signed-off-by: Prateek Sood <prsood@codeaurora.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Andrea Parri <andrea.parri@amarulasolutions.com> Acked-by: Davidlohr Bueso <dbueso@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 8f95c90ceb54 ("sched/wait, RCU: Introduce rcuwait machinery") Link: https://lkml.kernel.org/r/1543590656-7157-1-git-send-email-prsood@codeaurora.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-05genirq: Make sure the initial affinity is not emptySrinivas Ramana
[ Upstream commit bddda606ec76550dd63592e32a6e87e7d32583f7 ] If all CPUs in the irq_default_affinity mask are offline when an interrupt is initialized then irq_setup_affinity() can set an empty affinity mask for a newly allocated interrupt. Fix this by falling back to cpu_online_mask in case the resulting affinity mask is zero. Signed-off-by: Srinivas Ramana <sramana@codeaurora.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arm-msm@vger.kernel.org Link: https://lkml.kernel.org/r/1545312957-8504-1-git-send-email-sramana@codeaurora.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-05genirq/matrix: Improve target CPU selection for managed interrupts.Long Li
[ Upstream commit e8da8794a7fd9eef1ec9a07f0d4897c68581c72b ] On large systems with multiple devices of the same class (e.g. NVMe disks, using managed interrupts), the kernel can affinitize these interrupts to a small subset of CPUs instead of spreading them out evenly. irq_matrix_alloc_managed() tries to select the CPU in the supplied cpumask of possible target CPUs which has the lowest number of interrupt vectors allocated. This is done by searching the CPU with the highest number of available vectors. While this is correct for non-managed CPUs it can select the wrong CPU for managed interrupts. Under certain constellations this results in affinitizing the managed interrupts of several devices to a single CPU in a set. The book keeping of available vectors works the following way: 1) Non-managed interrupts: available is decremented when the interrupt is actually requested by the device driver and a vector is assigned. It's incremented when the interrupt and the vector are freed. 2) Managed interrupts: Managed interrupts guarantee vector reservation when the MSI/MSI-X functionality of a device is enabled, which is achieved by reserving vectors in the bitmaps of the possible target CPUs. This reservation decrements the available count on each possible target CPU. When the interrupt is requested by the device driver then a vector is allocated from the reserved region. The operation is reversed when the interrupt is freed by the device driver. Neither of these operations affect the available count. The reservation persist up to the point where the MSI/MSI-X functionality is disabled and only this operation increments the available count again. For non-managed interrupts the available count is the correct selection criterion because the guaranteed reservations need to be taken into account. Using the allocated counter could lead to a failing allocation in the following situation (total vector space of 10 assumed): CPU0 CPU1 available: 2 0 allocated: 5 3 <--- CPU1 is selected, but available space = 0 managed reserved: 3 7 while available yields the correct result. For managed interrupts the available count is not the appropriate selection criterion because as explained above the available count is not affected by the actual vector allocation. The following example illustrates that. Total vector space of 10 assumed. The starting point is: CPU0 CPU1 available: 5 4 allocated: 2 3 managed reserved: 3 3 Allocating vectors for three non-managed interrupts will result in affinitizing the first two to CPU0 and the third one to CPU1 because the available count is adjusted with each allocation: CPU0 CPU1 available: 5 4 <- Select CPU0 for 1st allocation --> allocated: 3 3 available: 4 4 <- Select CPU0 for 2nd allocation --> allocated: 4 3 available: 3 4 <- Select CPU1 for 3rd allocation --> allocated: 4 4 But the allocation of three managed interrupts starting from the same point will affinitize all of them to CPU0 because the available count is not affected by the allocation (see above). So the end result is: CPU0 CPU1 available: 5 4 allocated: 5 3 Introduce a "managed_allocated" field in struct cpumap to track the vector allocation for managed interrupts separately. Use this information to select the target CPU when a vector is allocated for a managed interrupt, which results in more evenly distributed vector assignments. The above example results in the following allocations: CPU0 CPU1 managed_allocated: 0 0 <- Select CPU0 for 1st allocation --> allocated: 3 3 managed_allocated: 1 0 <- Select CPU1 for 2nd allocation --> allocated: 3 4 managed_allocated: 1 1 <- Select CPU0 for 3rd allocation --> allocated: 4 4 The allocation of non-managed interrupts is not affected by this change and is still evaluating the available count. The overall distribution of interrupt vectors for both types of interrupts might still not be perfectly even depending on the number of non-managed and managed interrupts in a system, but due to the reservation guarantee for managed interrupts this cannot be avoided. Expose the new field in debugfs as well. [ tglx: Clarified the background of the problem in the changelog and described it independent of NVME ] Signed-off-by: Long Li <longli@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Michael Kelley <mikelley@microsoft.com> Link: https://lkml.kernel.org/r/20181106040000.27316-1-longli@linuxonhyperv.com Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-05irq/matrix: Spread managed interrupts on allocationDou Liyang
[ Upstream commit 76f99ae5b54d48430d1f0c5512a84da0ff9761e0 ] Linux spreads out the non managed interrupt across the possible target CPUs to avoid vector space exhaustion. Managed interrupts are treated differently, as for them the vectors are reserved (with guarantee) when the interrupt descriptors are initialized. When the interrupt is requested a real vector is assigned. The assignment logic uses the first CPU in the affinity mask for assignment. If the interrupt has more than one CPU in the affinity mask, which happens when a multi queue device has less queues than CPUs, then doing the same search as for non managed interrupts makes sense as it puts the interrupt on the least interrupt plagued CPU. For single CPU affine vectors that's obviously a NOOP. Restructre the matrix allocation code so it does the 'best CPU' search, add the sanity check for an empty affinity mask and adapt the call site in the x86 vector management code. [ tglx: Added the empty mask check to the core and improved change log ] Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180908175838.14450-2-dou_liyang@163.com Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-05irq/matrix: Split out the CPU selection code into a helperDou Liyang
[ Upstream commit 8ffe4e61c06a48324cfd97f1199bb9838acce2f2 ] Linux finds the CPU which has the lowest vector allocation count to spread out the non managed interrupts across the possible target CPUs, but does not do so for managed interrupts. Split out the CPU selection code into a helper function for reuse. No functional change. Signed-off-by: Dou Liyang <douly.fnst@cn.fujitsu.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Link: https://lkml.kernel.org/r/20180908175838.14450-1-dou_liyang@163.com Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-27bpf: zero out build_id for BPF_STACK_BUILD_ID_IPStanislav Fomichev
[ Upstream commit 4af396ae4836c4ecab61e975b8e61270c551894d ] When returning BPF_STACK_BUILD_ID_IP from stack_map_get_build_id_offset, make sure that build_id field is empty. Since we are using percpu free list, there is a possibility that we might reuse some previous bpf_stack_build_id with non-zero build_id. Fixes: 615755a77b24 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27bpf: don't assume build-id length is always 20 bytesStanislav Fomichev
[ Upstream commit 0b698005a9d11c0e91141ec11a2c4918a129f703 ] Build-id length is not fixed to 20, it can be (`man ld` /--build-id): * 128-bit (uuid) * 160-bit (sha1) * any length specified in ld --build-id=0xhexstring To fix the issue of missing BPF_STACK_BUILD_ID_VALID for shorter build-ids, assume that build-id is somewhere in the range of 1 .. 20. Set the remaining bytes to zero. v2: * don't introduce new "len = min(BPF_BUILD_ID_SIZE, nhdr->n_descsz)", we already know that nhdr->n_descsz <= BPF_BUILD_ID_SIZE if we enter this 'if' condition Fixes: 615755a77b24 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27bpf: fix panic in stack_map_get_build_id() on i386 and arm32Song Liu
[ Upstream commit beaf3d1901f4ea46fbd5c9d857227d99751de469 ] As Naresh reported, test_stacktrace_build_id() causes panic on i386 and arm32 systems. This is caused by page_address() returns NULL in certain cases. This patch fixes this error by using kmap_atomic/kunmap_atomic instead of page_address. Fixes: 615755a77b24 (" bpf: extend stackmap to save binary_build_id+offset instead of address") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27tracing: Fix number of entries in trace headerQuentin Perret
commit 9e7382153f80ba45a0bbcd540fb77d4b15f6e966 upstream. The following commit 441dae8f2f29 ("tracing: Add support for display of tgid in trace output") removed the call to print_event_info() from print_func_help_header_irq() which results in the ftrace header not reporting the number of entries written in the buffer. As this wasn't the original intent of the patch, re-introduce the call to print_event_info() to restore the orginal behaviour. Link: http://lkml.kernel.org/r/20190214152950.4179-1-quentin.perret@arm.com Acked-by: Joel Fernandes <joelaf@google.com> Cc: stable@vger.kernel.org Fixes: 441dae8f2f29 ("tracing: Add support for display of tgid in trace output") Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20signal: Restore the stop PTRACE_EVENT_EXITEric W. Biederman
commit cf43a757fd49442bc38f76088b70c2299eed2c2f upstream. In the middle of do_exit() there is there is a call "ptrace_event(PTRACE_EVENT_EXIT, code);" That call places the process in TACKED_TRACED aka "(TASK_WAKEKILL | __TASK_TRACED)" and waits for for the debugger to release the task or SIGKILL to be delivered. Skipping past dequeue_signal when we know a fatal signal has already been delivered resulted in SIGKILL remaining pending and TIF_SIGPENDING remaining set. This in turn caused the scheduler to not sleep in PTACE_EVENT_EXIT as it figured a fatal signal was pending. This also caused ptrace_freeze_traced in ptrace_check_attach to fail because it left a per thread SIGKILL pending which is what fatal_signal_pending tests for. This difference in signal state caused strace to report strace: Exit of unknown pid NNNNN ignored Therefore update the signal handling state like dequeue_signal would when removing a per thread SIGKILL, by removing SIGKILL from the per thread signal mask and clearing TIF_SIGPENDING. Acked-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Oleg Nesterov <oleg@redhat.com> Reported-by: Ivan Delalande <colona@arista.com> Cc: stable@vger.kernel.org Fixes: 35634ffa1751 ("signal: Always notice exiting tasks") Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20tracing/uprobes: Fix output for multiple string argumentsAndreas Ziegler
commit 0722069a5374b904ec1a67f91249f90e1cfae259 upstream. When printing multiple uprobe arguments as strings the output for the earlier arguments would also include all later string arguments. This is best explained in an example: Consider adding a uprobe to a function receiving two strings as parameters which is at offset 0xa0 in strlib.so and we want to print both parameters when the uprobe is hit (on x86_64): $ echo 'p:func /lib/strlib.so:0xa0 +0(%di):string +0(%si):string' > \ /sys/kernel/debug/tracing/uprobe_events When the function is called as func("foo", "bar") and we hit the probe, the trace file shows a line like the following: [...] func: (0x7f7e683706a0) arg1="foobar" arg2="bar" Note the extra "bar" printed as part of arg1. This behaviour stacks up for additional string arguments. The strings are stored in a dynamically growing part of the uprobe buffer by fetch_store_string() after copying them from userspace via strncpy_from_user(). The return value of strncpy_from_user() is then directly used as the required size for the string. However, this does not take the terminating null byte into account as the documentation for strncpy_from_user() cleary states that it "[...] returns the length of the string (not including the trailing NUL)" even though the null byte will be copied to the destination. Therefore, subsequent calls to fetch_store_string() will overwrite the terminating null byte of the most recently fetched string with the first character of the current string, leading to the "accumulation" of strings in earlier arguments in the output. Fix this by incrementing the return value of strncpy_from_user() by one if we did not hit the maximum buffer size. Link: http://lkml.kernel.org/r/20190116141629.5752-1-andreas.ziegler@fau.de Cc: Ingo Molnar <mingo@redhat.com> Cc: stable@vger.kernel.org Fixes: 5baaa59ef09e ("tracing/probes: Implement 'memory' fetch method for uprobes") Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Andreas Ziegler <andreas.ziegler@fau.de> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20perf/x86: Add check_period PMU callbackJiri Olsa
commit 81ec3f3c4c4d78f2d3b6689c9816bfbdf7417dbb upstream. Vince (and later on Ravi) reported crashes in the BTS code during fuzzing with the following backtrace: general protection fault: 0000 [#1] SMP PTI ... RIP: 0010:perf_prepare_sample+0x8f/0x510 ... Call Trace: <IRQ> ? intel_pmu_drain_bts_buffer+0x194/0x230 intel_pmu_drain_bts_buffer+0x160/0x230 ? tick_nohz_irq_exit+0x31/0x40 ? smp_call_function_single_interrupt+0x48/0xe0 ? call_function_single_interrupt+0xf/0x20 ? call_function_single_interrupt+0xa/0x20 ? x86_schedule_events+0x1a0/0x2f0 ? x86_pmu_commit_txn+0xb4/0x100 ? find_busiest_group+0x47/0x5d0 ? perf_event_set_state.part.42+0x12/0x50 ? perf_mux_hrtimer_restart+0x40/0xb0 intel_pmu_disable_event+0xae/0x100 ? intel_pmu_disable_event+0xae/0x100 x86_pmu_stop+0x7a/0xb0 x86_pmu_del+0x57/0x120 event_sched_out.isra.101+0x83/0x180 group_sched_out.part.103+0x57/0xe0 ctx_sched_out+0x188/0x240 ctx_resched+0xa8/0xd0 __perf_event_enable+0x193/0x1e0 event_function+0x8e/0xc0 remote_function+0x41/0x50 flush_smp_call_function_queue+0x68/0x100 generic_smp_call_function_single_interrupt+0x13/0x30 smp_call_function_single_interrupt+0x3e/0xe0 call_function_single_interrupt+0xf/0x20 </IRQ> The reason is that while event init code does several checks for BTS events and prevents several unwanted config bits for BTS event (like precise_ip), the PERF_EVENT_IOC_PERIOD allows to create BTS event without those checks being done. Following sequence will cause the crash: If we create an 'almost' BTS event with precise_ip and callchains, and it into a BTS event it will crash the perf_prepare_sample() function because precise_ip events are expected to come in with callchain data initialized, but that's not the case for intel_pmu_drain_bts_buffer() caller. Adding a check_period callback to be called before the period is changed via PERF_EVENT_IOC_PERIOD. It will deny the change if the event would become BTS. Plus adding also the limit_period check as well. Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Cc: Ravi Bangoria <ravi.bangoria@linux.ibm.com> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20190204123532.GA4794@krava Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-20perf/core: Fix impossible ring-buffer sizes warningIngo Molnar
commit 528871b456026e6127d95b1b2bd8e3a003dc1614 upstream. The following commit: 9dff0aa95a32 ("perf/core: Don't WARN() for impossible ring-buffer sizes") results in perf recording failures with larger mmap areas: root@skl:/tmp# perf record -g -a failed to mmap with 12 (Cannot allocate memory) The root cause is that the following condition is buggy: if (order_base_2(size) >= MAX_ORDER) goto fail; The problem is that @size is in bytes and MAX_ORDER is in pages, so the right test is: if (order_base_2(size) >= PAGE_SHIFT+MAX_ORDER) goto fail; Fix it. Reported-by: "Jin, Yao" <yao.jin@linux.intel.com> Bisected-by: Borislav Petkov <bp@alien8.de> Analyzed-by: Peter Zijlstra <peterz@infradead.org> Cc: Julien Thierry <julien.thierry@arm.com> Cc: Mark Rutland <mark.rutland@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: <stable@vger.kernel.org> Fixes: 9dff0aa95a32 ("perf/core: Don't WARN() for impossible ring-buffer sizes") Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-15tracing: uprobes: Fix typo in pr_fmt stringAndreas Ziegler
commit ea6eb5e7d15e1838de335609994b4546e2abcaaf upstream. The subsystem-specific message prefix for uprobes was also "trace_kprobe: " instead of "trace_uprobe: " as described in the original commit message. Link: http://lkml.kernel.org/r/20190117133023.19292-1-andreas.ziegler@fau.de Cc: Ingo Molnar <mingo@redhat.com> Cc: stable@vger.kernel.org Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Fixes: 7257634135c24 ("tracing/probe: Show subsystem name in messages") Signed-off-by: Andreas Ziegler <andreas.ziegler@fau.de> Signed-off-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-15signal: Better detection of synchronous signalsEric W. Biederman
commit 7146db3317c67b517258cb5e1b08af387da0618b upstream. Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. When the stack overflows delivery of SIGHUP fails and force_sigsegv is called. Unfortunately because SIGSEGV is numerically higher than SIGHUP next_signal tries again to deliver a SIGHUP. From a quality of implementation standpoint attempting to deliver the timer SIGHUP signal is wrong. We should attempt to deliver the synchronous SIGSEGV signal we just forced. We can make that happening in a fairly straight forward manner by instead of just looking at the signal number we also look at the si_code. In particular for exceptions (aka synchronous signals) the si_code is always greater than 0. That still has the potential to pick up a number of asynchronous signals as in a few cases the same si_codes that are used for synchronous signals are also used for asynchronous signals, and SI_KERNEL is also included in the list of possible si_codes. Still the heuristic is much better and timer signals are definitely excluded. Which is enough to prevent all known ways for someone sending a process signals fast enough to cause unexpected and arguably incorrect behavior. Cc: stable@vger.kernel.org Fixes: a27341cd5fcb ("Prioritize synchronous signals over 'normal' signals") Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-15signal: Always notice exiting tasksEric W. Biederman
commit 35634ffa1751b6efd8cf75010b509dcb0263e29b upstream. Recently syzkaller was able to create unkillablle processes by creating a timer that is delivered as a thread local signal on SIGHUP, and receiving SIGHUP SA_NODEFERER. Ultimately causing a loop failing to deliver SIGHUP but always trying. Upon examination it turns out part of the problem is actually most of the solution. Since 2.5 signal delivery has found all fatal signals, marked the signal group for death, and queued SIGKILL in every threads thread queue relying on signal->group_exit_code to preserve the information of which was the actual fatal signal. The conversion of all fatal signals to SIGKILL results in the synchronous signal heuristic in next_signal kicking in and preferring SIGHUP to SIGKILL. Which is especially problematic as all fatal signals have already been transformed into SIGKILL. Instead of dequeueing signals and depending upon SIGKILL to be the first signal dequeued, first test if the signal group has already been marked for death. This guarantees that nothing in the signal queue can prevent a process that needs to exit from exiting. Cc: stable@vger.kernel.org Tested-by: Dmitry Vyukov <dvyukov@google.com> Reported-by: Dmitry Vyukov <dvyukov@google.com> Ref: ebf5ebe31d2c ("[PATCH] signal-fixes-2.5.59-A4") History Tree: https://git.kernel.org/pub/scm/linux/kernel/git/tglx/history.git Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12perf/core: Don't WARN() for impossible ring-buffer sizesMark Rutland
commit 9dff0aa95a324e262ffb03f425d00e4751f3294e upstream. The perf tool uses /proc/sys/kernel/perf_event_mlock_kb to determine how large its ringbuffer mmap should be. This can be configured to arbitrary values, which can be larger than the maximum possible allocation from kmalloc. When this is configured to a suitably large value (e.g. thanks to the perf fuzzer), attempting to use perf record triggers a WARN_ON_ONCE() in __alloc_pages_nodemask(): WARNING: CPU: 2 PID: 5666 at mm/page_alloc.c:4511 __alloc_pages_nodemask+0x3f8/0xbc8 Let's avoid this by checking that the requested allocation is possible before calling kzalloc. Reported-by: Julien Thierry <julien.thierry@arm.com> Signed-off-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Julien Thierry <julien.thierry@arm.com> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Link: https://lkml.kernel.org/r/20190110142745.25495-1-mark.rutland@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVMJosh Poimboeuf
commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream. With the following commit: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") ... the hotplug code attempted to detect when SMT was disabled by BIOS, in which case it reported SMT as permanently disabled. However, that code broke a virt hotplug scenario, where the guest is booted with only primary CPU threads, and a sibling is brought online later. The problem is that there doesn't seem to be a way to reliably distinguish between the HW "SMT disabled by BIOS" case and the virt "sibling not yet brought online" case. So the above-mentioned commit was a bit misguided, as it permanently disabled SMT for both cases, preventing future virt sibling hotplugs. Going back and reviewing the original problems which were attempted to be solved by that commit, when SMT was disabled in BIOS: 1) /sys/devices/system/cpu/smt/control showed "on" instead of "notsupported"; and 2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning. I'd propose that we instead consider #1 above to not actually be a problem. Because, at least in the virt case, it's possible that SMT wasn't disabled by BIOS and a sibling thread could be brought online later. So it makes sense to just always default the smt control to "on" to allow for that possibility (assuming cpuid indicates that the CPU supports SMT). The real problem is #2, which has a simple fix: change vmx_vm_init() to query the actual current SMT state -- i.e., whether any siblings are currently online -- instead of looking at the SMT "control" sysfs value. So fix it by: a) reverting the original "fix" and its followup fix: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") bc2d8d262cba ("cpu/hotplug: Fix SMT supported evaluation") and b) changing vmx_vm_init() to query the actual current SMT state -- instead of the sysfs control value -- to determine whether the L1TF warning is needed. This also requires the 'sched_smt_present' variable to exported, instead of 'cpu_smt_control'. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Joe Mario <jmario@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12futex: Handle early deadlock return correctlyThomas Gleixner
commit 1a1fb985f2e2b85ec0d3dc2e519ee48389ec2434 upstream. commit 56222b212e8e ("futex: Drop hb->lock before enqueueing on the rtmutex") changed the locking rules in the futex code so that the hash bucket lock is not longer held while the waiter is enqueued into the rtmutex wait list. This made the lock and the unlock path symmetric, but unfortunately the possible early exit from __rt_mutex_proxy_start() due to a detected deadlock was not updated accordingly. That allows a concurrent unlocker to observe inconsitent state which triggers the warning in the unlock path. futex_lock_pi() futex_unlock_pi() lock(hb->lock) queue(hb_waiter) lock(hb->lock) lock(rtmutex->wait_lock) unlock(hb->lock) // acquired hb->lock hb_waiter = futex_top_waiter() lock(rtmutex->wait_lock) __rt_mutex_proxy_start() ---> fail remove(rtmutex_waiter); ---> returns -EDEADLOCK unlock(rtmutex->wait_lock) // acquired wait_lock wake_futex_pi() rt_mutex_next_owner() --> returns NULL --> WARN lock(hb->lock) unqueue(hb_waiter) The problem is caused by the remove(rtmutex_waiter) in the failure case of __rt_mutex_proxy_start() as this lets the unlocker observe a waiter in the hash bucket but no waiter on the rtmutex, i.e. inconsistent state. The original commit handles this correctly for the other early return cases (timeout, signal) by delaying the removal of the rtmutex waiter until the returning task reacquired the hash bucket lock. Treat the failure case of __rt_mutex_proxy_start() in the same way and let the existing cleanup code handle the eventual handover of the rtmutex gracefully. The regular rt_mutex_proxy_start() gains the rtmutex waiter removal for the failure case, so that the other callsites are still operating correctly. Add proper comments to the code so all these details are fully documented. Thanks to Peter for helping with the analysis and writing the really valuable code comments. Fixes: 56222b212e8e ("futex: Drop hb->lock before enqueueing on the rtmutex") Reported-by: Heiko Carstens <heiko.carstens@de.ibm.com> Co-developed-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: linux-s390@vger.kernel.org Cc: Stefan Liebler <stli@linux.ibm.com> Cc: Sebastian Sewior <bigeasy@linutronix.de> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1901292311410.1950@nanos.tec.linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12kernel/kcov.c: mark write_comp_data() as notraceAnders Roxell
[ Upstream commit 634724431607f6f46c495dfef801a1c8b44a96d9 ] Since __sanitizer_cov_trace_const_cmp4 is marked as notrace, the function called from __sanitizer_cov_trace_const_cmp4 shouldn't be traceable either. ftrace_graph_caller() gets called every time func write_comp_data() gets called if it isn't marked 'notrace'. This is the backtrace from gdb: #0 ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:179 #1 0xffffff8010201920 in ftrace_caller () at ../arch/arm64/kernel/entry-ftrace.S:151 #2 0xffffff8010439714 in write_comp_data (type=5, arg1=0, arg2=0, ip=18446743524224276596) at ../kernel/kcov.c:116 #3 0xffffff8010439894 in __sanitizer_cov_trace_const_cmp4 (arg1=<optimized out>, arg2=<optimized out>) at ../kernel/kcov.c:188 #4 0xffffff8010201874 in prepare_ftrace_return (self_addr=18446743524226602768, parent=0xffffff801014b918, frame_pointer=18446743524223531344) at ./include/generated/atomic-instrumented.h:27 #5 0xffffff801020194c in ftrace_graph_caller () at ../arch/arm64/kernel/entry-ftrace.S:182 Rework so that write_comp_data() that are called from __sanitizer_cov_trace_*_cmp*() are marked as 'notrace'. Commit 903e8ff86753 ("kernel/kcov.c: mark funcs in __sanitizer_cov_trace_pc() as notrace") missed to mark write_comp_data() as 'notrace'. When that patch was created gcc-7 was used. In lib/Kconfig.debug config KCOV_ENABLE_COMPARISONS depends on $(cc-option,-fsanitize-coverage=trace-cmp) That code path isn't hit with gcc-7. However, it were that with gcc-8. Link: http://lkml.kernel.org/r/20181206143011.23719-1-anders.roxell@linaro.org Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Co-developed-by: Arnd Bergmann <arnd@arndb.de> Acked-by: Steven Rostedt (VMware) <rostedt@goodmis.org> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12kernel/hung_task.c: force console verbose before panicLiu, Chuansheng
[ Upstream commit 168e06f7937d96c7222037d8a05565e8a6eb00fe ] Based on commit 401c636a0eeb ("kernel/hung_task.c: show all hung tasks before panic"), we could get the call stack of hung task. However, if the console loglevel is not high, we still can not see the useful panic information in practice, and in most cases users don't set console loglevel to high level. This patch is to force console verbose before system panic, so that the real useful information can be seen in the console, instead of being like the following, which doesn't have hung task information. INFO: task init:1 blocked for more than 120 seconds. Tainted: G U W 4.19.0-quilt-2e5dc0ac-g51b6c21d76cc #1 "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. Kernel panic - not syncing: hung_task: blocked tasks CPU: 2 PID: 479 Comm: khungtaskd Tainted: G U W 4.19.0-quilt-2e5dc0ac-g51b6c21d76cc #1 Call Trace: dump_stack+0x4f/0x65 panic+0xde/0x231 watchdog+0x290/0x410 kthread+0x12c/0x150 ret_from_fork+0x35/0x40 reboot: panic mode set: p,w Kernel Offset: 0x34000000 from 0xffffffff81000000 (relocation range: 0xffffffff80000000-0xffffffffbfffffff) Link: http://lkml.kernel.org/r/27240C0AC20F114CBF8149A2696CBE4A6015B675@SHSMSX101.ccr.corp.intel.com Signed-off-by: Chuansheng Liu <chuansheng.liu@intel.com> Reviewed-by: Petr Mladek <pmladek@suse.com> Reviewed-by: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Tetsuo Handa <penguin-kernel@i-love.sakura.ne.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12proc/sysctl: fix return error for proc_doulongvec_minmax()Cheng Lin
[ Upstream commit 09be178400829dddc1189b50a7888495dd26aa84 ] If the number of input parameters is less than the total parameters, an EINVAL error will be returned. For example, we use proc_doulongvec_minmax to pass up to two parameters with kern_table: { .procname = "monitor_signals", .data = &monitor_sigs, .maxlen = 2*sizeof(unsigned long), .mode = 0644, .proc_handler = proc_doulongvec_minmax, }, Reproduce: When passing two parameters, it's work normal. But passing only one parameter, an error "Invalid argument"(EINVAL) is returned. [root@cl150 ~]# echo 1 2 > /proc/sys/kernel/monitor_signals [root@cl150 ~]# cat /proc/sys/kernel/monitor_signals 1 2 [root@cl150 ~]# echo 3 > /proc/sys/kernel/monitor_signals -bash: echo: write error: Invalid argument [root@cl150 ~]# echo $? 1 [root@cl150 ~]# cat /proc/sys/kernel/monitor_signals 3 2 [root@cl150 ~]# The following is the result after apply this patch. No error is returned when the number of input parameters is less than the total parameters. [root@cl150 ~]# echo 1 2 > /proc/sys/kernel/monitor_signals [root@cl150 ~]# cat /proc/sys/kernel/monitor_signals 1 2 [root@cl150 ~]# echo 3 > /proc/sys/kernel/monitor_signals [root@cl150 ~]# echo $? 0 [root@cl150 ~]# cat /proc/sys/kernel/monitor_signals 3 2 [root@cl150 ~]# There are three processing functions dealing with digital parameters, __do_proc_dointvec/__do_proc_douintvec/__do_proc_doulongvec_minmax. This patch deals with __do_proc_doulongvec_minmax, just as __do_proc_dointvec does, adding a check for parameters 'left'. In __do_proc_douintvec, its code implementation explicitly does not support multiple inputs. static int __do_proc_douintvec(...){ ... /* * Arrays are not supported, keep this simple. *Do not* add * support for them. */ if (vleft != 1) { *lenp = 0; return -EINVAL; } ... } So, just __do_proc_doulongvec_minmax has the problem. And most use of proc_doulongvec_minmax/proc_doulongvec_ms_jiffies_minmax just have one parameter. Link: http://lkml.kernel.org/r/1544081775-15720-1-git-send-email-cheng.lin130@zte.com.cn Signed-off-by: Cheng Lin <cheng.lin130@zte.com.cn> Acked-by: Luis Chamberlain <mcgrof@kernel.org> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Alexey Dobriyan <adobriyan@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12kernel/hung_task.c: break RCU locks based on jiffiesTetsuo Handa
[ Upstream commit 304ae42739b108305f8d7b3eb3c1aec7c2b643a9 ] check_hung_uninterruptible_tasks() is currently calling rcu_lock_break() for every 1024 threads. But check_hung_task() is very slow if printk() was called, and is very fast otherwise. If many threads within some 1024 threads called printk(), the RCU grace period might be extended enough to trigger RCU stall warnings. Therefore, calling rcu_lock_break() for every some fixed jiffies will be safer. Link: http://lkml.kernel.org/r/1544800658-11423-1-git-send-email-penguin-kernel@I-love.SAKURA.ne.jp Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Acked-by: Paul E. McKenney <paulmck@linux.ibm.com> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: "Rafael J. Wysocki" <rafael.j.wysocki@intel.com> Cc: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12kdb: Don't back trace on a cpu that didn't round upDouglas Anderson
[ Upstream commit 162bc7f5afd75b72acbe3c5f3488ef7e64a3fe36 ] If you have a CPU that fails to round up and then run 'btc' you'll end up crashing in kdb becaue we dereferenced NULL. Let's add a check. It's wise to also set the task to NULL when leaving the debugger so that if we fail to round up on a later entry into the debugger we won't backtrace a stale task. Signed-off-by: Douglas Anderson <dianders@chromium.org> Acked-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Daniel Thompson <daniel.thompson@linaro.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12cgroup: fix parsing empty mount option stringOndrej Mosnacek
[ Upstream commit e250d91d65750a0c0c62483ac4f9f357e7317617 ] This fixes the case where all mount options specified are consumed by an LSM and all that's left is an empty string. In this case cgroupfs should accept the string and not fail. How to reproduce (with SELinux enabled): # umount /sys/fs/cgroup/unified # mount -o context=system_u:object_r:cgroup_t:s0 -t cgroup2 cgroup2 /sys/fs/cgroup/unified mount: /sys/fs/cgroup/unified: wrong fs type, bad option, bad superblock on cgroup2, missing codepage or helper program, or other error. # dmesg | tail -n 1 [ 31.575952] cgroup: cgroup2: unknown option "" Fixes: 67e9c74b8a87 ("cgroup: replace __DEVEL__sane_behavior with cgroup2 fs type") [NOTE: should apply on top of commit 5136f6365ce3 ("cgroup: implement "nsdelegate" mount option"), older versions need manual rebase] Suggested-by: Stephen Smalley <sds@tycho.nsa.gov> Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com> Signed-off-by: Tejun Heo <tj@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12kobject: return error code if writing /sys/.../uevent failsPeter Rajnoha
[ Upstream commit df44b479654f62b478c18ee4d8bc4e9f897a9844 ] Propagate error code back to userspace if writing the /sys/.../uevent file fails. Before, the write operation always returned with success, even if we failed to recognize the input string or if we failed to generate the uevent itself. With the error codes properly propagated back to userspace, we are able to react in userspace accordingly by not assuming and awaiting a uevent that is not delivered. Signed-off-by: Peter Rajnoha <prajnoha@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12timekeeping: Use proper seqcount initializerBart Van Assche
[ Upstream commit ce10a5b3954f2514af726beb78ed8d7350c5e41c ] tk_core.seq is initialized open coded, but that misses to initialize the lockdep map when lockdep is enabled. Lockdep splats involving tk_core seq consequently lack a name and are hard to read. Use the proper initializer which takes care of the lockdep map initialization. [ tglx: Massaged changelog ] Signed-off-by: Bart Van Assche <bvanassche@acm.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: peterz@infradead.org Cc: tj@kernel.org Cc: johannes.berg@intel.com Link: https://lkml.kernel.org/r/20181128234325.110011-12-bvanassche@acm.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12genirq/affinity: Spread IRQs to all available NUMA nodesLong Li
[ Upstream commit b82592199032bf7c778f861b936287e37ebc9f62 ] If the number of NUMA nodes exceeds the number of MSI/MSI-X interrupts which are allocated for a device, the interrupt affinity spreading code fails to spread them across all nodes. The reason is, that the spreading code starts from node 0 and continues up to the number of interrupts requested for allocation. This leaves the nodes past the last interrupt unused. This results in interrupt concentration on the first nodes which violates the assumption of the block layer that all nodes are covered evenly. As a consequence the NUMA nodes above the number of interrupts are all assigned to hardware queue 0 and therefore NUMA node 0, which results in bad performance and has CPU hotplug implications, because queue 0 gets shut down when the last CPU of node 0 is offlined. Go over all NUMA nodes and assign them round-robin to all requested interrupts to solve this. [ tglx: Massaged changelog ] Signed-off-by: Long Li <longli@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ming Lei <ming.lei@redhat.com> Cc: Michael Kelley <mikelley@microsoft.com> Link: https://lkml.kernel.org/r/20181102180248.13583-1-longli@linuxonhyperv.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-06kernel/exit.c: release ptraced tasks before zap_pid_ns_processesAndrei Vagin
commit 8fb335e078378c8426fabeed1ebee1fbf915690c upstream. Currently, exit_ptrace() adds all ptraced tasks in a dead list, then zap_pid_ns_processes() waits on all tasks in a current pidns, and only then are tasks from the dead list released. zap_pid_ns_processes() can get stuck on waiting tasks from the dead list. In this case, we will have one unkillable process with one or more dead children. Thanks to Oleg for the advice to release tasks in find_child_reaper(). Link: http://lkml.kernel.org/r/20190110175200.12442-1-avagin@gmail.com Fixes: 7c8bd2322c7f ("exit: ptrace: shift "reap dead" code from exit_ptrace() to forget_original_parent()") Signed-off-by: Andrei Vagin <avagin@gmail.com> Signed-off-by: Oleg Nesterov <oleg@redhat.com> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: <stable@vger.kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-31bpf: fix inner map masking to prevent oob under speculationDaniel Borkmann
[ commit 9d5564ddcf2a0f5ba3fa1c3a1f8a1b59ad309553 upstream ] During review I noticed that inner meta map setup for map in map is buggy in that it does not propagate all needed data from the reference map which the verifier is later accessing. In particular one such case is index masking to prevent out of bounds access under speculative execution due to missing the map's unpriv_array/index_mask field propagation. Fix this such that the verifier is generating the correct code for inlined lookups in case of unpriviledged use. Before patch (test_verifier's 'map in map access' dump): # bpftool prog dump xla id 3 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:4] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking for 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+11 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | Index masking missing (!) 22: (35) if r0 >= 0x1 goto pc+3 | for inner map despite 23: (67) r0 <<= 3 | map->unpriv_array set. 24: (0f) r0 += r1 | 25: (05) goto pc+1 | 26: (b7) r0 = 0 | 27: (b7) r0 = 0 28: (95) exit After patch: # bpftool prog dump xla id 1 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:2] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Same inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking due to 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+12 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | 22: (35) if r0 >= 0x1 goto pc+4 | Now fixed inlined inner map 23: (54) (u32) r0 &= (u32) 0 | lookup with proper index masking 24: (67) r0 <<= 3 | for map->unpriv_array. 25: (0f) r0 += r1 | 26: (05) goto pc+1 | 27: (b7) r0 = 0 | 28: (b7) r0 = 0 29: (95) exit Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: fix sanitation of alu op with pointer / scalar type from different pathsDaniel Borkmann
[ commit d3bd7413e0ca40b60cf60d4003246d067cafdeda upstream ] While 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") took care of rejecting alu op on pointer when e.g. pointer came from two different map values with different map properties such as value size, Jann reported that a case was not covered yet when a given alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from different branches where we would incorrectly try to sanitize based on the pointer's limit. Catch this corner case and reject the program instead. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: prevent out of bounds speculation on pointer arithmeticDaniel Borkmann
[ commit 979d63d50c0c0f7bc537bf821e056cc9fe5abd38 upstream ] Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: fix check_map_access smin_value test when pointer contains offsetDaniel Borkmann
[ commit b7137c4eab85c1cf3d46acdde90ce1163b28c873 upstream ] In check_map_access() we probe actual bounds through __check_map_access() with offset of reg->smin_value + off for lower bound and offset of reg->umax_value + off for the upper bound. However, even though the reg->smin_value could have a negative value, the final result of the sum with off could be positive when pointer arithmetic with known and unknown scalars is combined. In this case we reject the program with an error such as "R<x> min value is negative, either use unsigned index or do a if (index >=0) check." even though the access itself would be fine. Therefore extend the check to probe whether the actual resulting reg->smin_value + off is less than zero. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: restrict unknown scalars of mixed signed bounds for unprivilegedDaniel Borkmann
[ commit 9d7eceede769f90b66cfa06ad5b357140d5141ed upstream ] For unknown scalars of mixed signed bounds, meaning their smin_value is negative and their smax_value is positive, we need to reject arithmetic with pointer to map value. For unprivileged the goal is to mask every map pointer arithmetic and this cannot reliably be done when it is unknown at verification time whether the scalar value is negative or positive. Given this is a corner case, the likelihood of breaking should be very small. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: restrict stack pointer arithmetic for unprivilegedDaniel Borkmann
[ commit e4298d25830a866cc0f427d4bccb858e76715859 upstream ] Restrict stack pointer arithmetic for unprivileged users in that arithmetic itself must not go out of bounds as opposed to the actual access later on. Therefore after each adjust_ptr_min_max_vals() with a stack pointer as a destination we simulate a check_stack_access() of 1 byte on the destination and once that fails the program is rejected for unprivileged program loads. This is analog to map value pointer arithmetic and needed for masking later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: restrict map value pointer arithmetic for unprivilegedDaniel Borkmann
[ commit 0d6303db7970e6f56ae700fa07e11eb510cda125 upstream ] Restrict map value pointer arithmetic for unprivileged users in that arithmetic itself must not go out of bounds as opposed to the actual access later on. Therefore after each adjust_ptr_min_max_vals() with a map value pointer as a destination it will simulate a check_map_access() of 1 byte on the destination and once that fails the program is rejected for unprivileged program loads. We use this later on for masking any pointer arithmetic with the remainder of the map value space. The likelihood of breaking any existing real-world unprivileged eBPF program is very small for this corner case. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: enable access to ax register also from verifier rewriteDaniel Borkmann
[ commit 9b73bfdd08e73231d6a90ae6db4b46b3fbf56c30 upstream ] Right now we are using BPF ax register in JIT for constant blinding as well as in interpreter as temporary variable. Verifier will not be able to use it simply because its use will get overridden from the former in bpf_jit_blind_insn(). However, it can be made to work in that blinding will be skipped if there is prior use in either source or destination register on the instruction. Taking constraints of ax into account, the verifier is then open to use it in rewrites under some constraints. Note, ax register already has mappings in every eBPF JIT. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: move tmp variable into ax register in interpreterDaniel Borkmann
[ commit 144cd91c4c2bced6eb8a7e25e590f6618a11e854 upstream ] This change moves the on-stack 64 bit tmp variable in ___bpf_prog_run() into the hidden ax register. The latter is currently only used in JITs for constant blinding as a temporary scratch register, meaning the BPF interpreter will never see the use of ax. Therefore it is safe to use it for the cases where tmp has been used earlier. This is needed to later on allow restricted hidden use of ax in both interpreter and JITs. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: move {prev_,}insn_idx into verifier envDaniel Borkmann
[ commit c08435ec7f2bc8f4109401f696fd55159b4b40cb upstream ] Move prev_insn_idx and insn_idx from the do_check() function into the verifier environment, so they can be read inside the various helper functions for handling the instructions. It's easier to put this into the environment rather than changing all call-sites only to pass it along. insn_idx is useful in particular since this later on allows to hold state in env->insn_aux_data[env->insn_idx]. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: add per-insn complexity limitAlexei Starovoitov
[ commit ceefbc96fa5c5b975d87bf8e89ba8416f6b764d9 upstream ] malicious bpf program may try to force the verifier to remember a lot of distinct verifier states. Put a limit to number of per-insn 'struct bpf_verifier_state'. Note that hitting the limit doesn't reject the program. It potentially makes the verifier do more steps to analyze the program. It means that malicious programs will hit BPF_COMPLEXITY_LIMIT_INSNS sooner instead of spending cpu time walking long link list. The limit of BPF_COMPLEXITY_LIMIT_STATES==64 affects cilium progs with slight increase in number of "steps" it takes to successfully verify the programs: before after bpf_lb-DLB_L3.o 1940 1940 bpf_lb-DLB_L4.o 3089 3089 bpf_lb-DUNKNOWN.o 1065 1065 bpf_lxc-DDROP_ALL.o 28052 | 28162 bpf_lxc-DUNKNOWN.o 35487 | 35541 bpf_netdev.o 10864 10864 bpf_overlay.o 6643 6643 bpf_lcx_jit.o 38437 38437 But it also makes malicious program to be rejected in 0.4 seconds vs 6.5 Hence apply this limit to unprivileged programs only. Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Edward Cree <ecree@solarflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: improve verifier branch analysisAlexei Starovoitov
[ commit 4f7b3e82589e0de723780198ec7983e427144c0a upstream ] pathological bpf programs may try to force verifier to explode in the number of branch states: 20: (d5) if r1 s<= 0x24000028 goto pc+0 21: (b5) if r0 <= 0xe1fa20 goto pc+2 22: (d5) if r1 s<= 0x7e goto pc+0 23: (b5) if r0 <= 0xe880e000 goto pc+0 24: (c5) if r0 s< 0x2100ecf4 goto pc+0 25: (d5) if r1 s<= 0xe880e000 goto pc+1 26: (c5) if r0 s< 0xf4041810 goto pc+0 27: (d5) if r1 s<= 0x1e007e goto pc+0 28: (b5) if r0 <= 0xe86be000 goto pc+0 29: (07) r0 += 16614 30: (c5) if r0 s< 0x6d0020da goto pc+0 31: (35) if r0 >= 0x2100ecf4 goto pc+0 Teach verifier to recognize always taken and always not taken branches. This analysis is already done for == and != comparison. Expand it to all other branches. It also helps real bpf programs to be verified faster: before after bpf_lb-DLB_L3.o 2003 1940 bpf_lb-DLB_L4.o 3173 3089 bpf_lb-DUNKNOWN.o 1080 1065 bpf_lxc-DDROP_ALL.o 29584 28052 bpf_lxc-DUNKNOWN.o 36916 35487 bpf_netdev.o 11188 10864 bpf_overlay.o 6679 6643 bpf_lcx_jit.o 39555 38437 Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Edward Cree <ecree@solarflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31posix-cpu-timers: Unbreak timer rearmingThomas Gleixner
commit 93ad0fc088c5b4631f796c995bdd27a082ef33a6 upstream. The recent commit which prevented a division by 0 issue in the alarm timer code broke posix CPU timers as an unwanted side effect. The reason is that the common rearm code checks for timer->it_interval being 0 now. What went unnoticed is that the posix cpu timer setup does not initialize timer->it_interval as it stores the interval in CPU timer specific storage. The reason for the separate storage is historical as the posix CPU timers always had a 64bit nanoseconds representation internally while timer->it_interval is type ktime_t which used to be a modified timespec representation on 32bit machines. Instead of reverting the offending commit and fixing the alarmtimer issue in the alarmtimer code, store the interval in timer->it_interval at CPU timer setup time so the common code check works. This also repairs the existing inconistency of the posix CPU timer code which kept a single shot timer armed despite of the interval being 0. The separate storage can be removed in mainline, but that needs to be a separate commit as the current one has to be backported to stable kernels. Fixes: 0e334db6bb4b ("posix-timers: Fix division by zero bug") Reported-by: H.J. Lu <hjl.tools@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: John Stultz <john.stultz@linaro.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20190111133500.840117406@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-26bpf: relax verifier restriction on BPF_MOV | BPF_ALUJiong Wang
[ Upstream commit e434b8cdf788568ba65a0a0fd9f3cb41f3ca1803 ] Currently, the destination register is marked as unknown for 32-bit sub-register move (BPF_MOV | BPF_ALU) whenever the source register type is SCALAR_VALUE. This is too conservative that some valid cases will be rejected. Especially, this may turn a constant scalar value into unknown value that could break some assumptions of verifier. For example, test_l4lb_noinline.c has the following C code: struct real_definition *dst 1: if (!get_packet_dst(&dst, &pckt, vip_info, is_ipv6)) 2: return TC_ACT_SHOT; 3: 4: if (dst->flags & F_IPV6) { get_packet_dst is responsible for initializing "dst" into valid pointer and return true (1), otherwise return false (0). The compiled instruction sequence using alu32 will be: 412: (54) (u32) r7 &= (u32) 1 413: (bc) (u32) r0 = (u32) r7 414: (95) exit insn 413, a BPF_MOV | BPF_ALU, however will turn r0 into unknown value even r7 contains SCALAR_VALUE 1. This causes trouble when verifier is walking the code path that hasn't initialized "dst" inside get_packet_dst, for which case 0 is returned and we would then expect verifier concluding line 1 in the above C code pass the "if" check, therefore would skip fall through path starting at line 4. Now, because r0 returned from callee has became unknown value, so verifier won't skip analyzing path starting at line 4 and "dst->flags" requires dereferencing the pointer "dst" which actually hasn't be initialized for this path. This patch relaxed the code marking sub-register move destination. For a SCALAR_VALUE, it is safe to just copy the value from source then truncate it into 32-bit. A unit test also included to demonstrate this issue. This test will fail before this patch. This relaxation could let verifier skipping more paths for conditional comparison against immediate. It also let verifier recording a more accurate/strict value for one register at one state, if this state end up with going through exit without rejection and it is used for state comparison later, then it is possible an inaccurate/permissive value is better. So the real impact on verifier processed insn number is complex. But in all, without this fix, valid program could be rejected. >From real benchmarking on kernel selftests and Cilium bpf tests, there is no impact on processed instruction number when tests ares compiled with default compilation options. There is slightly improvements when they are compiled with -mattr=+alu32 after this patch. Also, test_xdp_noinline/-mattr=+alu32 now passed verification. It is rejected before this fix. Insn processed before/after this patch: default -mattr=+alu32 Kernel selftest === test_xdp.o 371/371 369/369 test_l4lb.o 6345/6345 5623/5623 test_xdp_noinline.o 2971/2971 rejected/2727 test_tcp_estates.o 429/429 430/430 Cilium bpf === bpf_lb-DLB_L3.o: 2085/2085 1685/1687 bpf_lb-DLB_L4.o: 2287/2287 1986/1982 bpf_lb-DUNKNOWN.o: 690/690 622/622 bpf_lxc.o: 95033/95033 N/A bpf_netdev.o: 7245/7245 N/A bpf_overlay.o: 2898/2898 3085/2947 NOTE: - bpf_lxc.o and bpf_netdev.o compiled by -mattr=+alu32 are rejected by verifier due to another issue inside verifier on supporting alu32 binary. - Each cilium bpf program could generate several processed insn number, above number is sum of them. v1->v2: - Restrict the change on SCALAR_VALUE. - Update benchmark numbers on Cilium bpf tests. Signed-off-by: Jiong Wang <jiong.wang@netronome.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-26bpf: Allow narrow loads with offset > 0Andrey Ignatov
[ Upstream commit 46f53a65d2de3e1591636c22b626b09d8684fd71 ] Currently BPF verifier allows narrow loads for a context field only with offset zero. E.g. if there is a __u32 field then only the following loads are permitted: * off=0, size=1 (narrow); * off=0, size=2 (narrow); * off=0, size=4 (full). On the other hand LLVM can generate a load with offset different than zero that make sense from program logic point of view, but verifier doesn't accept it. E.g. tools/testing/selftests/bpf/sendmsg4_prog.c has code: #define DST_IP4 0xC0A801FEU /* 192.168.1.254 */ ... if ((ctx->user_ip4 >> 24) == (bpf_htonl(DST_IP4) >> 24) && where ctx is struct bpf_sock_addr. Some versions of LLVM can produce the following byte code for it: 8: 71 12 07 00 00 00 00 00 r2 = *(u8 *)(r1 + 7) 9: 67 02 00 00 18 00 00 00 r2 <<= 24 10: 18 03 00 00 00 00 00 fe 00 00 00 00 00 00 00 00 r3 = 4261412864 ll 12: 5d 32 07 00 00 00 00 00 if r2 != r3 goto +7 <LBB0_6> where `*(u8 *)(r1 + 7)` means narrow load for ctx->user_ip4 with size=1 and offset=3 (7 - sizeof(ctx->user_family) = 3). This load is currently rejected by verifier. Verifier code that rejects such loads is in bpf_ctx_narrow_access_ok() what means any is_valid_access implementation, that uses the function, works this way, e.g. bpf_skb_is_valid_access() for __sk_buff or sock_addr_is_valid_access() for bpf_sock_addr. The patch makes such loads supported. Offset can be in [0; size_default) but has to be multiple of load size. E.g. for __u32 field the following loads are supported now: * off=0, size=1 (narrow); * off=1, size=1 (narrow); * off=2, size=1 (narrow); * off=3, size=1 (narrow); * off=0, size=2 (narrow); * off=2, size=2 (narrow); * off=0, size=4 (full). Reported-by: Yonghong Song <yhs@fb.com> Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-13sched/fair: Fix infinite loop in update_blocked_averages() by reverting ↵Linus Torvalds
a9e7f6544b9c commit c40f7d74c741a907cfaeb73a7697081881c497d0 upstream. Zhipeng Xie, Xie XiuQi and Sargun Dhillon reported lockups in the scheduler under high loads, starting at around the v4.18 time frame, and Zhipeng Xie tracked it down to bugs in the rq->leaf_cfs_rq_list manipulation. Do a (manual) revert of: a9e7f6544b9c ("sched/fair: Fix O(nr_cgroups) in load balance path") It turns out that the list_del_leaf_cfs_rq() introduced by this commit is a surprising property that was not considered in followup commits such as: 9c2791f936ef ("sched/fair: Fix hierarchical order in rq->leaf_cfs_rq_list") As Vincent Guittot explains: "I think that there is a bigger problem with commit a9e7f6544b9c and cfs_rq throttling: Let take the example of the following topology TG2 --> TG1 --> root: 1) The 1st time a task is enqueued, we will add TG2 cfs_rq then TG1 cfs_rq to leaf_cfs_rq_list and we are sure to do the whole branch in one path because it has never been used and can't be throttled so tmp_alone_branch will point to leaf_cfs_rq_list at the end. 2) Then TG1 is throttled 3) and we add TG3 as a new child of TG1. 4) The 1st enqueue of a task on TG3 will add TG3 cfs_rq just before TG1 cfs_rq and tmp_alone_branch will stay on rq->leaf_cfs_rq_list. With commit a9e7f6544b9c, we can del a cfs_rq from rq->leaf_cfs_rq_list. So if the load of TG1 cfs_rq becomes NULL before step 2) above, TG1 cfs_rq is removed from the list. Then at step 4), TG3 cfs_rq is added at the beginning of rq->leaf_cfs_rq_list but tmp_alone_branch still points to TG3 cfs_rq because its throttled parent can't be enqueued when the lock is released. tmp_alone_branch doesn't point to rq->leaf_cfs_rq_list whereas it should. So if TG3 cfs_rq is removed or destroyed before tmp_alone_branch points on another TG cfs_rq, the next TG cfs_rq that will be added, will be linked outside rq->leaf_cfs_rq_list - which is bad. In addition, we can break the ordering of the cfs_rq in rq->leaf_cfs_rq_list but this ordering is used to update and propagate the update from leaf down to root." Instead of trying to work through all these cases and trying to reproduce the very high loads that produced the lockup to begin with, simplify the code temporarily by reverting a9e7f6544b9c - which change was clearly not thought through completely. This (hopefully) gives us a kernel that doesn't lock up so people can continue to enjoy their holidays without worrying about regressions. ;-) [ mingo: Wrote changelog, fixed weird spelling in code comment while at it. ] Analyzed-by: Xie XiuQi <xiexiuqi@huawei.com> Analyzed-by: Vincent Guittot <vincent.guittot@linaro.org> Reported-by: Zhipeng Xie <xiezhipeng1@huawei.com> Reported-by: Sargun Dhillon <sargun@sargun.me> Reported-by: Xie XiuQi <xiexiuqi@huawei.com> Tested-by: Zhipeng Xie <xiezhipeng1@huawei.com> Tested-by: Sargun Dhillon <sargun@sargun.me> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: <stable@vger.kernel.org> # v4.13+ Cc: Bin Li <huawei.libin@huawei.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: a9e7f6544b9c ("sched/fair: Fix O(nr_cgroups) in load balance path") Link: http://lkml.kernel.org/r/1545879866-27809-1-git-send-email-xiexiuqi@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-13Fix failure path in alloc_pid()Matthew Wilcox
commit 1a80dade010c7a7f4885a4c4c2a7ac22cc7b34df upstream. The failure path removes the allocated PIDs from the wrong namespace. This could lead to us inadvertently reusing PIDs in the leaf namespace and leaking PIDs in parent namespaces. Fixes: 95846ecf9dac ("pid: replace pid bitmap implementation with IDR API") Cc: <stable@vger.kernel.org> Signed-off-by: Matthew Wilcox <willy@infradead.org> Acked-by: "Eric W. Biederman" <ebiederm@xmission.com> Reviewed-by: Oleg Nesterov <oleg@redhat.com> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-13srcu: Lock srcu_data structure in srcu_gp_start()Dennis Krein
commit eb4c2382272ae7ae5d81fdfa5b7a6c86146eaaa4 upstream. The srcu_gp_start() function is called with the srcu_struct structure's ->lock held, but not with the srcu_data structure's ->lock. This is problematic because this function accesses and updates the srcu_data structure's ->srcu_cblist, which is protected by that lock. Failing to hold this lock can result in corruption of the SRCU callback lists, which in turn can result in arbitrarily bad results. This commit therefore makes srcu_gp_start() acquire the srcu_data structure's ->lock across the calls to rcu_segcblist_advance() and rcu_segcblist_accelerate(), thus preventing this corruption. Reported-by: Bart Van Assche <bvanassche@acm.org> Reported-by: Christoph Hellwig <hch@infradead.org> Reported-by: Sebastian Kuzminsky <seb.kuzminsky@gmail.com> Signed-off-by: Dennis Krein <Dennis.Krein@netapp.com> Signed-off-by: Paul E. McKenney <paulmck@linux.ibm.com> Tested-by: Dennis Krein <Dennis.Krein@netapp.com> Cc: <stable@vger.kernel.org> # 4.16.x Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>