summaryrefslogtreecommitdiffstats
path: root/kernel/bpf
AgeCommit message (Collapse)Author
2020-04-23bpf: fix buggy r0 retval refinement for tracing helpersDaniel Borkmann
[ no upstream commit ] See the glory details in 100605035e15 ("bpf: Verifier, do_refine_retval_range may clamp umin to 0 incorrectly") for why 849fa50662fb ("bpf/verifier: refine retval R0 state for bpf_get_stack helper") is buggy. The whole series however is not suitable for stable since it adds significant amount [0] of verifier complexity in order to add 32bit subreg tracking. Something simpler is needed. Unfortunately, reverting 849fa50662fb ("bpf/verifier: refine retval R0 state for bpf_get_stack helper") or just cherry-picking 100605035e15 ("bpf: Verifier, do_refine_retval_range may clamp umin to 0 incorrectly") is not an option since it will break existing tracing programs badly (at least those that are using bpf_get_stack() and bpf_probe_read_str() helpers). Not fixing it in stable is also not an option since on 4.19 kernels an error will cause a soft-lockup due to hitting dead-code sanitized branch since we don't hard-wire such branches in old kernels yet. But even then for 5.x 849fa50662fb ("bpf/verifier: refine retval R0 state for bpf_get_stack helper") would cause wrong bounds on the verifier simluation when an error is hit. In one of the earlier iterations of mentioned patch series for upstream there was the concern that just using smax_value in do_refine_retval_range() would nuke bounds by subsequent <<32 >>32 shifts before the comparison against 0 [1] which eventually led to the 32bit subreg tracking in the first place. While I initially went for implementing the idea [1] to pattern match the two shift operations, it turned out to be more complex than actually needed, meaning, we could simply treat do_refine_retval_range() similarly to how we branch off verification for conditionals or under speculation, that is, pushing a new reg state to the stack for later verification. This means, instead of verifying the current path with the ret_reg in [S32MIN, msize_max_value] interval where later bounds would get nuked, we split this into two: i) for the success case where ret_reg can be in [0, msize_max_value], and ii) for the error case with ret_reg known to be in interval [S32MIN, -1]. Latter will preserve the bounds during these shift patterns and can match reg < 0 test. test_progs also succeed with this approach. [0] https://lore.kernel.org/bpf/158507130343.15666.8018068546764556975.stgit@john-Precision-5820-Tower/ [1] https://lore.kernel.org/bpf/158015334199.28573.4940395881683556537.stgit@john-XPS-13-9370/T/#m2e0ad1d5949131014748b6daa48a3495e7f0456d Fixes: 849fa50662fb ("bpf/verifier: refine retval R0 state for bpf_get_stack helper") Reported-by: Lorenzo Fontana <fontanalorenz@gmail.com> Reported-by: Leonardo Di Donato <leodidonato@gmail.com> Reported-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: John Fastabend <john.fastabend@gmail.com> Tested-by: John Fastabend <john.fastabend@gmail.com> Tested-by: Lorenzo Fontana <fontanalorenz@gmail.com> Tested-by: Leonardo Di Donato <leodidonato@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02bpf: Explicitly memset some bpf info structures declared on the stackGreg Kroah-Hartman
commit 5c6f25887963f15492b604dd25cb149c501bbabf upstream. Trying to initialize a structure with "= {};" will not always clean out all padding locations in a structure. So be explicit and call memset to initialize everything for a number of bpf information structures that are then copied from userspace, sometimes from smaller memory locations than the size of the structure. Reported-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://lore.kernel.org/bpf/20200320162258.GA794295@kroah.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02bpf: Explicitly memset the bpf_attr structureGreg Kroah-Hartman
commit 8096f229421f7b22433775e928d506f0342e5907 upstream. For the bpf syscall, we are relying on the compiler to properly zero out the bpf_attr union that we copy userspace data into. Unfortunately that doesn't always work properly, padding and other oddities might not be correctly zeroed, and in some tests odd things have been found when the stack is pre-initialized to other values. Fix this by explicitly memsetting the structure to 0 before using it. Reported-by: Maciej Żenczykowski <maze@google.com> Reported-by: John Stultz <john.stultz@linaro.org> Reported-by: Alexander Potapenko <glider@google.com> Reported-by: Alistair Delva <adelva@google.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Link: https://android-review.googlesource.com/c/kernel/common/+/1235490 Link: https://lore.kernel.org/bpf/20200320094813.GA421650@kroah.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-02bpf/btf: Fix BTF verification of enum members in struct/unionYoshiki Komachi
commit da6c7faeb103c493e505e87643272f70be586635 upstream. btf_enum_check_member() was currently sure to recognize the size of "enum" type members in struct/union as the size of "int" even if its size was packed. This patch fixes BTF enum verification to use the correct size of member in BPF programs. Fixes: 179cde8cef7e ("bpf: btf: Check members of struct/union") Signed-off-by: Yoshiki Komachi <komachi.yoshiki@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/1583825550-18606-2-git-send-email-komachi.yoshiki@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-28bpf, offload: Replace bitwise AND by logical AND in bpf_prog_offload_info_fillJohannes Krude
commit e20d3a055a457a10a4c748ce5b7c2ed3173a1324 upstream. This if guards whether user-space wants a copy of the offload-jited bytecode and whether this bytecode exists. By erroneously doing a bitwise AND instead of a logical AND on user- and kernel-space buffer-size can lead to no data being copied to user-space especially when user-space size is a power of two and bigger then the kernel-space buffer. Fixes: fcfb126defda ("bpf: add new jited info fields in bpf_dev_offload and bpf_prog_info") Signed-off-by: Johannes Krude <johannes@krude.de> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jakub Kicinski <kuba@kernel.org> Link: https://lore.kernel.org/bpf/20200212193227.GA3769@phlox.h.transitiv.net Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-02-24bpf: map_seq_next should always increase position indexVasily Averin
[ Upstream commit 90435a7891a2259b0f74c5a1bc5600d0d64cba8f ] If seq_file .next fuction does not change position index, read after some lseek can generate an unexpected output. See also: https://bugzilla.kernel.org/show_bug.cgi?id=206283 v1 -> v2: removed missed increment in end of function Signed-off-by: Vasily Averin <vvs@virtuozzo.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/eca84fdd-c374-a154-d874-6c7b55fc3bc4@virtuozzo.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27bpf, offload: Unlock on error in bpf_offload_dev_create()Dan Carpenter
[ Upstream commit d0fbb51dfaa612f960519b798387be436e8f83c5 ] We need to drop the bpf_devs_lock on error before returning. Fixes: 9fd7c5559165 ("bpf: offload: aggregate offloads per-device") Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Jakub Kicinski <jakub.kicinski@netronome.com> Link: https://lore.kernel.org/bpf/20191104091536.GB31509@mwanda Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27bpf: Add missed newline in verifier verbose logAndrey Ignatov
[ Upstream commit 1fbd20f8b77b366ea4aeb92ade72daa7f36a7e3b ] check_stack_access() that prints verbose log is used in adjust_ptr_min_max_vals() that prints its own verbose log and now they stick together, e.g.: variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1R2 stack pointer arithmetic goes out of range, prohibited for !root Add missing newline so that log is more readable: variable stack access var_off=(0xfffffffffffffff0; 0x4) off=-16 size=1 R2 stack pointer arithmetic goes out of range, prohibited for !root Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Signed-off-by: Andrey Ignatov <rdna@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-23bpf: Fix incorrect verifier simulation of ARSH under ALU32Daniel Borkmann
commit 0af2ffc93a4b50948f9dad2786b7f1bd253bf0b9 upstream. Anatoly has been fuzzing with kBdysch harness and reported a hang in one of the outcomes: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (85) call bpf_get_socket_cookie#46 1: R0_w=invP(id=0) R10=fp0 1: (57) r0 &= 808464432 2: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0 2: (14) w0 -= 810299440 3: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0 3: (c4) w0 s>>= 1 4: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0 4: (76) if w0 s>= 0x30303030 goto pc+216 221: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0 221: (95) exit processed 6 insns (limit 1000000) [...] Taking a closer look, the program was xlated as follows: # ./bpftool p d x i 12 0: (85) call bpf_get_socket_cookie#7800896 1: (bf) r6 = r0 2: (57) r6 &= 808464432 3: (14) w6 -= 810299440 4: (c4) w6 s>>= 1 5: (76) if w6 s>= 0x30303030 goto pc+216 6: (05) goto pc-1 7: (05) goto pc-1 8: (05) goto pc-1 [...] 220: (05) goto pc-1 221: (05) goto pc-1 222: (95) exit Meaning, the visible effect is very similar to f54c7898ed1c ("bpf: Fix precision tracking for unbounded scalars"), that is, the fall-through branch in the instruction 5 is considered to be never taken given the conclusion from the min/max bounds tracking in w6, and therefore the dead-code sanitation rewrites it as goto pc-1. However, real-life input disagrees with verification analysis since a soft-lockup was observed. The bug sits in the analysis of the ARSH. The definition is that we shift the target register value right by K bits through shifting in copies of its sign bit. In adjust_scalar_min_max_vals(), we do first coerce the register into 32 bit mode, same happens after simulating the operation. However, for the case of simulating the actual ARSH, we don't take the mode into account and act as if it's always 64 bit, but location of sign bit is different: dst_reg->smin_value >>= umin_val; dst_reg->smax_value >>= umin_val; dst_reg->var_off = tnum_arshift(dst_reg->var_off, umin_val); Consider an unknown R0 where bpf_get_socket_cookie() (or others) would for example return 0xffff. With the above ARSH simulation, we'd see the following results: [...] 1: R1=ctx(id=0,off=0,imm=0) R2_w=invP65535 R10=fp0 1: (85) call bpf_get_socket_cookie#46 2: R0_w=invP(id=0) R10=fp0 2: (57) r0 &= 808464432 -> R0_runtime = 0x3030 3: R0_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0 3: (14) w0 -= 810299440 -> R0_runtime = 0xcfb40000 4: R0_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0 (0xffffffff) 4: (c4) w0 s>>= 1 -> R0_runtime = 0xe7da0000 5: R0_w=invP(id=0,umin_value=1740636160,umax_value=2147221496,var_off=(0x67c00000; 0x183bfff8)) R10=fp0 (0x67c00000) (0x7ffbfff8) [...] In insn 3, we have a runtime value of 0xcfb40000, which is '1100 1111 1011 0100 0000 0000 0000 0000', the result after the shift has 0xe7da0000 that is '1110 0111 1101 1010 0000 0000 0000 0000', where the sign bit is correctly retained in 32 bit mode. In insn4, the umax was 0xffffffff, and changed into 0x7ffbfff8 after the shift, that is, '0111 1111 1111 1011 1111 1111 1111 1000' and means here that the simulation didn't retain the sign bit. With above logic, the updates happen on the 64 bit min/max bounds and given we coerced the register, the sign bits of the bounds are cleared as well, meaning, we need to force the simulation into s32 space for 32 bit alu mode. Verification after the fix below. We're first analyzing the fall-through branch on 32 bit signed >= test eventually leading to rejection of the program in this specific case: 0: R1=ctx(id=0,off=0,imm=0) R10=fp0 0: (b7) r2 = 808464432 1: R1=ctx(id=0,off=0,imm=0) R2_w=invP808464432 R10=fp0 1: (85) call bpf_get_socket_cookie#46 2: R0_w=invP(id=0) R10=fp0 2: (bf) r6 = r0 3: R0_w=invP(id=0) R6_w=invP(id=0) R10=fp0 3: (57) r6 &= 808464432 4: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=808464432,var_off=(0x0; 0x30303030)) R10=fp0 4: (14) w6 -= 810299440 5: R0_w=invP(id=0) R6_w=invP(id=0,umax_value=4294967295,var_off=(0xcf800000; 0x3077fff0)) R10=fp0 5: (c4) w6 s>>= 1 6: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0 (0x67c00000) (0xfffbfff8) 6: (76) if w6 s>= 0x30303030 goto pc+216 7: R0_w=invP(id=0) R6_w=invP(id=0,umin_value=3888119808,umax_value=4294705144,var_off=(0xe7c00000; 0x183bfff8)) R10=fp0 7: (30) r0 = *(u8 *)skb[808464432] BPF_LD_[ABS|IND] uses reserved fields processed 8 insns (limit 1000000) [...] Fixes: 9cbe1f5a32dc ("bpf/verifier: improve register value range tracking with ARSH") Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200115204733.16648-1-daniel@iogearbox.net Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-12bpf: Fix passing modified ctx to ld/abs/ind instructionDaniel Borkmann
commit 6d4f151acf9a4f6fab09b615f246c717ddedcf0c upstream. Anatoly has been fuzzing with kBdysch harness and reported a KASAN slab oob in one of the outcomes: [...] [ 77.359642] BUG: KASAN: slab-out-of-bounds in bpf_skb_load_helper_8_no_cache+0x71/0x130 [ 77.360463] Read of size 4 at addr ffff8880679bac68 by task bpf/406 [ 77.361119] [ 77.361289] CPU: 2 PID: 406 Comm: bpf Not tainted 5.5.0-rc2-xfstests-00157-g2187f215eba #1 [ 77.362134] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.12.0-1 04/01/2014 [ 77.362984] Call Trace: [ 77.363249] dump_stack+0x97/0xe0 [ 77.363603] print_address_description.constprop.0+0x1d/0x220 [ 77.364251] ? bpf_skb_load_helper_8_no_cache+0x71/0x130 [ 77.365030] ? bpf_skb_load_helper_8_no_cache+0x71/0x130 [ 77.365860] __kasan_report.cold+0x37/0x7b [ 77.366365] ? bpf_skb_load_helper_8_no_cache+0x71/0x130 [ 77.366940] kasan_report+0xe/0x20 [ 77.367295] bpf_skb_load_helper_8_no_cache+0x71/0x130 [ 77.367821] ? bpf_skb_load_helper_8+0xf0/0xf0 [ 77.368278] ? mark_lock+0xa3/0x9b0 [ 77.368641] ? kvm_sched_clock_read+0x14/0x30 [ 77.369096] ? sched_clock+0x5/0x10 [ 77.369460] ? sched_clock_cpu+0x18/0x110 [ 77.369876] ? bpf_skb_load_helper_8+0xf0/0xf0 [ 77.370330] ___bpf_prog_run+0x16c0/0x28f0 [ 77.370755] __bpf_prog_run32+0x83/0xc0 [ 77.371153] ? __bpf_prog_run64+0xc0/0xc0 [ 77.371568] ? match_held_lock+0x1b/0x230 [ 77.371984] ? rcu_read_lock_held+0xa1/0xb0 [ 77.372416] ? rcu_is_watching+0x34/0x50 [ 77.372826] sk_filter_trim_cap+0x17c/0x4d0 [ 77.373259] ? sock_kzfree_s+0x40/0x40 [ 77.373648] ? __get_filter+0x150/0x150 [ 77.374059] ? skb_copy_datagram_from_iter+0x80/0x280 [ 77.374581] ? do_raw_spin_unlock+0xa5/0x140 [ 77.375025] unix_dgram_sendmsg+0x33a/0xa70 [ 77.375459] ? do_raw_spin_lock+0x1d0/0x1d0 [ 77.375893] ? unix_peer_get+0xa0/0xa0 [ 77.376287] ? __fget_light+0xa4/0xf0 [ 77.376670] __sys_sendto+0x265/0x280 [ 77.377056] ? __ia32_sys_getpeername+0x50/0x50 [ 77.377523] ? lock_downgrade+0x350/0x350 [ 77.377940] ? __sys_setsockopt+0x2a6/0x2c0 [ 77.378374] ? sock_read_iter+0x240/0x240 [ 77.378789] ? __sys_socketpair+0x22a/0x300 [ 77.379221] ? __ia32_sys_socket+0x50/0x50 [ 77.379649] ? mark_held_locks+0x1d/0x90 [ 77.380059] ? trace_hardirqs_on_thunk+0x1a/0x1c [ 77.380536] __x64_sys_sendto+0x74/0x90 [ 77.380938] do_syscall_64+0x68/0x2a0 [ 77.381324] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 77.381878] RIP: 0033:0x44c070 [...] After further debugging, turns out while in case of other helper functions we disallow passing modified ctx, the special case of ld/abs/ind instruction which has similar semantics (except r6 being the ctx argument) is missing such check. Modified ctx is impossible here as bpf_skb_load_helper_8_no_cache() and others are expecting skb fields in original position, hence, add check_ctx_reg() to reject any modified ctx. Issue was first introduced back in f1174f77b50c ("bpf/verifier: rework value tracking"). Fixes: f1174f77b50c ("bpf/verifier: rework value tracking") Reported-by: Anatoly Trosinenko <anatoly.trosinenko@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Link: https://lore.kernel.org/bpf/20200106215157.3553-1-daniel@iogearbox.net Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-31bpf/stackmap: Fix deadlock with rq_lock in bpf_get_stack()Song Liu
[ Upstream commit eac9153f2b584c702cea02c1f1a57d85aa9aea42 ] bpf stackmap with build-id lookup (BPF_F_STACK_BUILD_ID) can trigger A-A deadlock on rq_lock(): rcu: INFO: rcu_sched detected stalls on CPUs/tasks: [...] Call Trace: try_to_wake_up+0x1ad/0x590 wake_up_q+0x54/0x80 rwsem_wake+0x8a/0xb0 bpf_get_stack+0x13c/0x150 bpf_prog_fbdaf42eded9fe46_on_event+0x5e3/0x1000 bpf_overflow_handler+0x60/0x100 __perf_event_overflow+0x4f/0xf0 perf_swevent_overflow+0x99/0xc0 ___perf_sw_event+0xe7/0x120 __schedule+0x47d/0x620 schedule+0x29/0x90 futex_wait_queue_me+0xb9/0x110 futex_wait+0x139/0x230 do_futex+0x2ac/0xa50 __x64_sys_futex+0x13c/0x180 do_syscall_64+0x42/0x100 entry_SYSCALL_64_after_hwframe+0x44/0xa9 This can be reproduced by: 1. Start a multi-thread program that does parallel mmap() and malloc(); 2. taskset the program to 2 CPUs; 3. Attach bpf program to trace_sched_switch and gather stackmap with build-id, e.g. with trace.py from bcc tools: trace.py -U -p <pid> -s <some-bin,some-lib> t:sched:sched_switch A sample reproducer is attached at the end. This could also trigger deadlock with other locks that are nested with rq_lock. Fix this by checking whether irqs are disabled. Since rq_lock and all other nested locks are irq safe, it is safe to do up_read() when irqs are not disable. If the irqs are disabled, postpone up_read() in irq_work. Fixes: 615755a77b24 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/bpf/20191014171223.357174-1-songliubraving@fb.com Reproducer: ============================ 8< ============================ char *filename; void *worker(void *p) { void *ptr; int fd; char *pptr; fd = open(filename, O_RDONLY); if (fd < 0) return NULL; while (1) { struct timespec ts = {0, 1000 + rand() % 2000}; ptr = mmap(NULL, 4096 * 64, PROT_READ, MAP_PRIVATE, fd, 0); usleep(1); if (ptr == MAP_FAILED) { printf("failed to mmap\n"); break; } munmap(ptr, 4096 * 64); usleep(1); pptr = malloc(1); usleep(1); pptr[0] = 1; usleep(1); free(pptr); usleep(1); nanosleep(&ts, NULL); } close(fd); return NULL; } int main(int argc, char *argv[]) { void *ptr; int i; pthread_t threads[THREAD_COUNT]; if (argc < 2) return 0; filename = argv[1]; for (i = 0; i < THREAD_COUNT; i++) { if (pthread_create(threads + i, NULL, worker, NULL)) { fprintf(stderr, "Error creating thread\n"); return 0; } } for (i = 0; i < THREAD_COUNT; i++) pthread_join(threads[i], NULL); return 0; } ============================ 8< ============================ Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-13bpf: btf: check name validity for various typesYonghong Song
[ Upstream commit eb04bbb608e683f8fd3ef7f716e2fa32dd90861f ] This patch added name checking for the following types: . BTF_KIND_PTR, BTF_KIND_ARRAY, BTF_KIND_VOLATILE, BTF_KIND_CONST, BTF_KIND_RESTRICT: the name must be null . BTF_KIND_STRUCT, BTF_KIND_UNION: the struct/member name is either null or a valid identifier . BTF_KIND_ENUM: the enum type name is either null or a valid identifier; the enumerator name must be a valid identifier. . BTF_KIND_FWD: the name must be a valid identifier . BTF_KIND_TYPEDEF: the name must be a valid identifier For those places a valid name is required, the name must be a valid C identifier. This can be relaxed later if we found use cases for a different (non-C) frontend. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-13bpf: btf: implement btf_name_valid_identifier()Yonghong Song
[ Upstream commit cdbb096adddb3f42584cecb5ec2e07c26815b71f ] Function btf_name_valid_identifier() have been implemented in bpf-next commit 2667a2626f4d ("bpf: btf: Add BTF_KIND_FUNC and BTF_KIND_FUNC_PROTO"). Backport this function so later patch can use it. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Signed-off-by: Yonghong Song <yhs@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05xdp: fix cpumap redirect SKB creation bugJesper Dangaard Brouer
[ Upstream commit 676e4a6fe703f2dae699ee9d56f14516f9ada4ea ] We want to avoid leaking pointer info from xdp_frame (that is placed in top of frame) like commit 6dfb970d3dbd ("xdp: avoid leaking info stored in frame data on page reuse"), and followup commit 97e19cce05e5 ("bpf: reserve xdp_frame size in xdp headroom") that reserve this headroom. These changes also affected how cpumap constructed SKBs, as xdpf->headroom size changed, the skb data starting point were in-effect shifted with 32 bytes (sizeof xdp_frame). This was still okay, as the cpumap frame_size calculation also included xdpf->headroom which were reduced by same amount. A bug was introduced in commit 77ea5f4cbe20 ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't"), where the xdpf->headroom became part of the SKB_DATA_ALIGN rounding up. This round-up to find the frame_size is in principle still correct as it does not exceed the 2048 bytes frame_size (which is max for ixgbe and i40e), but the 32 bytes offset of pkt_data_start puts this over the 2048 bytes limit. This cause skb_shared_info to spill into next frame. It is a little hard to trigger, as the SKB need to use above 15 skb_shinfo->frags[] as far as I calculate. This does happen in practise for TCP streams when skb_try_coalesce() kicks in. KASAN can be used to detect these wrong memory accesses, I've seen: BUG: KASAN: use-after-free in skb_try_coalesce+0x3cb/0x760 BUG: KASAN: wild-memory-access in skb_release_data+0xe2/0x250 Driver veth also construct a SKB from xdp_frame in this way, but is not affected, as it doesn't reserve/deduct the room (used by xdp_frame) from the SKB headroom. Instead is clears the pointers via xdp_scrub_frame(), and allows SKB to use this area. The fix in this patch is to do like veth and instead allow SKB to (re)use the area occupied by xdp_frame, by clearing via xdp_scrub_frame(). (This does kill the idea of the SKB being able to access (mem) info from this area, but I guess it was a bad idea anyhow, and it was already killed by the veth changes.) Fixes: 77ea5f4cbe20 ("bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn't") Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05bpf: drop refcount if bpf_map_new_fd() fails in map_create()Peng Sun
[ Upstream commit 352d20d611414715353ee65fc206ee57ab1a6984 ] In bpf/syscall.c, map_create() first set map->usercnt to 1, a file descriptor is supposed to return to userspace. When bpf_map_new_fd() fails, drop the refcount. Fixes: bd5f5f4ecb78 ("bpf: Add BPF_MAP_GET_FD_BY_ID") Signed-off-by: Peng Sun <sironhide0null@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05bpf: decrease usercnt if bpf_map_new_fd() fails in bpf_map_get_fd_by_id()Peng Sun
[ Upstream commit 781e62823cb81b972dc8652c1827205cda2ac9ac ] In bpf/syscall.c, bpf_map_get_fd_by_id() use bpf_map_inc_not_zero() to increase the refcount, both map->refcnt and map->usercnt. Then, if bpf_map_new_fd() fails, should handle map->usercnt too. Fixes: bd5f5f4ecb78 ("bpf: Add BPF_MAP_GET_FD_BY_ID") Signed-off-by: Peng Sun <sironhide0null@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05bpf/cpumap: make sure frame_size for build_skb is aligned if headroom isn'tJesper Dangaard Brouer
[ Upstream commit 77ea5f4cbe2084db9ab021ba73fb7eadf1610884 ] The frame_size passed to build_skb must be aligned, else it is possible that the embedded struct skb_shared_info gets unaligned. For correctness make sure that xdpf->headroom in included in the alignment. No upstream drivers can hit this, as all XDP drivers provide an aligned headroom. This was discovered when playing with implementing XDP support for mvneta, which have a 2 bytes DSA header, and this Marvell ARM64 platform didn't like doing atomic operations on an unaligned skb_shinfo(skb)->dataref addresses. Fixes: 1c601d829ab0 ("bpf: cpumap xdp_buff to skb conversion and allocation") Signed-off-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01bpf, btf: fix a missing check bug in btf_parseMartin Lau
[ Upstream commit 4a6998aff82a20a1aece86a186d8e5263f8b2315 ] Wenwen Wang reported: In btf_parse(), the header of the user-space btf data 'btf_data' is firstly parsed and verified through btf_parse_hdr(). In btf_parse_hdr(), the header is copied from user-space 'btf_data' to kernel-space 'btf->hdr' and then verified. If no error happens during the verification process, the whole data of 'btf_data', including the header, is then copied to 'data' in btf_parse(). It is obvious that the header is copied twice here. More importantly, no check is enforced after the second copy to make sure the headers obtained in these two copies are same. Given that 'btf_data' resides in the user space, a malicious user can race to modify the header between these two copies. By doing so, the user can inject inconsistent data, which can cause undefined behavior of the kernel and introduce potential security risk. This issue is similar to the one fixed in commit 8af03d1ae2e1 ("bpf: btf: Fix a missing check bug"). To fix it, this patch copies the user 'btf_data' *before* parsing / verifying the BTF header. Fixes: 69b693f0aefa ("bpf: btf: Introduce BPF Type Format (BTF)") Signed-off-by: Martin KaFai Lau <kafai@fb.com> Co-developed-by: Wenwen Wang <wang6495@umn.edu> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01bpf: devmap: fix wrong interface selection in notifier_callTaehee Yoo
[ Upstream commit f592f804831f1cf9d1f9966f58c80f150e6829b5 ] The dev_map_notification() removes interface in devmap if unregistering interface's ifindex is same. But only checking ifindex is not enough because other netns can have same ifindex. so that wrong interface selection could occurred. Hence netdev pointer comparison code is added. v2: compare netdev pointer instead of using net_eq() (Daniel Borkmann) v1: Initial patch Fixes: 2ddf71e23cc2 ("net: add notifier hooks for devmap bpf map") Signed-off-by: Taehee Yoo <ap420073@gmail.com> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-24bpf: btf: Fix a missing check bugWenwen Wang
[ Upstream commit 8af03d1ae2e154a8be3631e8694b87007e1bdbc2 ] In btf_parse_hdr(), the length of the btf data header is firstly copied from the user space to 'hdr_len' and checked to see whether it is larger than 'btf_data_size'. If yes, an error code EINVAL is returned. Otherwise, the whole header is copied again from the user space to 'btf->hdr'. However, after the second copy, there is no check between 'btf->hdr->hdr_len' and 'hdr_len' to confirm that the two copies get the same value. Given that the btf data is in the user space, a malicious user can race to change the data between the two copies. By doing so, the user can provide malicious data to the kernel and cause undefined behavior. This patch adds a necessary check after the second copy, to make sure 'btf->hdr->hdr_len' has the same value as 'hdr_len'. Otherwise, an error code EINVAL will be returned. Signed-off-by: Wenwen Wang <wang6495@umn.edu> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-07bpf: fix use after free in prog symbol exposureDaniel Borkmann
commit c751798aa224fadc5124b49eeb38fb468c0fa039 upstream. syzkaller managed to trigger the warning in bpf_jit_free() which checks via bpf_prog_kallsyms_verify_off() for potentially unlinked JITed BPF progs in kallsyms, and subsequently trips over GPF when walking kallsyms entries: [...] 8021q: adding VLAN 0 to HW filter on device batadv0 8021q: adding VLAN 0 to HW filter on device batadv0 WARNING: CPU: 0 PID: 9869 at kernel/bpf/core.c:810 bpf_jit_free+0x1e8/0x2a0 Kernel panic - not syncing: panic_on_warn set ... CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events bpf_prog_free_deferred Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x113/0x167 lib/dump_stack.c:113 panic+0x212/0x40b kernel/panic.c:214 __warn.cold.8+0x1b/0x38 kernel/panic.c:571 report_bug+0x1a4/0x200 lib/bug.c:186 fixup_bug arch/x86/kernel/traps.c:178 [inline] do_error_trap+0x11b/0x200 arch/x86/kernel/traps.c:271 do_invalid_op+0x36/0x40 arch/x86/kernel/traps.c:290 invalid_op+0x14/0x20 arch/x86/entry/entry_64.S:973 RIP: 0010:bpf_jit_free+0x1e8/0x2a0 Code: 02 4c 89 e2 83 e2 07 38 d0 7f 08 84 c0 0f 85 86 00 00 00 48 ba 00 02 00 00 00 00 ad de 0f b6 43 02 49 39 d6 0f 84 5f fe ff ff <0f> 0b e9 58 fe ff ff 48 b8 00 00 00 00 00 fc ff df 4c 89 e2 48 c1 RSP: 0018:ffff888092f67cd8 EFLAGS: 00010202 RAX: 0000000000000007 RBX: ffffc90001947000 RCX: ffffffff816e9d88 RDX: dead000000000200 RSI: 0000000000000008 RDI: ffff88808769f7f0 RBP: ffff888092f67d00 R08: fffffbfff1394059 R09: fffffbfff1394058 R10: fffffbfff1394058 R11: ffffffff89ca02c7 R12: ffffc90001947002 R13: ffffc90001947020 R14: ffffffff881eca80 R15: ffff88808769f7e8 BUG: unable to handle kernel paging request at fffffbfff400d000 #PF error: [normal kernel read fault] PGD 21ffee067 P4D 21ffee067 PUD 21ffed067 PMD 9f942067 PTE 0 Oops: 0000 [#1] PREEMPT SMP KASAN CPU: 0 PID: 9869 Comm: kworker/0:7 Not tainted 5.0.0-rc8+ #1 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Workqueue: events bpf_prog_free_deferred RIP: 0010:bpf_get_prog_addr_region kernel/bpf/core.c:495 [inline] RIP: 0010:bpf_tree_comp kernel/bpf/core.c:558 [inline] RIP: 0010:__lt_find include/linux/rbtree_latch.h:115 [inline] RIP: 0010:latch_tree_find include/linux/rbtree_latch.h:208 [inline] RIP: 0010:bpf_prog_kallsyms_find+0x107/0x2e0 kernel/bpf/core.c:632 Code: 00 f0 ff ff 44 38 c8 7f 08 84 c0 0f 85 fa 00 00 00 41 f6 45 02 01 75 02 0f 0b 48 39 da 0f 82 92 00 00 00 48 89 d8 48 c1 e8 03 <42> 0f b6 04 30 84 c0 74 08 3c 03 0f 8e 45 01 00 00 8b 03 48 c1 e0 [...] Upon further debugging, it turns out that whenever we trigger this issue, the kallsyms removal in bpf_prog_ksym_node_del() was /skipped/ but yet bpf_jit_free() reported that the entry is /in use/. Problem is that symbol exposure via bpf_prog_kallsyms_add() but also perf_event_bpf_event() were done /after/ bpf_prog_new_fd(). Once the fd is exposed to the public, a parallel close request came in right before we attempted to do the bpf_prog_kallsyms_add(). Given at this time the prog reference count is one, we start to rip everything underneath us via bpf_prog_release() -> bpf_prog_put(). The memory is eventually released via deferred free, so we're seeing that bpf_jit_free() has a kallsym entry because we added it from bpf_prog_load() but /after/ bpf_prog_put() from the remote CPU. Therefore, move both notifications /before/ we install the fd. The issue was never seen between bpf_prog_alloc_id() and bpf_prog_new_fd() because upon bpf_prog_get_fd_by_id() we'll take another reference to the BPF prog, so we're still holding the original reference from the bpf_prog_load(). Fixes: 6ee52e2a3fe4 ("perf, bpf: Introduce PERF_RECORD_BPF_EVENT") Fixes: 74451e66d516 ("bpf: make jited programs visible in traces") Reported-by: syzbot+bd3bba6ff3fcea7a6ec6@syzkaller.appspotmail.com Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Cc: Song Liu <songliubraving@fb.com> Signed-off-by: Zubin Mithra <zsm@chromium.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-26bpf: silence warning messages in coreValdis Klētnieks
[ Upstream commit aee450cbe482a8c2f6fa5b05b178ef8b8ff107ca ] Compiling kernel/bpf/core.c with W=1 causes a flood of warnings: kernel/bpf/core.c:1198:65: warning: initialized field overwritten [-Woverride-init] 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true | ^~~~ kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL' 1087 | INSN_3(ALU, ADD, X), \ | ^~~~~~ kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP' 1202 | BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), | ^~~~~~~~~~~~ kernel/bpf/core.c:1198:65: note: (near initialization for 'public_insntable[12]') 1198 | #define BPF_INSN_3_TBL(x, y, z) [BPF_##x | BPF_##y | BPF_##z] = true | ^~~~ kernel/bpf/core.c:1087:2: note: in expansion of macro 'BPF_INSN_3_TBL' 1087 | INSN_3(ALU, ADD, X), \ | ^~~~~~ kernel/bpf/core.c:1202:3: note: in expansion of macro 'BPF_INSN_MAP' 1202 | BPF_INSN_MAP(BPF_INSN_2_TBL, BPF_INSN_3_TBL), | ^~~~~~~~~~~~ 98 copies of the above. The attached patch silences the warnings, because we *know* we're overwriting the default initializer. That leaves bpf/core.c with only 6 other warnings, which become more visible in comparison. Signed-off-by: Valdis Kletnieks <valdis.kletnieks@vt.edu> Acked-by: Andrii Nakryiko <andriin@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14bpf, devmap: Add missing RCU read lock on flushToshiaki Makita
[ Upstream commit 86723c8640633bee4b4588d3c7784ee7a0032f65 ] .ndo_xdp_xmit() assumes it is called under RCU. For example virtio_net uses RCU to detect it has setup the resources for tx. The assumption accidentally broke when introducing bulk queue in devmap. Fixes: 5d053f9da431 ("bpf: devmap prepare xdp frames for bulking") Reported-by: David Ahern <dsahern@gmail.com> Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14bpf, devmap: Add missing bulk queue freeToshiaki Makita
[ Upstream commit edabf4d9dd905acd60048ea1579943801e3a4876 ] dev_map_free() forgot to free bulk queue when freeing its entries. Fixes: 5d053f9da431 ("bpf: devmap prepare xdp frames for bulking") Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-14bpf, devmap: Fix premature entry free on destroying mapToshiaki Makita
[ Upstream commit d4dd153d551634683fccf8881f606fa9f3dfa1ef ] dev_map_free() waits for flush_needed bitmap to be empty in order to ensure all flush operations have completed before freeing its entries. However the corresponding clear_bit() was called before using the entries, so the entries could be used after free. All access to the entries needs to be done before clearing the bit. It seems commit a5e2da6e9787 ("bpf: netdev is never null in __dev_map_flush") accidentally changed the clear_bit() and memory access order. Note that the problem happens only in __dev_map_flush(), not in dev_map_flush_old(). dev_map_flush_old() is called only after nulling out the corresponding netdev_map entry, so dev_map_free() never frees the entry thus no such race happens there. Fixes: a5e2da6e9787 ("bpf: netdev is never null in __dev_map_flush") Signed-off-by: Toshiaki Makita <toshiaki.makita1@gmail.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-10bpf: fix bpf_jit_limit knob for PAGE_SIZE >= 64KDaniel Borkmann
[ Upstream commit fdadd04931c2d7cd294dc5b2b342863f94be53a3 ] Michael and Sandipan report: Commit ede95a63b5 introduced a bpf_jit_limit tuneable to limit BPF JIT allocations. At compile time it defaults to PAGE_SIZE * 40000, and is adjusted again at init time if MODULES_VADDR is defined. For ppc64 kernels, MODULES_VADDR isn't defined, so we're stuck with the compile-time default at boot-time, which is 0x9c400000 when using 64K page size. This overflows the signed 32-bit bpf_jit_limit value: root@ubuntu:/tmp# cat /proc/sys/net/core/bpf_jit_limit -1673527296 and can cause various unexpected failures throughout the network stack. In one case `strace dhclient eth0` reported: setsockopt(5, SOL_SOCKET, SO_ATTACH_FILTER, {len=11, filter=0x105dd27f8}, 16) = -1 ENOTSUPP (Unknown error 524) and similar failures can be seen with tools like tcpdump. This doesn't always reproduce however, and I'm not sure why. The more consistent failure I've seen is an Ubuntu 18.04 KVM guest booted on a POWER9 host would time out on systemd/netplan configuring a virtio-net NIC with no noticeable errors in the logs. Given this and also given that in near future some architectures like arm64 will have a custom area for BPF JIT image allocations we should get rid of the BPF_JIT_LIMIT_DEFAULT fallback / default entirely. For 4.21, we have an overridable bpf_jit_alloc_exec(), bpf_jit_free_exec() so therefore add another overridable bpf_jit_alloc_exec_limit() helper function which returns the possible size of the memory area for deriving the default heuristic in bpf_jit_charge_init(). Like bpf_jit_alloc_exec() and bpf_jit_free_exec(), the new bpf_jit_alloc_exec_limit() assumes that module_alloc() is the default JIT memory provider, and therefore in case archs implement their custom module_alloc() we use MODULES_{END,_VADDR} for limits and otherwise for vmalloc_exec() cases like on ppc64 we use VMALLOC_{END,_START}. Additionally, for archs supporting large page sizes, we should change the sysctl to be handled as long to not run into sysctl restrictions in future. Fixes: ede95a63b5e8 ("bpf: add bpf_jit_limit knob to restrict unpriv allocations") Reported-by: Sandipan Das <sandipan@linux.ibm.com> Reported-by: Michael Roth <mdroth@linux.vnet.ibm.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Tested-by: Michael Roth <mdroth@linux.vnet.ibm.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-03bpf: fix unconnected udp hooksDaniel Borkmann
commit 983695fa676568fc0fe5ddd995c7267aabc24632 upstream. Intention of cgroup bind/connect/sendmsg BPF hooks is to act transparently to applications as also stated in original motivation in 7828f20e3779 ("Merge branch 'bpf-cgroup-bind-connect'"). When recently integrating the latter two hooks into Cilium to enable host based load-balancing with Kubernetes, I ran into the issue that pods couldn't start up as DNS got broken. Kubernetes typically sets up DNS as a service and is thus subject to load-balancing. Upon further debugging, it turns out that the cgroupv2 sendmsg BPF hooks API is currently insufficient and thus not usable as-is for standard applications shipped with most distros. To break down the issue we ran into with a simple example: # cat /etc/resolv.conf nameserver 147.75.207.207 nameserver 147.75.207.208 For the purpose of a simple test, we set up above IPs as service IPs and transparently redirect traffic to a different DNS backend server for that node: # cilium service list ID Frontend Backend 1 147.75.207.207:53 1 => 8.8.8.8:53 2 147.75.207.208:53 1 => 8.8.8.8:53 The attached BPF program is basically selecting one of the backends if the service IP/port matches on the cgroup hook. DNS breaks here, because the hooks are not transparent enough to applications which have built-in msg_name address checks: # nslookup 1.1.1.1 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53 [...] ;; connection timed out; no servers could be reached # dig 1.1.1.1 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.208#53 ;; reply from unexpected source: 8.8.8.8#53, expected 147.75.207.207#53 [...] ; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1 ;; global options: +cmd ;; connection timed out; no servers could be reached For comparison, if none of the service IPs is used, and we tell nslookup to use 8.8.8.8 directly it works just fine, of course: # nslookup 1.1.1.1 8.8.8.8 1.1.1.1.in-addr.arpa name = one.one.one.one. In order to fix this and thus act more transparent to the application, this needs reverse translation on recvmsg() side. A minimal fix for this API is to add similar recvmsg() hooks behind the BPF cgroups static key such that the program can track state and replace the current sockaddr_in{,6} with the original service IP. From BPF side, this basically tracks the service tuple plus socket cookie in an LRU map where the reverse NAT can then be retrieved via map value as one example. Side-note: the BPF cgroups static key should be converted to a per-hook static key in future. Same example after this fix: # cilium service list ID Frontend Backend 1 147.75.207.207:53 1 => 8.8.8.8:53 2 147.75.207.208:53 1 => 8.8.8.8:53 Lookups work fine now: # nslookup 1.1.1.1 1.1.1.1.in-addr.arpa name = one.one.one.one. Authoritative answers can be found from: # dig 1.1.1.1 ; <<>> DiG 9.11.3-1ubuntu1.7-Ubuntu <<>> 1.1.1.1 ;; global options: +cmd ;; Got answer: ;; ->>HEADER<<- opcode: QUERY, status: NXDOMAIN, id: 51550 ;; flags: qr rd ra ad; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 1 ;; OPT PSEUDOSECTION: ; EDNS: version: 0, flags:; udp: 512 ;; QUESTION SECTION: ;1.1.1.1. IN A ;; AUTHORITY SECTION: . 23426 IN SOA a.root-servers.net. nstld.verisign-grs.com. 2019052001 1800 900 604800 86400 ;; Query time: 17 msec ;; SERVER: 147.75.207.207#53(147.75.207.207) ;; WHEN: Tue May 21 12:59:38 UTC 2019 ;; MSG SIZE rcvd: 111 And from an actual packet level it shows that we're using the back end server when talking via 147.75.207.20{7,8} front end: # tcpdump -i any udp [...] 12:59:52.698732 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38) 12:59:52.698735 IP foo.42011 > google-public-dns-a.google.com.domain: 18803+ PTR? 1.1.1.1.in-addr.arpa. (38) 12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67) 12:59:52.701208 IP google-public-dns-a.google.com.domain > foo.42011: 18803 1/0/0 PTR one.one.one.one. (67) [...] In order to be flexible and to have same semantics as in sendmsg BPF programs, we only allow return codes in [1,1] range. In the sendmsg case the program is called if msg->msg_name is present which can be the case in both, connected and unconnected UDP. The former only relies on the sockaddr_in{,6} passed via connect(2) if passed msg->msg_name was NULL. Therefore, on recvmsg side, we act in similar way to call into the BPF program whenever a non-NULL msg->msg_name was passed independent of sk->sk_state being TCP_ESTABLISHED or not. Note that for TCP case, the msg->msg_name is ignored in the regular recvmsg path and therefore not relevant. For the case of ip{,v6}_recv_error() paths, picked up via MSG_ERRQUEUE, the hook is not called. This is intentional as it aligns with the same semantics as in case of TCP cgroup BPF hooks right now. This might be better addressed in future through a different bpf_attach_type such that this case can be distinguished from the regular recvmsg paths, for example. Fixes: 1cedee13d25a ("bpf: Hooks for sys_sendmsg") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Andrey Ignatov <rdna@fb.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Acked-by: Martynas Pumputis <m@lambda.lt> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-03bpf: lpm_trie: check left child of last leftmost node for NULLJonathan Lemon
commit da2577fdd0932ea4eefe73903f1130ee366767d2 upstream. If the leftmost parent node of the tree has does not have a child on the left side, then trie_get_next_key (and bpftool map dump) will not look at the child on the right. This leads to the traversal missing elements. Lookup is not affected. Update selftest to handle this case. Reproducer: bpftool map create /sys/fs/bpf/lpm type lpm_trie key 6 \ value 1 entries 256 name test_lpm flags 1 bpftool map update pinned /sys/fs/bpf/lpm key 8 0 0 0 0 0 value 1 bpftool map update pinned /sys/fs/bpf/lpm key 16 0 0 0 0 128 value 2 bpftool map dump pinned /sys/fs/bpf/lpm Returns only 1 element. (2 expected) Fixes: b471f2f1de8b ("bpf: implement MAP_GET_NEXT_KEY command for LPM_TRIE") Signed-off-by: Jonathan Lemon <jonathan.lemon@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-15bpf: fix undefined behavior in narrow load handlingKrzesimir Nowak
[ Upstream commit e2f7fc0ac6957cabff4cecf6c721979b571af208 ] Commit 31fd85816dbe ("bpf: permits narrower load from bpf program context fields") made the verifier add AND instructions to clear the unwanted bits with a mask when doing a narrow load. The mask is computed with (1 << size * 8) - 1 where "size" is the size of the narrow load. When doing a 4 byte load of a an 8 byte field the verifier shifts the literal 1 by 32 places to the left. This results in an overflow of a signed integer, which is an undefined behavior. Typically, the computed mask was zero, so the result of the narrow load ended up being zero too. Cast the literal to long long to avoid overflows. Note that narrow load of the 4 byte fields does not have the undefined behavior, because the load size can only be either 1 or 2 bytes, so shifting 1 by 8 or 16 places will not overflow it. And reading 4 bytes would not be a narrow load of a 4 bytes field. Fixes: 31fd85816dbe ("bpf: permits narrower load from bpf program context fields") Reviewed-by: Alban Crequy <alban@kinvolk.io> Reviewed-by: Iago López Galeiras <iago@kinvolk.io> Signed-off-by: Krzesimir Nowak <krzesimir@kinvolk.io> Cc: Yonghong Song <yhs@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-31bpf: devmap: fix use-after-free Read in __dev_map_entry_freeEric Dumazet
commit 2baae3545327632167c0180e9ca1d467416f1919 upstream. synchronize_rcu() is fine when the rcu callbacks only need to free memory (kfree_rcu() or direct kfree() call rcu call backs) __dev_map_entry_free() is a bit more complex, so we need to make sure that call queued __dev_map_entry_free() callbacks have completed. sysbot report: BUG: KASAN: use-after-free in dev_map_flush_old kernel/bpf/devmap.c:365 [inline] BUG: KASAN: use-after-free in __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 Read of size 8 at addr ffff8801b8da38c8 by task ksoftirqd/1/18 CPU: 1 PID: 18 Comm: ksoftirqd/1 Not tainted 4.17.0+ #39 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x1b9/0x294 lib/dump_stack.c:113 print_address_description+0x6c/0x20b mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.7+0x242/0x2fe mm/kasan/report.c:412 __asan_report_load8_noabort+0x14/0x20 mm/kasan/report.c:433 dev_map_flush_old kernel/bpf/devmap.c:365 [inline] __dev_map_entry_free+0x2a8/0x300 kernel/bpf/devmap.c:379 __rcu_reclaim kernel/rcu/rcu.h:178 [inline] rcu_do_batch kernel/rcu/tree.c:2558 [inline] invoke_rcu_callbacks kernel/rcu/tree.c:2818 [inline] __rcu_process_callbacks kernel/rcu/tree.c:2785 [inline] rcu_process_callbacks+0xe9d/0x1760 kernel/rcu/tree.c:2802 __do_softirq+0x2e0/0xaf5 kernel/softirq.c:284 run_ksoftirqd+0x86/0x100 kernel/softirq.c:645 smpboot_thread_fn+0x417/0x870 kernel/smpboot.c:164 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 Allocated by task 6675: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc4/0xe0 mm/kasan/kasan.c:553 kmem_cache_alloc_trace+0x152/0x780 mm/slab.c:3620 kmalloc include/linux/slab.h:513 [inline] kzalloc include/linux/slab.h:706 [inline] dev_map_alloc+0x208/0x7f0 kernel/bpf/devmap.c:102 find_and_alloc_map kernel/bpf/syscall.c:129 [inline] map_create+0x393/0x1010 kernel/bpf/syscall.c:453 __do_sys_bpf kernel/bpf/syscall.c:2351 [inline] __se_sys_bpf kernel/bpf/syscall.c:2328 [inline] __x64_sys_bpf+0x303/0x510 kernel/bpf/syscall.c:2328 do_syscall_64+0x1b1/0x800 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 26: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x11a/0x170 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kfree+0xd9/0x260 mm/slab.c:3813 dev_map_free+0x4fa/0x670 kernel/bpf/devmap.c:191 bpf_map_free_deferred+0xba/0xf0 kernel/bpf/syscall.c:262 process_one_work+0xc64/0x1b70 kernel/workqueue.c:2153 worker_thread+0x181/0x13a0 kernel/workqueue.c:2296 kthread+0x345/0x410 kernel/kthread.c:240 ret_from_fork+0x3a/0x50 arch/x86/entry/entry_64.S:412 The buggy address belongs to the object at ffff8801b8da37c0 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 264 bytes inside of 512-byte region [ffff8801b8da37c0, ffff8801b8da39c0) The buggy address belongs to the page: page:ffffea0006e368c0 count:1 mapcount:0 mapping:ffff8801da800940 index:0xffff8801b8da3540 flags: 0x2fffc0000000100(slab) raw: 02fffc0000000100 ffffea0007217b88 ffffea0006e30cc8 ffff8801da800940 raw: ffff8801b8da3540 ffff8801b8da3040 0000000100000004 0000000000000000 page dumped because: kasan: bad access detected Memory state around the buggy address: ffff8801b8da3780: fc fc fc fc fc fc fc fc fb fb fb fb fb fb fb fb ffff8801b8da3800: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb > ffff8801b8da3880: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff8801b8da3900: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff8801b8da3980: fb fb fb fb fb fb fb fb fc fc fc fc fc fc fc fc Fixes: 546ac1ffb70d ("bpf: add devmap, a map for storing net device references") Signed-off-by: Eric Dumazet <edumazet@google.com> Reported-by: syzbot+457d3e2ffbcf31aee5c0@syzkaller.appspotmail.com Acked-by: Toke Høiland-Jørgensen <toke@redhat.com> Acked-by: Jesper Dangaard Brouer <brouer@redhat.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31bpf: add bpf_jit_limit knob to restrict unpriv allocationsDaniel Borkmann
commit ede95a63b5e84ddeea6b0c473b36ab8bfd8c6ce3 upstream. Rick reported that the BPF JIT could potentially fill the entire module space with BPF programs from unprivileged users which would prevent later attempts to load normal kernel modules or privileged BPF programs, for example. If JIT was enabled but unsuccessful to generate the image, then before commit 290af86629b2 ("bpf: introduce BPF_JIT_ALWAYS_ON config") we would always fall back to the BPF interpreter. Nowadays in the case where the CONFIG_BPF_JIT_ALWAYS_ON could be set, then the load will abort with a failure since the BPF interpreter was compiled out. Add a global limit and enforce it for unprivileged users such that in case of BPF interpreter compiled out we fail once the limit has been reached or we fall back to BPF interpreter earlier w/o using module mem if latter was compiled in. In a next step, fair share among unprivileged users can be resolved in particular for the case where we would fail hard once limit is reached. Fixes: 290af86629b2 ("bpf: introduce BPF_JIT_ALWAYS_ON config") Fixes: 0a14842f5a3c ("net: filter: Just In Time compiler for x86-64") Co-Developed-by: Rick Edgecombe <rick.p.edgecombe@intel.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Cc: Eric Dumazet <eric.dumazet@gmail.com> Cc: Jann Horn <jannh@google.com> Cc: Kees Cook <keescook@chromium.org> Cc: LKML <linux-kernel@vger.kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Cc: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25bpf, lru: avoid messing with eviction heuristics upon syscall lookupDaniel Borkmann
commit 50b045a8c0ccf44f76640ac3eea8d80ca53979a3 upstream. One of the biggest issues we face right now with picking LRU map over regular hash table is that a map walk out of user space, for example, to just dump the existing entries or to remove certain ones, will completely mess up LRU eviction heuristics and wrong entries such as just created ones will get evicted instead. The reason for this is that we mark an entry as "in use" via bpf_lru_node_set_ref() from system call lookup side as well. Thus upon walk, all entries are being marked, so information of actual least recently used ones are "lost". In case of Cilium where it can be used (besides others) as a BPF based connection tracker, this current behavior causes disruption upon control plane changes that need to walk the map from user space to evict certain entries. Discussion result from bpfconf [0] was that we should simply just remove marking from system call side as no good use case could be found where it's actually needed there. Therefore this patch removes marking for regular LRU and per-CPU flavor. If there ever should be a need in future, the behavior could be selected via map creation flag, but due to mentioned reason we avoid this here. [0] http://vger.kernel.org/bpfconf.html Fixes: 29ba732acbee ("bpf: Add BPF_MAP_TYPE_LRU_HASH") Fixes: 8f8449384ec3 ("bpf: Add BPF_MAP_TYPE_LRU_PERCPU_HASH") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25bpf: add map_lookup_elem_sys_only for lookups from syscall sideDaniel Borkmann
commit c6110222c6f49ea68169f353565eb865488a8619 upstream. Add a callback map_lookup_elem_sys_only() that map implementations could use over map_lookup_elem() from system call side in case the map implementation needs to handle the latter differently than from the BPF data path. If map_lookup_elem_sys_only() is set, this will be preferred pick for map lookups out of user space. This hook is used in a follow-up fix for LRU map, but once development window opens, we can convert other map types from map_lookup_elem() (here, the one called upon BPF_MAP_LOOKUP_ELEM cmd is meant) over to use the callback to simplify and clean up the latter. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-25bpf: relax inode permission check for retrieving bpf programChenbo Feng
commit e547ff3f803e779a3898f1f48447b29f43c54085 upstream. For iptable module to load a bpf program from a pinned location, it only retrieve a loaded program and cannot change the program content so requiring a write permission for it might not be necessary. Also when adding or removing an unrelated iptable rule, it might need to flush and reload the xt_bpf related rules as well and triggers the inode permission check. It might be better to remove the write premission check for the inode so we won't need to grant write access to all the processes that flush and restore iptables rules. Signed-off-by: Chenbo Feng <fengc@google.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-20bpf: fix use after free in bpf_evict_inodeDaniel Borkmann
[ Upstream commit 1da6c4d9140cb7c13e87667dc4e1488d6c8fc10f ] syzkaller was able to generate the following UAF in bpf: BUG: KASAN: use-after-free in lookup_last fs/namei.c:2269 [inline] BUG: KASAN: use-after-free in path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318 Read of size 1 at addr ffff8801c4865c47 by task syz-executor2/9423 CPU: 0 PID: 9423 Comm: syz-executor2 Not tainted 4.20.0-rc1-next-20181109+ #110 Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011 Call Trace: __dump_stack lib/dump_stack.c:77 [inline] dump_stack+0x244/0x39d lib/dump_stack.c:113 print_address_description.cold.7+0x9/0x1ff mm/kasan/report.c:256 kasan_report_error mm/kasan/report.c:354 [inline] kasan_report.cold.8+0x242/0x309 mm/kasan/report.c:412 __asan_report_load1_noabort+0x14/0x20 mm/kasan/report.c:430 lookup_last fs/namei.c:2269 [inline] path_lookupat.isra.43+0x9f8/0xc00 fs/namei.c:2318 filename_lookup+0x26a/0x520 fs/namei.c:2348 user_path_at_empty+0x40/0x50 fs/namei.c:2608 user_path include/linux/namei.h:62 [inline] do_mount+0x180/0x1ff0 fs/namespace.c:2980 ksys_mount+0x12d/0x140 fs/namespace.c:3258 __do_sys_mount fs/namespace.c:3272 [inline] __se_sys_mount fs/namespace.c:3269 [inline] __x64_sys_mount+0xbe/0x150 fs/namespace.c:3269 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe RIP: 0033:0x457569 Code: fd b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 00 66 90 48 89 f8 48 89 f7 48 89 d6 48 89 ca 4d 89 c2 4d 89 c8 4c 8b 4c 24 08 0f 05 <48> 3d 01 f0 ff ff 0f 83 cb b3 fb ff c3 66 2e 0f 1f 84 00 00 00 00 RSP: 002b:00007fde6ed96c78 EFLAGS: 00000246 ORIG_RAX: 00000000000000a5 RAX: ffffffffffffffda RBX: 0000000000000005 RCX: 0000000000457569 RDX: 0000000020000040 RSI: 0000000020000000 RDI: 0000000000000000 RBP: 000000000072bf00 R08: 0000000020000340 R09: 0000000000000000 R10: 0000000000200000 R11: 0000000000000246 R12: 00007fde6ed976d4 R13: 00000000004c2c24 R14: 00000000004d4990 R15: 00000000ffffffff Allocated by task 9424: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] kasan_kmalloc+0xc7/0xe0 mm/kasan/kasan.c:553 __do_kmalloc mm/slab.c:3722 [inline] __kmalloc_track_caller+0x157/0x760 mm/slab.c:3737 kstrdup+0x39/0x70 mm/util.c:49 bpf_symlink+0x26/0x140 kernel/bpf/inode.c:356 vfs_symlink+0x37a/0x5d0 fs/namei.c:4127 do_symlinkat+0x242/0x2d0 fs/namei.c:4154 __do_sys_symlink fs/namei.c:4173 [inline] __se_sys_symlink fs/namei.c:4171 [inline] __x64_sys_symlink+0x59/0x80 fs/namei.c:4171 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe Freed by task 9425: save_stack+0x43/0xd0 mm/kasan/kasan.c:448 set_track mm/kasan/kasan.c:460 [inline] __kasan_slab_free+0x102/0x150 mm/kasan/kasan.c:521 kasan_slab_free+0xe/0x10 mm/kasan/kasan.c:528 __cache_free mm/slab.c:3498 [inline] kfree+0xcf/0x230 mm/slab.c:3817 bpf_evict_inode+0x11f/0x150 kernel/bpf/inode.c:565 evict+0x4b9/0x980 fs/inode.c:558 iput_final fs/inode.c:1550 [inline] iput+0x674/0xa90 fs/inode.c:1576 do_unlinkat+0x733/0xa30 fs/namei.c:4069 __do_sys_unlink fs/namei.c:4110 [inline] __se_sys_unlink fs/namei.c:4108 [inline] __x64_sys_unlink+0x42/0x50 fs/namei.c:4108 do_syscall_64+0x1b9/0x820 arch/x86/entry/common.c:290 entry_SYSCALL_64_after_hwframe+0x49/0xbe In this scenario path lookup under RCU is racing with the final unlink in case of symlinks. As Linus puts it in his analysis: [...] We actually RCU-delay the inode freeing itself, but when we do the final iput(), the "evict()" function is called synchronously. Now, the simple fix would seem to just RCU-delay the kfree() of the symlink data in bpf_evict_inode(). Maybe that's the right thing to do. [...] Al suggested to piggy-back on the ->destroy_inode() callback in order to implement RCU deferral there which can then kfree() the inode->i_link eventually right before putting inode back into inode cache. By reusing free_inode_nonrcu() from there we can avoid the need for our own inode cache and just reuse generic one as we currently do. And in-fact on top of all this we should just get rid of the bpf_evict_inode() entirely. This means truncate_inode_pages_final() and clear_inode() will then simply be called by the fs core via evict(). Dropping the reference should really only be done when inode is unhashed and nothing reachable anymore, so it's better also moved into the final ->destroy_inode() callback. Fixes: 0f98621bef5d ("bpf, inode: add support for symlinks and fix mtime/ctime") Reported-by: syzbot+fb731ca573367b7f6564@syzkaller.appspotmail.com Reported-by: syzbot+a13e5ead792d6df37818@syzkaller.appspotmail.com Reported-by: syzbot+7a8ba368b47fdefca61e@syzkaller.appspotmail.com Suggested-by: Al Viro <viro@zeniv.linux.org.uk> Analyzed-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Acked-by: Al Viro <viro@zeniv.linux.org.uk> Link: https://lore.kernel.org/lkml/0000000000006946d2057bbd0eef@google.com/T/ Signed-off-by: Sasha Levin (Microsoft) <sashal@kernel.org>
2019-04-03bpf: do not restore dst_reg when cur_state is freedXu Yu
commit 0803278b0b4d8eeb2b461fb698785df65a725d9e upstream. Syzkaller hit 'KASAN: use-after-free Write in sanitize_ptr_alu' bug. Call trace: dump_stack+0xbf/0x12e print_address_description+0x6a/0x280 kasan_report+0x237/0x360 sanitize_ptr_alu+0x85a/0x8d0 adjust_ptr_min_max_vals+0x8f2/0x1ca0 adjust_reg_min_max_vals+0x8ed/0x22e0 do_check+0x1ca6/0x5d00 bpf_check+0x9ca/0x2570 bpf_prog_load+0xc91/0x1030 __se_sys_bpf+0x61e/0x1f00 do_syscall_64+0xc8/0x550 entry_SYSCALL_64_after_hwframe+0x49/0xbe Fault injection trace:  kfree+0xea/0x290  free_func_state+0x4a/0x60  free_verifier_state+0x61/0xe0  push_stack+0x216/0x2f0 <- inject failslab  sanitize_ptr_alu+0x2b1/0x8d0  adjust_ptr_min_max_vals+0x8f2/0x1ca0  adjust_reg_min_max_vals+0x8ed/0x22e0  do_check+0x1ca6/0x5d00  bpf_check+0x9ca/0x2570  bpf_prog_load+0xc91/0x1030  __se_sys_bpf+0x61e/0x1f00  do_syscall_64+0xc8/0x550  entry_SYSCALL_64_after_hwframe+0x49/0xbe When kzalloc() fails in push_stack(), free_verifier_state() will free current verifier state. As push_stack() returns, dst_reg was restored if ptr_is_dst_reg is false. However, as member of the cur_state, dst_reg is also freed, and error occurs when dereferencing dst_reg. Simply fix it by testing ret of push_stack() before restoring dst_reg. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Signed-off-by: Xu Yu <xuyu@linux.alibaba.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23bpf, lpm: fix lookup bug in map_delete_elemAlban Crequy
[ Upstream commit 7c0cdf0b3940f63d9777c3fcf250a2f83859ca54 ] trie_delete_elem() was deleting an entry even though it was not matching if the prefixlen was correct. This patch adds a check on matchlen. Reproducer: $ sudo bpftool map create /sys/fs/bpf/mylpm type lpm_trie key 8 value 1 entries 128 name mylpm flags 1 $ sudo bpftool map update pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 aa bb cc dd value hex 01 $ sudo bpftool map dump pinned /sys/fs/bpf/mylpm key: 10 00 00 00 aa bb cc dd value: 01 Found 1 element $ sudo bpftool map delete pinned /sys/fs/bpf/mylpm key hex 10 00 00 00 ff ff ff ff $ echo $? 0 $ sudo bpftool map dump pinned /sys/fs/bpf/mylpm Found 0 elements A similar reproducer is added in the selftests. Without the patch: $ sudo ./tools/testing/selftests/bpf/test_lpm_map test_lpm_map: test_lpm_map.c:485: test_lpm_delete: Assertion `bpf_map_delete_elem(map_fd, key) == -1 && errno == ENOENT' failed. Aborted With the patch: test_lpm_map runs without errors. Fixes: e454cf595853 ("bpf: Implement map_delete_elem for BPF_MAP_TYPE_LPM_TRIE") Cc: Craig Gallek <kraig@google.com> Signed-off-by: Alban Crequy <alban@kinvolk.io> Acked-by: Craig Gallek <kraig@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-23bpf: fix lockdep false positive in stackmapAlexei Starovoitov
[ Upstream commit 3defaf2f15b2bfd86c6664181ac009e91985f8ac ] Lockdep warns about false positive: [ 11.211460] ------------[ cut here ]------------ [ 11.211936] DEBUG_LOCKS_WARN_ON(depth <= 0) [ 11.211985] WARNING: CPU: 0 PID: 141 at ../kernel/locking/lockdep.c:3592 lock_release+0x1ad/0x280 [ 11.213134] Modules linked in: [ 11.214954] RIP: 0010:lock_release+0x1ad/0x280 [ 11.223508] Call Trace: [ 11.223705] <IRQ> [ 11.223874] ? __local_bh_enable+0x7a/0x80 [ 11.224199] up_read+0x1c/0xa0 [ 11.224446] do_up_read+0x12/0x20 [ 11.224713] irq_work_run_list+0x43/0x70 [ 11.225030] irq_work_run+0x26/0x50 [ 11.225310] smp_irq_work_interrupt+0x57/0x1f0 [ 11.225662] irq_work_interrupt+0xf/0x20 since rw_semaphore is released in a different task vs task that locked the sema. It is expected behavior. Fix the warning with up_read_non_owner() and rwsem_release() annotation. Fixes: bae77c5eb5b2 ("bpf: enable stackmap with build_id in nmi context") Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-13bpf: Fix syscall's stackmap lookup potential deadlockMartin KaFai Lau
[ Upstream commit 7c4cd051add3d00bbff008a133c936c515eaa8fe ] The map_lookup_elem used to not acquiring spinlock in order to optimize the reader. It was true until commit 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation") The syscall's map_lookup_elem(stackmap) calls bpf_stackmap_copy(). bpf_stackmap_copy() may find the elem no longer needed after the copy is done. If that is the case, pcpu_freelist_push() saves this elem for reuse later. This push requires a spinlock. If a tracing bpf_prog got run in the middle of the syscall's map_lookup_elem(stackmap) and this tracing bpf_prog is calling bpf_get_stackid(stackmap) which also requires the same pcpu_freelist's spinlock, it may end up with a dead lock situation as reported by Eric Dumazet in https://patchwork.ozlabs.org/patch/1030266/ The situation is the same as the syscall's map_update_elem() which needs to acquire the pcpu_freelist's spinlock and could race with tracing bpf_prog. Hence, this patch fixes it by protecting bpf_stackmap_copy() with this_cpu_inc(bpf_prog_active) to prevent tracing bpf_prog from running. A later syscall's map_lookup_elem commit f1a2e44a3aec ("bpf: add queue and stack maps") also acquires a spinlock and races with tracing bpf_prog similarly. Hence, this patch is forward looking and protects the majority of the map lookups. bpf_map_offload_lookup_elem() is the exception since it is for network bpf_prog only (i.e. never called by tracing bpf_prog). Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation") Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-13bpf: fix lockdep false positive in percpu_freelistAlexei Starovoitov
[ Upstream commit a89fac57b5d080771efd4d71feaae19877cf68f0 ] Lockdep warns about false positive: [ 12.492084] 00000000e6b28347 (&head->lock){+...}, at: pcpu_freelist_push+0x2a/0x40 [ 12.492696] but this lock was taken by another, HARDIRQ-safe lock in the past: [ 12.493275] (&rq->lock){-.-.} [ 12.493276] [ 12.493276] [ 12.493276] and interrupts could create inverse lock ordering between them. [ 12.493276] [ 12.494435] [ 12.494435] other info that might help us debug this: [ 12.494979] Possible interrupt unsafe locking scenario: [ 12.494979] [ 12.495518] CPU0 CPU1 [ 12.495879] ---- ---- [ 12.496243] lock(&head->lock); [ 12.496502] local_irq_disable(); [ 12.496969] lock(&rq->lock); [ 12.497431] lock(&head->lock); [ 12.497890] <Interrupt> [ 12.498104] lock(&rq->lock); [ 12.498368] [ 12.498368] *** DEADLOCK *** [ 12.498368] [ 12.498837] 1 lock held by dd/276: [ 12.499110] #0: 00000000c58cb2ee (rcu_read_lock){....}, at: trace_call_bpf+0x5e/0x240 [ 12.499747] [ 12.499747] the shortest dependencies between 2nd lock and 1st lock: [ 12.500389] -> (&rq->lock){-.-.} { [ 12.500669] IN-HARDIRQ-W at: [ 12.500934] _raw_spin_lock+0x2f/0x40 [ 12.501373] scheduler_tick+0x4c/0xf0 [ 12.501812] update_process_times+0x40/0x50 [ 12.502294] tick_periodic+0x27/0xb0 [ 12.502723] tick_handle_periodic+0x1f/0x60 [ 12.503203] timer_interrupt+0x11/0x20 [ 12.503651] __handle_irq_event_percpu+0x43/0x2c0 [ 12.504167] handle_irq_event_percpu+0x20/0x50 [ 12.504674] handle_irq_event+0x37/0x60 [ 12.505139] handle_level_irq+0xa7/0x120 [ 12.505601] handle_irq+0xa1/0x150 [ 12.506018] do_IRQ+0x77/0x140 [ 12.506411] ret_from_intr+0x0/0x1d [ 12.506834] _raw_spin_unlock_irqrestore+0x53/0x60 [ 12.507362] __setup_irq+0x481/0x730 [ 12.507789] setup_irq+0x49/0x80 [ 12.508195] hpet_time_init+0x21/0x32 [ 12.508644] x86_late_time_init+0xb/0x16 [ 12.509106] start_kernel+0x390/0x42a [ 12.509554] secondary_startup_64+0xa4/0xb0 [ 12.510034] IN-SOFTIRQ-W at: [ 12.510305] _raw_spin_lock+0x2f/0x40 [ 12.510772] try_to_wake_up+0x1c7/0x4e0 [ 12.511220] swake_up_locked+0x20/0x40 [ 12.511657] swake_up_one+0x1a/0x30 [ 12.512070] rcu_process_callbacks+0xc5/0x650 [ 12.512553] __do_softirq+0xe6/0x47b [ 12.512978] irq_exit+0xc3/0xd0 [ 12.513372] smp_apic_timer_interrupt+0xa9/0x250 [ 12.513876] apic_timer_interrupt+0xf/0x20 [ 12.514343] default_idle+0x1c/0x170 [ 12.514765] do_idle+0x199/0x240 [ 12.515159] cpu_startup_entry+0x19/0x20 [ 12.515614] start_kernel+0x422/0x42a [ 12.516045] secondary_startup_64+0xa4/0xb0 [ 12.516521] INITIAL USE at: [ 12.516774] _raw_spin_lock_irqsave+0x38/0x50 [ 12.517258] rq_attach_root+0x16/0xd0 [ 12.517685] sched_init+0x2f2/0x3eb [ 12.518096] start_kernel+0x1fb/0x42a [ 12.518525] secondary_startup_64+0xa4/0xb0 [ 12.518986] } [ 12.519132] ... key at: [<ffffffff82b7bc28>] __key.71384+0x0/0x8 [ 12.519649] ... acquired at: [ 12.519892] pcpu_freelist_pop+0x7b/0xd0 [ 12.520221] bpf_get_stackid+0x1d2/0x4d0 [ 12.520563] ___bpf_prog_run+0x8b4/0x11a0 [ 12.520887] [ 12.521008] -> (&head->lock){+...} { [ 12.521292] HARDIRQ-ON-W at: [ 12.521539] _raw_spin_lock+0x2f/0x40 [ 12.521950] pcpu_freelist_push+0x2a/0x40 [ 12.522396] bpf_get_stackid+0x494/0x4d0 [ 12.522828] ___bpf_prog_run+0x8b4/0x11a0 [ 12.523296] INITIAL USE at: [ 12.523537] _raw_spin_lock+0x2f/0x40 [ 12.523944] pcpu_freelist_populate+0xc0/0x120 [ 12.524417] htab_map_alloc+0x405/0x500 [ 12.524835] __do_sys_bpf+0x1a3/0x1a90 [ 12.525253] do_syscall_64+0x4a/0x180 [ 12.525659] entry_SYSCALL_64_after_hwframe+0x49/0xbe [ 12.526167] } [ 12.526311] ... key at: [<ffffffff838f7668>] __key.13130+0x0/0x8 [ 12.526812] ... acquired at: [ 12.527047] __lock_acquire+0x521/0x1350 [ 12.527371] lock_acquire+0x98/0x190 [ 12.527680] _raw_spin_lock+0x2f/0x40 [ 12.527994] pcpu_freelist_push+0x2a/0x40 [ 12.528325] bpf_get_stackid+0x494/0x4d0 [ 12.528645] ___bpf_prog_run+0x8b4/0x11a0 [ 12.528970] [ 12.529092] [ 12.529092] stack backtrace: [ 12.529444] CPU: 0 PID: 276 Comm: dd Not tainted 5.0.0-rc3-00018-g2fa53f892422 #475 [ 12.530043] Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), BIOS 1.11.0-2.el7 04/01/2014 [ 12.530750] Call Trace: [ 12.530948] dump_stack+0x5f/0x8b [ 12.531248] check_usage_backwards+0x10c/0x120 [ 12.531598] ? ___bpf_prog_run+0x8b4/0x11a0 [ 12.531935] ? mark_lock+0x382/0x560 [ 12.532229] mark_lock+0x382/0x560 [ 12.532496] ? print_shortest_lock_dependencies+0x180/0x180 [ 12.532928] __lock_acquire+0x521/0x1350 [ 12.533271] ? find_get_entry+0x17f/0x2e0 [ 12.533586] ? find_get_entry+0x19c/0x2e0 [ 12.533902] ? lock_acquire+0x98/0x190 [ 12.534196] lock_acquire+0x98/0x190 [ 12.534482] ? pcpu_freelist_push+0x2a/0x40 [ 12.534810] _raw_spin_lock+0x2f/0x40 [ 12.535099] ? pcpu_freelist_push+0x2a/0x40 [ 12.535432] pcpu_freelist_push+0x2a/0x40 [ 12.535750] bpf_get_stackid+0x494/0x4d0 [ 12.536062] ___bpf_prog_run+0x8b4/0x11a0 It has been explained that is a false positive here: https://lkml.org/lkml/2018/7/25/756 Recap: - stackmap uses pcpu_freelist - The lock in pcpu_freelist is a percpu lock - stackmap is only used by tracing bpf_prog - A tracing bpf_prog cannot be run if another bpf_prog has already been running (ensured by the percpu bpf_prog_active counter). Eric pointed out that this lockdep splats stops other legit lockdep splats in selftests/bpf/test_progs.c. Fix this by calling local_irq_save/restore for stackmap. Another false positive had also been worked around by calling local_irq_save in commit 89ad2fa3f043 ("bpf: fix lockdep splat"). That commit added unnecessary irq_save/restore to fast path of bpf hash map. irqs are already disabled at that point, since htab is holding per bucket spin_lock with irqsave. Let's reduce overhead for htab by introducing __pcpu_freelist_push/pop function w/o irqsave and convert pcpu_freelist_push/pop to irqsave to be used elsewhere (right now only in stackmap). It stops lockdep false positive in stackmap with a bit of acceptable overhead. Fixes: 557c0c6e7df8 ("bpf: convert stackmap to pre-allocation") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Reported-by: Eric Dumazet <eric.dumazet@gmail.com> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-03-10bpf: fix sanitation rewrite in case of non-pointersDaniel Borkmann
commit 3612af783cf52c74a031a2f11b82247b2599d3cd upstream. Marek reported that he saw an issue with the below snippet in that timing measurements where off when loaded as unpriv while results were reasonable when loaded as privileged: [...] uint64_t a = bpf_ktime_get_ns(); uint64_t b = bpf_ktime_get_ns(); uint64_t delta = b - a; if ((int64_t)delta > 0) { [...] Turns out there is a bug where a corner case is missing in the fix d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths"), namely fixup_bpf_calls() only checks whether aux has a non-zero alu_state, but it also needs to test for the case of BPF_ALU_NON_POINTER since in both occasions we need to skip the masking rewrite (as there is nothing to mask). Fixes: d3bd7413e0ca ("bpf: fix sanitation of alu op with pointer / scalar type from different paths") Reported-by: Marek Majkowski <marek@cloudflare.com> Reported-by: Arthur Fabre <afabre@cloudflare.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Link: https://lore.kernel.org/netdev/CAJPywTJqP34cK20iLM5YmUMz9KXQOdu1-+BZrGMAGgLuBWz7fg@mail.gmail.com/T/ Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-27bpf: zero out build_id for BPF_STACK_BUILD_ID_IPStanislav Fomichev
[ Upstream commit 4af396ae4836c4ecab61e975b8e61270c551894d ] When returning BPF_STACK_BUILD_ID_IP from stack_map_get_build_id_offset, make sure that build_id field is empty. Since we are using percpu free list, there is a possibility that we might reuse some previous bpf_stack_build_id with non-zero build_id. Fixes: 615755a77b24 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27bpf: don't assume build-id length is always 20 bytesStanislav Fomichev
[ Upstream commit 0b698005a9d11c0e91141ec11a2c4918a129f703 ] Build-id length is not fixed to 20, it can be (`man ld` /--build-id): * 128-bit (uuid) * 160-bit (sha1) * any length specified in ld --build-id=0xhexstring To fix the issue of missing BPF_STACK_BUILD_ID_VALID for shorter build-ids, assume that build-id is somewhere in the range of 1 .. 20. Set the remaining bytes to zero. v2: * don't introduce new "len = min(BPF_BUILD_ID_SIZE, nhdr->n_descsz)", we already know that nhdr->n_descsz <= BPF_BUILD_ID_SIZE if we enter this 'if' condition Fixes: 615755a77b24 ("bpf: extend stackmap to save binary_build_id+offset instead of address") Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Stanislav Fomichev <sdf@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-27bpf: fix panic in stack_map_get_build_id() on i386 and arm32Song Liu
[ Upstream commit beaf3d1901f4ea46fbd5c9d857227d99751de469 ] As Naresh reported, test_stacktrace_build_id() causes panic on i386 and arm32 systems. This is caused by page_address() returns NULL in certain cases. This patch fixes this error by using kmap_atomic/kunmap_atomic instead of page_address. Fixes: 615755a77b24 (" bpf: extend stackmap to save binary_build_id+offset instead of address") Reported-by: Naresh Kamboju <naresh.kamboju@linaro.org> Signed-off-by: Song Liu <songliubraving@fb.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: fix inner map masking to prevent oob under speculationDaniel Borkmann
[ commit 9d5564ddcf2a0f5ba3fa1c3a1f8a1b59ad309553 upstream ] During review I noticed that inner meta map setup for map in map is buggy in that it does not propagate all needed data from the reference map which the verifier is later accessing. In particular one such case is index masking to prevent out of bounds access under speculative execution due to missing the map's unpriv_array/index_mask field propagation. Fix this such that the verifier is generating the correct code for inlined lookups in case of unpriviledged use. Before patch (test_verifier's 'map in map access' dump): # bpftool prog dump xla id 3 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:4] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking for 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+11 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | Index masking missing (!) 22: (35) if r0 >= 0x1 goto pc+3 | for inner map despite 23: (67) r0 <<= 3 | map->unpriv_array set. 24: (0f) r0 += r1 | 25: (05) goto pc+1 | 26: (b7) r0 = 0 | 27: (b7) r0 = 0 28: (95) exit After patch: # bpftool prog dump xla id 1 0: (62) *(u32 *)(r10 -4) = 0 1: (bf) r2 = r10 2: (07) r2 += -4 3: (18) r1 = map[id:2] 5: (07) r1 += 272 | 6: (61) r0 = *(u32 *)(r2 +0) | 7: (35) if r0 >= 0x1 goto pc+6 | Same inlined map in map lookup 8: (54) (u32) r0 &= (u32) 0 | with index masking due to 9: (67) r0 <<= 3 | map->unpriv_array. 10: (0f) r0 += r1 | 11: (79) r0 = *(u64 *)(r0 +0) | 12: (15) if r0 == 0x0 goto pc+1 | 13: (05) goto pc+1 | 14: (b7) r0 = 0 | 15: (15) if r0 == 0x0 goto pc+12 16: (62) *(u32 *)(r10 -4) = 0 17: (bf) r2 = r10 18: (07) r2 += -4 19: (bf) r1 = r0 20: (07) r1 += 272 | 21: (61) r0 = *(u32 *)(r2 +0) | 22: (35) if r0 >= 0x1 goto pc+4 | Now fixed inlined inner map 23: (54) (u32) r0 &= (u32) 0 | lookup with proper index masking 24: (67) r0 <<= 3 | for map->unpriv_array. 25: (0f) r0 += r1 | 26: (05) goto pc+1 | 27: (b7) r0 = 0 | 28: (b7) r0 = 0 29: (95) exit Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Martin KaFai Lau <kafai@fb.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: fix sanitation of alu op with pointer / scalar type from different pathsDaniel Borkmann
[ commit d3bd7413e0ca40b60cf60d4003246d067cafdeda upstream ] While 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") took care of rejecting alu op on pointer when e.g. pointer came from two different map values with different map properties such as value size, Jann reported that a case was not covered yet when a given alu op is used in both "ptr_reg += reg" and "numeric_reg += reg" from different branches where we would incorrectly try to sanitize based on the pointer's limit. Catch this corner case and reject the program instead. Fixes: 979d63d50c0c ("bpf: prevent out of bounds speculation on pointer arithmetic") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: prevent out of bounds speculation on pointer arithmeticDaniel Borkmann
[ commit 979d63d50c0c0f7bc537bf821e056cc9fe5abd38 upstream ] Jann reported that the original commit back in b2157399cc98 ("bpf: prevent out-of-bounds speculation") was not sufficient to stop CPU from speculating out of bounds memory access: While b2157399cc98 only focussed on masking array map access for unprivileged users for tail calls and data access such that the user provided index gets sanitized from BPF program and syscall side, there is still a more generic form affected from BPF programs that applies to most maps that hold user data in relation to dynamic map access when dealing with unknown scalars or "slow" known scalars as access offset, for example: - Load a map value pointer into R6 - Load an index into R7 - Do a slow computation (e.g. with a memory dependency) that loads a limit into R8 (e.g. load the limit from a map for high latency, then mask it to make the verifier happy) - Exit if R7 >= R8 (mispredicted branch) - Load R0 = R6[R7] - Load R0 = R6[R0] For unknown scalars there are two options in the BPF verifier where we could derive knowledge from in order to guarantee safe access to the memory: i) While </>/<=/>= variants won't allow to derive any lower or upper bounds from the unknown scalar where it would be safe to add it to the map value pointer, it is possible through ==/!= test however. ii) another option is to transform the unknown scalar into a known scalar, for example, through ALU ops combination such as R &= <imm> followed by R |= <imm> or any similar combination where the original information from the unknown scalar would be destroyed entirely leaving R with a constant. The initial slow load still precedes the latter ALU ops on that register, so the CPU executes speculatively from that point. Once we have the known scalar, any compare operation would work then. A third option only involving registers with known scalars could be crafted as described in [0] where a CPU port (e.g. Slow Int unit) would be filled with many dependent computations such that the subsequent condition depending on its outcome has to wait for evaluation on its execution port and thereby executing speculatively if the speculated code can be scheduled on a different execution port, or any other form of mistraining as described in [1], for example. Given this is not limited to only unknown scalars, not only map but also stack access is affected since both is accessible for unprivileged users and could potentially be used for out of bounds access under speculation. In order to prevent any of these cases, the verifier is now sanitizing pointer arithmetic on the offset such that any out of bounds speculation would be masked in a way where the pointer arithmetic result in the destination register will stay unchanged, meaning offset masked into zero similar as in array_index_nospec() case. With regards to implementation, there are three options that were considered: i) new insn for sanitation, ii) push/pop insn and sanitation as inlined BPF, iii) reuse of ax register and sanitation as inlined BPF. Option i) has the downside that we end up using from reserved bits in the opcode space, but also that we would require each JIT to emit masking as native arch opcodes meaning mitigation would have slow adoption till everyone implements it eventually which is counter-productive. Option ii) and iii) have both in common that a temporary register is needed in order to implement the sanitation as inlined BPF since we are not allowed to modify the source register. While a push / pop insn in ii) would be useful to have in any case, it requires once again that every JIT needs to implement it first. While possible, amount of changes needed would also be unsuitable for a -stable patch. Therefore, the path which has fewer changes, less BPF instructions for the mitigation and does not require anything to be changed in the JITs is option iii) which this work is pursuing. The ax register is already mapped to a register in all JITs (modulo arm32 where it's mapped to stack as various other BPF registers there) and used in constant blinding for JITs-only so far. It can be reused for verifier rewrites under certain constraints. The interpreter's tmp "register" has therefore been remapped into extending the register set with hidden ax register and reusing that for a number of instructions that needed the prior temporary variable internally (e.g. div, mod). This allows for zero increase in stack space usage in the interpreter, and enables (restricted) generic use in rewrites otherwise as long as such a patchlet does not make use of these instructions. The sanitation mask is dynamic and relative to the offset the map value or stack pointer currently holds. There are various cases that need to be taken under consideration for the masking, e.g. such operation could look as follows: ptr += val or val += ptr or ptr -= val. Thus, the value to be sanitized could reside either in source or in destination register, and the limit is different depending on whether the ALU op is addition or subtraction and depending on the current known and bounded offset. The limit is derived as follows: limit := max_value_size - (smin_value + off). For subtraction: limit := umax_value + off. This holds because we do not allow any pointer arithmetic that would temporarily go out of bounds or would have an unknown value with mixed signed bounds where it is unclear at verification time whether the actual runtime value would be either negative or positive. For example, we have a derived map pointer value with constant offset and bounded one, so limit based on smin_value works because the verifier requires that statically analyzed arithmetic on the pointer must be in bounds, and thus it checks if resulting smin_value + off and umax_value + off is still within map value bounds at time of arithmetic in addition to time of access. Similarly, for the case of stack access we derive the limit as follows: MAX_BPF_STACK + off for subtraction and -off for the case of addition where off := ptr_reg->off + ptr_reg->var_off.value. Subtraction is a special case for the masking which can be in form of ptr += -val, ptr -= -val, or ptr -= val. In the first two cases where we know that the value is negative, we need to temporarily negate the value in order to do the sanitation on a positive value where we later swap the ALU op, and restore original source register if the value was in source. The sanitation of pointer arithmetic alone is still not fully sufficient as is, since a scenario like the following could happen ... PTR += 0x1000 (e.g. K-based imm) PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON PTR += 0x1000 PTR -= BIG_NUMBER_WITH_SLOW_COMPARISON [...] ... which under speculation could end up as ... PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] PTR += 0x1000 PTR -= 0 [ truncated by mitigation ] [...] ... and therefore still access out of bounds. To prevent such case, the verifier is also analyzing safety for potential out of bounds access under speculative execution. Meaning, it is also simulating pointer access under truncation. We therefore "branch off" and push the current verification state after the ALU operation with known 0 to the verification stack for later analysis. Given the current path analysis succeeded it is likely that the one under speculation can be pruned. In any case, it is also subject to existing complexity limits and therefore anything beyond this point will be rejected. In terms of pruning, it needs to be ensured that the verification state from speculative execution simulation must never prune a non-speculative execution path, therefore, we mark verifier state accordingly at the time of push_stack(). If verifier detects out of bounds access under speculative execution from one of the possible paths that includes a truncation, it will reject such program. Given we mask every reg-based pointer arithmetic for unprivileged programs, we've been looking into how it could affect real-world programs in terms of size increase. As the majority of programs are targeted for privileged-only use case, we've unconditionally enabled masking (with its alu restrictions on top of it) for privileged programs for the sake of testing in order to check i) whether they get rejected in its current form, and ii) by how much the number of instructions and size will increase. We've tested this by using Katran, Cilium and test_l4lb from the kernel selftests. For Katran we've evaluated balancer_kern.o, Cilium bpf_lxc.o and an older test object bpf_lxc_opt_-DUNKNOWN.o and l4lb we've used test_l4lb.o as well as test_l4lb_noinline.o. We found that none of the programs got rejected by the verifier with this change, and that impact is rather minimal to none. balancer_kern.o had 13,904 bytes (1,738 insns) xlated and 7,797 bytes JITed before and after the change. Most complex program in bpf_lxc.o had 30,544 bytes (3,817 insns) xlated and 18,538 bytes JITed before and after and none of the other tail call programs in bpf_lxc.o had any changes either. For the older bpf_lxc_opt_-DUNKNOWN.o object we found a small increase from 20,616 bytes (2,576 insns) and 12,536 bytes JITed before to 20,664 bytes (2,582 insns) and 12,558 bytes JITed after the change. Other programs from that object file had similar small increase. Both test_l4lb.o had no change and remained at 6,544 bytes (817 insns) xlated and 3,401 bytes JITed and for test_l4lb_noinline.o constant at 5,080 bytes (634 insns) xlated and 3,313 bytes JITed. This can be explained in that LLVM typically optimizes stack based pointer arithmetic by using K-based operations and that use of dynamic map access is not overly frequent. However, in future we may decide to optimize the algorithm further under known guarantees from branch and value speculation. Latter seems also unclear in terms of prediction heuristics that today's CPUs apply as well as whether there could be collisions in e.g. the predictor's Value History/Pattern Table for triggering out of bounds access, thus masking is performed unconditionally at this point but could be subject to relaxation later on. We were generally also brainstorming various other approaches for mitigation, but the blocker was always lack of available registers at runtime and/or overhead for runtime tracking of limits belonging to a specific pointer. Thus, we found this to be minimally intrusive under given constraints. With that in place, a simple example with sanitized access on unprivileged load at post-verification time looks as follows: # bpftool prog dump xlated id 282 [...] 28: (79) r1 = *(u64 *)(r7 +0) 29: (79) r2 = *(u64 *)(r7 +8) 30: (57) r1 &= 15 31: (79) r3 = *(u64 *)(r0 +4608) 32: (57) r3 &= 1 33: (47) r3 |= 1 34: (2d) if r2 > r3 goto pc+19 35: (b4) (u32) r11 = (u32) 20479 | 36: (1f) r11 -= r2 | Dynamic sanitation for pointer 37: (4f) r11 |= r2 | arithmetic with registers 38: (87) r11 = -r11 | containing bounded or known 39: (c7) r11 s>>= 63 | scalars in order to prevent 40: (5f) r11 &= r2 | out of bounds speculation. 41: (0f) r4 += r11 | 42: (71) r4 = *(u8 *)(r4 +0) 43: (6f) r4 <<= r1 [...] For the case where the scalar sits in the destination register as opposed to the source register, the following code is emitted for the above example: [...] 16: (b4) (u32) r11 = (u32) 20479 17: (1f) r11 -= r2 18: (4f) r11 |= r2 19: (87) r11 = -r11 20: (c7) r11 s>>= 63 21: (5f) r2 &= r11 22: (0f) r2 += r0 23: (61) r0 = *(u32 *)(r2 +0) [...] JIT blinding example with non-conflicting use of r10: [...] d5: je 0x0000000000000106 _ d7: mov 0x0(%rax),%edi | da: mov $0xf153246,%r10d | Index load from map value and e0: xor $0xf153259,%r10 | (const blinded) mask with 0x1f. e7: and %r10,%rdi |_ ea: mov $0x2f,%r10d | f0: sub %rdi,%r10 | Sanitized addition. Both use r10 f3: or %rdi,%r10 | but do not interfere with each f6: neg %r10 | other. (Neither do these instructions f9: sar $0x3f,%r10 | interfere with the use of ax as temp fd: and %r10,%rdi | in interpreter.) 100: add %rax,%rdi |_ 103: mov 0x0(%rdi),%eax [...] Tested that it fixes Jann's reproducer, and also checked that test_verifier and test_progs suite with interpreter, JIT and JIT with hardening enabled on x86-64 and arm64 runs successfully. [0] Speculose: Analyzing the Security Implications of Speculative Execution in CPUs, Giorgi Maisuradze and Christian Rossow, https://arxiv.org/pdf/1801.04084.pdf [1] A Systematic Evaluation of Transient Execution Attacks and Defenses, Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens, Dmitry Evtyushkin, Daniel Gruss, https://arxiv.org/pdf/1811.05441.pdf Fixes: b2157399cc98 ("bpf: prevent out-of-bounds speculation") Reported-by: Jann Horn <jannh@google.com> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: fix check_map_access smin_value test when pointer contains offsetDaniel Borkmann
[ commit b7137c4eab85c1cf3d46acdde90ce1163b28c873 upstream ] In check_map_access() we probe actual bounds through __check_map_access() with offset of reg->smin_value + off for lower bound and offset of reg->umax_value + off for the upper bound. However, even though the reg->smin_value could have a negative value, the final result of the sum with off could be positive when pointer arithmetic with known and unknown scalars is combined. In this case we reject the program with an error such as "R<x> min value is negative, either use unsigned index or do a if (index >=0) check." even though the access itself would be fine. Therefore extend the check to probe whether the actual resulting reg->smin_value + off is less than zero. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: restrict unknown scalars of mixed signed bounds for unprivilegedDaniel Borkmann
[ commit 9d7eceede769f90b66cfa06ad5b357140d5141ed upstream ] For unknown scalars of mixed signed bounds, meaning their smin_value is negative and their smax_value is positive, we need to reject arithmetic with pointer to map value. For unprivileged the goal is to mask every map pointer arithmetic and this cannot reliably be done when it is unknown at verification time whether the scalar value is negative or positive. Given this is a corner case, the likelihood of breaking should be very small. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-01-31bpf: restrict stack pointer arithmetic for unprivilegedDaniel Borkmann
[ commit e4298d25830a866cc0f427d4bccb858e76715859 upstream ] Restrict stack pointer arithmetic for unprivileged users in that arithmetic itself must not go out of bounds as opposed to the actual access later on. Therefore after each adjust_ptr_min_max_vals() with a stack pointer as a destination we simulate a check_stack_access() of 1 byte on the destination and once that fails the program is rejected for unprivileged program loads. This is analog to map value pointer arithmetic and needed for masking later on. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: Sasha Levin <sashal@kernel.org>