aboutsummaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
AgeCommit message (Collapse)Author
2021-07-28sched/fair: Fix CFS bandwidth hrtimer expiry typeOdin Ugedal
[ Upstream commit 72d0ad7cb5bad265adb2014dbe46c4ccb11afaba ] The time remaining until expiry of the refresh_timer can be negative. Casting the type to an unsigned 64-bit value will cause integer underflow, making the runtime_refresh_within return false instead of true. These situations are rare, but they do happen. This does not cause user-facing issues or errors; other than possibly unthrottling cfs_rq's using runtime from the previous period(s), making the CFS bandwidth enforcement less strict in those (special) situations. Signed-off-by: Odin Ugedal <odin@uged.al> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Link: https://lore.kernel.org/r/20210629121452.18429-1-odin@uged.al Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-06-10sched/fair: Optimize select_idle_cpuCheng Jian
commit 60588bfa223ff675b95f866249f90616613fbe31 upstream. select_idle_cpu() will scan the LLC domain for idle CPUs, it's always expensive. so the next commit : 1ad3aaf3fcd2 ("sched/core: Implement new approach to scale select_idle_cpu()") introduces a way to limit how many CPUs we scan. But it consume some CPUs out of 'nr' that are not allowed for the task and thus waste our attempts. The function always return nr_cpumask_bits, and we can't find a CPU which our task is allowed to run. Cpumask may be too big, similar to select_idle_core(), use per_cpu_ptr 'select_idle_mask' to prevent stack overflow. Fixes: 1ad3aaf3fcd2 ("sched/core: Implement new approach to scale select_idle_cpu()") Signed-off-by: Cheng Jian <cj.chengjian@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Reviewed-by: Vincent Guittot <vincent.guittot@linaro.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Link: https://lkml.kernel.org/r/20191213024530.28052-1-cj.chengjian@huawei.com Signed-off-by: Yang Wei <yang.wei@linux.alibaba.com> Tested-by: Yang Wei <yang.wei@linux.alibaba.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-07-22sched/fair: handle case of task_h_load() returning 0Vincent Guittot
commit 01cfcde9c26d8555f0e6e9aea9d6049f87683998 upstream. task_h_load() can return 0 in some situations like running stress-ng mmapfork, which forks thousands of threads, in a sched group on a 224 cores system. The load balance doesn't handle this correctly because env->imbalance never decreases and it will stop pulling tasks only after reaching loop_max, which can be equal to the number of running tasks of the cfs. Make sure that imbalance will be decreased by at least 1. misfit task is the other feature that doesn't handle correctly such situation although it's probably more difficult to face the problem because of the smaller number of CPUs and running tasks on heterogenous system. We can't simply ensure that task_h_load() returns at least one because it would imply to handle underflow in other places. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: <stable@vger.kernel.org> # v4.4+ Link: https://lkml.kernel.org/r/20200710152426.16981-1-vincent.guittot@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-20sched/fair: Don't NUMA balance for kthreadsJens Axboe
[ Upstream commit 18f855e574d9799a0e7489f8ae6fd8447d0dd74a ] Stefano reported a crash with using SQPOLL with io_uring: BUG: kernel NULL pointer dereference, address: 00000000000003b0 CPU: 2 PID: 1307 Comm: io_uring-sq Not tainted 5.7.0-rc7 #11 RIP: 0010:task_numa_work+0x4f/0x2c0 Call Trace: task_work_run+0x68/0xa0 io_sq_thread+0x252/0x3d0 kthread+0xf9/0x130 ret_from_fork+0x35/0x40 which is task_numa_work() oopsing on current->mm being NULL. The task work is queued by task_tick_numa(), which checks if current->mm is NULL at the time of the call. But this state isn't necessarily persistent, if the kthread is using use_mm() to temporarily adopt the mm of a task. Change the task_tick_numa() check to exclude kernel threads in general, as it doesn't make sense to attempt ot balance for kthreads anyway. Reported-by: Stefano Garzarella <sgarzare@redhat.com> Signed-off-by: Jens Axboe <axboe@kernel.dk> Signed-off-by: Ingo Molnar <mingo@kernel.org> Acked-by: Peter Zijlstra <peterz@infradead.org> Link: https://lore.kernel.org/r/865de121-8190-5d30-ece5-3b097dc74431@kernel.dk Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-17sched/fair: Scale bandwidth quota and period without losing quota/period ↵Xuewei Zhang
ratio precision commit 4929a4e6faa0f13289a67cae98139e727f0d4a97 upstream. The quota/period ratio is used to ensure a child task group won't get more bandwidth than the parent task group, and is calculated as: normalized_cfs_quota() = [(quota_us << 20) / period_us] If the quota/period ratio was changed during this scaling due to precision loss, it will cause inconsistency between parent and child task groups. See below example: A userspace container manager (kubelet) does three operations: 1) Create a parent cgroup, set quota to 1,000us and period to 10,000us. 2) Create a few children cgroups. 3) Set quota to 1,000us and period to 10,000us on a child cgroup. These operations are expected to succeed. However, if the scaling of 147/128 happens before step 3, quota and period of the parent cgroup will be changed: new_quota: 1148437ns, 1148us new_period: 11484375ns, 11484us And when step 3 comes in, the ratio of the child cgroup will be 104857, which will be larger than the parent cgroup ratio (104821), and will fail. Scaling them by a factor of 2 will fix the problem. Tested-by: Phil Auld <pauld@redhat.com> Signed-off-by: Xuewei Zhang <xueweiz@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Phil Auld <pauld@redhat.com> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ben Segall <bsegall@google.com> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Fixes: 2e8e19226398 ("sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockup") Link: https://lkml.kernel.org/r/20191004001243.140897-1-xueweiz@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-01sched/fair: Don't increase sd->balance_interval on newidle balanceValentin Schneider
[ Upstream commit 3f130a37c442d5c4d66531b240ebe9abfef426b5 ] When load_balance() fails to move some load because of task affinity, we end up increasing sd->balance_interval to delay the next periodic balance in the hopes that next time we look, that annoying pinned task(s) will be gone. However, idle_balance() pays no attention to sd->balance_interval, yet it will still lead to an increase in balance_interval in case of pinned tasks. If we're going through several newidle balances (e.g. we have a periodic task), this can lead to a huge increase of the balance_interval in a very small amount of time. To prevent that, don't increase the balance interval when going through a newidle balance. This is a similar approach to what is done in commit 58b26c4c0257 ("sched: Increment cache_nice_tries only on periodic lb"), where we disregard newidle balance and rely on periodic balance for more stable results. Signed-off-by: Valentin Schneider <valentin.schneider@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Dietmar.Eggemann@arm.com Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: patrick.bellasi@arm.com Cc: vincent.guittot@linaro.org Link: http://lkml.kernel.org/r/1537974727-30788-2-git-send-email-valentin.schneider@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-12sched/fair: Fix -Wunused-but-set-variable warningsQian Cai
commit 763a9ec06c409dcde2a761aac4bb83ff3938e0b3 upstream. Commit: de53fd7aedb1 ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices") introduced a few compilation warnings: kernel/sched/fair.c: In function '__refill_cfs_bandwidth_runtime': kernel/sched/fair.c:4365:6: warning: variable 'now' set but not used [-Wunused-but-set-variable] kernel/sched/fair.c: In function 'start_cfs_bandwidth': kernel/sched/fair.c:4992:6: warning: variable 'overrun' set but not used [-Wunused-but-set-variable] Also, __refill_cfs_bandwidth_runtime() does no longer update the expiration time, so fix the comments accordingly. Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Ben Segall <bsegall@google.com> Reviewed-by: Dave Chiluk <chiluk+linux@indeed.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: pauld@redhat.com Fixes: de53fd7aedb1 ("sched/fair: Fix low cpu usage with high throttling by removing expiration of cpu-local slices") Link: https://lkml.kernel.org/r/1566326455-8038-1-git-send-email-cai@lca.pw Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-11-12sched/fair: Fix low cpu usage with high throttling by removing expiration of ↵Dave Chiluk
cpu-local slices commit de53fd7aedb100f03e5d2231cfce0e4993282425 upstream. It has been observed, that highly-threaded, non-cpu-bound applications running under cpu.cfs_quota_us constraints can hit a high percentage of periods throttled while simultaneously not consuming the allocated amount of quota. This use case is typical of user-interactive non-cpu bound applications, such as those running in kubernetes or mesos when run on multiple cpu cores. This has been root caused to cpu-local run queue being allocated per cpu bandwidth slices, and then not fully using that slice within the period. At which point the slice and quota expires. This expiration of unused slice results in applications not being able to utilize the quota for which they are allocated. The non-expiration of per-cpu slices was recently fixed by 'commit 512ac999d275 ("sched/fair: Fix bandwidth timer clock drift condition")'. Prior to that it appears that this had been broken since at least 'commit 51f2176d74ac ("sched/fair: Fix unlocked reads of some cfs_b->quota/period")' which was introduced in v3.16-rc1 in 2014. That added the following conditional which resulted in slices never being expired. if (cfs_rq->runtime_expires != cfs_b->runtime_expires) { /* extend local deadline, drift is bounded above by 2 ticks */ cfs_rq->runtime_expires += TICK_NSEC; Because this was broken for nearly 5 years, and has recently been fixed and is now being noticed by many users running kubernetes (https://github.com/kubernetes/kubernetes/issues/67577) it is my opinion that the mechanisms around expiring runtime should be removed altogether. This allows quota already allocated to per-cpu run-queues to live longer than the period boundary. This allows threads on runqueues that do not use much CPU to continue to use their remaining slice over a longer period of time than cpu.cfs_period_us. However, this helps prevent the above condition of hitting throttling while also not fully utilizing your cpu quota. This theoretically allows a machine to use slightly more than its allotted quota in some periods. This overflow would be bounded by the remaining quota left on each per-cpu runqueueu. This is typically no more than min_cfs_rq_runtime=1ms per cpu. For CPU bound tasks this will change nothing, as they should theoretically fully utilize all of their quota in each period. For user-interactive tasks as described above this provides a much better user/application experience as their cpu utilization will more closely match the amount they requested when they hit throttling. This means that cpu limits no longer strictly apply per period for non-cpu bound applications, but that they are still accurate over longer timeframes. This greatly improves performance of high-thread-count, non-cpu bound applications with low cfs_quota_us allocation on high-core-count machines. In the case of an artificial testcase (10ms/100ms of quota on 80 CPU machine), this commit resulted in almost 30x performance improvement, while still maintaining correct cpu quota restrictions. That testcase is available at https://github.com/indeedeng/fibtest. Fixes: 512ac999d275 ("sched/fair: Fix bandwidth timer clock drift condition") Signed-off-by: Dave Chiluk <chiluk+linux@indeed.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Phil Auld <pauld@redhat.com> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Ingo Molnar <mingo@redhat.com> Cc: John Hammond <jhammond@indeed.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kyle Anderson <kwa@yelp.com> Cc: Gabriel Munos <gmunoz@netflix.com> Cc: Peter Oskolkov <posk@posk.io> Cc: Cong Wang <xiyou.wangcong@gmail.com> Cc: Brendan Gregg <bgregg@netflix.com> Link: https://lkml.kernel.org/r/1563900266-19734-2-git-send-email-chiluk+linux@indeed.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-05sched/fair: Use rq_lock/unlock in online_fair_sched_groupPhil Auld
[ Upstream commit a46d14eca7b75fffe35603aa8b81df654353d80f ] Enabling WARN_DOUBLE_CLOCK in /sys/kernel/debug/sched_features causes warning to fire in update_rq_clock. This seems to be caused by onlining a new fair sched group not using the rq lock wrappers. [] rq->clock_update_flags & RQCF_UPDATED [] WARNING: CPU: 5 PID: 54385 at kernel/sched/core.c:210 update_rq_clock+0xec/0x150 [] Call Trace: [] online_fair_sched_group+0x53/0x100 [] cpu_cgroup_css_online+0x16/0x20 [] online_css+0x1c/0x60 [] cgroup_apply_control_enable+0x231/0x3b0 [] cgroup_mkdir+0x41b/0x530 [] kernfs_iop_mkdir+0x61/0xa0 [] vfs_mkdir+0x108/0x1a0 [] do_mkdirat+0x77/0xe0 [] do_syscall_64+0x55/0x1d0 [] entry_SYSCALL_64_after_hwframe+0x44/0xa9 Using the wrappers in online_fair_sched_group instead of the raw locking removes this warning. [ tglx: Use rq_*lock_irq() ] Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ingo Molnar <mingo@redhat.com> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: Ingo Molnar <mingo@kernel.org> Link: https://lkml.kernel.org/r/20190801133749.11033-1-pauld@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05sched/fair: Fix imbalance due to CPU affinityVincent Guittot
[ Upstream commit f6cad8df6b30a5d2bbbd2e698f74b4cafb9fb82b ] The load_balance() has a dedicated mecanism to detect when an imbalance is due to CPU affinity and must be handled at parent level. In this case, the imbalance field of the parent's sched_group is set. The description of sg_imbalanced() gives a typical example of two groups of 4 CPUs each and 4 tasks each with a cpumask covering 1 CPU of the first group and 3 CPUs of the second group. Something like: { 0 1 2 3 } { 4 5 6 7 } * * * * But the load_balance fails to fix this UC on my octo cores system made of 2 clusters of quad cores. Whereas the load_balance is able to detect that the imbalanced is due to CPU affinity, it fails to fix it because the imbalance field is cleared before letting parent level a chance to run. In fact, when the imbalance is detected, the load_balance reruns without the CPU with pinned tasks. But there is no other running tasks in the situation described above and everything looks balanced this time so the imbalance field is immediately cleared. The imbalance field should not be cleared if there is no other task to move when the imbalance is detected. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/1561996022-28829-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-09-16sched/fair: Don't assign runtime for throttled cfs_rqLiangyan
commit 5e2d2cc2588bd3307ce3937acbc2ed03c830a861 upstream. do_sched_cfs_period_timer() will refill cfs_b runtime and call distribute_cfs_runtime to unthrottle cfs_rq, sometimes cfs_b->runtime will allocate all quota to one cfs_rq incorrectly, then other cfs_rqs attached to this cfs_b can't get runtime and will be throttled. We find that one throttled cfs_rq has non-negative cfs_rq->runtime_remaining and cause an unexpetced cast from s64 to u64 in snippet: distribute_cfs_runtime() { runtime = -cfs_rq->runtime_remaining + 1; } The runtime here will change to a large number and consume all cfs_b->runtime in this cfs_b period. According to Ben Segall, the throttled cfs_rq can have account_cfs_rq_runtime called on it because it is throttled before idle_balance, and the idle_balance calls update_rq_clock to add time that is accounted to the task. This commit prevents cfs_rq to be assgined new runtime if it has been throttled until that distribute_cfs_runtime is called. Signed-off-by: Liangyan <liangyan.peng@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: shanpeic@linux.alibaba.com Cc: stable@vger.kernel.org Cc: xlpang@linux.alibaba.com Fixes: d3d9dc330236 ("sched: Throttle entities exceeding their allowed bandwidth") Link: https://lkml.kernel.org/r/20190826121633.6538-1-liangyan.peng@linux.alibaba.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-08-04sched/fair: Don't free p->numa_faults with concurrent readersJann Horn
commit 16d51a590a8ce3befb1308e0e7ab77f3b661af33 upstream. When going through execve(), zero out the NUMA fault statistics instead of freeing them. During execve, the task is reachable through procfs and the scheduler. A concurrent /proc/*/sched reader can read data from a freed ->numa_faults allocation (confirmed by KASAN) and write it back to userspace. I believe that it would also be possible for a use-after-free read to occur through a race between a NUMA fault and execve(): task_numa_fault() can lead to task_numa_compare(), which invokes task_weight() on the currently running task of a different CPU. Another way to fix this would be to make ->numa_faults RCU-managed or add extra locking, but it seems easier to wipe the NUMA fault statistics on execve. Signed-off-by: Jann Horn <jannh@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Petr Mladek <pmladek@suse.com> Cc: Sergey Senozhatsky <sergey.senozhatsky@gmail.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Will Deacon <will@kernel.org> Fixes: 82727018b0d3 ("sched/numa: Call task_numa_free() from do_execve()") Link: https://lkml.kernel.org/r/20190716152047.14424-1-jannh@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-02sched/numa: Fix a possible divide-by-zeroXie XiuQi
commit a860fa7b96e1a1c974556327aa1aee852d434c21 upstream. sched_clock_cpu() may not be consistent between CPUs. If a task migrates to another CPU, then se.exec_start is set to that CPU's rq_clock_task() by update_stats_curr_start(). Specifically, the new value might be before the old value due to clock skew. So then if in numa_get_avg_runtime() the expression: 'now - p->last_task_numa_placement' ends up as -1, then the divider '*period + 1' in task_numa_placement() is 0 and things go bang. Similar to update_curr(), check if time goes backwards to avoid this. [ peterz: Wrote new changelog. ] [ mingo: Tweaked the code comment. ] Signed-off-by: Xie XiuQi <xiexiuqi@huawei.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: cj.chengjian@huawei.com Cc: <stable@vger.kernel.org> Link: http://lkml.kernel.org/r/20190425080016.GX11158@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-27sched/fair: Limit sched_cfs_period_timer() loop to avoid hard lockupPhil Auld
[ Upstream commit 2e8e19226398db8265a8e675fcc0118b9e80c9e8 ] With extremely short cfs_period_us setting on a parent task group with a large number of children the for loop in sched_cfs_period_timer() can run until the watchdog fires. There is no guarantee that the call to hrtimer_forward_now() will ever return 0. The large number of children can make do_sched_cfs_period_timer() take longer than the period. NMI watchdog: Watchdog detected hard LOCKUP on cpu 24 RIP: 0010:tg_nop+0x0/0x10 <IRQ> walk_tg_tree_from+0x29/0xb0 unthrottle_cfs_rq+0xe0/0x1a0 distribute_cfs_runtime+0xd3/0xf0 sched_cfs_period_timer+0xcb/0x160 ? sched_cfs_slack_timer+0xd0/0xd0 __hrtimer_run_queues+0xfb/0x270 hrtimer_interrupt+0x122/0x270 smp_apic_timer_interrupt+0x6a/0x140 apic_timer_interrupt+0xf/0x20 </IRQ> To prevent this we add protection to the loop that detects when the loop has run too many times and scales the period and quota up, proportionally, so that the timer can complete before then next period expires. This preserves the relative runtime quota while preventing the hard lockup. A warning is issued reporting this state and the new values. Signed-off-by: Phil Auld <pauld@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: <stable@vger.kernel.org> Cc: Anton Blanchard <anton@ozlabs.org> Cc: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190319130005.25492-1-pauld@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-17sched/fair: Do not re-read ->h_load_next during hierarchical load calculationMel Gorman
commit 0e9f02450da07fc7b1346c8c32c771555173e397 upstream. A NULL pointer dereference bug was reported on a distribution kernel but the same issue should be present on mainline kernel. It occured on s390 but should not be arch-specific. A partial oops looks like: Unable to handle kernel pointer dereference in virtual kernel address space ... Call Trace: ... try_to_wake_up+0xfc/0x450 vhost_poll_wakeup+0x3a/0x50 [vhost] __wake_up_common+0xbc/0x178 __wake_up_common_lock+0x9e/0x160 __wake_up_sync_key+0x4e/0x60 sock_def_readable+0x5e/0x98 The bug hits any time between 1 hour to 3 days. The dereference occurs in update_cfs_rq_h_load when accumulating h_load. The problem is that cfq_rq->h_load_next is not protected by any locking and can be updated by parallel calls to task_h_load. Depending on the compiler, code may be generated that re-reads cfq_rq->h_load_next after the check for NULL and then oops when reading se->avg.load_avg. The dissassembly showed that it was possible to reread h_load_next after the check for NULL. While this does not appear to be an issue for later compilers, it's still an accident if the correct code is generated. Full locking in this path would have high overhead so this patch uses READ_ONCE to read h_load_next only once and check for NULL before dereferencing. It was confirmed that there were no further oops after 10 days of testing. As Peter pointed out, it is also necessary to use WRITE_ONCE() to avoid any potential problems with store tearing. Signed-off-by: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Valentin Schneider <valentin.schneider@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> Fixes: 685207963be9 ("sched: Move h_load calculation to task_h_load()") Link: https://lkml.kernel.org/r/20190319123610.nsivgf3mjbjjesxb@techsingularity.net Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12cpu/hotplug: Fix "SMT disabled by BIOS" detection for KVMJosh Poimboeuf
commit b284909abad48b07d3071a9fc9b5692b3e64914b upstream. With the following commit: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") ... the hotplug code attempted to detect when SMT was disabled by BIOS, in which case it reported SMT as permanently disabled. However, that code broke a virt hotplug scenario, where the guest is booted with only primary CPU threads, and a sibling is brought online later. The problem is that there doesn't seem to be a way to reliably distinguish between the HW "SMT disabled by BIOS" case and the virt "sibling not yet brought online" case. So the above-mentioned commit was a bit misguided, as it permanently disabled SMT for both cases, preventing future virt sibling hotplugs. Going back and reviewing the original problems which were attempted to be solved by that commit, when SMT was disabled in BIOS: 1) /sys/devices/system/cpu/smt/control showed "on" instead of "notsupported"; and 2) vmx_vm_init() was incorrectly showing the L1TF_MSG_SMT warning. I'd propose that we instead consider #1 above to not actually be a problem. Because, at least in the virt case, it's possible that SMT wasn't disabled by BIOS and a sibling thread could be brought online later. So it makes sense to just always default the smt control to "on" to allow for that possibility (assuming cpuid indicates that the CPU supports SMT). The real problem is #2, which has a simple fix: change vmx_vm_init() to query the actual current SMT state -- i.e., whether any siblings are currently online -- instead of looking at the SMT "control" sysfs value. So fix it by: a) reverting the original "fix" and its followup fix: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") bc2d8d262cba ("cpu/hotplug: Fix SMT supported evaluation") and b) changing vmx_vm_init() to query the actual current SMT state -- instead of the sysfs control value -- to determine whether the L1TF warning is needed. This also requires the 'sched_smt_present' variable to exported, instead of 'cpu_smt_control'. Fixes: 73d5e2b47264 ("cpu/hotplug: detect SMT disabled by BIOS") Reported-by: Igor Mammedov <imammedo@redhat.com> Signed-off-by: Josh Poimboeuf <jpoimboe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Joe Mario <jmario@redhat.com> Cc: Jiri Kosina <jikos@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: kvm@vger.kernel.org Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/e3a85d585da28cc333ecbc1e78ee9216e6da9396.1548794349.git.jpoimboe@redhat.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-23sched/fair: Fix bandwidth timer clock drift conditionXunlei Pang
commit 512ac999d2755d2b7109e996a76b6fb8b888631d upstream. I noticed that cgroup task groups constantly get throttled even if they have low CPU usage, this causes some jitters on the response time to some of our business containers when enabling CPU quotas. It's very simple to reproduce: mkdir /sys/fs/cgroup/cpu/test cd /sys/fs/cgroup/cpu/test echo 100000 > cpu.cfs_quota_us echo $$ > tasks then repeat: cat cpu.stat | grep nr_throttled # nr_throttled will increase steadily After some analysis, we found that cfs_rq::runtime_remaining will be cleared by expire_cfs_rq_runtime() due to two equal but stale "cfs_{b|q}->runtime_expires" after period timer is re-armed. The current condition to judge clock drift in expire_cfs_rq_runtime() is wrong, the two runtime_expires are actually the same when clock drift happens, so this condtion can never hit. The orginal design was correctly done by this commit: a9cf55b28610 ("sched: Expire invalid runtime") ... but was changed to be the current implementation due to its locking bug. This patch introduces another way, it adds a new field in both structures cfs_rq and cfs_bandwidth to record the expiration update sequence, and uses them to figure out if clock drift happens (true if they are equal). Signed-off-by: Xunlei Pang <xlpang@linux.alibaba.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> [alakeshh: backport: Fixed merge conflicts: - sched.h: Fix the indentation and order in which the variables are declared to match with coding style of the existing code in 4.14 Struct members of same type were declared in separate lines in upstream patch which has been changed back to having multiple members of same type in the same line. e.g. int a; int b; -> int a, b; ] Signed-off-by: Alakesh Haloi <alakeshh@amazon.com> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: <stable@vger.kernel.org> # 4.14.x Fixes: 51f2176d74ac ("sched/fair: Fix unlocked reads of some cfs_b->quota/period") Link: http://lkml.kernel.org/r/20180620101834.24455-1-xlpang@linux.alibaba.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-01-13sched/fair: Fix infinite loop in update_blocked_averages() by reverting ↵Linus Torvalds
a9e7f6544b9c commit c40f7d74c741a907cfaeb73a7697081881c497d0 upstream. Zhipeng Xie, Xie XiuQi and Sargun Dhillon reported lockups in the scheduler under high loads, starting at around the v4.18 time frame, and Zhipeng Xie tracked it down to bugs in the rq->leaf_cfs_rq_list manipulation. Do a (manual) revert of: a9e7f6544b9c ("sched/fair: Fix O(nr_cgroups) in load balance path") It turns out that the list_del_leaf_cfs_rq() introduced by this commit is a surprising property that was not considered in followup commits such as: 9c2791f936ef ("sched/fair: Fix hierarchical order in rq->leaf_cfs_rq_list") As Vincent Guittot explains: "I think that there is a bigger problem with commit a9e7f6544b9c and cfs_rq throttling: Let take the example of the following topology TG2 --> TG1 --> root: 1) The 1st time a task is enqueued, we will add TG2 cfs_rq then TG1 cfs_rq to leaf_cfs_rq_list and we are sure to do the whole branch in one path because it has never been used and can't be throttled so tmp_alone_branch will point to leaf_cfs_rq_list at the end. 2) Then TG1 is throttled 3) and we add TG3 as a new child of TG1. 4) The 1st enqueue of a task on TG3 will add TG3 cfs_rq just before TG1 cfs_rq and tmp_alone_branch will stay on rq->leaf_cfs_rq_list. With commit a9e7f6544b9c, we can del a cfs_rq from rq->leaf_cfs_rq_list. So if the load of TG1 cfs_rq becomes NULL before step 2) above, TG1 cfs_rq is removed from the list. Then at step 4), TG3 cfs_rq is added at the beginning of rq->leaf_cfs_rq_list but tmp_alone_branch still points to TG3 cfs_rq because its throttled parent can't be enqueued when the lock is released. tmp_alone_branch doesn't point to rq->leaf_cfs_rq_list whereas it should. So if TG3 cfs_rq is removed or destroyed before tmp_alone_branch points on another TG cfs_rq, the next TG cfs_rq that will be added, will be linked outside rq->leaf_cfs_rq_list - which is bad. In addition, we can break the ordering of the cfs_rq in rq->leaf_cfs_rq_list but this ordering is used to update and propagate the update from leaf down to root." Instead of trying to work through all these cases and trying to reproduce the very high loads that produced the lockup to begin with, simplify the code temporarily by reverting a9e7f6544b9c - which change was clearly not thought through completely. This (hopefully) gives us a kernel that doesn't lock up so people can continue to enjoy their holidays without worrying about regressions. ;-) [ mingo: Wrote changelog, fixed weird spelling in code comment while at it. ] Analyzed-by: Xie XiuQi <xiexiuqi@huawei.com> Analyzed-by: Vincent Guittot <vincent.guittot@linaro.org> Reported-by: Zhipeng Xie <xiezhipeng1@huawei.com> Reported-by: Sargun Dhillon <sargun@sargun.me> Reported-by: Xie XiuQi <xiexiuqi@huawei.com> Tested-by: Zhipeng Xie <xiezhipeng1@huawei.com> Tested-by: Sargun Dhillon <sargun@sargun.me> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: <stable@vger.kernel.org> # v4.13+ Cc: Bin Li <huawei.libin@huawei.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Tejun Heo <tj@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: a9e7f6544b9c ("sched/fair: Fix O(nr_cgroups) in load balance path") Link: http://lkml.kernel.org/r/1545879866-27809-1-git-send-email-xiexiuqi@huawei.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-12-05sched/core: Fix cpu.max vs. cpuhotplug deadlockPeter Zijlstra
commit ce48c146495a1a50e48cdbfbfaba3e708be7c07c upstream Tejun reported the following cpu-hotplug lock (percpu-rwsem) read recursion: tg_set_cfs_bandwidth() get_online_cpus() cpus_read_lock() cfs_bandwidth_usage_inc() static_key_slow_inc() cpus_read_lock() Reported-by: Tejun Heo <tj@kernel.org> Tested-by: Tejun Heo <tj@kernel.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/20180122215328.GP3397@worktop Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-13sched/fair: Fix the min_vruntime update logic in dequeue_entity()Song Muchun
[ Upstream commit 9845c49cc9bbb317a0bc9e9cf78d8e09d54c9af0 ] The comment and the code around the update_min_vruntime() call in dequeue_entity() are not in agreement. >From commit: b60205c7c558 ("sched/fair: Fix min_vruntime tracking") I think that we want to update min_vruntime when a task is sleeping/migrating. So, the check is inverted there - fix it. Signed-off-by: Song Muchun <smuchun@gmail.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: b60205c7c558 ("sched/fair: Fix min_vruntime tracking") Link: http://lkml.kernel.org/r/20181014112612.2614-1-smuchun@gmail.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-11-10sched/fair: Fix throttle_list starvation with low CFS quotaPhil Auld
commit baa9be4ffb55876923dc9716abc0a448e510ba30 upstream. With a very low cpu.cfs_quota_us setting, such as the minimum of 1000, distribute_cfs_runtime may not empty the throttled_list before it runs out of runtime to distribute. In that case, due to the change from c06f04c7048 to put throttled entries at the head of the list, later entries on the list will starve. Essentially, the same X processes will get pulled off the list, given CPU time and then, when expired, get put back on the head of the list where distribute_cfs_runtime will give runtime to the same set of processes leaving the rest. Fix the issue by setting a bit in struct cfs_bandwidth when distribute_cfs_runtime is running, so that the code in throttle_cfs_rq can decide to put the throttled entry on the tail or the head of the list. The bit is set/cleared by the callers of distribute_cfs_runtime while they hold cfs_bandwidth->lock. This is easy to reproduce with a handful of CPU consumers. I use 'crash' on the live system. In some cases you can simply look at the throttled list and see the later entries are not changing: crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3 1 ffff90b56cb2d200 -976050 2 ffff90b56cb2cc00 -484925 3 ffff90b56cb2bc00 -658814 4 ffff90b56cb2ba00 -275365 5 ffff90b166a45600 -135138 6 ffff90b56cb2da00 -282505 7 ffff90b56cb2e000 -148065 8 ffff90b56cb2fa00 -872591 9 ffff90b56cb2c000 -84687 10 ffff90b56cb2f000 -87237 11 ffff90b166a40a00 -164582 crash> list cfs_rq.throttled_list -H 0xffff90b54f6ade40 -s cfs_rq.runtime_remaining | paste - - | awk '{print $1" "$4}' | pr -t -n3 1 ffff90b56cb2d200 -994147 2 ffff90b56cb2cc00 -306051 3 ffff90b56cb2bc00 -961321 4 ffff90b56cb2ba00 -24490 5 ffff90b166a45600 -135138 6 ffff90b56cb2da00 -282505 7 ffff90b56cb2e000 -148065 8 ffff90b56cb2fa00 -872591 9 ffff90b56cb2c000 -84687 10 ffff90b56cb2f000 -87237 11 ffff90b166a40a00 -164582 Sometimes it is easier to see by finding a process getting starved and looking at the sched_info: crash> task ffff8eb765994500 sched_info PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest" sched_info = { pcount = 8, run_delay = 697094208, last_arrival = 240260125039, last_queued = 240260327513 }, crash> task ffff8eb765994500 sched_info PID: 7800 TASK: ffff8eb765994500 CPU: 16 COMMAND: "cputest" sched_info = { pcount = 8, run_delay = 697094208, last_arrival = 240260125039, last_queued = 240260327513 }, Signed-off-by: Phil Auld <pauld@redhat.com> Reviewed-by: Ben Segall <bsegall@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Fixes: c06f04c70489 ("sched: Fix potential near-infinite distribute_cfs_runtime() loop") Link: http://lkml.kernel.org/r/20181008143639.GA4019@pauld.bos.csb Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-29sched/fair: Fix vruntime_normalized() for remote non-migration wakeupSteve Muckle
commit d0cdb3ce8834332d918fc9c8ff74f8a169ec9abe upstream. When a task which previously ran on a given CPU is remotely queued to wake up on that same CPU, there is a period where the task's state is TASK_WAKING and its vruntime is not normalized. This is not accounted for in vruntime_normalized() which will cause an error in the task's vruntime if it is switched from the fair class during this time. For example if it is boosted to RT priority via rt_mutex_setprio(), rq->min_vruntime will not be subtracted from the task's vruntime but it will be added again when the task returns to the fair class. The task's vruntime will have been erroneously doubled and the effective priority of the task will be reduced. Note this will also lead to inflation of all vruntimes since the doubled vruntime value will become the rq's min_vruntime when other tasks leave the rq. This leads to repeated doubling of the vruntime and priority penalty. Fix this by recognizing a WAKING task's vruntime as normalized only if sched_remote_wakeup is true. This indicates a migration, in which case the vruntime would have been normalized in migrate_task_rq_fair(). Based on a similar patch from John Dias <joaodias@google.com>. Suggested-by: Peter Zijlstra <peterz@infradead.org> Tested-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Signed-off-by: Steve Muckle <smuckle@google.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Chris Redpath <Chris.Redpath@arm.com> Cc: John Dias <joaodias@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Miguel de Dios <migueldedios@google.com> Cc: Morten Rasmussen <Morten.Rasmussen@arm.com> Cc: Patrick Bellasi <Patrick.Bellasi@arm.com> Cc: Paul Turner <pjt@google.com> Cc: Quentin Perret <quentin.perret@arm.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Todd Kjos <tkjos@google.com> Cc: kernel-team@android.com Fixes: b5179ac70de8 ("sched/fair: Prepare to fix fairness problems on migration") Link: http://lkml.kernel.org/r/20180831224217.169476-1-smuckle@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-26sched/fair: Fix util_avg of new tasks for asymmetric systemsQuentin Perret
[ Upstream commit 8fe5c5a937d0f4e84221631833a2718afde52285 ] When a new task wakes-up for the first time, its initial utilization is set to half of the spare capacity of its CPU. The current implementation of post_init_entity_util_avg() uses SCHED_CAPACITY_SCALE directly as a capacity reference. As a result, on a big.LITTLE system, a new task waking up on an idle little CPU will be given ~512 of util_avg, even if the CPU's capacity is significantly less than that. Fix this by computing the spare capacity with arch_scale_cpu_capacity(). Signed-off-by: Quentin Perret <quentin.perret@arm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Vincent Guittot <vincent.guittot@linaro.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Cc: morten.rasmussen@arm.com Cc: patrick.bellasi@arm.com Link: http://lkml.kernel.org/r/20180612112215.25448-1-quentin.perret@arm.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15sched/smt: Update sched_smt_present at runtimePeter Zijlstra
commit ba2591a5993eabcc8e874e30f361d8ffbb10d6d4 upstream The static key sched_smt_present is only updated at boot time when SMT siblings have been detected. Booting with maxcpus=1 and bringing the siblings online after boot rebuilds the scheduling domains correctly but does not update the static key, so the SMT code is not enabled. Let the key be updated in the scheduler CPU hotplug code to fix this. Signed-off-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-02License cleanup: add SPDX GPL-2.0 license identifier to files with no licenseGreg Kroah-Hartman
Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-10-10sched/core: Ensure load_balance() respects the active_maskPeter Zijlstra
While load_balance() masks the source CPUs against active_mask, it had a hole against the destination CPU. Ensure the destination CPU is also part of the 'domain-mask & active-mask' set. Reported-by: Levin, Alexander (Sasha Levin) <alexander.levin@verizon.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 77d1dfda0e79 ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10sched/core: Address more wake_affine() regressionsPeter Zijlstra
The trivial wake_affine_idle() implementation is very good for a number of workloads, but it comes apart at the moment there are no idle CPUs left, IOW. the overloaded case. hackbench: NO_WA_WEIGHT WA_WEIGHT hackbench-20 : 7.362717561 seconds 6.450509391 seconds (win) netperf: NO_WA_WEIGHT WA_WEIGHT TCP_SENDFILE-1 : Avg: 54524.6 Avg: 52224.3 TCP_SENDFILE-10 : Avg: 48185.2 Avg: 46504.3 TCP_SENDFILE-20 : Avg: 29031.2 Avg: 28610.3 TCP_SENDFILE-40 : Avg: 9819.72 Avg: 9253.12 TCP_SENDFILE-80 : Avg: 5355.3 Avg: 4687.4 TCP_STREAM-1 : Avg: 41448.3 Avg: 42254 TCP_STREAM-10 : Avg: 24123.2 Avg: 25847.9 TCP_STREAM-20 : Avg: 15834.5 Avg: 18374.4 TCP_STREAM-40 : Avg: 5583.91 Avg: 5599.57 TCP_STREAM-80 : Avg: 2329.66 Avg: 2726.41 TCP_RR-1 : Avg: 80473.5 Avg: 82638.8 TCP_RR-10 : Avg: 72660.5 Avg: 73265.1 TCP_RR-20 : Avg: 52607.1 Avg: 52634.5 TCP_RR-40 : Avg: 57199.2 Avg: 56302.3 TCP_RR-80 : Avg: 25330.3 Avg: 26867.9 UDP_RR-1 : Avg: 108266 Avg: 107844 UDP_RR-10 : Avg: 95480 Avg: 95245.2 UDP_RR-20 : Avg: 68770.8 Avg: 68673.7 UDP_RR-40 : Avg: 76231 Avg: 75419.1 UDP_RR-80 : Avg: 34578.3 Avg: 35639.1 UDP_STREAM-1 : Avg: 64684.3 Avg: 66606 UDP_STREAM-10 : Avg: 52701.2 Avg: 52959.5 UDP_STREAM-20 : Avg: 30376.4 Avg: 29704 UDP_STREAM-40 : Avg: 15685.8 Avg: 15266.5 UDP_STREAM-80 : Avg: 8415.13 Avg: 7388.97 (wins and losses) sysbench: NO_WA_WEIGHT WA_WEIGHT sysbench-mysql-2 : 2135.17 per sec. 2142.51 per sec. sysbench-mysql-5 : 4809.68 per sec. 4800.19 per sec. sysbench-mysql-10 : 9158.59 per sec. 9157.05 per sec. sysbench-mysql-20 : 14570.70 per sec. 14543.55 per sec. sysbench-mysql-40 : 22130.56 per sec. 22184.82 per sec. sysbench-mysql-80 : 20995.56 per sec. 21904.18 per sec. sysbench-psql-2 : 1679.58 per sec. 1705.06 per sec. sysbench-psql-5 : 3797.69 per sec. 3879.93 per sec. sysbench-psql-10 : 7253.22 per sec. 7258.06 per sec. sysbench-psql-20 : 11166.75 per sec. 11220.00 per sec. sysbench-psql-40 : 17277.28 per sec. 17359.78 per sec. sysbench-psql-80 : 17112.44 per sec. 17221.16 per sec. (increase on the top end) tbench: NO_WA_WEIGHT Throughput 685.211 MB/sec 2 clients 2 procs max_latency=0.123 ms Throughput 1596.64 MB/sec 5 clients 5 procs max_latency=0.119 ms Throughput 2985.47 MB/sec 10 clients 10 procs max_latency=0.262 ms Throughput 4521.15 MB/sec 20 clients 20 procs max_latency=0.506 ms Throughput 9438.1 MB/sec 40 clients 40 procs max_latency=2.052 ms Throughput 8210.5 MB/sec 80 clients 80 procs max_latency=8.310 ms WA_WEIGHT Throughput 697.292 MB/sec 2 clients 2 procs max_latency=0.127 ms Throughput 1596.48 MB/sec 5 clients 5 procs max_latency=0.080 ms Throughput 2975.22 MB/sec 10 clients 10 procs max_latency=0.254 ms Throughput 4575.14 MB/sec 20 clients 20 procs max_latency=0.502 ms Throughput 9468.65 MB/sec 40 clients 40 procs max_latency=2.069 ms Throughput 8631.73 MB/sec 80 clients 80 procs max_latency=8.605 ms (increase on the top end) Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Rik van Riel <riel@redhat.com> Cc: linux-kernel@vger.kernel.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-10-10sched/core: Fix wake_affine() performance regressionPeter Zijlstra
Eric reported a sysbench regression against commit: 3fed382b46ba ("sched/numa: Implement NUMA node level wake_affine()") Similarly, Rik was looking at the NAS-lu.C benchmark, which regressed against his v3.10 enterprise kernel. PRE (current tip/master): ivb-ep sysbench: 2: [30 secs] transactions: 64110 (2136.94 per sec.) 5: [30 secs] transactions: 143644 (4787.99 per sec.) 10: [30 secs] transactions: 274298 (9142.93 per sec.) 20: [30 secs] transactions: 418683 (13955.45 per sec.) 40: [30 secs] transactions: 320731 (10690.15 per sec.) 80: [30 secs] transactions: 355096 (11834.28 per sec.) hsw-ex NAS: OMP_PROC_BIND/lu.C.x_threads_144_run_1.log: Time in seconds = 18.01 OMP_PROC_BIND/lu.C.x_threads_144_run_2.log: Time in seconds = 17.89 OMP_PROC_BIND/lu.C.x_threads_144_run_3.log: Time in seconds = 17.93 lu.C.x_threads_144_run_1.log: Time in seconds = 434.68 lu.C.x_threads_144_run_2.log: Time in seconds = 405.36 lu.C.x_threads_144_run_3.log: Time in seconds = 433.83 POST (+patch): ivb-ep sysbench: 2: [30 secs] transactions: 64494 (2149.75 per sec.) 5: [30 secs] transactions: 145114 (4836.99 per sec.) 10: [30 secs] transactions: 278311 (9276.69 per sec.) 20: [30 secs] transactions: 437169 (14571.60 per sec.) 40: [30 secs] transactions: 669837 (22326.73 per sec.) 80: [30 secs] transactions: 631739 (21055.88 per sec.) hsw-ex NAS: lu.C.x_threads_144_run_1.log: Time in seconds = 23.36 lu.C.x_threads_144_run_2.log: Time in seconds = 22.96 lu.C.x_threads_144_run_3.log: Time in seconds = 22.52 This patch takes out all the shiny wake_affine() stuff and goes back to utter basics. Between the two CPUs involved with the wakeup (the CPU doing the wakeup and the CPU we ran on previously) pick the CPU we can run on _now_. This restores much of the regressions against the older kernels, but leaves some ground in the overloaded case. The default-enabled WA_WEIGHT (which will be introduced in the next patch) is an attempt to address the overloaded situation. Reported-by: Eric Farman <farman@linux.vnet.ibm.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Matthew Rosato <mjrosato@linux.vnet.ibm.com> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jinpuwang@gmail.com Cc: vcaputo@pengaru.com Fixes: 3fed382b46ba ("sched/numa: Implement NUMA node level wake_affine()") Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-13Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Three CPU hotplug related fixes and a debugging improvement" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/debug: Add debugfs knob for "sched_debug" sched/core: WARN() when migrating to an offline CPU sched/fair: Plug hole between hotplug and active_load_balance() sched/fair: Avoid newidle balance for !active CPUs
2017-09-12Merge branch 'sched-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull scheduler fixes from Ingo Molnar: "Three fixes: - fix a suspend/resume cpusets bug - fix a !CONFIG_NUMA_BALANCING bug - fix a kerneldoc warning" * 'sched-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: sched/fair: Fix nuisance kernel-doc warning sched/cpuset/pm: Fix cpuset vs. suspend-resume bugs sched/fair: Fix wake_affine_llc() balancing rules
2017-09-12sched/fair: Plug hole between hotplug and active_load_balance()Peter Zijlstra
The load balancer applies cpu_active_mask to whatever sched_domains it finds, however in the case of active_balance there is a hole between setting rq->{active_balance,push_cpu} and running the stop_machine work doing the actual migration. The @push_cpu can go offline in this window, which would result in us moving a task onto a dead cpu, which is a fairly bad thing. Double check the active mask before the stop work does the migration. CPU0 CPU1 <SoftIRQ> stop_machine(takedown_cpu) load_balance() cpu_stopper_thread() ... work = multi_cpu_stop stop_one_cpu_nowait( /* wait for CPU0 */ .func = active_load_balance_cpu_stop ); </SoftIRQ> cpu_stopper_thread() work = multi_cpu_stop /* sync with CPU1 */ take_cpu_down() <idle> play_dead(); work = active_load_balance_cpu_stop set_task_cpu(p, CPU1); /* oops!! */ Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Link: http://lkml.kernel.org/r/20170907150614.044460912@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-12sched/fair: Avoid newidle balance for !active CPUsPeter Zijlstra
On CPU hot unplug, when parking the last kthread we'll try and schedule into idle to kill the CPU. This last schedule can (and does) trigger newidle balance because at this point the sched domains are still up because of commit: 77d1dfda0e79 ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds") Obviously pulling tasks to an already offline CPU is a bad idea, and all balancing operations _should_ be subject to cpu_active_mask, make it so. Reported-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: 77d1dfda0e79 ("sched/topology, cpuset: Avoid spurious/wrong domain rebuilds") Link: http://lkml.kernel.org/r/20170907150613.994135806@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-11sched/fair: Fix nuisance kernel-doc warningRandy Dunlap
Work around kernel-doc warning ('*' in Sphinx doc means "emphasis"): ../kernel/sched/fair.c:7584: WARNING: Inline emphasis start-string without end-string. Signed-off-by: Randy Dunlap <rdunlap@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/f18b30f9-6251-6d86-9d44-16501e386891@infradead.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-08sched/fair: replace cfs_rq->rb_leftmostDavidlohr Bueso
... with the generic rbtree flavor instead. No changes in semantics whatsoever. Link: http://lkml.kernel.org/r/20170719014603.19029-8-dave@stgolabs.net Signed-off-by: Davidlohr Bueso <dbueso@suse.de> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2017-09-07sched/fair: Fix wake_affine_llc() balancing rulesPeter Zijlstra
Chris Wilson reported that the SMT balance rules got the +1 on the wrong side, resulting in a bias towards the current LLC; which the load-balancer would then try and undo. Reported-by: Chris Wilson <chris@chris-wilson.co.uk> Tested-by: Chris Wilson <chris@chris-wilson.co.uk> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: 90001d67be2f ("sched/fair: Fix wake_affine() for !NUMA_BALANCING") Link: http://lkml.kernel.org/r/20170906105131.gqjmaextmn3u6tj2@hirez.programming.kicks-ass.net Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-09-05Merge tag 'pm-4.14-rc1' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm Pull power management updates from Rafael Wysocki: "This time (again) cpufreq gets the majority of changes which mostly are driver updates (including a major consolidation of intel_pstate), some schedutil governor modifications and core cleanups. There also are some changes in the system suspend area, mostly related to diagnostics and debug messages plus some renames of things related to suspend-to-idle. One major change here is that suspend-to-idle is now going to be preferred over S3 on systems where the ACPI tables indicate to do so and provide requsite support (the Low Power Idle S0 _DSM in particular). The system sleep documentation and the tools related to it are updated too. The rest is a few cpuidle changes (nothing major), devfreq updates, generic power domains (genpd) framework updates and a few assorted modifications elsewhere. Specifics: - Drop the P-state selection algorithm based on a PID controller from intel_pstate and make it use the same P-state selection method (based on the CPU load) for all types of systems in the active mode (Rafael Wysocki, Srinivas Pandruvada). - Rework the cpufreq core and governors to make it possible to take cross-CPU utilization updates into account and modify the schedutil governor to actually do so (Viresh Kumar). - Clean up the handling of transition latency information in the cpufreq core and untangle it from the information on which drivers cannot do dynamic frequency switching (Viresh Kumar). - Add support for new SoCs (MT2701/MT7623 and MT7622) to the mediatek cpufreq driver and update its DT bindings (Sean Wang). - Modify the cpufreq dt-platdev driver to autimatically create cpufreq devices for the new (v2) Operating Performance Points (OPP) DT bindings and update its whitelist of supported systems (Viresh Kumar, Shubhrajyoti Datta, Marc Gonzalez, Khiem Nguyen, Finley Xiao). - Add support for Ux500 to the cpufreq-dt driver and drop the obsolete dbx500 cpufreq driver (Linus Walleij, Arnd Bergmann). - Add new SoC (R8A7795) support to the cpufreq rcar driver (Khiem Nguyen). - Fix and clean up assorted issues in the cpufreq drivers and core (Arvind Yadav, Christophe Jaillet, Colin Ian King, Gustavo Silva, Julia Lawall, Leonard Crestez, Rob Herring, Sudeep Holla). - Update the IO-wait boost handling in the schedutil governor to make it less aggressive (Joel Fernandes). - Rework system suspend diagnostics to make it print fewer messages to the kernel log by default, add a sysfs knob to allow more suspend-related messages to be printed and add Low Power S0 Idle constraints checks to the ACPI suspend-to-idle code (Rafael Wysocki, Srinivas Pandruvada). - Prefer suspend-to-idle over S3 on ACPI-based systems with the ACPI_FADT_LOW_POWER_S0 flag set and the Low Power Idle S0 _DSM interface present in the ACPI tables (Rafael Wysocki). - Update documentation related to system sleep and rename a number of items in the code to make it cleare that they are related to suspend-to-idle (Rafael Wysocki). - Export a variable allowing device drivers to check the target system sleep state from the core system suspend code (Florian Fainelli). - Clean up the cpuidle subsystem to handle the polling state on x86 in a more straightforward way and to use %pOF instead of full_name (Rafael Wysocki, Rob Herring). - Update the devfreq framework to fix and clean up a few minor issues (Chanwoo Choi, Rob Herring). - Extend diagnostics in the generic power domains (genpd) framework and clean it up slightly (Thara Gopinath, Rob Herring). - Fix and clean up a couple of issues in the operating performance points (OPP) framework (Viresh Kumar, Waldemar Rymarkiewicz). - Add support for RV1108 to the rockchip-io Adaptive Voltage Scaling (AVS) driver (David Wu). - Fix the usage of notifiers in CPU power management on some platforms (Alex Shi). - Update the pm-graph system suspend/hibernation and boot profiling utility (Todd Brandt). - Make it possible to run the cpupower utility without CPU0 (Prarit Bhargava)" * tag 'pm-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/linux-pm: (87 commits) cpuidle: Make drivers initialize polling state cpuidle: Move polling state initialization code to separate file cpuidle: Eliminate the CPUIDLE_DRIVER_STATE_START symbol cpufreq: imx6q: Fix imx6sx low frequency support cpufreq: speedstep-lib: make several arrays static, makes code smaller PM: docs: Delete the obsolete states.txt document PM: docs: Describe high-level PM strategies and sleep states PM / devfreq: Fix memory leak when fail to register device PM / devfreq: Add dependency on PM_OPP PM / devfreq: Move private devfreq_update_stats() into devfreq PM / devfreq: Convert to using %pOF instead of full_name PM / AVS: rockchip-io: add io selectors and supplies for RV1108 cpufreq: ti: Fix 'of_node_put' being called twice in error handling path cpufreq: dt-platdev: Drop few entries from whitelist cpufreq: dt-platdev: Automatically create cpufreq device with OPP v2 ARM: ux500: don't select CPUFREQ_DT cpuidle: Convert to using %pOF instead of full_name cpufreq: Convert to using %pOF instead of full_name PM / Domains: Convert to using %pOF instead of full_name cpufreq: Cap the default transition delay value to 10 ms ...
2017-08-10sched/fair: Fix wake_affine() for !NUMA_BALANCINGPeter Zijlstra
In commit: 3fed382b46ba ("sched/numa: Implement NUMA node level wake_affine()") Rik changed wake_affine to consider NUMA information when balancing between LLC domains. There are a number of problems here which this patch tries to address: - LLC < NODE; in this case we'd use the wrong information to balance - !NUMA_BALANCING: in this case, the new code doesn't do any balancing at all - re-computes the NUMA data for every wakeup, this can mean iterating up to 64 CPUs for every wakeup. - default affine wakeups inside a cache We address these by saving the load/capacity values for each sched_domain during regular load-balance and using these values in wake_affine_llc(). The obvious down-side to using cached values is that they can be too old and poorly reflect reality. But this way we can use LLC wide information and thus not rely on assuming LLC matches NODE. We also don't rely on NUMA_BALANCING nor do we have to aggegate two nodes (or even cache domains) worth of CPUs for each wakeup. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Josef Bacik <josef@toxicpanda.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Rik van Riel <riel@redhat.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: linux-kernel@vger.kernel.org Fixes: 3fed382b46ba ("sched/numa: Implement NUMA node level wake_affine()") [ Minor readability improvements. ] Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/numa: Scale scan period with tasks in group and shared/privateRik van Riel
Running 80 tasks in the same group, or as threads of the same process, results in the memory getting scanned 80x as fast as it would be if a single task was using the memory. This really hurts some workloads. Scale the scan period by the number of tasks in the numa group, and the shared / private ratio, so the average rate at which memory in the group is scanned corresponds roughly to the rate at which a single task would scan its memory. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jhladky@redhat.com Cc: lvenanci@redhat.com Link: http://lkml.kernel.org/r/20170731192847.23050-3-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/numa: Slow down scan rate if shared faults dominateRik van Riel
The comment above update_task_scan_period() says the scan period should be increased (scanning slows down) if the majority of memory accesses are on the local node, or if the majority of the page accesses are shared with other tasks. However, with the current code, all a high ratio of shared accesses does is slow down the rate at which scanning is made faster. This patch changes things so either lots of shared accesses or lots of local accesses will slow down scanning, and numa scanning is sped up only when there are lots of private faults on remote memory pages. Signed-off-by: Rik van Riel <riel@redhat.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Acked-by: Mel Gorman <mgorman@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jhladky@redhat.com Cc: lvenanci@redhat.com Link: http://lkml.kernel.org/r/20170731192847.23050-2-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/pelt: Fix false running accountingVincent Guittot
The running state is a subset of runnable state which means that running can't be set if runnable (weight) is cleared. There are corner cases where the current sched_entity has been already dequeued but cfs_rq->curr has not been updated yet and still points to the dequeued sched_entity. If ___update_load_avg() is called at that time, weight will be 0 and running will be set which is not possible. This case happens during pick_next_task_fair() when a cfs_rq becomes idles. The current sched_entity has been dequeued so se->on_rq is cleared and cfs_rq->weight is null. But cfs_rq->curr still points to se (it will be cleared when picking the idle thread). Because the cfs_rq becomes idle, idle_balance() is called and ends up to call update_blocked_averages() with these wrong running and runnable states. Add a test in ___update_load_avg() to correct the running state in this case. Signed-off-by: Vincent Guittot <vincent.guittot@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Morten.Rasmussen@arm.com Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: dietmar.eggemann@arm.com Link: http://lkml.kernel.org/r/1498885573-18984-1-git-send-email-vincent.guittot@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/fair: Drop always true parameter of update_cfs_rq_load_avg()Viresh Kumar
update_freq is always true and there is no need to pass it to update_cfs_rq_load_avg(). Remove it. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/2d28d295f3f591ede7e931462bce1bda5aaa4896.1495603536.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/fair: Avoid checking cfs_rq->nr_running twiceViresh Kumar
Rearrange pick_next_task_fair() a bit to avoid checking cfs_rq->nr_running twice for the case where FAIR_GROUP_SCHED is enabled and the previous task doesn't belong to the fair class. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/000903ab3df3350943d3271c53615893a230dc95.1495603536.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/fair: Pass 'rq' to weighted_cpuload()Viresh Kumar
weighted_cpuload() uses the cpu number passed to it get pointer to the runqueue. Almost all callers of weighted_cpuload() already have the rq pointer with them and can send that directly to weighted_cpuload(). In some cases the callers actually get the CPU number by doing cpu_of(rq). It would be simpler to pass rq to weighted_cpuload(). Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: linaro-kernel@lists.linaro.org Link: http://lkml.kernel.org/r/b7720627e0576dc29b4ba3f9b6edbc913bb4f684.1495603536.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-10sched/fair: Call cpufreq update util handlers less frequently on UPViresh Kumar
For SMP systems, update_load_avg() calls the cpufreq update util handlers only for the top level cfs_rq (i.e. rq->cfs). But that is not the case for UP systems. update_load_avg() calls util handler for any cfs_rq for which it is called. This would result in way too many calls from the scheduler to the cpufreq governors when CONFIG_FAIR_GROUP_SCHED is enabled. Reduce the frequency of these calls by copying the behavior from the SMP case, i.e. Only call util handlers for the top level cfs_rq. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vincent Guittot <vincent.guittot@linaro.org> Cc: linaro-kernel@lists.linaro.org Fixes: 536bd00cdbb7 ("sched/fair: Fix !CONFIG_SMP kernel cpufreq governor breakage") Link: http://lkml.kernel.org/r/6abf69a2107525885b616a2c1ec03d9c0946171c.1495603536.git.viresh.kumar@linaro.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-08-01sched: cpufreq: Allow remote cpufreq callbacksViresh Kumar
With Android UI and benchmarks the latency of cpufreq response to certain scheduling events can become very critical. Currently, callbacks into cpufreq governors are only made from the scheduler if the target CPU of the event is the same as the current CPU. This means there are certain situations where a target CPU may not run the cpufreq governor for some time. One testcase to show this behavior is where a task starts running on CPU0, then a new task is also spawned on CPU0 by a task on CPU1. If the system is configured such that the new tasks should receive maximum demand initially, this should result in CPU0 increasing frequency immediately. But because of the above mentioned limitation though, this does not occur. This patch updates the scheduler core to call the cpufreq callbacks for remote CPUs as well. The schedutil, ondemand and conservative governors are updated to process cpufreq utilization update hooks called for remote CPUs where the remote CPU is managed by the cpufreq policy of the local CPU. The intel_pstate driver is updated to always reject remote callbacks. This is tested with couple of usecases (Android: hackbench, recentfling, galleryfling, vellamo, Ubuntu: hackbench) on ARM hikey board (64 bit octa-core, single policy). Only galleryfling showed minor improvements, while others didn't had much deviation. The reason being that this patch only targets a corner case, where following are required to be true to improve performance and that doesn't happen too often with these tests: - Task is migrated to another CPU. - The task has high demand, and should take the target CPU to higher OPPs. - And the target CPU doesn't call into the cpufreq governor until the next tick. Based on initial work from Steve Muckle. Signed-off-by: Viresh Kumar <viresh.kumar@linaro.org> Acked-by: Saravana Kannan <skannan@codeaurora.org> Acked-by: Peter Zijlstra (Intel) <peterz@infradead.org> Signed-off-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com>
2017-07-05sched/fair: Fix load_balance() affinity redo pathJeffrey Hugo
If load_balance() fails to migrate any tasks because all tasks were affined, load_balance() removes the source CPU from consideration and attempts to redo and balance among the new subset of CPUs. There is a bug in this code path where the algorithm considers all active CPUs in the system (minus the source that was just masked out). This is not valid for two reasons: some active CPUs may not be in the current scheduling domain and one of the active CPUs is dst_cpu. These CPUs should not be considered, as we cannot pull load from them. Instead of failing out of load_balance(), we may end up redoing the search with no valid CPUs and incorrectly concluding the domain is balanced. Additionally, if the group_imbalance flag was just set, it may also be incorrectly unset, thus the flag will not be seen by other CPUs in future load_balance() runs as that algorithm intends. Fix the check by removing CPUs not in the current domain and the dst_cpu from considertation, thus limiting the evaluation to valid remaining CPUs from which load might be migrated. Co-authored-by: Austin Christ <austinwc@codeaurora.org> Co-authored-by: Dietmar Eggemann <dietmar.eggemann@arm.com> Tested-by: Tyler Baicar <tbaicar@codeaurora.org> Signed-off-by: Jeffrey Hugo <jhugo@codeaurora.org> Acked-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Cc: Austin Christ <austinwc@codeaurora.org> Cc: Dietmar Eggemann <dietmar.eggemann@arm.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Timur Tabi <timur@codeaurora.org> Link: http://lkml.kernel.org/r/1496863138-11322-2-git-send-email-jhugo@codeaurora.org Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-29sched/numa: Hide numa_wake_affine() from UP buildThomas Gleixner
Stephen reported the following build warning in UP: kernel/sched/fair.c:2657:9: warning: 'struct sched_domain' declared inside parameter list ^ /home/sfr/next/next/kernel/sched/fair.c:2657:9: warning: its scope is only this definition or declaration, which is probably not what you want Hide the numa_wake_affine() inline stub on UP builds to get rid of it. Fixes: 3fed382b46ba ("sched/numa: Implement NUMA node level wake_affine()") Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Rik van Riel <riel@redhat.com> Cc: Peter Zijlstra <peterz@infradead.org>
2017-06-24sched/fair: Remove effective_load()Rik van Riel
The effective_load() function was only used by the NUMA balancing code, and not by the regular load balancing code. Now that the NUMA balancing code no longer uses it either, get rid of it. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jhladky@redhat.com Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20170623165530.22514-5-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-24sched/numa: Implement NUMA node level wake_affine()Rik van Riel
Since select_idle_sibling() can place a task anywhere on a socket, comparing loads between individual CPU cores makes no real sense for deciding whether to do an affine wakeup across sockets, either. Instead, compare the load between the sockets in a similar way the load balancer and the numa balancing code do. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jhladky@redhat.com Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20170623165530.22514-4-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2017-06-24sched/fair: Simplify wake_affine() for the single socket caseRik van Riel
Then 'this_cpu' and 'prev_cpu' are in the same socket, select_idle_sibling() will do its thing regardless of the return value of wake_affine(). Just return true and don't look at all the other things. Signed-off-by: Rik van Riel <riel@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Mel Gorman <mgorman@suse.de> Cc: Mike Galbraith <efault@gmx.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: jhladky@redhat.com Cc: linux-kernel@vger.kernel.org Link: http://lkml.kernel.org/r/20170623165530.22514-3-riel@redhat.com Signed-off-by: Ingo Molnar <mingo@kernel.org>