aboutsummaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_mount.c
AgeCommit message (Collapse)Author
2022-07-21xfs: don't include bnobt blocks when reserving free block poolDarrick J. Wong
[ Upstream commit c8c568259772751a14e969b7230990508de73d9d ] xfs_reserve_blocks controls the size of the user-visible free space reserve pool. Given the difference between the current and requested pool sizes, it will try to reserve free space from fdblocks. However, the amount requested from fdblocks is also constrained by the amount of space that we think xfs_mod_fdblocks will give us. If we forget to subtract m_allocbt_blks before calling xfs_mod_fdblocks, it will will return ENOSPC and we'll hang the kernel at mount due to the infinite loop. In commit fd43cf600cf6, we decided that xfs_mod_fdblocks should not hand out the "free space" used by the free space btrees, because some portion of the free space btrees hold in reserve space for future btree expansion. Unfortunately, xfs_reserve_blocks' estimation of the number of blocks that it could request from xfs_mod_fdblocks was not updated to include m_allocbt_blks, so if space is extremely low, the caller hangs. Fix this by creating a function to estimate the number of blocks that can be reserved from fdblocks, which needs to exclude the set-aside and m_allocbt_blks. Found by running xfs/306 (which formats a single-AG 20MB filesystem) with an fstests configuration that specifies a 1k blocksize and a specially crafted log size that will consume 7/8 of the space (17920 blocks, specifically) in that AG. Cc: Brian Foster <bfoster@redhat.com> Fixes: fd43cf600cf6 ("xfs: set aside allocation btree blocks from block reservation") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com> Acked-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-07-21xfs: only run COW extent recovery when there are no live extentsDarrick J. Wong
[ Upstream commit 7993f1a431bc5271369d359941485a9340658ac3 ] As part of multiple customer escalations due to file data corruption after copy on write operations, I wrote some fstests that use fsstress to hammer on COW to shake things loose. Regrettably, I caught some filesystem shutdowns due to incorrect rmap operations with the following loop: mount <filesystem> # (0) fsstress <run only readonly ops> & # (1) while true; do fsstress <run all ops> mount -o remount,ro # (2) fsstress <run only readonly ops> mount -o remount,rw # (3) done When (2) happens, notice that (1) is still running. xfs_remount_ro will call xfs_blockgc_stop to walk the inode cache to free all the COW extents, but the blockgc mechanism races with (1)'s reader threads to take IOLOCKs and loses, which means that it doesn't clean them all out. Call such a file (A). When (3) happens, xfs_remount_rw calls xfs_reflink_recover_cow, which walks the ondisk refcount btree and frees any COW extent that it finds. This function does not check the inode cache, which means that incore COW forks of inode (A) is now inconsistent with the ondisk metadata. If one of those former COW extents are allocated and mapped into another file (B) and someone triggers a COW to the stale reservation in (A), A's dirty data will be written into (B) and once that's done, those blocks will be transferred to (A)'s data fork without bumping the refcount. The results are catastrophic -- file (B) and the refcount btree are now corrupt. In the first patch, we fixed the race condition in (2) so that (A) will always flush the COW fork. In this second patch, we move the _recover_cow call to the initial mount call in (0) for safety. As mentioned previously, xfs_reflink_recover_cow walks the refcount btree looking for COW staging extents, and frees them. This was intended to be run at mount time (when we know there are no live inodes) to clean up any leftover staging events that may have been left behind during an unclean shutdown. As a time "optimization" for readonly mounts, we deferred this to the ro->rw transition, not realizing that any failure to clean all COW forks during a rw->ro transition would result in catastrophic corruption. Therefore, remove this optimization and only run the recovery routine when we're guaranteed not to have any COW staging extents anywhere, which means we always run this at mount time. While we're at it, move the callsite to xfs_log_mount_finish because any refcount btree expansion (however unlikely given that we're removing records from the right side of the index) must be fed by a per-AG reservation, which doesn't exist in its current location. Fixes: 174edb0e46e5 ("xfs: store in-progress CoW allocations in the refcount btree") Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Chandan Babu R <chandan.babu@oracle.com> Reviewed-by: Dave Chinner <dchinner@redhat.com> Signed-off-by: Leah Rumancik <leah.rumancik@gmail.com> Acked-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-08-19xfs: convert xfs_sb_version_has checks to use mount featuresDave Chinner
This is a conversion of the remaining xfs_sb_version_has..(sbp) checks to use xfs_has_..(mp) feature checks. This was largely done with a vim replacement macro that did: :0,$s/xfs_sb_version_has\(.*\)&\(.*\)->m_sb/xfs_has_\1\2/g<CR> A couple of other variants were also used, and the rest touched up by hand. $ size -t fs/xfs/built-in.a text data bss dec hex filename before 1127533 311352 484 1439369 15f689 (TOTALS) after 1125360 311352 484 1437196 15ee0c (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: replace XFS_FORCED_SHUTDOWN with xfs_is_shutdownDave Chinner
Remove the shouty macro and instead use the inline function that matches other state/feature check wrapper naming. This conversion was done with sed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: convert remaining mount flags to state flagsDave Chinner
The remaining mount flags kept in m_flags are actually runtime state flags. These change dynamically, so they really should be updated atomically so we don't potentially lose an update due to racing modifications. Convert these remaining flags to be stored in m_opstate and use atomic bitops to set and clear the flags. This also adds a couple of simple wrappers for common state checks - read only and shutdown. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: convert mount flags to featuresDave Chinner
Replace m_flags feature checks with xfs_has_<feature>() calls and rework the setup code to set flags in m_features. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: replace xfs_sb_version checks with feature flag checksDave Chinner
Convert the xfs_sb_version_hasfoo() to checks against mp->m_features. Checks of the superblock itself during disk operations (e.g. in the read/write verifiers and the to/from disk formatters) are not converted - they operate purely on the superblock state. Everything else should use the mount features. Large parts of this conversion were done with sed with commands like this: for f in `git grep -l xfs_sb_version_has fs/xfs/*.c`; do sed -i -e 's/xfs_sb_version_has\(.*\)(&\(.*\)->m_sb)/xfs_has_\1(\2)/' $f done With manual cleanups for things like "xfs_has_extflgbit" and other little inconsistencies in naming. The result is ia lot less typing to check features and an XFS binary size reduced by a bit over 3kB: $ size -t fs/xfs/built-in.a text data bss dec hex filenam before 1130866 311352 484 1442702 16038e (TOTALS) after 1127727 311352 484 1439563 15f74b (TOTALS) Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: reflect sb features in xfs_mountDave Chinner
Currently on-disk feature checks require decoding the superblock fileds and so can be non-trivial. We have almost 400 hundred individual feature checks in the XFS code, so this is a significant amount of code. To reduce runtime check overhead, pre-process all the version flags into a features field in the xfs_mount at mount time so we can convert all the feature checks to a simple flag check. There is also a need to convert the dynamic feature flags to update the m_features field. This is required for attr, attr2 and quota features. New xfs_mount based wrappers are added for this. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-19xfs: rework attr2 feature and mount optionsDave Chinner
The attr2 feature is somewhat unique in that it has both a superblock feature bit to enable it and mount options to enable and disable it. Back when it was first introduced in 2005, attr2 was disabled unless either the attr2 superblock feature bit was set, or the attr2 mount option was set. If the superblock feature bit was not set but the mount option was set, then when the first attr2 format inode fork was created, it would set the superblock feature bit. This is as it should be - the superblock feature bit indicated the presence of the attr2 on disk format. The noattr2 mount option, however, did not affect the superblock feature bit. If noattr2 was specified, the on-disk superblock feature bit was ignored and the code always just created attr1 format inode forks. If neither of the attr2 or noattr2 mounts option were specified, then the behaviour was determined by the superblock feature bit. This was all pretty sane. Fast foward 3 years, and we are dealing with fallout from the botched sb_features2 addition and having to deal with feature mismatches between the sb_features2 and sb_bad_features2 fields. The attr2 feature bit was one of these flags. The reconciliation was done well after mount option parsing and, unfortunately, the feature reconciliation had a bug where it ignored the noattr2 mount option. For reasons lost to the mists of time, it was decided that resolving this issue in commit 7c12f296500e ("[XFS] Fix up noattr2 so that it will properly update the versionnum and features2 fields.") required noattr2 to clear the superblock attr2 feature bit. This greatly complicated the attr2 behaviour and broke rules about feature bits needing to be set when those specific features are present in the filesystem. By complicated, I mean that it introduced problems due to feature bit interactions with log recovery. All of the superblock feature bit checks are done prior to log recovery, but if we crash after removing a feature bit, then on the next mount we see the feature bit in the unrecovered superblock, only to have it go away after the log has been replayed. This means our mount time feature processing could be all wrong. Hence you can mount with noattr2, crash shortly afterwards, and mount again without attr2 or noattr2 and still have attr2 enabled because the second mount sees attr2 still enabled in the superblock before recovery runs and removes the feature bit. It's just a mess. Further, this is all legacy code as the v5 format requires attr2 to be enabled at all times and it cannot be disabled. i.e. the noattr2 mount option returns an error when used on v5 format filesystems. To straighten this all out, this patch reverts the attr2/noattr2 mount option behaviour back to the original behaviour. There is no reason for disabling attr2 these days, so we will only do this when the noattr2 mount option is set. This will not remove the superblock feature bit. The superblock bit will provide the default behaviour and only track whether attr2 is present on disk or not. The attr2 mount option will enable the creation of attr2 format inode forks, and if the superblock feature bit is not set it will be added when the first attr2 inode fork is created. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-09xfs: allow setting and clearing of log incompat feature flagsDarrick J. Wong
Log incompat feature flags in the superblock exist for one purpose: to protect the contents of a dirty log from replay on a kernel that isn't prepared to handle those dirty contents. This means that they can be cleared if (a) we know the log is clean and (b) we know that there aren't any other threads in the system that might be setting or relying upon a log incompat flag. Therefore, clear the log incompat flags when we've finished recovering the log, when we're unmounting cleanly, remounting read-only, or freezing; and provide a function so that subsequent patches can start using this. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com>
2021-08-09xfs: throttle inode inactivation queuing on memory reclaimDarrick J. Wong
Now that we defer inode inactivation, we've decoupled the process of unlinking or closing an inode from the process of inactivating it. In theory this should lead to better throughput since we now inactivate the queued inodes in batches instead of one at a time. Unfortunately, one of the primary risks with this decoupling is the loss of rate control feedback between the frontend and background threads. In other words, a rm -rf /* thread can run the system out of memory if it can queue inodes for inactivation and jump to a new CPU faster than the background threads can actually clear the deferred work. The workers can get scheduled off the CPU if they have to do IO, etc. To solve this problem, we configure a shrinker so that it will activate the /second/ time the shrinkers are called. The custom shrinker will queue all percpu deferred inactivation workers immediately and set a flag to force frontend callers who are releasing a vfs inode to wait for the inactivation workers. On my test VM with 560M of RAM and a 2TB filesystem, this seems to solve most of the OOMing problem when deleting 10 million inodes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: don't run speculative preallocation gc when fs is frozenDarrick J. Wong
Now that we have the infrastructure to switch background workers on and off at will, fix the block gc worker code so that we don't actually run the worker when the filesystem is frozen, same as we do for deferred inactivation. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: queue inactivation immediately when free realtime extents are tightDarrick J. Wong
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. Similar to the patch doing this for free space on the data device, if the file being inactivated is a realtime file and the realtime volume is running low on free extents, we want to run the worker ASAP so that the realtime allocator can make better decisions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-09xfs: queue inactivation immediately when free space is tightDarrick J. Wong
Now that we have made the inactivation of unlinked inodes a background task to increase the throughput of file deletions, we need to be a little more careful about how long of a delay we can tolerate. On a mostly empty filesystem, the risk of the allocator making poor decisions due to fragmentation of the free space on account a lengthy delay in background updates is minimal because there's plenty of space. However, if free space is tight, we want to deallocate unlinked inodes as quickly as possible to avoid fallocate ENOSPC and to give the allocator the best shot at optimal allocations for new writes. Therefore, queue the percpu worker immediately if the filesystem is more than 95% full. This follows the same principle that XFS becomes less aggressive about speculative allocations and lazy cleanup (and more precise about accounting) when nearing full. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-08-06xfs: per-cpu deferred inode inactivation queuesDave Chinner
Move inode inactivation to background work contexts so that it no longer runs in the context that releases the final reference to an inode. This will allow process work that ends up blocking on inactivation to continue doing work while the filesytem processes the inactivation in the background. A typical demonstration of this is unlinking an inode with lots of extents. The extents are removed during inactivation, so this blocks the process that unlinked the inode from the directory structure. By moving the inactivation to the background process, the userspace applicaiton can keep working (e.g. unlinking the next inode in the directory) while the inactivation work on the previous inode is done by a different CPU. The implementation of the queue is relatively simple. We use a per-cpu lockless linked list (llist) to queue inodes for inactivation without requiring serialisation mechanisms, and a work item to allow the queue to be processed by a CPU bound worker thread. We also keep a count of the queue depth so that we can trigger work after a number of deferred inactivations have been queued. The use of a bound workqueue with a single work depth allows the workqueue to run one work item per CPU. We queue the work item on the CPU we are currently running on, and so this essentially gives us affine per-cpu worker threads for the per-cpu queues. THis maintains the effective CPU affinity that occurs within XFS at the AG level due to all objects in a directory being local to an AG. Hence inactivation work tends to run on the same CPU that last accessed all the objects that inactivation accesses and this maintains hot CPU caches for unlink workloads. A depth of 32 inodes was chosen to match the number of inodes in an inode cluster buffer. This hopefully allows sequential allocation/unlink behaviours to defering inactivation of all the inodes in a single cluster buffer at a time, further helping maintain hot CPU and buffer cache accesses while running inactivations. A hard per-cpu queue throttle of 256 inode has been set to avoid runaway queuing when inodes that take a long to time inactivate are being processed. For example, when unlinking inodes with large numbers of extents that can take a lot of processing to free. Signed-off-by: Dave Chinner <dchinner@redhat.com> [djwong: tweak comments and tracepoints, convert opflags to state bits] Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-08-06xfs: remove the active vs running quota differentiationChristoph Hellwig
These only made a difference when quotaoff supported disabling quota accounting on a mounted file system, so we can switch everyone to use a single set of flags and helpers now. Note that the *QUOTA_ON naming for the helpers is kept as it was the much more commonly used one. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-06-21xfs: fix log intent recovery ENOSPC shutdowns when inactivating inodesDarrick J. Wong
During regular operation, the xfs_inactive operations create transactions with zero block reservation because in general we're freeing space, not asking for more. The per-AG space reservations created at mount time enable us to handle expansions of the refcount btree without needing to reserve blocks to the transaction. Unfortunately, log recovery doesn't create the per-AG space reservations when intent items are being recovered. This isn't an issue for intent item recovery itself because they explicitly request blocks, but any inode inactivation that can happen during log recovery uses the same xfs_inactive paths as regular runtime. If a refcount btree expansion happens, the transaction will fail due to blk_res_used > blk_res, and we shut down the filesystem unnecessarily. Fix this problem by making per-AG reservations temporarily so that we can handle the inactivations, and releasing them at the end. This brings the recovery environment closer to the runtime environment. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-06-02xfs: move perag structure and setup to libxfs/xfs_ag.[ch]Dave Chinner
Move the xfs_perag infrastructure to the libxfs files that contain all the per AG infrastructure. This helps set up for passing perags around all the code instead of bare agnos with minimal extra includes for existing files. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02xfs: prepare for moving perag definitions and support to libxfsDave Chinner
The perag structures really need to be defined with the rest of the AG support infrastructure. The struct xfs_perag and init/teardown has been placed in xfs_mount.[ch] because there are differences in the structure between kernel and userspace. Mainly that userspace doesn't have a lot of the internal stuff that the kernel has for caches and discard and other such structures. However, it makes more sense to move this to libxfs than to keep this separation because we are now moving to use struct perags everywhere in the code instead of passing raw agnumber_t values about. Hence we shoudl really move the support infrastructure to libxfs/xfs_ag.[ch]. To do this without breaking userspace, first we need to rearrange the structures and code so that all the kernel specific code is located together. This makes it simple for userspace to ifdef out the all the parts it does not need, minimising the code differences between kernel and userspace. The next commit will do the move... Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-06-02xfs: move xfs_perag_get/put to xfs_ag.[ch]Dave Chinner
They are AG functions, not superblock functions, so move them to the appropriate location. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org>
2021-04-29xfs: set aside allocation btree blocks from block reservationBrian Foster
The blocks used for allocation btrees (bnobt and countbt) are technically considered free space. This is because as free space is used, allocbt blocks are removed and naturally become available for traditional allocation. However, this means that a significant portion of free space may consist of in-use btree blocks if free space is severely fragmented. On large filesystems with large perag reservations, this can lead to a rare but nasty condition where a significant amount of physical free space is available, but the majority of actual usable blocks consist of in-use allocbt blocks. We have a record of a (~12TB, 32 AG) filesystem with multiple AGs in a state with ~2.5GB or so free blocks tracked across ~300 total allocbt blocks, but effectively at 100% full because the the free space is entirely consumed by refcountbt perag reservation. Such a large perag reservation is by design on large filesystems. The problem is that because the free space is so fragmented, this AG contributes the 300 or so allocbt blocks to the global counters as free space. If this pattern repeats across enough AGs, the filesystem lands in a state where global block reservation can outrun physical block availability. For example, a streaming buffered write on the affected filesystem continues to allow delayed allocation beyond the point where writeback starts to fail due to physical block allocation failures. The expected behavior is for the delalloc block reservation to fail gracefully with -ENOSPC before physical block allocation failure is a possibility. To address this problem, set aside in-use allocbt blocks at reservation time and thus ensure they cannot be reserved until truly available for physical allocation. This allows alloc btree metadata to continue to reside in free space, but dynamically adjusts reservation availability based on internal state. Note that the logic requires that the allocbt counter is fully populated at reservation time before it is fully effective. We currently rely on the mount time AGF scan in the perag reservation initialization code for this dependency on filesystems where it's most important (i.e. with active perag reservations). Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Chandan Babu R <chandanrlinux@gmail.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-04-07xfs: precalculate default inode attribute offsetDave Chinner
Default attr fork offset is based on inode size, so is a fixed geometry parameter of the inode. Move it to the xfs_ino_geometry structure and stop calculating it on every call to xfs_default_attroffset(). Signed-off-by: Dave Chinner <dchinner@redhat.com> Tested-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-03-15xfs: force log and push AIL to clear pinned inodes when aborting mountDarrick J. Wong
If we allocate quota inodes in the process of mounting a filesystem but then decide to abort the mount, it's possible that the quota inodes are sitting around pinned by the log. Now that inode reclaim relies on the AIL to flush inodes, we have to force the log and push the AIL in between releasing the quota inodes and kicking off reclaim to tear down all the incore inodes. Do this by extracting the bits we need from the unmount path and reusing them. As an added bonus, failed writes during a failed mount will not retry forever now. This was originally found during a fuzz test of metadata directories (xfs/1546), but the actual symptom was that reclaim hung up on the quota inodes. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Dave Chinner <dchinner@redhat.com>
2021-02-03xfs: parallelize block preallocation garbage collectionDarrick J. Wong
Split the block preallocation garbage collection work into per-AG work items so that we can take advantage of parallelization. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-02-03xfs: rename block gc start and stop functionsDarrick J. Wong
Shorten the names of the two functions that start and stop block preallocation garbage collection and move them up to the other blockgc functions. Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Christoph Hellwig <hch@lst.de>
2021-01-22xfs: remove xfs_quiesce_attr()Brian Foster
xfs_quiesce_attr() is now a wrapper for xfs_log_clean(). Remove it and call xfs_log_clean() directly. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-01-22xfs: fold sbcount quiesce logging into log coveringBrian Foster
xfs_log_sbcount() calls xfs_sync_sb() to sync superblock counters to disk when lazy superblock accounting is enabled. This occurs on unmount, freeze, and read-only (re)mount and ensures the final values are calculated and persisted to disk before each form of quiesce completes. Now that log covering occurs in all of these contexts and uses the same xfs_sync_sb() mechanism to update log state, there is no need to log the superblock separately for any reason. Update the log quiesce path to sync the superblock at least once for any mount where lazy superblock accounting is enabled. If the log is already covered, it will remain in the covered state. Otherwise, the next sync as part of the normal covering sequence will carry the associated superblock update with it. Remove xfs_log_sbcount() now that it is no longer needed. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org> Reviewed-by: Allison Henderson <allison.henderson@oracle.com>
2021-01-22xfs: sync lazy sb accounting on quiesce of read-only mountsBrian Foster
xfs_log_sbcount() syncs the superblock specifically to accumulate the in-core percpu superblock counters and commit them to disk. This is required to maintain filesystem consistency across quiesce (freeze, read-only mount/remount) or unmount when lazy superblock accounting is enabled because individual transactions do not update the superblock directly. This mechanism works as expected for writable mounts, but xfs_log_sbcount() skips the update for read-only mounts. Read-only mounts otherwise still allow log recovery and write out an unmount record during log quiesce. If a read-only mount performs log recovery, it can modify the in-core superblock counters and write an unmount record when the filesystem unmounts without ever syncing the in-core counters. This leaves the filesystem with a clean log but in an inconsistent state with regard to lazy sb counters. Update xfs_log_sbcount() to use the same logic xfs_log_unmount_write() uses to determine when to write an unmount record. This ensures that lazy accounting is always synced before the log is cleaned. Refactor this logic into a new helper to distinguish between a writable filesystem and a writable log. Specifically, the log is writable unless the filesystem is mounted with the norecovery mount option, the underlying log device is read-only, or the filesystem is shutdown. Drop the freeze state check because the update is already allowed during the freezing process and no context calls this function on an already frozen fs. Also, retain the shutdown check in xfs_log_unmount_write() to catch the case where the preceding log force might have triggered a shutdown. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Gao Xiang <hsiangkao@redhat.com> Reviewed-by: Allison Henderson <allison.henderson@oracle.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Bill O'Donnell <billodo@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2021-01-22xfs: rename xfs_wait_buftarg() to xfs_buftarg_drain()Brian Foster
xfs_wait_buftarg() is vaguely named and somewhat overloaded. Its primary purpose is to reclaim all buffers from the provided buffer target LRU. In preparation to refactor xfs_wait_buftarg() into serialization and LRU draining components, rename the function and associated helpers to something more descriptive. This patch has no functional changes with the minor exception of renaming a tracepoint. Signed-off-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <djwong@kernel.org> Signed-off-by: Darrick J. Wong <djwong@kernel.org>
2020-11-18xfs: return corresponding errcode if xfs_initialize_perag() failYu Kuai
In xfs_initialize_perag(), if kmem_zalloc(), xfs_buf_hash_init(), or radix_tree_preload() failed, the returned value 'error' is not set accordingly. Reported-as-fixing: 8b26c5825e02 ("xfs: handle ENOMEM correctly during initialisation of perag structures") Fixes: 9b2471797942 ("xfs: cache unlinked pointers in an rhashtable") Reported-by: Hulk Robot <hulkci@huawei.com> Signed-off-by: Yu Kuai <yukuai3@huawei.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-15xfs: remove xfs_getsbChristoph Hellwig
Merge xfs_getsb into its only caller, and clean that one up a little bit as well. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-06xfs: xfs_iflock is no longer a completionDave Chinner
With the recent rework of the inode cluster flushing, we no longer ever wait on the the inode flush "lock". It was never a lock in the first place, just a completion to allow callers to wait for inode IO to complete. We now never wait for flush completion as all inode flushing is non-blocking. Hence we can get rid of all the iflock infrastructure and instead just set and check a state flag. Rename the XFS_IFLOCK flag to XFS_IFLUSHING, convert all the xfs_iflock_nowait() test-and-set operations on that flag, and replace all the xfs_ifunlock() calls to clear operations. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-09-06xfs: remove kmem_realloc()Carlos Maiolino
Remove kmem_realloc() function and convert its users to use MM API directly (krealloc()) Signed-off-by: Carlos Maiolino <cmaiolino@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-07-07xfs: remove SYNC_WAIT from xfs_reclaim_inodes()Dave Chinner
Clean up xfs_reclaim_inodes() callers. Most callers want blocking behaviour, so just make the existing SYNC_WAIT behaviour the default. For the xfs_reclaim_worker(), just call xfs_reclaim_inodes_ag() directly because we just want optimistic clean inode reclaim to be done in the background. For xfs_quiesce_attr() we can just remove the inode reclaim calls as they are a historic relic that was required to flush dirty inodes that contained unlogged changes. We now log all changes to the inodes, so the sync AIL push from xfs_log_quiesce() called by xfs_quiesce_attr() will do all the required inode writeback for freeze. Seeing as we now want to loop until all reclaimable inodes have been reclaimed, make xfs_reclaim_inodes() loop on the XFS_ICI_RECLAIM_TAG tag rather than having xfs_reclaim_inodes_ag() tell it that inodes were skipped. This is much more reliable and will always loop until all reclaimable inodes are reclaimed. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-07-07xfs: allow multiple reclaimers per AGDave Chinner
Inode reclaim will still throttle direct reclaim on the per-ag reclaim locks. This is no longer necessary as reclaim can run non-blocking now. Hence we can remove these locks so that we don't arbitrarily block reclaimers just because there are more direct reclaimers than there are AGs. This can result in multiple reclaimers working on the same range of an AG, but this doesn't cause any apparent issues. Optimising the spread of concurrent reclaimers for best efficiency can be done in a future patchset. Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-27xfs: reduce free inode accounting overheadDave Chinner
Shaokun Zhang reported that XFS was using substantial CPU time in percpu_count_sum() when running a single threaded benchmark on a high CPU count (128p) machine from xfs_mod_ifree(). The issue is that the filesystem is empty when the benchmark runs, so inode allocation is running with a very low inode free count. With the percpu counter batching, this means comparisons when the counter is less that 128 * 256 = 32768 use the slow path of adding up all the counters across the CPUs, and this is expensive on high CPU count machines. The summing in xfs_mod_ifree() is only used to fire an assert if an underrun occurs. The error is ignored by the higher level code. Hence this is really just debug code and we don't need to run it on production kernels, nor do we need such debug checks to return error values just to trigger an assert. Finally, xfs_mod_icount/xfs_mod_ifree are only called from xfs_trans_unreserve_and_mod_sb(), so get rid of them and just directly call the percpu_counter_add/percpu_counter_compare functions. The compare functions are now run only on debug builds as they are internal to ASSERT() checks and so only compiled in when ASSERTs are active (CONFIG_XFS_DEBUG=y or CONFIG_XFS_WARN=y). Reported-by: Shaokun Zhang <zhangshaokun@hisilicon.com> Signed-off-by: Dave Chinner <dchinner@redhat.com> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-05-04xfs: define printk_once variants for xfs messagesEric Sandeen
There are a couple places where we directly call printk_once() and one of them doesn't follow the standard xfs subsystem printk format as a result. #define printk_once variants to go with our existing printk_ratelimited #defines so we can do one-shot printks in a consistent manner. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2020-03-11xfs: remove XFS_BUF_TO_SBPChristoph Hellwig
Just dereference bp->b_addr directly and make the code a little simpler and more clear. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-12-19xfs: don't commit sunit/swidth updates to disk if that would cause repair ↵Darrick J. Wong
failures Alex Lyakas reported[1] that mounting an xfs filesystem with new sunit and swidth values could cause xfs_repair to fail loudly. The problem here is that repair calculates the where mkfs should have allocated the root inode, based on the superblock geometry. The allocation decisions depend on sunit, which means that we really can't go updating sunit if it would lead to a subsequent repair failure on an otherwise correct filesystem. Port from xfs_repair some code that computes the location of the root inode and teach mount to skip the ondisk update if it would cause problems for repair. Along the way we'll update the documentation, provide a function for computing the minimum AGFL size instead of open-coding it, and cut down some indenting in the mount code. Note that we allow the mount to proceed (and new allocations will reflect this new geometry) because we've never screened this kind of thing before. We'll have to wait for a new future incompat feature to enforce correct behavior, alas. Note that the geometry reporting always uses the superblock values, not the incore ones, so that is what xfs_info and xfs_growfs will report. [1] https://lore.kernel.org/linux-xfs/20191125130744.GA44777@bfoster/T/#m00f9594b511e076e2fcdd489d78bc30216d72a7d Reported-by: Alex Lyakas <alex@zadara.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-12-19xfs: split the sunit parameter update into two partsDarrick J. Wong
If the administrator provided a sunit= mount option, we need to validate the raw parameter, convert the mount option units (512b blocks) into the internal unit (fs blocks), and then validate that the (now cooked) parameter doesn't screw anything up on disk. The incore inode geometry computation can depend on the new sunit option, but a subsequent patch will make validating the cooked value depends on the computed inode geometry, so break the sunit update into two steps. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Brian Foster <bfoster@redhat.com>
2019-11-13xfs: convert open coded corruption check to use XFS_IS_CORRUPTDarrick J. Wong
Convert the last of the open coded corruption check and report idioms to use the XFS_IS_CORRUPT macro. Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com> Reviewed-by: Christoph Hellwig <hch@lst.de>
2019-11-05xfs: use super s_id instead of struct xfs_mount m_fsnameIan Kent
Eliminate struct xfs_mount field m_fsname by using the super block s_id field directly. Signed-off-by: Ian Kent <raven@themaw.net> Reviewed-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-10-29xfs: simplify parsing of allocsize mount optionChristoph Hellwig
Rework xfs_parseargs to fill out the default value and then parse the option directly into the mount structure, similar to what we do for other updates, and open code the now trivial updates based on on the on-disk superblock directly into xfs_mountfs. Note that this change rejects the allocsize=0 mount option that has been documented as invalid for a long time instead of just ignoring it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-10-29xfs: rename the m_writeio_* fields in struct xfs_mountChristoph Hellwig
Use the allocsize name to match the mount option and usage instead. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-10-29xfs: remove the m_readio_* fields in struct xfs_mountChristoph Hellwig
m_readio_blocks is entirely unused, and m_readio_blocks is only used in xfs_stat_blksize in a max statements that is a no-op as it always has the same value as m_writeio_log. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-10-29xfs: don't use a different allocsice for -o wsyncChristoph Hellwig
The -o wsync allocsize overwrite overwrite was part of a special hack for NFSv2 servers in IRIX and has no real purpose in modern Linux, so remove it. Signed-off-by: Christoph Hellwig <hch@lst.de> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-09-05xfs: Use WARN_ON_ONCE for bailout mount-operationAustin Kim
If the CONFIG_BUG is enabled, BUG is executed and then system is crashed. However, the bailout for mount is no longer proceeding. Using WARN_ON_ONCE rather than BUG can prevent this situation. Signed-off-by: Austin Kim <austindh.kim@gmail.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-08-26fs: xfs: Remove KM_NOSLEEP and KM_SLEEP.Tetsuo Handa
Since no caller is using KM_NOSLEEP and no callee branches on KM_SLEEP, we can remove KM_NOSLEEP and replace KM_SLEEP with 0. Signed-off-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-06-28xfs: remove unused header filesEric Sandeen
There are many, many xfs header files which are included but unneeded (or included twice) in the xfs code, so remove them. nb: xfs_linux.h includes about 9 headers for everyone, so those explicit includes get removed by this. I'm not sure what the preference is, but if we wanted explicit includes everywhere, a followup patch could remove those xfs_*.h includes from xfs_linux.h and move them into the files that need them. Or it could be left as-is. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>
2019-06-12xfs: remove unused flags arg from getsb interfacesEric Sandeen
The flags value is always passed as 0 so remove the argument. Signed-off-by: Eric Sandeen <sandeen@redhat.com> Reviewed-by: Brian Foster <bfoster@redhat.com> Reviewed-by: Darrick J. Wong <darrick.wong@oracle.com> Signed-off-by: Darrick J. Wong <darrick.wong@oracle.com>