aboutsummaryrefslogtreecommitdiffstats
path: root/fs/proc
AgeCommit message (Expand)Author
2019-11-18Merge tag 'v4.14.151' into v4.14/standard/baseBruce Ashfield
2019-10-29fs/proc/page.c: don't access uninitialized memmaps in fs/proc/page.cDavid Hildenbrand
2019-09-15Merge tag 'v4.14.135' into v4.14/standard/baseBruce Ashfield
2019-09-15Merge tag 'v4.14.132' into v4.14/standard/baseBruce Ashfield
2019-07-31fs/proc/proc_sysctl.c: fix the default values of i_uid/i_gid on /proc/sys ino...Radoslaw Burny
2019-07-03fs/proc/array.c: allow reporting eip/esp for all coredumping threadsJohn Ogness
2019-05-21Merge tag 'v4.14.115' into v4.14/standard/baseBruce Ashfield
2019-05-21Merge tag 'v4.14.114' into v4.14/standard/baseBruce Ashfield
2019-05-21Merge tag 'v4.14.110' into v4.14/standard/baseBruce Ashfield
2019-05-21Merge tag 'v4.14.104' into v4.14/standard/baseBruce Ashfield
2019-05-21Merge tag 'v4.14.102' into v4.14/standard/baseBruce Ashfield
2019-05-02fs/proc/proc_sysctl.c: Fix a NULL pointer dereferenceYueHaibing
2019-04-27coredump: fix race condition between mmget_not_zero()/get_task_mm() and core ...Andrea Arcangeli
2019-04-03fs/proc/proc_sysctl.c: fix NULL pointer dereference in put_linksYueHaibing
2019-02-27proc, oom: do not report alien mms when setting oom_score_adjMichal Hocko
2019-02-20mm: proc: smaps_rollup: fix pss_locked calculationSandeep Patil
2019-01-10Merge tag 'v4.14.91' into v4.14/standard/baseBruce Ashfield
2019-01-10Merge tag 'v4.14.81' into v4.14/standard/baseBruce Ashfield
2018-12-29proc/sysctl: don't return ENOMEM on lookup when a table is unregisteringIvan Delalande
2018-11-13mm: /proc/pid/smaps_rollup: fix NULL pointer deref in smaps_pte_range()Vlastimil Babka
2018-10-15Merge tag 'v4.14.75' into v4.14/standard/baseBruce Ashfield
2018-10-10proc: restrict kernel stack dumps to rootJann Horn
2018-09-21Merge tag 'v4.14.70' into v4.14/standard/baseBruce Ashfield
2018-09-15fs/proc/kcore.c: use __pa_symbol() for KCORE_TEXT list entriesJames Morse
2018-08-13Merge tag 'v4.14.60' into v4.14/standard/baseBruce Ashfield
2018-08-13Merge tag 'v4.14.56' into v4.14/standard/baseBruce Ashfield
2018-08-13Merge tag 'v4.14.51' into v4.14/standard/baseBruce Ashfield
2018-08-03mm: /proc/pid/pagemap: hide swap entries from unprivileged usersHuang Ying
2018-07-17fs/proc/task_mmu.c: fix Locked field in /proc/pid/smaps*Vlastimil Babka
2018-06-21proc/kcore: don't bounds check against address 0Laura Abbott
2018-06-21proc: revalidate kernel thread inodes to root:rootAlexey Dobriyan
2018-06-21mm, pagemap: fix swap offset value for PMD migration entryHuang Ying
2018-06-06Merge tag 'v4.14.45' into v4.14/standard/baseBruce Ashfield
2018-06-06Merge tag 'v4.14.43' into v4.14/standard/baseBruce Ashfield
2018-06-06Merge tag 'v4.14.42' into v4.14/standard/baseBruce Ashfield
2018-05-30fs/proc/proc_sysctl.c: fix potential page fault while unregistering sysctl tableDanilo Krummrich
2018-05-22proc: Use underscores for SSBD in 'status'Konrad Rzeszutek Wilk
2018-05-22prctl: Add force disable speculationThomas Gleixner
2018-05-22proc: Provide details on speculation flaw mitigationsKees Cook
2018-05-19proc: do not access cmdline nor environ from file-backed areasWilly Tarreau
2018-05-10Merge tag 'v4.14.37' into v4.14/standard/baseBruce Ashfield
2018-04-26vfs/proc/kcore, x86/mm/kcore: Fix SMAP fault when dumping vsyscall user pageJia Zhang
2018-04-26proc: fix /proc/*/map_files lookupAlexey Dobriyan
2018-03-05Merge branch 'v4.14/base' into v4.14/standard/baseBruce Ashfield
2018-02-16fs/proc/kcore.c: use probe_kernel_read() instead of memcpy()Heiko Carstens
2018-02-01aufs4: mmap supportBruce Ashfield
2018-01-23proc: fix coredump vs read /proc/*/stat raceAlexey Dobriyan
2018-01-10x86 / CPU: Always show current CPU frequency in /proc/cpuinfoRafael J. Wysocki
2017-12-20tty fix oops when rmmod 8250nixiaoming
2017-11-03mm, /proc/pid/pagemap: fix soft dirty marking for PMD migration entryHuang Ying
>813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431
/*
 * JFFS2 -- Journalling Flash File System, Version 2.
 *
 * Copyright © 2001-2007 Red Hat, Inc.
 *
 * Created by David Woodhouse <dwmw2@infradead.org>
 *
 * For licensing information, see the file 'LICENCE' in this directory.
 *
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/fs.h>
#include <linux/crc32.h>
#include <linux/pagemap.h>
#include <linux/mtd/mtd.h>
#include <linux/compiler.h>
#include "nodelist.h"

/*
 * Check the data CRC of the node.
 *
 * Returns: 0 if the data CRC is correct;
 * 	    1 - if incorrect;
 *	    error code if an error occurred.
 */
static int check_node_data(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
{
	struct jffs2_raw_node_ref *ref = tn->fn->raw;
	int err = 0, pointed = 0;
	struct jffs2_eraseblock *jeb;
	unsigned char *buffer;
	uint32_t crc, ofs, len;
	size_t retlen;

	BUG_ON(tn->csize == 0);

	/* Calculate how many bytes were already checked */
	ofs = ref_offset(ref) + sizeof(struct jffs2_raw_inode);
	len = tn->csize;

	if (jffs2_is_writebuffered(c)) {
		int adj = ofs % c->wbuf_pagesize;
		if (likely(adj))
			adj = c->wbuf_pagesize - adj;

		if (adj >= tn->csize) {
			dbg_readinode("no need to check node at %#08x, data length %u, data starts at %#08x - it has already been checked.\n",
				      ref_offset(ref), tn->csize, ofs);
			goto adj_acc;
		}

		ofs += adj;
		len -= adj;
	}

	dbg_readinode("check node at %#08x, data length %u, partial CRC %#08x, correct CRC %#08x, data starts at %#08x, start checking from %#08x - %u bytes.\n",
		ref_offset(ref), tn->csize, tn->partial_crc, tn->data_crc, ofs - len, ofs, len);

#ifndef __ECOS
	/* TODO: instead, incapsulate point() stuff to jffs2_flash_read(),
	 * adding and jffs2_flash_read_end() interface. */
	err = mtd_point(c->mtd, ofs, len, &retlen, (void **)&buffer, NULL);
	if (!err && retlen < len) {
		JFFS2_WARNING("MTD point returned len too short: %zu instead of %u.\n", retlen, tn->csize);
		mtd_unpoint(c->mtd, ofs, retlen);
	} else if (err) {
		if (err != -EOPNOTSUPP)
			JFFS2_WARNING("MTD point failed: error code %d.\n", err);
	} else
		pointed = 1; /* succefully pointed to device */
#endif

	if (!pointed) {
		buffer = kmalloc(len, GFP_KERNEL);
		if (unlikely(!buffer))
			return -ENOMEM;

		/* TODO: this is very frequent pattern, make it a separate
		 * routine */
		err = jffs2_flash_read(c, ofs, len, &retlen, buffer);
		if (err) {
			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ofs, err);
			goto free_out;
		}

		if (retlen != len) {
			JFFS2_ERROR("short read at %#08x: %zd instead of %d.\n", ofs, retlen, len);
			err = -EIO;
			goto free_out;
		}
	}

	/* Continue calculating CRC */
	crc = crc32(tn->partial_crc, buffer, len);
	if(!pointed)
		kfree(buffer);
#ifndef __ECOS
	else
		mtd_unpoint(c->mtd, ofs, len);
#endif

	if (crc != tn->data_crc) {
		JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
			     ref_offset(ref), tn->data_crc, crc);
		return 1;
	}

adj_acc:
	jeb = &c->blocks[ref->flash_offset / c->sector_size];
	len = ref_totlen(c, jeb, ref);
	/* If it should be REF_NORMAL, it'll get marked as such when
	   we build the fragtree, shortly. No need to worry about GC
	   moving it while it's marked REF_PRISTINE -- GC won't happen
	   till we've finished checking every inode anyway. */
	ref->flash_offset |= REF_PRISTINE;
	/*
	 * Mark the node as having been checked and fix the
	 * accounting accordingly.
	 */
	spin_lock(&c->erase_completion_lock);
	jeb->used_size += len;
	jeb->unchecked_size -= len;
	c->used_size += len;
	c->unchecked_size -= len;
	jffs2_dbg_acct_paranoia_check_nolock(c, jeb);
	spin_unlock(&c->erase_completion_lock);

	return 0;

free_out:
	if(!pointed)
		kfree(buffer);
#ifndef __ECOS
	else
		mtd_unpoint(c->mtd, ofs, len);
#endif
	return err;
}

/*
 * Helper function for jffs2_add_older_frag_to_fragtree().
 *
 * Checks the node if we are in the checking stage.
 */
static int check_tn_node(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
{
	int ret;

	BUG_ON(ref_obsolete(tn->fn->raw));

	/* We only check the data CRC of unchecked nodes */
	if (ref_flags(tn->fn->raw) != REF_UNCHECKED)
		return 0;

	dbg_readinode("check node %#04x-%#04x, phys offs %#08x\n",
		      tn->fn->ofs, tn->fn->ofs + tn->fn->size, ref_offset(tn->fn->raw));

	ret = check_node_data(c, tn);
	if (unlikely(ret < 0)) {
		JFFS2_ERROR("check_node_data() returned error: %d.\n",
			ret);
	} else if (unlikely(ret > 0)) {
		dbg_readinode("CRC error, mark it obsolete.\n");
		jffs2_mark_node_obsolete(c, tn->fn->raw);
	}

	return ret;
}

static struct jffs2_tmp_dnode_info *jffs2_lookup_tn(struct rb_root *tn_root, uint32_t offset)
{
	struct rb_node *next;
	struct jffs2_tmp_dnode_info *tn = NULL;

	dbg_readinode("root %p, offset %d\n", tn_root, offset);

	next = tn_root->rb_node;

	while (next) {
		tn = rb_entry(next, struct jffs2_tmp_dnode_info, rb);

		if (tn->fn->ofs < offset)
			next = tn->rb.rb_right;
		else if (tn->fn->ofs >= offset)
			next = tn->rb.rb_left;
		else
			break;
	}

	return tn;
}


static void jffs2_kill_tn(struct jffs2_sb_info *c, struct jffs2_tmp_dnode_info *tn)
{
	jffs2_mark_node_obsolete(c, tn->fn->raw);
	jffs2_free_full_dnode(tn->fn);
	jffs2_free_tmp_dnode_info(tn);
}
/*
 * This function is used when we read an inode. Data nodes arrive in
 * arbitrary order -- they may be older or newer than the nodes which
 * are already in the tree. Where overlaps occur, the older node can
 * be discarded as long as the newer passes the CRC check. We don't
 * bother to keep track of holes in this rbtree, and neither do we deal
 * with frags -- we can have multiple entries starting at the same
 * offset, and the one with the smallest length will come first in the
 * ordering.
 *
 * Returns 0 if the node was handled (including marking it obsolete)
 *	 < 0 an if error occurred
 */
static int jffs2_add_tn_to_tree(struct jffs2_sb_info *c,
				struct jffs2_readinode_info *rii,
				struct jffs2_tmp_dnode_info *tn)
{
	uint32_t fn_end = tn->fn->ofs + tn->fn->size;
	struct jffs2_tmp_dnode_info *this, *ptn;

	dbg_readinode("insert fragment %#04x-%#04x, ver %u at %08x\n", tn->fn->ofs, fn_end, tn->version, ref_offset(tn->fn->raw));

	/* If a node has zero dsize, we only have to keep it if it might be the
	   node with highest version -- i.e. the one which will end up as f->metadata.
	   Note that such nodes won't be REF_UNCHECKED since there are no data to
	   check anyway. */
	if (!tn->fn->size) {
		if (rii->mdata_tn) {
			if (rii->mdata_tn->version < tn->version) {
				/* We had a candidate mdata node already */
				dbg_readinode("kill old mdata with ver %d\n", rii->mdata_tn->version);
				jffs2_kill_tn(c, rii->mdata_tn);
			} else {
				dbg_readinode("kill new mdata with ver %d (older than existing %d\n",
					      tn->version, rii->mdata_tn->version);
				jffs2_kill_tn(c, tn);
				return 0;
			}
		}
		rii->mdata_tn = tn;
		dbg_readinode("keep new mdata with ver %d\n", tn->version);
		return 0;
	}

	/* Find the earliest node which _may_ be relevant to this one */
	this = jffs2_lookup_tn(&rii->tn_root, tn->fn->ofs);
	if (this) {
		/* If the node is coincident with another at a lower address,
		   back up until the other node is found. It may be relevant */
		while (this->overlapped) {
			ptn = tn_prev(this);
			if (!ptn) {
				/*
				 * We killed a node which set the overlapped
				 * flags during the scan. Fix it up.
				 */
				this->overlapped = 0;
				break;
			}
			this = ptn;
		}
		dbg_readinode("'this' found %#04x-%#04x (%s)\n", this->fn->ofs, this->fn->ofs + this->fn->size, this->fn ? "data" : "hole");
	}

	while (this) {
		if (this->fn->ofs > fn_end)
			break;
		dbg_readinode("Ponder this ver %d, 0x%x-0x%x\n",
			      this->version, this->fn->ofs, this->fn->size);

		if (this->version == tn->version) {
			/* Version number collision means REF_PRISTINE GC. Accept either of them
			   as long as the CRC is correct. Check the one we have already...  */
			if (!check_tn_node(c, this)) {
				/* The one we already had was OK. Keep it and throw away the new one */
				dbg_readinode("Like old node. Throw away new\n");
				jffs2_kill_tn(c, tn);
				return 0;
			} else {
				/* Who cares if the new one is good; keep it for now anyway. */
				dbg_readinode("Like new node. Throw away old\n");
				rb_replace_node(&this->rb, &tn->rb, &rii->tn_root);
				jffs2_kill_tn(c, this);
				/* Same overlapping from in front and behind */
				return 0;
			}
		}
		if (this->version < tn->version &&
		    this->fn->ofs >= tn->fn->ofs &&
		    this->fn->ofs + this->fn->size <= fn_end) {
			/* New node entirely overlaps 'this' */
			if (check_tn_node(c, tn)) {
				dbg_readinode("new node bad CRC\n");
				jffs2_kill_tn(c, tn);
				return 0;
			}
			/* ... and is good. Kill 'this' and any subsequent nodes which are also overlapped */
			while (this && this->fn->ofs + this->fn->size <= fn_end) {
				struct jffs2_tmp_dnode_info *next = tn_next(this);
				if (this->version < tn->version) {
					tn_erase(this, &rii->tn_root);
					dbg_readinode("Kill overlapped ver %d, 0x%x-0x%x\n",
						      this->version, this->fn->ofs,
						      this->fn->ofs+this->fn->size);
					jffs2_kill_tn(c, this);
				}
				this = next;
			}
			dbg_readinode("Done killing overlapped nodes\n");
			continue;
		}
		if (this->version > tn->version &&
		    this->fn->ofs <= tn->fn->ofs &&
		    this->fn->ofs+this->fn->size >= fn_end) {
			/* New node entirely overlapped by 'this' */
			if (!check_tn_node(c, this)) {
				dbg_readinode("Good CRC on old node. Kill new\n");
				jffs2_kill_tn(c, tn);
				return 0;
			}
			/* ... but 'this' was bad. Replace it... */
			dbg_readinode("Bad CRC on old overlapping node. Kill it\n");
			tn_erase(this, &rii->tn_root);
			jffs2_kill_tn(c, this);
			break;
		}

		this = tn_next(this);
	}

	/* We neither completely obsoleted nor were completely
	   obsoleted by an earlier node. Insert into the tree */
	{
		struct rb_node *parent;
		struct rb_node **link = &rii->tn_root.rb_node;
		struct jffs2_tmp_dnode_info *insert_point = NULL;

		while (*link) {
			parent = *link;
			insert_point = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);
			if (tn->fn->ofs > insert_point->fn->ofs)
				link = &insert_point->rb.rb_right;
			else if (tn->fn->ofs < insert_point->fn->ofs ||
				 tn->fn->size < insert_point->fn->size)
				link = &insert_point->rb.rb_left;
			else
				link = &insert_point->rb.rb_right;
		}
		rb_link_node(&tn->rb, &insert_point->rb, link);
		rb_insert_color(&tn->rb, &rii->tn_root);
	}

	/* If there's anything behind that overlaps us, note it */
	this = tn_prev(tn);
	if (this) {
		while (1) {
			if (this->fn->ofs + this->fn->size > tn->fn->ofs) {
				dbg_readinode("Node is overlapped by %p (v %d, 0x%x-0x%x)\n",
					      this, this->version, this->fn->ofs,
					      this->fn->ofs+this->fn->size);
				tn->overlapped = 1;
				break;
			}
			if (!this->overlapped)
				break;

			ptn = tn_prev(this);
			if (!ptn) {
				/*
				 * We killed a node which set the overlapped
				 * flags during the scan. Fix it up.
				 */
				this->overlapped = 0;
				break;
			}
			this = ptn;
		}
	}

	/* If the new node overlaps anything ahead, note it */
	this = tn_next(tn);
	while (this && this->fn->ofs < fn_end) {
		this->overlapped = 1;
		dbg_readinode("Node ver %d, 0x%x-0x%x is overlapped\n",
			      this->version, this->fn->ofs,
			      this->fn->ofs+this->fn->size);
		this = tn_next(this);
	}
	return 0;
}

/* Trivial function to remove the last node in the tree. Which by definition
   has no right-hand child — so can be removed just by making its left-hand
   child (if any) take its place under its parent. Since this is only done
   when we're consuming the whole tree, there's no need to use rb_erase()
   and let it worry about adjusting colours and balancing the tree. That
   would just be a waste of time. */
static void eat_last(struct rb_root *root, struct rb_node *node)
{
	struct rb_node *parent = rb_parent(node);
	struct rb_node **link;

	/* LAST! */
	BUG_ON(node->rb_right);

	if (!parent)
		link = &root->rb_node;
	else if (node == parent->rb_left)
		link = &parent->rb_left;
	else
		link = &parent->rb_right;

	*link = node->rb_left;
	if (node->rb_left)
		node->rb_left->__rb_parent_color = node->__rb_parent_color;
}

/* We put the version tree in reverse order, so we can use the same eat_last()
   function that we use to consume the tmpnode tree (tn_root). */
static void ver_insert(struct rb_root *ver_root, struct jffs2_tmp_dnode_info *tn)
{
	struct rb_node **link = &ver_root->rb_node;
	struct rb_node *parent = NULL;
	struct jffs2_tmp_dnode_info *this_tn;

	while (*link) {
		parent = *link;
		this_tn = rb_entry(parent, struct jffs2_tmp_dnode_info, rb);

		if (tn->version > this_tn->version)
			link = &parent->rb_left;
		else
			link = &parent->rb_right;
	}
	dbg_readinode("Link new node at %p (root is %p)\n", link, ver_root);
	rb_link_node(&tn->rb, parent, link);
	rb_insert_color(&tn->rb, ver_root);
}

/* Build final, normal fragtree from tn tree. It doesn't matter which order
   we add nodes to the real fragtree, as long as they don't overlap. And
   having thrown away the majority of overlapped nodes as we went, there
   really shouldn't be many sets of nodes which do overlap. If we start at
   the end, we can use the overlap markers -- we can just eat nodes which
   aren't overlapped, and when we encounter nodes which _do_ overlap we
   sort them all into a temporary tree in version order before replaying them. */
static int jffs2_build_inode_fragtree(struct jffs2_sb_info *c,
				      struct jffs2_inode_info *f,
				      struct jffs2_readinode_info *rii)
{
	struct jffs2_tmp_dnode_info *pen, *last, *this;
	struct rb_root ver_root = RB_ROOT;
	uint32_t high_ver = 0;

	if (rii->mdata_tn) {
		dbg_readinode("potential mdata is ver %d at %p\n", rii->mdata_tn->version, rii->mdata_tn);
		high_ver = rii->mdata_tn->version;
		rii->latest_ref = rii->mdata_tn->fn->raw;
	}
#ifdef JFFS2_DBG_READINODE_MESSAGES
	this = tn_last(&rii->tn_root);
	while (this) {
		dbg_readinode("tn %p ver %d range 0x%x-0x%x ov %d\n", this, this->version, this->fn->ofs,
			      this->fn->ofs+this->fn->size, this->overlapped);
		this = tn_prev(this);
	}
#endif
	pen = tn_last(&rii->tn_root);
	while ((last = pen)) {
		pen = tn_prev(last);

		eat_last(&rii->tn_root, &last->rb);
		ver_insert(&ver_root, last);

		if (unlikely(last->overlapped)) {
			if (pen)
				continue;
			/*
			 * We killed a node which set the overlapped
			 * flags during the scan. Fix it up.
			 */
			last->overlapped = 0;
		}

		/* Now we have a bunch of nodes in reverse version
		   order, in the tree at ver_root. Most of the time,
		   there'll actually be only one node in the 'tree',
		   in fact. */
		this = tn_last(&ver_root);

		while (this) {
			struct jffs2_tmp_dnode_info *vers_next;
			int ret;
			vers_next = tn_prev(this);
			eat_last(&ver_root, &this->rb);
			if (check_tn_node(c, this)) {
				dbg_readinode("node ver %d, 0x%x-0x%x failed CRC\n",
					     this->version, this->fn->ofs,
					     this->fn->ofs+this->fn->size);
				jffs2_kill_tn(c, this);
			} else {
				if (this->version > high_ver) {
					/* Note that this is different from the other
					   highest_version, because this one is only
					   counting _valid_ nodes which could give the
					   latest inode metadata */
					high_ver = this->version;
					rii->latest_ref = this->fn->raw;
				}
				dbg_readinode("Add %p (v %d, 0x%x-0x%x, ov %d) to fragtree\n",
					     this, this->version, this->fn->ofs,
					     this->fn->ofs+this->fn->size, this->overlapped);

				ret = jffs2_add_full_dnode_to_inode(c, f, this->fn);
				if (ret) {
					/* Free the nodes in vers_root; let the caller
					   deal with the rest */
					JFFS2_ERROR("Add node to tree failed %d\n", ret);
					while (1) {
						vers_next = tn_prev(this);
						if (check_tn_node(c, this))
							jffs2_mark_node_obsolete(c, this->fn->raw);
						jffs2_free_full_dnode(this->fn);
						jffs2_free_tmp_dnode_info(this);
						this = vers_next;
						if (!this)
							break;
						eat_last(&ver_root, &vers_next->rb);
					}
					return ret;
				}
				jffs2_free_tmp_dnode_info(this);
			}
			this = vers_next;
		}
	}
	return 0;
}

static void jffs2_free_tmp_dnode_info_list(struct rb_root *list)
{
	struct jffs2_tmp_dnode_info *tn, *next;

	rbtree_postorder_for_each_entry_safe(tn, next, list, rb) {
			jffs2_free_full_dnode(tn->fn);
			jffs2_free_tmp_dnode_info(tn);
	}

	*list = RB_ROOT;
}

static void jffs2_free_full_dirent_list(struct jffs2_full_dirent *fd)
{
	struct jffs2_full_dirent *next;

	while (fd) {
		next = fd->next;
		jffs2_free_full_dirent(fd);
		fd = next;
	}
}

/* Returns first valid node after 'ref'. May return 'ref' */
static struct jffs2_raw_node_ref *jffs2_first_valid_node(struct jffs2_raw_node_ref *ref)
{
	while (ref && ref->next_in_ino) {
		if (!ref_obsolete(ref))
			return ref;
		dbg_noderef("node at 0x%08x is obsoleted. Ignoring.\n", ref_offset(ref));
		ref = ref->next_in_ino;
	}
	return NULL;
}

/*
 * Helper function for jffs2_get_inode_nodes().
 * It is called every time an directory entry node is found.
 *
 * Returns: 0 on success;
 * 	    negative error code on failure.
 */
static inline int read_direntry(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
				struct jffs2_raw_dirent *rd, size_t read,
				struct jffs2_readinode_info *rii)
{
	struct jffs2_full_dirent *fd;
	uint32_t crc;

	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
	BUG_ON(ref_obsolete(ref));

	crc = crc32(0, rd, sizeof(*rd) - 8);
	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
		JFFS2_NOTICE("header CRC failed on dirent node at %#08x: read %#08x, calculated %#08x\n",
			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
		jffs2_mark_node_obsolete(c, ref);
		return 0;
	}

	/* If we've never checked the CRCs on this node, check them now */
	if (ref_flags(ref) == REF_UNCHECKED) {
		struct jffs2_eraseblock *jeb;
		int len;

		/* Sanity check */
		if (unlikely(PAD((rd->nsize + sizeof(*rd))) != PAD(je32_to_cpu(rd->totlen)))) {
			JFFS2_ERROR("illegal nsize in node at %#08x: nsize %#02x, totlen %#04x\n",
				    ref_offset(ref), rd->nsize, je32_to_cpu(rd->totlen));
			jffs2_mark_node_obsolete(c, ref);
			return 0;
		}

		jeb = &c->blocks[ref->flash_offset / c->sector_size];
		len = ref_totlen(c, jeb, ref);

		spin_lock(&c->erase_completion_lock);
		jeb->used_size += len;
		jeb->unchecked_size -= len;
		c->used_size += len;
		c->unchecked_size -= len;
		ref->flash_offset = ref_offset(ref) | dirent_node_state(rd);
		spin_unlock(&c->erase_completion_lock);
	}

	fd = jffs2_alloc_full_dirent(rd->nsize + 1);
	if (unlikely(!fd))
		return -ENOMEM;

	fd->raw = ref;
	fd->version = je32_to_cpu(rd->version);
	fd->ino = je32_to_cpu(rd->ino);
	fd->type = rd->type;

	if (fd->version > rii->highest_version)
		rii->highest_version = fd->version;

	/* Pick out the mctime of the latest dirent */
	if(fd->version > rii->mctime_ver && je32_to_cpu(rd->mctime)) {
		rii->mctime_ver = fd->version;
		rii->latest_mctime = je32_to_cpu(rd->mctime);
	}

	/*
	 * Copy as much of the name as possible from the raw
	 * dirent we've already read from the flash.
	 */
	if (read > sizeof(*rd))
		memcpy(&fd->name[0], &rd->name[0],
		       min_t(uint32_t, rd->nsize, (read - sizeof(*rd)) ));

	/* Do we need to copy any more of the name directly from the flash? */
	if (rd->nsize + sizeof(*rd) > read) {
		/* FIXME: point() */
		int err;
		int already = read - sizeof(*rd);

		err = jffs2_flash_read(c, (ref_offset(ref)) + read,
				rd->nsize - already, &read, &fd->name[already]);
		if (unlikely(read != rd->nsize - already) && likely(!err)) {
			jffs2_free_full_dirent(fd);
			JFFS2_ERROR("short read: wanted %d bytes, got %zd\n",
				    rd->nsize - already, read);
			return -EIO;
		}

		if (unlikely(err)) {
			JFFS2_ERROR("read remainder of name: error %d\n", err);
			jffs2_free_full_dirent(fd);
			return -EIO;
		}
	}

	fd->nhash = full_name_hash(NULL, fd->name, rd->nsize);
	fd->next = NULL;
	fd->name[rd->nsize] = '\0';

	/*
	 * Wheee. We now have a complete jffs2_full_dirent structure, with
	 * the name in it and everything. Link it into the list
	 */
	jffs2_add_fd_to_list(c, fd, &rii->fds);

	return 0;
}

/*
 * Helper function for jffs2_get_inode_nodes().
 * It is called every time an inode node is found.
 *
 * Returns: 0 on success (possibly after marking a bad node obsolete);
 * 	    negative error code on failure.
 */
static inline int read_dnode(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
			     struct jffs2_raw_inode *rd, int rdlen,
			     struct jffs2_readinode_info *rii)
{
	struct jffs2_tmp_dnode_info *tn;
	uint32_t len, csize;
	int ret = 0;
	uint32_t crc;

	/* Obsoleted. This cannot happen, surely? dwmw2 20020308 */
	BUG_ON(ref_obsolete(ref));

	crc = crc32(0, rd, sizeof(*rd) - 8);
	if (unlikely(crc != je32_to_cpu(rd->node_crc))) {
		JFFS2_NOTICE("node CRC failed on dnode at %#08x: read %#08x, calculated %#08x\n",
			     ref_offset(ref), je32_to_cpu(rd->node_crc), crc);
		jffs2_mark_node_obsolete(c, ref);
		return 0;
	}

	tn = jffs2_alloc_tmp_dnode_info();
	if (!tn) {
		JFFS2_ERROR("failed to allocate tn (%zu bytes).\n", sizeof(*tn));
		return -ENOMEM;
	}

	tn->partial_crc = 0;
	csize = je32_to_cpu(rd->csize);

	/* If we've never checked the CRCs on this node, check them now */
	if (ref_flags(ref) == REF_UNCHECKED) {

		/* Sanity checks */
		if (unlikely(je32_to_cpu(rd->offset) > je32_to_cpu(rd->isize)) ||
		    unlikely(PAD(je32_to_cpu(rd->csize) + sizeof(*rd)) != PAD(je32_to_cpu(rd->totlen)))) {
			JFFS2_WARNING("inode node header CRC is corrupted at %#08x\n", ref_offset(ref));
			jffs2_dbg_dump_node(c, ref_offset(ref));
			jffs2_mark_node_obsolete(c, ref);
			goto free_out;
		}

		if (jffs2_is_writebuffered(c) && csize != 0) {
			/* At this point we are supposed to check the data CRC
			 * of our unchecked node. But thus far, we do not
			 * know whether the node is valid or obsolete. To
			 * figure this out, we need to walk all the nodes of
			 * the inode and build the inode fragtree. We don't
			 * want to spend time checking data of nodes which may
			 * later be found to be obsolete. So we put off the full
			 * data CRC checking until we have read all the inode
			 * nodes and have started building the fragtree.
			 *
			 * The fragtree is being built starting with nodes
			 * having the highest version number, so we'll be able
			 * to detect whether a node is valid (i.e., it is not
			 * overlapped by a node with higher version) or not.
			 * And we'll be able to check only those nodes, which
			 * are not obsolete.
			 *
			 * Of course, this optimization only makes sense in case
			 * of NAND flashes (or other flashes with
			 * !jffs2_can_mark_obsolete()), since on NOR flashes
			 * nodes are marked obsolete physically.
			 *
			 * Since NAND flashes (or other flashes with
			 * jffs2_is_writebuffered(c)) are anyway read by
			 * fractions of c->wbuf_pagesize, and we have just read
			 * the node header, it is likely that the starting part
			 * of the node data is also read when we read the
			 * header. So we don't mind to check the CRC of the
			 * starting part of the data of the node now, and check
			 * the second part later (in jffs2_check_node_data()).
			 * Of course, we will not need to re-read and re-check
			 * the NAND page which we have just read. This is why we
			 * read the whole NAND page at jffs2_get_inode_nodes(),
			 * while we needed only the node header.
			 */
			unsigned char *buf;

			/* 'buf' will point to the start of data */
			buf = (unsigned char *)rd + sizeof(*rd);
			/* len will be the read data length */
			len = min_t(uint32_t, rdlen - sizeof(*rd), csize);
			tn->partial_crc = crc32(0, buf, len);

			dbg_readinode("Calculates CRC (%#08x) for %d bytes, csize %d\n", tn->partial_crc, len, csize);

			/* If we actually calculated the whole data CRC
			 * and it is wrong, drop the node. */
			if (len >= csize && unlikely(tn->partial_crc != je32_to_cpu(rd->data_crc))) {
				JFFS2_NOTICE("wrong data CRC in data node at 0x%08x: read %#08x, calculated %#08x.\n",
					ref_offset(ref), tn->partial_crc, je32_to_cpu(rd->data_crc));
				jffs2_mark_node_obsolete(c, ref);
				goto free_out;
			}

		} else if (csize == 0) {
			/*
			 * We checked the header CRC. If the node has no data, adjust
			 * the space accounting now. For other nodes this will be done
			 * later either when the node is marked obsolete or when its
			 * data is checked.
			 */
			struct jffs2_eraseblock *jeb;

			dbg_readinode("the node has no data.\n");
			jeb = &c->blocks[ref->flash_offset / c->sector_size];
			len = ref_totlen(c, jeb, ref);

			spin_lock(&c->erase_completion_lock);
			jeb->used_size += len;
			jeb->unchecked_size -= len;
			c->used_size += len;
			c->unchecked_size -= len;
			ref->flash_offset = ref_offset(ref) | REF_NORMAL;
			spin_unlock(&c->erase_completion_lock);
		}
	}

	tn->fn = jffs2_alloc_full_dnode();
	if (!tn->fn) {
		JFFS2_ERROR("alloc fn failed\n");
		ret = -ENOMEM;
		goto free_out;
	}

	tn->version = je32_to_cpu(rd->version);
	tn->fn->ofs = je32_to_cpu(rd->offset);
	tn->data_crc = je32_to_cpu(rd->data_crc);
	tn->csize = csize;
	tn->fn->raw = ref;
	tn->overlapped = 0;

	if (tn->version > rii->highest_version)
		rii->highest_version = tn->version;

	/* There was a bug where we wrote hole nodes out with
	   csize/dsize swapped. Deal with it */
	if (rd->compr == JFFS2_COMPR_ZERO && !je32_to_cpu(rd->dsize) && csize)
		tn->fn->size = csize;
	else // normal case...
		tn->fn->size = je32_to_cpu(rd->dsize);

	dbg_readinode2("dnode @%08x: ver %u, offset %#04x, dsize %#04x, csize %#04x\n",
		       ref_offset(ref), je32_to_cpu(rd->version),
		       je32_to_cpu(rd->offset), je32_to_cpu(rd->dsize), csize);

	ret = jffs2_add_tn_to_tree(c, rii, tn);

	if (ret) {
		jffs2_free_full_dnode(tn->fn);
	free_out:
		jffs2_free_tmp_dnode_info(tn);
		return ret;
	}
#ifdef JFFS2_DBG_READINODE2_MESSAGES
	dbg_readinode2("After adding ver %d:\n", je32_to_cpu(rd->version));
	tn = tn_first(&rii->tn_root);
	while (tn) {
		dbg_readinode2("%p: v %d r 0x%x-0x%x ov %d\n",
			       tn, tn->version, tn->fn->ofs,
			       tn->fn->ofs+tn->fn->size, tn->overlapped);
		tn = tn_next(tn);
	}
#endif
	return 0;
}

/*
 * Helper function for jffs2_get_inode_nodes().
 * It is called every time an unknown node is found.
 *
 * Returns: 0 on success;
 * 	    negative error code on failure.
 */
static inline int read_unknown(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref, struct jffs2_unknown_node *un)
{
	/* We don't mark unknown nodes as REF_UNCHECKED */
	if (ref_flags(ref) == REF_UNCHECKED) {
		JFFS2_ERROR("REF_UNCHECKED but unknown node at %#08x\n",
			    ref_offset(ref));
		JFFS2_ERROR("Node is {%04x,%04x,%08x,%08x}. Please report this error.\n",
			    je16_to_cpu(un->magic), je16_to_cpu(un->nodetype),
			    je32_to_cpu(un->totlen), je32_to_cpu(un->hdr_crc));
		jffs2_mark_node_obsolete(c, ref);
		return 0;
	}

	un->nodetype = cpu_to_je16(JFFS2_NODE_ACCURATE | je16_to_cpu(un->nodetype));

	switch(je16_to_cpu(un->nodetype) & JFFS2_COMPAT_MASK) {

	case JFFS2_FEATURE_INCOMPAT:
		JFFS2_ERROR("unknown INCOMPAT nodetype %#04X at %#08x\n",
			    je16_to_cpu(un->nodetype), ref_offset(ref));
		/* EEP */
		BUG();
		break;

	case JFFS2_FEATURE_ROCOMPAT:
		JFFS2_ERROR("unknown ROCOMPAT nodetype %#04X at %#08x\n",
			    je16_to_cpu(un->nodetype), ref_offset(ref));
		BUG_ON(!(c->flags & JFFS2_SB_FLAG_RO));
		break;

	case JFFS2_FEATURE_RWCOMPAT_COPY:
		JFFS2_NOTICE("unknown RWCOMPAT_COPY nodetype %#04X at %#08x\n",
			     je16_to_cpu(un->nodetype), ref_offset(ref));
		break;

	case JFFS2_FEATURE_RWCOMPAT_DELETE:
		JFFS2_NOTICE("unknown RWCOMPAT_DELETE nodetype %#04X at %#08x\n",
			     je16_to_cpu(un->nodetype), ref_offset(ref));
		jffs2_mark_node_obsolete(c, ref);
		return 0;
	}

	return 0;
}

/*
 * Helper function for jffs2_get_inode_nodes().
 * The function detects whether more data should be read and reads it if yes.
 *
 * Returns: 0 on success;
 * 	    negative error code on failure.
 */
static int read_more(struct jffs2_sb_info *c, struct jffs2_raw_node_ref *ref,
		     int needed_len, int *rdlen, unsigned char *buf)
{
	int err, to_read = needed_len - *rdlen;
	size_t retlen;
	uint32_t offs;

	if (jffs2_is_writebuffered(c)) {
		int rem = to_read % c->wbuf_pagesize;

		if (rem)
			to_read += c->wbuf_pagesize - rem;
	}

	/* We need to read more data */
	offs = ref_offset(ref) + *rdlen;

	dbg_readinode("read more %d bytes\n", to_read);

	err = jffs2_flash_read(c, offs, to_read, &retlen, buf + *rdlen);
	if (err) {
		JFFS2_ERROR("can not read %d bytes from 0x%08x, "
			"error code: %d.\n", to_read, offs, err);
		return err;
	}

	if (retlen < to_read) {
		JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n",
				offs, retlen, to_read);
		return -EIO;
	}

	*rdlen += to_read;
	return 0;
}

/* Get tmp_dnode_info and full_dirent for all non-obsolete nodes associated
   with this ino. Perform a preliminary ordering on data nodes, throwing away
   those which are completely obsoleted by newer ones. The naïve approach we
   use to take of just returning them _all_ in version order will cause us to
   run out of memory in certain degenerate cases. */
static int jffs2_get_inode_nodes(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
				 struct jffs2_readinode_info *rii)
{
	struct jffs2_raw_node_ref *ref, *valid_ref;
	unsigned char *buf = NULL;
	union jffs2_node_union *node;
	size_t retlen;
	int len, err;

	rii->mctime_ver = 0;

	dbg_readinode("ino #%u\n", f->inocache->ino);

	/* FIXME: in case of NOR and available ->point() this
	 * needs to be fixed. */
	len = sizeof(union jffs2_node_union) + c->wbuf_pagesize;
	buf = kmalloc(len, GFP_KERNEL);
	if (!buf)
		return -ENOMEM;

	spin_lock(&c->erase_completion_lock);
	valid_ref = jffs2_first_valid_node(f->inocache->nodes);
	if (!valid_ref && f->inocache->ino != 1)
		JFFS2_WARNING("Eep. No valid nodes for ino #%u.\n", f->inocache->ino);
	while (valid_ref) {
		/* We can hold a pointer to a non-obsolete node without the spinlock,
		   but _obsolete_ nodes may disappear at any time, if the block
		   they're in gets erased. So if we mark 'ref' obsolete while we're
		   not holding the lock, it can go away immediately. For that reason,
		   we find the next valid node first, before processing 'ref'.
		*/
		ref = valid_ref;
		valid_ref = jffs2_first_valid_node(ref->next_in_ino);
		spin_unlock(&c->erase_completion_lock);

		cond_resched();

		/*
		 * At this point we don't know the type of the node we're going
		 * to read, so we do not know the size of its header. In order
		 * to minimize the amount of flash IO we assume the header is
		 * of size = JFFS2_MIN_NODE_HEADER.
		 */
		len = JFFS2_MIN_NODE_HEADER;
		if (jffs2_is_writebuffered(c)) {
			int end, rem;

			/*
			 * We are about to read JFFS2_MIN_NODE_HEADER bytes,
			 * but this flash has some minimal I/O unit. It is
			 * possible that we'll need to read more soon, so read
			 * up to the next min. I/O unit, in order not to
			 * re-read the same min. I/O unit twice.
			 */
			end = ref_offset(ref) + len;
			rem = end % c->wbuf_pagesize;
			if (rem)
				end += c->wbuf_pagesize - rem;
			len = end - ref_offset(ref);
		}

		dbg_readinode("read %d bytes at %#08x(%d).\n", len, ref_offset(ref), ref_flags(ref));

		/* FIXME: point() */
		err = jffs2_flash_read(c, ref_offset(ref), len, &retlen, buf);
		if (err) {
			JFFS2_ERROR("can not read %d bytes from 0x%08x, error code: %d.\n", len, ref_offset(ref), err);
			goto free_out;
		}

		if (retlen < len) {
			JFFS2_ERROR("short read at %#08x: %zu instead of %d.\n", ref_offset(ref), retlen, len);
			err = -EIO;
			goto free_out;
		}

		node = (union jffs2_node_union *)buf;

		/* No need to mask in the valid bit; it shouldn't be invalid */
		if (je32_to_cpu(node->u.hdr_crc) != crc32(0, node, sizeof(node->u)-4)) {
			JFFS2_NOTICE("Node header CRC failed at %#08x. {%04x,%04x,%08x,%08x}\n",
				     ref_offset(ref), je16_to_cpu(node->u.magic),
				     je16_to_cpu(node->u.nodetype),
				     je32_to_cpu(node->u.totlen),
				     je32_to_cpu(node->u.hdr_crc));
			jffs2_dbg_dump_node(c, ref_offset(ref));
			jffs2_mark_node_obsolete(c, ref);
			goto cont;
		}
		if (je16_to_cpu(node->u.magic) != JFFS2_MAGIC_BITMASK) {
			/* Not a JFFS2 node, whinge and move on */
			JFFS2_NOTICE("Wrong magic bitmask 0x%04x in node header at %#08x.\n",
				     je16_to_cpu(node->u.magic), ref_offset(ref));
			jffs2_mark_node_obsolete(c, ref);
			goto cont;
		}

		switch (je16_to_cpu(node->u.nodetype)) {

		case JFFS2_NODETYPE_DIRENT:

			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_dirent) &&
			    len < sizeof(struct jffs2_raw_dirent)) {
				err = read_more(c, ref, sizeof(struct jffs2_raw_dirent), &len, buf);
				if (unlikely(err))
					goto free_out;
			}

			err = read_direntry(c, ref, &node->d, retlen, rii);
			if (unlikely(err))
				goto free_out;

			break;

		case JFFS2_NODETYPE_INODE:

			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_raw_inode) &&
			    len < sizeof(struct jffs2_raw_inode)) {
				err = read_more(c, ref, sizeof(struct jffs2_raw_inode), &len, buf);
				if (unlikely(err))
					goto free_out;
			}

			err = read_dnode(c, ref, &node->i, len, rii);
			if (unlikely(err))
				goto free_out;

			break;

		default:
			if (JFFS2_MIN_NODE_HEADER < sizeof(struct jffs2_unknown_node) &&
			    len < sizeof(struct jffs2_unknown_node)) {
				err = read_more(c, ref, sizeof(struct jffs2_unknown_node), &len, buf);
				if (unlikely(err))
					goto free_out;
			}

			err = read_unknown(c, ref, &node->u);
			if (unlikely(err))
				goto free_out;

		}
	cont:
		spin_lock(&c->erase_completion_lock);
	}

	spin_unlock(&c->erase_completion_lock);
	kfree(buf);

	f->highest_version = rii->highest_version;

	dbg_readinode("nodes of inode #%u were read, the highest version is %u, latest_mctime %u, mctime_ver %u.\n",
		      f->inocache->ino, rii->highest_version, rii->latest_mctime,
		      rii->mctime_ver);
	return 0;

 free_out:
	jffs2_free_tmp_dnode_info_list(&rii->tn_root);
	jffs2_free_full_dirent_list(rii->fds);
	rii->fds = NULL;
	kfree(buf);
	return err;
}

static int jffs2_do_read_inode_internal(struct jffs2_sb_info *c,
					struct jffs2_inode_info *f,
					struct jffs2_raw_inode *latest_node)
{
	struct jffs2_readinode_info rii;
	uint32_t crc, new_size;
	size_t retlen;
	int ret;

	dbg_readinode("ino #%u pino/nlink is %d\n", f->inocache->ino,
		      f->inocache->pino_nlink);

	memset(&rii, 0, sizeof(rii));

	/* Grab all nodes relevant to this ino */
	ret = jffs2_get_inode_nodes(c, f, &rii);

	if (ret) {
		JFFS2_ERROR("cannot read nodes for ino %u, returned error is %d\n", f->inocache->ino, ret);
		if (f->inocache->state == INO_STATE_READING)
			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
		return ret;
	}

	ret = jffs2_build_inode_fragtree(c, f, &rii);
	if (ret) {
		JFFS2_ERROR("Failed to build final fragtree for inode #%u: error %d\n",
			    f->inocache->ino, ret);
		if (f->inocache->state == INO_STATE_READING)
			jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
		jffs2_free_tmp_dnode_info_list(&rii.tn_root);
		/* FIXME: We could at least crc-check them all */
		if (rii.mdata_tn) {
			jffs2_free_full_dnode(rii.mdata_tn->fn);
			jffs2_free_tmp_dnode_info(rii.mdata_tn);
			rii.mdata_tn = NULL;
		}
		return ret;
	}

	if (rii.mdata_tn) {
		if (rii.mdata_tn->fn->raw == rii.latest_ref) {
			f->metadata = rii.mdata_tn->fn;
			jffs2_free_tmp_dnode_info(rii.mdata_tn);
		} else {
			jffs2_kill_tn(c, rii.mdata_tn);
		}
		rii.mdata_tn = NULL;
	}

	f->dents = rii.fds;

	jffs2_dbg_fragtree_paranoia_check_nolock(f);

	if (unlikely(!rii.latest_ref)) {
		/* No data nodes for this inode. */
		if (f->inocache->ino != 1) {
			JFFS2_WARNING("no data nodes found for ino #%u\n", f->inocache->ino);
			if (!rii.fds) {
				if (f->inocache->state == INO_STATE_READING)
					jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
				return -EIO;
			}
			JFFS2_NOTICE("but it has children so we fake some modes for it\n");
		}
		latest_node->mode = cpu_to_jemode(S_IFDIR|S_IRUGO|S_IWUSR|S_IXUGO);
		latest_node->version = cpu_to_je32(0);
		latest_node->atime = latest_node->ctime = latest_node->mtime = cpu_to_je32(0);
		latest_node->isize = cpu_to_je32(0);
		latest_node->gid = cpu_to_je16(0);
		latest_node->uid = cpu_to_je16(0);
		if (f->inocache->state == INO_STATE_READING)
			jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);
		return 0;
	}

	ret = jffs2_flash_read(c, ref_offset(rii.latest_ref), sizeof(*latest_node), &retlen, (void *)latest_node);
	if (ret || retlen != sizeof(*latest_node)) {
		JFFS2_ERROR("failed to read from flash: error %d, %zd of %zd bytes read\n",
			ret, retlen, sizeof(*latest_node));
		/* FIXME: If this fails, there seems to be a memory leak. Find it. */
		return ret ? ret : -EIO;
	}

	crc = crc32(0, latest_node, sizeof(*latest_node)-8);
	if (crc != je32_to_cpu(latest_node->node_crc)) {
		JFFS2_ERROR("CRC failed for read_inode of inode %u at physical location 0x%x\n",
			f->inocache->ino, ref_offset(rii.latest_ref));
		return -EIO;
	}

	switch(jemode_to_cpu(latest_node->mode) & S_IFMT) {
	case S_IFDIR:
		if (rii.mctime_ver > je32_to_cpu(latest_node->version)) {
			/* The times in the latest_node are actually older than
			   mctime in the latest dirent. Cheat. */
			latest_node->ctime = latest_node->mtime = cpu_to_je32(rii.latest_mctime);
		}
		break;


	case S_IFREG:
		/* If it was a regular file, truncate it to the latest node's isize */
		new_size = jffs2_truncate_fragtree(c, &f->fragtree, je32_to_cpu(latest_node->isize));
		if (new_size != je32_to_cpu(latest_node->isize)) {
			JFFS2_WARNING("Truncating ino #%u to %d bytes failed because it only had %d bytes to start with!\n",
				      f->inocache->ino, je32_to_cpu(latest_node->isize), new_size);
			latest_node->isize = cpu_to_je32(new_size);
		}
		break;

	case S_IFLNK:
		/* Hack to work around broken isize in old symlink code.
		   Remove this when dwmw2 comes to his senses and stops
		   symlinks from being an entirely gratuitous special
		   case. */
		if (!je32_to_cpu(latest_node->isize))
			latest_node->isize = latest_node->dsize;

		if (f->inocache->state != INO_STATE_CHECKING) {
			/* Symlink's inode data is the target path. Read it and
			 * keep in RAM to facilitate quick follow symlink
			 * operation. */
			uint32_t csize = je32_to_cpu(latest_node->csize);
			if (csize > JFFS2_MAX_NAME_LEN)
				return -ENAMETOOLONG;
			f->target = kmalloc(csize + 1, GFP_KERNEL);
			if (!f->target) {
				JFFS2_ERROR("can't allocate %u bytes of memory for the symlink target path cache\n", csize);
				return -ENOMEM;
			}

			ret = jffs2_flash_read(c, ref_offset(rii.latest_ref) + sizeof(*latest_node),
					       csize, &retlen, (char *)f->target);

			if (ret || retlen != csize) {
				if (retlen != csize)
					ret = -EIO;
				kfree(f->target);
				f->target = NULL;
				return ret;
			}

			f->target[csize] = '\0';
			dbg_readinode("symlink's target '%s' cached\n", f->target);
		}

		/* fall through... */

	case S_IFBLK:
	case S_IFCHR:
		/* Certain inode types should have only one data node, and it's
		   kept as the metadata node */
		if (f->metadata) {
			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o had metadata node\n",
			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
			return -EIO;
		}
		if (!frag_first(&f->fragtree)) {
			JFFS2_ERROR("Argh. Special inode #%u with mode 0%o has no fragments\n",
			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
			return -EIO;
		}
		/* ASSERT: f->fraglist != NULL */
		if (frag_next(frag_first(&f->fragtree))) {
			JFFS2_ERROR("Argh. Special inode #%u with mode 0x%x had more than one node\n",
			       f->inocache->ino, jemode_to_cpu(latest_node->mode));
			/* FIXME: Deal with it - check crc32, check for duplicate node, check times and discard the older one */
			return -EIO;
		}
		/* OK. We're happy */
		f->metadata = frag_first(&f->fragtree)->node;
		jffs2_free_node_frag(frag_first(&f->fragtree));
		f->fragtree = RB_ROOT;
		break;
	}
	if (f->inocache->state == INO_STATE_READING)
		jffs2_set_inocache_state(c, f->inocache, INO_STATE_PRESENT);

	return 0;
}

/* Scan the list of all nodes present for this ino, build map of versions, etc. */
int jffs2_do_read_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f,
			uint32_t ino, struct jffs2_raw_inode *latest_node)
{
	dbg_readinode("read inode #%u\n", ino);

 retry_inocache:
	spin_lock(&c->inocache_lock);
	f->inocache = jffs2_get_ino_cache(c, ino);

	if (f->inocache) {
		/* Check its state. We may need to wait before we can use it */
		switch(f->inocache->state) {
		case INO_STATE_UNCHECKED:
		case INO_STATE_CHECKEDABSENT:
			f->inocache->state = INO_STATE_READING;
			break;

		case INO_STATE_CHECKING:
		case INO_STATE_GC:
			/* If it's in either of these states, we need
			   to wait for whoever's got it to finish and
			   put it back. */
			dbg_readinode("waiting for ino #%u in state %d\n", ino, f->inocache->state);
			sleep_on_spinunlock(&c->inocache_wq, &c->inocache_lock);
			goto retry_inocache;

		case INO_STATE_READING:
		case INO_STATE_PRESENT:
			/* Eep. This should never happen. It can
			happen if Linux calls read_inode() again
			before clear_inode() has finished though. */
			JFFS2_ERROR("Eep. Trying to read_inode #%u when it's already in state %d!\n", ino, f->inocache->state);
			/* Fail. That's probably better than allowing it to succeed */
			f->inocache = NULL;
			break;

		default:
			BUG();
		}
	}
	spin_unlock(&c->inocache_lock);

	if (!f->inocache && ino == 1) {
		/* Special case - no root inode on medium */
		f->inocache = jffs2_alloc_inode_cache();
		if (!f->inocache) {
			JFFS2_ERROR("cannot allocate inocache for root inode\n");
			return -ENOMEM;
		}
		dbg_readinode("creating inocache for root inode\n");
		memset(f->inocache, 0, sizeof(struct jffs2_inode_cache));
		f->inocache->ino = f->inocache->pino_nlink = 1;
		f->inocache->nodes = (struct jffs2_raw_node_ref *)f->inocache;
		f->inocache->state = INO_STATE_READING;
		jffs2_add_ino_cache(c, f->inocache);
	}
	if (!f->inocache) {
		JFFS2_ERROR("requested to read a nonexistent ino %u\n", ino);
		return -ENOENT;
	}

	return jffs2_do_read_inode_internal(c, f, latest_node);
}

int jffs2_do_crccheck_inode(struct jffs2_sb_info *c, struct jffs2_inode_cache *ic)
{
	struct jffs2_raw_inode n;
	struct jffs2_inode_info *f = kzalloc(sizeof(*f), GFP_KERNEL);
	int ret;

	if (!f)
		return -ENOMEM;

	mutex_init(&f->sem);
	mutex_lock(&f->sem);
	f->inocache = ic;

	ret = jffs2_do_read_inode_internal(c, f, &n);
	mutex_unlock(&f->sem);
	jffs2_do_clear_inode(c, f);
	jffs2_xattr_do_crccheck_inode(c, ic);
	kfree (f);
	return ret;
}

void jffs2_do_clear_inode(struct jffs2_sb_info *c, struct jffs2_inode_info *f)
{
	struct jffs2_full_dirent *fd, *fds;
	int deleted;

	jffs2_xattr_delete_inode(c, f->inocache);
	mutex_lock(&f->sem);
	deleted = f->inocache && !f->inocache->pino_nlink;

	if (f->inocache && f->inocache->state != INO_STATE_CHECKING)
		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CLEARING);

	if (f->metadata) {
		if (deleted)
			jffs2_mark_node_obsolete(c, f->metadata->raw);
		jffs2_free_full_dnode(f->metadata);
	}

	jffs2_kill_fragtree(&f->fragtree, deleted?c:NULL);

	fds = f->dents;
	while(fds) {
		fd = fds;
		fds = fd->next;
		jffs2_free_full_dirent(fd);
	}

	if (f->inocache && f->inocache->state != INO_STATE_CHECKING) {
		jffs2_set_inocache_state(c, f->inocache, INO_STATE_CHECKEDABSENT);
		if (f->inocache->nodes == (void *)f->inocache)
			jffs2_del_ino_cache(c, f->inocache);
	}

	mutex_unlock(&f->sem);
}