summaryrefslogtreecommitdiffstats
path: root/arch/x86/include
AgeCommit message (Collapse)Author
2019-07-08Merge branch 'siginfo-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace Pull force_sig() argument change from Eric Biederman: "A source of error over the years has been that force_sig has taken a task parameter when it is only safe to use force_sig with the current task. The force_sig function is built for delivering synchronous signals such as SIGSEGV where the userspace application caused a synchronous fault (such as a page fault) and the kernel responded with a signal. Because the name force_sig does not make this clear, and because the force_sig takes a task parameter the function force_sig has been abused for sending other kinds of signals over the years. Slowly those have been fixed when the oopses have been tracked down. This set of changes fixes the remaining abusers of force_sig and carefully rips out the task parameter from force_sig and friends making this kind of error almost impossible in the future" * 'siginfo-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ebiederm/user-namespace: (27 commits) signal/x86: Move tsk inside of CONFIG_MEMORY_FAILURE in do_sigbus signal: Remove the signal number and task parameters from force_sig_info signal: Factor force_sig_info_to_task out of force_sig_info signal: Generate the siginfo in force_sig signal: Move the computation of force into send_signal and correct it. signal: Properly set TRACE_SIGNAL_LOSE_INFO in __send_signal signal: Remove the task parameter from force_sig_fault signal: Use force_sig_fault_to_task for the two calls that don't deliver to current signal: Explicitly call force_sig_fault on current signal/unicore32: Remove tsk parameter from __do_user_fault signal/arm: Remove tsk parameter from __do_user_fault signal/arm: Remove tsk parameter from ptrace_break signal/nds32: Remove tsk parameter from send_sigtrap signal/riscv: Remove tsk parameter from do_trap signal/sh: Remove tsk parameter from force_sig_info_fault signal/um: Remove task parameter from send_sigtrap signal/x86: Remove task parameter from send_sigtrap signal: Remove task parameter from force_sig_mceerr signal: Remove task parameter from force_sig signal: Remove task parameter from force_sigsegv ...
2019-07-08Merge branch 'x86-topology-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 topology updates from Ingo Molnar: "Implement multi-die topology support on Intel CPUs and expose the die topology to user-space tooling, by Len Brown, Kan Liang and Zhang Rui. These changes should have no effect on the kernel's existing understanding of topologies, i.e. there should be no behavioral impact on cache, NUMA, scheduler, perf and other topologies and overall system performance" * 'x86-topology-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/intel/rapl: Cosmetic rename internal variables in response to multi-die/pkg support perf/x86/intel/uncore: Cosmetic renames in response to multi-die/pkg support hwmon/coretemp: Cosmetic: Rename internal variables to zones from packages thermal/x86_pkg_temp_thermal: Cosmetic: Rename internal variables to zones from packages perf/x86/intel/cstate: Support multi-die/package perf/x86/intel/rapl: Support multi-die/package perf/x86/intel/uncore: Support multi-die/package topology: Create core_cpus and die_cpus sysfs attributes topology: Create package_cpus sysfs attribute hwmon/coretemp: Support multi-die/package powercap/intel_rapl: Update RAPL domain name and debug messages thermal/x86_pkg_temp_thermal: Support multi-die/package powercap/intel_rapl: Support multi-die/package powercap/intel_rapl: Simplify rapl_find_package() x86/topology: Define topology_logical_die_id() x86/topology: Define topology_die_id() cpu/topology: Export die_id x86/topology: Create topology_max_die_per_package() x86/topology: Add CPUID.1F multi-die/package support
2019-07-08Merge branch 'x86-platform-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 platform updayes from Ingo Molnar: "Most of the commits add ACRN hypervisor guest support, plus two cleanups" * 'x86-platform-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/jailhouse: Mark jailhouse_x2apic_available() as __init x86/platform/geode: Drop <linux/gpio.h> includes x86/acrn: Use HYPERVISOR_CALLBACK_VECTOR for ACRN guest upcall vector x86: Add support for Linux guests on an ACRN hypervisor x86/Kconfig: Add new X86_HV_CALLBACK_VECTOR config symbol
2019-07-08Merge branch 'x86-paravirt-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 paravirt updates from Ingo Molnar: "A handful of paravirt patching code enhancements to make it more robust against patching failures, and related cleanups and not so related cleanups - by Thomas Gleixner and myself" * 'x86-paravirt-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/paravirt: Rename paravirt_patch_site::instrtype to paravirt_patch_site::type x86/paravirt: Standardize 'insn_buff' variable names x86/paravirt: Match paravirt patchlet field definition ordering to initialization ordering x86/paravirt: Replace the paravirt patch asm magic x86/paravirt: Unify the 32/64 bit paravirt patching code x86/paravirt: Detect over-sized patching bugs in paravirt_patch_call() x86/paravirt: Detect over-sized patching bugs in paravirt_patch_insns() x86/paravirt: Remove bogus extern declarations
2019-07-08Merge branch 'x86-asm-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 asm updates from Ingo Molnar: "Most of the changes relate to Peter Zijlstra's cleanup of ptregs handling, in particular the i386 part is now much simplified and standardized - no more partial ptregs stack frames via the esp/ss oddity. This simplifies ftrace, kprobes, the unwinder, ptrace, kdump and kgdb. There's also a CR4 hardening enhancements by Kees Cook, to make the generic platform functions such as native_write_cr4() less useful as ROP gadgets that disable SMEP/SMAP. Also protect the WP bit of CR0 against similar attacks. The rest is smaller cleanups/fixes" * 'x86-asm-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/alternatives: Add int3_emulate_call() selftest x86/stackframe/32: Allow int3_emulate_push() x86/stackframe/32: Provide consistent pt_regs x86/stackframe, x86/ftrace: Add pt_regs frame annotations x86/stackframe, x86/kprobes: Fix frame pointer annotations x86/stackframe: Move ENCODE_FRAME_POINTER to asm/frame.h x86/entry/32: Clean up return from interrupt preemption path x86/asm: Pin sensitive CR0 bits x86/asm: Pin sensitive CR4 bits Documentation/x86: Fix path to entry_32.S x86/asm: Remove unused TASK_TI_flags from asm-offsets.c
2019-07-08Merge branch 'locking-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull locking updates from Ingo Molnar: "The main changes in this cycle are: - rwsem scalability improvements, phase #2, by Waiman Long, which are rather impressive: "On a 2-socket 40-core 80-thread Skylake system with 40 reader and writer locking threads, the min/mean/max locking operations done in a 5-second testing window before the patchset were: 40 readers, Iterations Min/Mean/Max = 1,807/1,808/1,810 40 writers, Iterations Min/Mean/Max = 1,807/50,344/151,255 After the patchset, they became: 40 readers, Iterations Min/Mean/Max = 30,057/31,359/32,741 40 writers, Iterations Min/Mean/Max = 94,466/95,845/97,098" There's a lot of changes to the locking implementation that makes it similar to qrwlock, including owner handoff for more fair locking. Another microbenchmark shows how across the spectrum the improvements are: "With a locking microbenchmark running on 5.1 based kernel, the total locking rates (in kops/s) on a 2-socket Skylake system with equal numbers of readers and writers (mixed) before and after this patchset were: # of Threads Before Patch After Patch ------------ ------------ ----------- 2 2,618 4,193 4 1,202 3,726 8 802 3,622 16 729 3,359 32 319 2,826 64 102 2,744" The changes are extensive and the patch-set has been through several iterations addressing various locking workloads. There might be more regressions, but unless they are pathological I believe we want to use this new implementation as the baseline going forward. - jump-label optimizations by Daniel Bristot de Oliveira: the primary motivation was to remove IPI disturbance of isolated RT-workload CPUs, which resulted in the implementation of batched jump-label updates. Beyond the improvement of the real-time characteristics kernel, in one test this patchset improved static key update overhead from 57 msecs to just 1.4 msecs - which is a nice speedup as well. - atomic64_t cross-arch type cleanups by Mark Rutland: over the last ~10 years of atomic64_t existence the various types used by the APIs only had to be self-consistent within each architecture - which means they became wildly inconsistent across architectures. Mark puts and end to this by reworking all the atomic64 implementations to use 's64' as the base type for atomic64_t, and to ensure that this type is consistently used for parameters and return values in the API, avoiding further problems in this area. - A large set of small improvements to lockdep by Yuyang Du: type cleanups, output cleanups, function return type and othr cleanups all around the place. - A set of percpu ops cleanups and fixes by Peter Zijlstra. - Misc other changes - please see the Git log for more details" * 'locking-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (82 commits) locking/lockdep: increase size of counters for lockdep statistics locking/atomics: Use sed(1) instead of non-standard head(1) option locking/lockdep: Move mark_lock() inside CONFIG_TRACE_IRQFLAGS && CONFIG_PROVE_LOCKING x86/jump_label: Make tp_vec_nr static x86/percpu: Optimize raw_cpu_xchg() x86/percpu, sched/fair: Avoid local_clock() x86/percpu, x86/irq: Relax {set,get}_irq_regs() x86/percpu: Relax smp_processor_id() x86/percpu: Differentiate this_cpu_{}() and __this_cpu_{}() locking/rwsem: Guard against making count negative locking/rwsem: Adaptive disabling of reader optimistic spinning locking/rwsem: Enable time-based spinning on reader-owned rwsem locking/rwsem: Make rwsem->owner an atomic_long_t locking/rwsem: Enable readers spinning on writer locking/rwsem: Clarify usage of owner's nonspinaable bit locking/rwsem: Wake up almost all readers in wait queue locking/rwsem: More optimal RT task handling of null owner locking/rwsem: Always release wait_lock before waking up tasks locking/rwsem: Implement lock handoff to prevent lock starvation locking/rwsem: Make rwsem_spin_on_owner() return owner state ...
2019-07-08Drivers: hv: vmbus: Break out ISA independent parts of mshyperv.hMichael Kelley
Break out parts of mshyperv.h that are ISA independent into a separate file in include/asm-generic. This move facilitates ARM64 code reusing these definitions and avoids code duplication. No functionality or behavior is changed. Signed-off-by: Michael Kelley <mikelley@microsoft.com> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-08Merge branch 'x86-pti-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 pti updates from Thomas Gleixner: "The speculative paranoia departement delivers a few more plugs for possible (probably theoretical) spectre/mds leaks" * 'x86-pti-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/tls: Fix possible spectre-v1 in do_get_thread_area() x86/ptrace: Fix possible spectre-v1 in ptrace_get_debugreg() x86/speculation/mds: Eliminate leaks by trace_hardirqs_on()
2019-07-08Merge branch 'x86-timers-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 timer updates from Thomas Gleixner: "A rather large series consolidating the HPET code, which was triggered by the attempt to bolt HPET NMI watchdog support on to the existing maze with the usual duct tape and super glue approach. This mainly removes two separate partially redundant storage layers and consolidates them into a single one which provides a consistent view of the different HPET channels and their usage and allows to integrate HPET NMI watchdog support (if it turns out to be feasible) in a non intrusive way" * 'x86-timers-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (29 commits) x86/hpet: Use channel for legacy clockevent storage x86/hpet: Use common init for legacy clockevent x86/hpet: Carve out shareable parts of init_one_hpet_msi_clockevent() x86/hpet: Consolidate clockevent functions x86/hpet: Wrap legacy clockevent in hpet_channel x86/hpet: Use cached info instead of extra flags x86/hpet: Move clockevents into channels x86/hpet: Rename variables to prepare for switching to channels x86/hpet: Add function to select a /dev/hpet channel x86/hpet: Add mode information to struct hpet_channel x86/hpet: Use cached channel data x86/hpet: Introduce struct hpet_base and struct hpet_channel x86/hpet: Coding style cleanup x86/hpet: Clean up comments x86/hpet: Make naming consistent x86/hpet: Remove not required includes x86/hpet: Decapitalize and rename EVT_TO_HPET_DEV x86/hpet: Simplify counter validation x86/hpet: Separate counter check out of clocksource register code x86/hpet: Shuffle code around for readability sake ...
2019-07-08Merge branch 'x86-cpu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 CPU feature updates from Thomas Gleixner: "Updates for x86 CPU features: - Support for UMWAIT/UMONITOR, which allows to use MWAIT and MONITOR instructions in user space to save power e.g. in HPC workloads which spin wait on synchronization points. The maximum time a MWAIT can halt in userspace is controlled by the kernel and can be adjusted by the sysadmin. - Speed up the MTRR handling code on CPUs which support cache self-snooping correctly. On those CPUs the wbinvd() invocations can be omitted which speeds up the MTRR setup by a factor of 50. - Support for the new x86 vendor Zhaoxin who develops processors based on the VIA Centaur technology. - Prevent 'cat /proc/cpuinfo' from affecting isolated NOHZ_FULL CPUs by sending IPIs to retrieve the CPU frequency and use the cached values instead. - The addition and late revert of the FSGSBASE support. The revert was required as it turned out that the code still has hard to diagnose issues. Yet another engineering trainwreck... - Small fixes, cleanups, improvements and the usual new Intel CPU family/model addons" * 'x86-cpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (41 commits) x86/fsgsbase: Revert FSGSBASE support selftests/x86/fsgsbase: Fix some test case bugs x86/entry/64: Fix and clean up paranoid_exit x86/entry/64: Don't compile ignore_sysret if 32-bit emulation is enabled selftests/x86: Test SYSCALL and SYSENTER manually with TF set x86/mtrr: Skip cache flushes on CPUs with cache self-snooping x86/cpu/intel: Clear cache self-snoop capability in CPUs with known errata Documentation/ABI: Document umwait control sysfs interfaces x86/umwait: Add sysfs interface to control umwait maximum time x86/umwait: Add sysfs interface to control umwait C0.2 state x86/umwait: Initialize umwait control values x86/cpufeatures: Enumerate user wait instructions x86/cpu: Disable frequency requests via aperfmperf IPI for nohz_full CPUs x86/acpi/cstate: Add Zhaoxin processors support for cache flush policy in C3 ACPI, x86: Add Zhaoxin processors support for NONSTOP TSC x86/cpu: Create Zhaoxin processors architecture support file x86/cpu: Split Tremont based Atoms from the rest Documentation/x86/64: Add documentation for GS/FS addressing mode x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2 x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit ...
2019-07-08Merge branch 'x86-fpu-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 FPU updates from Thomas Gleixner: "A small set of updates for the FPU code: - Make the no387/nofxsr command line options useful by restricting them to 32bit and actually clearing all dependencies to prevent random crashes and malfunction. - Simplify and cleanup the kernel_fpu_*() helpers" * 'x86-fpu-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/fpu: Inline fpu__xstate_clear_all_cpu_caps() x86/fpu: Make 'no387' and 'nofxsr' command line options useful x86/fpu: Remove the fpu__save() export x86/fpu: Simplify kernel_fpu_begin() x86/fpu: Simplify kernel_fpu_end()
2019-07-08Merge branch 'x86-entry-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x86 vsyscall updates from Thomas Gleixner: "Further hardening of the legacy vsyscall by providing support for execute only mode and switching the default to it. This prevents a certain class of attacks which rely on the vsyscall page being accessible at a fixed address in the canonical kernel address space" * 'x86-entry-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: selftests/x86: Add a test for process_vm_readv() on the vsyscall page x86/vsyscall: Add __ro_after_init to global variables x86/vsyscall: Change the default vsyscall mode to xonly selftests/x86/vsyscall: Verify that vsyscall=none blocks execution x86/vsyscall: Document odd SIGSEGV error code for vsyscalls x86/vsyscall: Show something useful on a read fault x86/vsyscall: Add a new vsyscall=xonly mode Documentation/admin: Remove the vsyscall=native documentation
2019-07-08Merge branch 'x86-apic-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull x96 apic updates from Thomas Gleixner: "Updates for the x86 APIC interrupt handling and APIC timer: - Fix a long standing issue with spurious interrupts which was caused by the big vector management rework a few years ago. Robert Hodaszi provided finally enough debug data and an excellent initial failure analysis which allowed to understand the underlying issues. This contains a change to the core interrupt management code which is required to handle this correctly for the APIC/IO_APIC. The core changes are NOOPs for most architectures except ARM64. ARM64 is not impacted by the change as confirmed by Marc Zyngier. - Newer systems allow to disable the PIT clock for power saving causing panic in the timer interrupt delivery check of the IO/APIC when the HPET timer is not enabled either. While the clock could be turned on this would cause an endless whack a mole game to chase the proper register in each affected chipset. These systems provide the relevant frequencies for TSC, CPU and the local APIC timer via CPUID and/or MSRs, which allows to avoid the PIT/HPET based calibration. As the calibration code is the only usage of the legacy timers on modern systems and is skipped anyway when the frequencies are known already, there is no point in setting up the PIT and actually checking for the interrupt delivery via IO/APIC. To achieve this on a wide variety of platforms, the CPUID/MSR based frequency readout has been made more robust, which also allowed to remove quite some workarounds which turned out to be not longer required. Thanks to Daniel Drake for analysis, patches and verification" * 'x86-apic-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: x86/irq: Seperate unused system vectors from spurious entry again x86/irq: Handle spurious interrupt after shutdown gracefully x86/ioapic: Implement irq_get_irqchip_state() callback genirq: Add optional hardware synchronization for shutdown genirq: Fix misleading synchronize_irq() documentation genirq: Delay deactivation in free_irq() x86/timer: Skip PIT initialization on modern chipsets x86/apic: Use non-atomic operations when possible x86/apic: Make apic_bsp_setup() static x86/tsc: Set LAPIC timer period to crystal clock frequency x86/apic: Rename 'lapic_timer_frequency' to 'lapic_timer_period' x86/tsc: Use CPUID.0x16 to calculate missing crystal frequency
2019-07-08Merge branch 'timers-core-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull timer updates from Thomas Gleixner: "The timer and timekeeping departement delivers: Core: - The consolidation of the VDSO code into a generic library including the conversion of x86 and ARM64. Conversion of ARM and MIPS are en route through the relevant maintainer trees and should end up in 5.4. This gets rid of the unnecessary different copies of the same code and brings all architectures on the same level of VDSO functionality. - Make the NTP user space interface more robust by restricting the TAI offset to prevent undefined behaviour. Includes a selftest. - Validate user input in the compat settimeofday() syscall to catch invalid values which would be turned into valid values by a multiplication overflow - Consolidate the time accessors - Small fixes, improvements and cleanups all over the place Drivers: - Support for the NXP system counter, TI davinci timer - Move the Microsoft HyperV clocksource/events code into the drivers/clocksource directory so it can be shared between x86 and ARM64. - Overhaul of the Tegra driver - Delay timer support for IXP4xx - Small fixes, improvements and cleanups as usual" * 'timers-core-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (71 commits) time: Validate user input in compat_settimeofday() timer: Document TIMER_PINNED clocksource/drivers: Continue making Hyper-V clocksource ISA agnostic clocksource/drivers: Make Hyper-V clocksource ISA agnostic MAINTAINERS: Fix Andy's surname and the directory entries of VDSO hrtimer: Use a bullet for the returns bullet list arm64: vdso: Fix compilation with clang older than 8 arm64: compat: Fix __arch_get_hw_counter() implementation arm64: Fix __arch_get_hw_counter() implementation lib/vdso: Make delta calculation work correctly MAINTAINERS: Add entry for the generic VDSO library arm64: compat: No need for pre-ARMv7 barriers on an ARMv8 system arm64: vdso: Remove unnecessary asm-offsets.c definitions vdso: Remove superfluous #ifdef __KERNEL__ in vdso/datapage.h clocksource/drivers/davinci: Add support for clocksource clocksource/drivers/davinci: Add support for clockevents clocksource/drivers/tegra: Set up maximum-ticks limit properly clocksource/drivers/tegra: Cycles can't be 0 clocksource/drivers/tegra: Restore base address before cleanup clocksource/drivers/tegra: Add verbose definition for 1MHz constant ...
2019-07-07x86/fpu: Inline fpu__xstate_clear_all_cpu_caps()Sebastian Andrzej Siewior
All fpu__xstate_clear_all_cpu_caps() does is to invoke one simple function since commit 73e3a7d2a7c3b ("x86/fpu: Remove the explicit clearing of XSAVE dependent features") so invoke that function directly and remove the wrapper. Signed-off-by: Sebastian Andrzej Siewior <bigeasy@linutronix.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lkml.kernel.org/r/20190704060743.rvew4yrjd6n33uzx@linutronix.de
2019-07-05KVM: nVMX: Stash L1's CR3 in vmcs01.GUEST_CR3 on nested entry w/o EPTSean Christopherson
KVM does not have 100% coverage of VMX consistency checks, i.e. some checks that cause VM-Fail may only be detected by hardware during a nested VM-Entry. In such a case, KVM must restore L1's state to the pre-VM-Enter state as L2's state has already been loaded into KVM's software model. L1's CR3 and PDPTRs in particular are loaded from vmcs01.GUEST_*. But when EPT is disabled, the associated fields hold KVM's shadow values, not L1's "real" values. Fortunately, when EPT is disabled the PDPTRs come from memory, i.e. are not cached in the VMCS. Which leaves CR3 as the sole anomaly. A previously applied workaround to handle CR3 was to force nested early checks if EPT is disabled: commit 2b27924bb1d48 ("KVM: nVMX: always use early vmcs check when EPT is disabled") Forcing nested early checks is undesirable as doing so adds hundreds of cycles to every nested VM-Entry. Rather than take this performance hit, handle CR3 by overwriting vmcs01.GUEST_CR3 with L1's CR3 during nested VM-Entry when EPT is disabled *and* nested early checks are disabled. By stuffing vmcs01.GUEST_CR3, nested_vmx_restore_host_state() will naturally restore the correct vcpu->arch.cr3 from vmcs01.GUEST_CR3. These shenanigans work because nested_vmx_restore_host_state() does a full kvm_mmu_reset_context(), i.e. unloads the current MMU, which guarantees vmcs01.GUEST_CR3 will be rewritten with a new shadow CR3 prior to re-entering L1. vcpu->arch.root_mmu.root_hpa is set to INVALID_PAGE via: nested_vmx_restore_host_state() -> kvm_mmu_reset_context() -> kvm_mmu_unload() -> kvm_mmu_free_roots() kvm_mmu_unload() has WARN_ON(root_hpa != INVALID_PAGE), i.e. we can bank on 'root_hpa == INVALID_PAGE' unless the implementation of kvm_mmu_reset_context() is changed. On the way into L1, VMCS.GUEST_CR3 is guaranteed to be written (on a successful entry) via: vcpu_enter_guest() -> kvm_mmu_reload() -> kvm_mmu_load() -> kvm_mmu_load_cr3() -> vmx_set_cr3() Stuff vmcs01.GUEST_CR3 if and only if nested early checks are disabled as a "late" VM-Fail should never happen win that case (KVM WARNs), and the conditional write avoids the need to restore the correct GUEST_CR3 when nested_vmx_check_vmentry_hw() fails. Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Message-Id: <20190607185534.24368-1-sean.j.christopherson@intel.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-03x86/fsgsbase: Revert FSGSBASE supportThomas Gleixner
The FSGSBASE series turned out to have serious bugs and there is still an open issue which is not fully understood yet. The confidence in those changes has become close to zero especially as the test cases which have been shipped with that series were obviously never run before sending the final series out to LKML. ./fsgsbase_64 >/dev/null Segmentation fault As the merge window is close, the only sane decision is to revert FSGSBASE support. The revert is necessary as this branch has been merged into perf/core already and rebasing all of that a few days before the merge window is not the most brilliant idea. I could definitely slap myself for not noticing the test case fail when merging that series, but TBH my expectations weren't that low back then. Won't happen again. Revert the following commits: 539bca535dec ("x86/entry/64: Fix and clean up paranoid_exit") 2c7b5ac5d5a9 ("Documentation/x86/64: Add documentation for GS/FS addressing mode") f987c955c745 ("x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2") 2032f1f96ee0 ("x86/cpu: Enable FSGSBASE on 64bit by default and add a chicken bit") 5bf0cab60ee2 ("x86/entry/64: Document GSBASE handling in the paranoid path") 708078f65721 ("x86/entry/64: Handle FSGSBASE enabled paranoid entry/exit") 79e1932fa3ce ("x86/entry/64: Introduce the FIND_PERCPU_BASE macro") 1d07316b1363 ("x86/entry/64: Switch CR3 before SWAPGS in paranoid entry") f60a83df4593 ("x86/process/64: Use FSGSBASE instructions on thread copy and ptrace") 1ab5f3f7fe3d ("x86/process/64: Use FSBSBASE in switch_to() if available") a86b4625138d ("x86/fsgsbase/64: Enable FSGSBASE instructions in helper functions") 8b71340d702e ("x86/fsgsbase/64: Add intrinsics for FSGSBASE instructions") b64ed19b93c3 ("x86/cpu: Add 'unsafe_fsgsbase' to enable CR4.FSGSBASE") Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org> Cc: Chang S. Bae <chang.seok.bae@intel.com> Cc: Andy Lutomirski <luto@kernel.org> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Cc: H. Peter Anvin <hpa@zytor.com>
2019-07-03clocksource/drivers: Continue making Hyper-V clocksource ISA agnosticMichael Kelley
Continue consolidating Hyper-V clock and timer code into an ISA independent Hyper-V clocksource driver. Move the existing clocksource code under drivers/hv and arch/x86 to the new clocksource driver while separating out the ISA dependencies. Update Hyper-V initialization to call initialization and cleanup routines since the Hyper-V synthetic clock is not independently enumerated in ACPI. Update Hyper-V clocksource users in KVM and VDSO to get definitions from the new include file. No behavior is changed and no new functionality is added. Suggested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: "bp@alien8.de" <bp@alien8.de> Cc: "will.deacon@arm.com" <will.deacon@arm.com> Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com> Cc: "mark.rutland@arm.com" <mark.rutland@arm.com> Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org> Cc: "olaf@aepfle.de" <olaf@aepfle.de> Cc: "apw@canonical.com" <apw@canonical.com> Cc: "jasowang@redhat.com" <jasowang@redhat.com> Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com> Cc: Sunil Muthuswamy <sunilmut@microsoft.com> Cc: KY Srinivasan <kys@microsoft.com> Cc: "sashal@kernel.org" <sashal@kernel.org> Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com> Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org> Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org> Cc: "arnd@arndb.de" <arnd@arndb.de> Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk> Cc: "ralf@linux-mips.org" <ralf@linux-mips.org> Cc: "paul.burton@mips.com" <paul.burton@mips.com> Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org> Cc: "salyzyn@android.com" <salyzyn@android.com> Cc: "pcc@google.com" <pcc@google.com> Cc: "shuah@kernel.org" <shuah@kernel.org> Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com> Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk> Cc: "huw@codeweavers.com" <huw@codeweavers.com> Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au> Cc: "pbonzini@redhat.com" <pbonzini@redhat.com> Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com> Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org> Link: https://lkml.kernel.org/r/1561955054-1838-3-git-send-email-mikelley@microsoft.com
2019-07-03clocksource/drivers: Make Hyper-V clocksource ISA agnosticMichael Kelley
Hyper-V clock/timer code and data structures are currently mixed in with other code in the ISA independent drivers/hv directory as well as the ISA dependent Hyper-V code under arch/x86. Consolidate this code and data structures into a Hyper-V clocksource driver to better follow the Linux model. In doing so, separate out the ISA dependent portions so the new clocksource driver works for x86 and for the in-process Hyper-V on ARM64 code. To start, move the existing clockevents code to create the new clocksource driver. Update the VMbus driver to call initialization and cleanup routines since the Hyper-V synthetic timers are not independently enumerated in ACPI. No behavior is changed and no new functionality is added. Suggested-by: Marc Zyngier <marc.zyngier@arm.com> Signed-off-by: Michael Kelley <mikelley@microsoft.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vitaly Kuznetsov <vkuznets@redhat.com> Cc: "bp@alien8.de" <bp@alien8.de> Cc: "will.deacon@arm.com" <will.deacon@arm.com> Cc: "catalin.marinas@arm.com" <catalin.marinas@arm.com> Cc: "mark.rutland@arm.com" <mark.rutland@arm.com> Cc: "linux-arm-kernel@lists.infradead.org" <linux-arm-kernel@lists.infradead.org> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "linux-hyperv@vger.kernel.org" <linux-hyperv@vger.kernel.org> Cc: "olaf@aepfle.de" <olaf@aepfle.de> Cc: "apw@canonical.com" <apw@canonical.com> Cc: "jasowang@redhat.com" <jasowang@redhat.com> Cc: "marcelo.cerri@canonical.com" <marcelo.cerri@canonical.com> Cc: Sunil Muthuswamy <sunilmut@microsoft.com> Cc: KY Srinivasan <kys@microsoft.com> Cc: "sashal@kernel.org" <sashal@kernel.org> Cc: "vincenzo.frascino@arm.com" <vincenzo.frascino@arm.com> Cc: "linux-arch@vger.kernel.org" <linux-arch@vger.kernel.org> Cc: "linux-mips@vger.kernel.org" <linux-mips@vger.kernel.org> Cc: "linux-kselftest@vger.kernel.org" <linux-kselftest@vger.kernel.org> Cc: "arnd@arndb.de" <arnd@arndb.de> Cc: "linux@armlinux.org.uk" <linux@armlinux.org.uk> Cc: "ralf@linux-mips.org" <ralf@linux-mips.org> Cc: "paul.burton@mips.com" <paul.burton@mips.com> Cc: "daniel.lezcano@linaro.org" <daniel.lezcano@linaro.org> Cc: "salyzyn@android.com" <salyzyn@android.com> Cc: "pcc@google.com" <pcc@google.com> Cc: "shuah@kernel.org" <shuah@kernel.org> Cc: "0x7f454c46@gmail.com" <0x7f454c46@gmail.com> Cc: "linux@rasmusvillemoes.dk" <linux@rasmusvillemoes.dk> Cc: "huw@codeweavers.com" <huw@codeweavers.com> Cc: "sfr@canb.auug.org.au" <sfr@canb.auug.org.au> Cc: "pbonzini@redhat.com" <pbonzini@redhat.com> Cc: "rkrcmar@redhat.com" <rkrcmar@redhat.com> Cc: "kvm@vger.kernel.org" <kvm@vger.kernel.org> Link: https://lkml.kernel.org/r/1561955054-1838-2-git-send-email-mikelley@microsoft.com
2019-07-03x86/irq: Seperate unused system vectors from spurious entry againThomas Gleixner
Quite some time ago the interrupt entry stubs for unused vectors in the system vector range got removed and directly mapped to the spurious interrupt vector entry point. Sounds reasonable, but it's subtly broken. The spurious interrupt vector entry point pushes vector number 0xFF on the stack which makes the whole logic in __smp_spurious_interrupt() pointless. As a consequence any spurious interrupt which comes from a vector != 0xFF is treated as a real spurious interrupt (vector 0xFF) and not acknowledged. That subsequently stalls all interrupt vectors of equal and lower priority, which brings the system to a grinding halt. This can happen because even on 64-bit the system vector space is not guaranteed to be fully populated. A full compile time handling of the unused vectors is not possible because quite some of them are conditonally populated at runtime. Bring the entry stubs back, which wastes 160 bytes if all stubs are unused, but gains the proper handling back. There is no point to selectively spare some of the stubs which are known at compile time as the required code in the IDT management would be way larger and convoluted. Do not route the spurious entries through common_interrupt and do_IRQ() as the original code did. Route it to smp_spurious_interrupt() which evaluates the vector number and acts accordingly now that the real vector numbers are handed in. Fixup the pr_warn so the actual spurious vector (0xff) is clearly distiguished from the other vectors and also note for the vectored case whether it was pending in the ISR or not. "Spurious APIC interrupt (vector 0xFF) on CPU#0, should never happen." "Spurious interrupt vector 0xed on CPU#1. Acked." "Spurious interrupt vector 0xee on CPU#1. Not pending!." Fixes: 2414e021ac8d ("x86: Avoid building unused IRQ entry stubs") Reported-by: Jan Kiszka <jan.kiszka@siemens.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Marc Zyngier <marc.zyngier@arm.com> Cc: Jan Beulich <jbeulich@suse.com> Link: https://lkml.kernel.org/r/20190628111440.550568228@linutronix.de
2019-07-03x86/irq: Handle spurious interrupt after shutdown gracefullyThomas Gleixner
Since the rework of the vector management, warnings about spurious interrupts have been reported. Robert provided some more information and did an initial analysis. The following situation leads to these warnings: CPU 0 CPU 1 IO_APIC interrupt is raised sent to CPU1 Unable to handle immediately (interrupts off, deep idle delay) mask() ... free() shutdown() synchronize_irq() clear_vector() do_IRQ() -> vector is clear Before the rework the vector entries of legacy interrupts were statically assigned and occupied precious vector space while most of them were unused. Due to that the above situation was handled silently because the vector was handled and the core handler of the assigned interrupt descriptor noticed that it is shut down and returned. While this has been usually observed with legacy interrupts, this situation is not limited to them. Any other interrupt source, e.g. MSI, can cause the same issue. After adding proper synchronization for level triggered interrupts, this can only happen for edge triggered interrupts where the IO-APIC obviously cannot provide information about interrupts in flight. While the spurious warning is actually harmless in this case it worries users and driver developers. Handle it gracefully by marking the vector entry as VECTOR_SHUTDOWN instead of VECTOR_UNUSED when the vector is freed up. If that above late handling happens the spurious detector will not complain and switch the entry to VECTOR_UNUSED. Any subsequent spurious interrupt on that line will trigger the spurious warning as before. Fixes: 464d12309e1b ("x86/vector: Switch IOAPIC to global reservation mode") Reported-by: Robert Hodaszi <Robert.Hodaszi@digi.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de>- Tested-by: Robert Hodaszi <Robert.Hodaszi@digi.com> Cc: Marc Zyngier <marc.zyngier@arm.com> Link: https://lkml.kernel.org/r/20190628111440.459647741@linutronix.de
2019-07-02KVM: X86: Yield to IPI target if necessaryWanpeng Li
When sending a call-function IPI-many to vCPUs, yield if any of the IPI target vCPUs was preempted, we just select the first preempted target vCPU which we found since the state of target vCPUs can change underneath and to avoid race conditions. Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2019-07-01x86: don't use asm-generic/ptrace.hChristoph Hellwig
Doing the indirection through macros for the regs accessors just makes them harder to read, so implement the helpers directly. Note that only the helpers actually used are implemented now. Signed-off-by: Christoph Hellwig <hch@lst.de> Acked-by: Ingo Molnar <mingo@kernel.org> Acked-by: Oleg Nesterov <oleg@redhat.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2019-06-29Merge branch 'perf-urgent-for-linus' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip Pull perf fixes from Ingo Molnar: "Various fixes, most of them related to bugs perf fuzzing found in the x86 code" * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: perf/x86/regs: Use PERF_REG_EXTENDED_MASK perf/x86: Remove pmu->pebs_no_xmm_regs perf/x86: Clean up PEBS_XMM_REGS perf/x86/regs: Check reserved bits perf/x86: Disable extended registers for non-supported PMUs perf/ioctl: Add check for the sample_period value perf/core: Fix perf_sample_regs_user() mm check
2019-06-29x86/timer: Skip PIT initialization on modern chipsetsThomas Gleixner
Recent Intel chipsets including Skylake and ApolloLake have a special ITSSPRC register which allows the 8254 PIT to be gated. When gated, the 8254 registers can still be programmed as normal, but there are no IRQ0 timer interrupts. Some products such as the Connex L1430 and exone go Rugged E11 use this register to ship with the PIT gated by default. This causes Linux to fail to boot: Kernel panic - not syncing: IO-APIC + timer doesn't work! Boot with apic=debug and send a report. The panic happens before the framebuffer is initialized, so to the user, it appears as an early boot hang on a black screen. Affected products typically have a BIOS option that can be used to enable the 8254 and make Linux work (Chipset -> South Cluster Configuration -> Miscellaneous Configuration -> 8254 Clock Gating), however it would be best to make Linux support the no-8254 case. Modern sytems allow to discover the TSC and local APIC timer frequencies, so the calibration against the PIT is not required. These systems have always running timers and the local APIC timer works also in deep power states. So the setup of the PIT including the IO-APIC timer interrupt delivery checks are a pointless exercise. Skip the PIT setup and the IO-APIC timer interrupt checks on these systems, which avoids the panic caused by non ticking PITs and also speeds up the boot process. Thanks to Daniel for providing the changelog, initial analysis of the problem and testing against a variety of machines. Reported-by: Daniel Drake <drake@endlessm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Daniel Drake <drake@endlessm.com> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: linux@endlessm.com Cc: rafael.j.wysocki@intel.com Cc: hdegoede@redhat.com Link: https://lkml.kernel.org/r/20190628072307.24678-1-drake@endlessm.com
2019-06-28x86/boot: Add xloadflags bits to check for 5-level paging supportBaoquan He
The current kernel supports 5-level paging mode, and supports dynamically choosing the paging mode during bootup depending on the kernel image, hardware and kernel parameter settings. This flexibility brings several issues to kexec/kdump: 1) Dynamic switching between paging modes requires support in the target kernel. This means kexec from a 5-level paging kernel into a kernel which does not support mode switching is not possible. So the loader needs to be able to analyze the supported paging modes of the kexec target kernel. 2) If running on a 5-level paging kernel and the kexec target kernel is a 4-level paging kernel, the target immage cannot be loaded above the 64TB address space limit. But the kexec loader searches for a load area from top to bottom which would eventually put the target kernel above 64TB when the machine has large enough RAM size. So the loader needs to be able to analyze the paging mode of the target kernel to load it at a suitable spot in the address space. Solution: Add two bits XLF_5LEVEL and XLF_5LEVEL_ENABLED: - Bit XLF_5LEVEL indicates whether 5-level paging mode switching support is available. (Issue #1) - Bit XLF_5LEVEL_ENABLED indicates whether the kernel was compiled with full 5-level paging support (CONFIG_X86_5LEVEL=y). (Issue #2) The loader will use these bits to verify whether the target kernel is suitable to be kexec'ed to from a 5-level paging kernel and to determine the constraints of the target kernel load address. The flags will be used by the kernel kexec subsystem and the userspace kexec tools. [ tglx: Massaged changelog ] Signed-off-by: Baoquan He <bhe@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Kirill A. Shutemov <kirill.shutemov@linux.intel.com> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: dyoung@redhat.com Link: https://lkml.kernel.org/r/20190524073810.24298-2-bhe@redhat.com
2019-06-28x86/hpet: Move clockevents into channelsThomas Gleixner
Instead of allocating yet another data structure, move the clock event data into the channel structure. This allows further consolidation of the reservation code and the reuse of the cached boot config to replace the extra flags in the clockevent data. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Stephane Eranian <eranian@google.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/20190623132436.185851116@linutronix.de
2019-06-28x86/hpet: Remove the unused hpet_msi_read() functionThomas Gleixner
No users. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ingo Molnar <mingo@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Ashok Raj <ashok.raj@intel.com> Cc: Andi Kleen <andi.kleen@intel.com> Cc: Suravee Suthikulpanit <Suravee.Suthikulpanit@amd.com> Cc: Stephane Eranian <eranian@google.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/20190623132434.553729327@linutronix.de
2019-06-28x86/vsyscall: Show something useful on a read faultAndy Lutomirski
Just segfaulting the application when it tries to read the vsyscall page in xonly mode is not helpful for those who need to debug it. Emit a hint. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Kees Cook <keescook@chromium.org> Cc: Florian Weimer <fweimer@redhat.com> Cc: Jann Horn <jannh@google.com> Link: https://lkml.kernel.org/r/8016afffe0eab497be32017ad7f6f7030dc3ba66.1561610354.git.luto@kernel.org
2019-06-26x86/speculation/mds: Eliminate leaks by trace_hardirqs_on()Zhenzhong Duan
Move mds_idle_clear_cpu_buffers() after trace_hardirqs_on() to ensure all store buffer entries are flushed. Signed-off-by: Zhenzhong Duan <zhenzhong.duan@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: bp@alien8.de Cc: hpa@zytor.com Cc: jgross@suse.com Cc: ndesaulniers@google.com Cc: gregkh@linuxfoundation.org Link: https://lkml.kernel.org/r/1561260904-29669-2-git-send-email-zhenzhong.duan@oracle.com
2019-06-26lib/vdso: Make delta calculation work correctlyThomas Gleixner
The x86 vdso implementation on which the generic vdso library is based on has subtle (unfortunately undocumented) twists: 1) The code assumes that the clocksource mask is U64_MAX which means that no bits are masked. Which is true for any valid x86 VDSO clocksource. Stupidly it still did the mask operation for no reason and at the wrong place right after reading the clocksource. 2) It contains a sanity check to catch the case where slightly unsynchronized TSC values can be observed which would cause the delta calculation to make a huge jump. It therefore checks whether the current TSC value is larger than the value on which the current conversion is based on. If it's not larger the base value is used to prevent time jumps. #1 Is not only stupid for the X86 case because it does the masking for no reason it is also completely wrong for clocksources with a smaller mask which can legitimately wrap around during a conversion period. The core timekeeping code does it correct by applying the mask after the delta calculation: (now - base) & mask #2 is equally broken for clocksources which have smaller masks and can wrap around during a conversion period because there the now > base check is just wrong and causes stale time stamps and time going backwards issues. Unbreak it by: 1) Removing the mask operation from the clocksource read which makes the fallback detection work for all clocksources 2) Replacing the conditional delta calculation with a overrideable inline function. #2 could reuse clocksource_delta() from the timekeeping code but that results in a significant performance hit for the x86 VSDO. The timekeeping core code must have the non optimized version as it has to operate correctly with clocksources which have smaller masks as well to handle the case where TSC is discarded as timekeeper clocksource and replaced by HPET or pmtimer. For the VDSO there is no replacement clocksource. If TSC is unusable the syscall is enforced which does the right thing. To accommodate to the needs of various architectures provide an override-able inline function which defaults to the regular delta calculation with masking: (now - base) & mask Override it for x86 with the non-masking and checking version. This unbreaks the ARM64 syscall fallback operation, allows to use clocksources with arbitrary width and preserves the performance optimization for x86. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: linux-arch@vger.kernel.org Cc: LAK <linux-arm-kernel@lists.infradead.org> Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: catalin.marinas@arm.com Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: linux@armlinux.org.uk Cc: Ralf Baechle <ralf@linux-mips.org> Cc: paul.burton@mips.com Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: salyzyn@android.com Cc: pcc@google.com Cc: shuah@kernel.org Cc: 0x7f454c46@gmail.com Cc: linux@rasmusvillemoes.dk Cc: huw@codeweavers.com Cc: sthotton@marvell.com Cc: andre.przywara@arm.com Cc: Andy Lutomirski <luto@kernel.org> Link: https://lkml.kernel.org/r/alpine.DEB.2.21.1906261159230.32342@nanos.tec.linutronix.de
2019-06-25x86/stackframe/32: Allow int3_emulate_push()Peter Zijlstra
Now that x86_32 has an unconditional gap on the kernel stack frame, the int3_emulate_push() thing will work without further changes. Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-25x86/stackframe/32: Provide consistent pt_regsPeter Zijlstra
Currently pt_regs on x86_32 has an oddity in that kernel regs (!user_mode(regs)) are short two entries (esp/ss). This means that any code trying to use them (typically: regs->sp) needs to jump through some unfortunate hoops. Change the entry code to fix this up and create a full pt_regs frame. This then simplifies various trampolines in ftrace and kprobes, the stack unwinder, ptrace, kdump and kgdb. Much thanks to Josh for help with the cleanups! Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Masami Hiramatsu <mhiramat@kernel.org> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-25x86/stackframe: Move ENCODE_FRAME_POINTER to asm/frame.hPeter Zijlstra
In preparation for wider use, move the ENCODE_FRAME_POINTER macros to a common header and provide inline asm versions. These macros are used to encode a pt_regs frame for the unwinder; see unwind_frame.c:decode_frame_pointer(). Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-25Merge tag 'v5.2-rc6' into x86/asm, to refresh the branchIngo Molnar
Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24perf/x86: Disable extended registers for non-supported PMUsKan Liang
The perf fuzzer caused Skylake machine to crash: [ 9680.085831] Call Trace: [ 9680.088301] <IRQ> [ 9680.090363] perf_output_sample_regs+0x43/0xa0 [ 9680.094928] perf_output_sample+0x3aa/0x7a0 [ 9680.099181] perf_event_output_forward+0x53/0x80 [ 9680.103917] __perf_event_overflow+0x52/0xf0 [ 9680.108266] ? perf_trace_run_bpf_submit+0xc0/0xc0 [ 9680.113108] perf_swevent_hrtimer+0xe2/0x150 [ 9680.117475] ? check_preempt_wakeup+0x181/0x230 [ 9680.122091] ? check_preempt_curr+0x62/0x90 [ 9680.126361] ? ttwu_do_wakeup+0x19/0x140 [ 9680.130355] ? try_to_wake_up+0x54/0x460 [ 9680.134366] ? reweight_entity+0x15b/0x1a0 [ 9680.138559] ? __queue_work+0x103/0x3f0 [ 9680.142472] ? update_dl_rq_load_avg+0x1cd/0x270 [ 9680.147194] ? timerqueue_del+0x1e/0x40 [ 9680.151092] ? __remove_hrtimer+0x35/0x70 [ 9680.155191] __hrtimer_run_queues+0x100/0x280 [ 9680.159658] hrtimer_interrupt+0x100/0x220 [ 9680.163835] smp_apic_timer_interrupt+0x6a/0x140 [ 9680.168555] apic_timer_interrupt+0xf/0x20 [ 9680.172756] </IRQ> The XMM registers can only be collected by PEBS hardware events on the platforms with PEBS baseline support, e.g. Icelake, not software/probe events. Add capabilities flag PERF_PMU_CAP_EXTENDED_REGS to indicate the PMU which support extended registers. For X86, the extended registers are XMM registers. Add has_extended_regs() to check if extended registers are applied. The generic code define the mask of extended registers as 0 if arch headers haven't overridden it. Originally-by: Peter Zijlstra (Intel) <peterz@infradead.org> Reported-by: Vince Weaver <vincent.weaver@maine.edu> Signed-off-by: Kan Liang <kan.liang@linux.intel.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Thomas Gleixner <tglx@linutronix.de> Fixes: 878068ea270e ("perf/x86: Support outputting XMM registers") Link: https://lkml.kernel.org/r/1559081314-9714-1-git-send-email-kan.liang@linux.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org>
2019-06-24x86/umwait: Initialize umwait control valuesFenghua Yu
umwait or tpause allows the processor to enter a light-weight power/performance optimized state (C0.1 state) or an improved power/performance optimized state (C0.2 state) for a period specified by the instruction or until the system time limit or until a store to the monitored address range in umwait. IA32_UMWAIT_CONTROL MSR register allows the OS to enable/disable C0.2 on the processor and to set the maximum time the processor can reside in C0.1 or C0.2. By default C0.2 is enabled so the user wait instructions can enter the C0.2 state to save more power with slower wakeup time. Andy Lutomirski proposed to set the maximum umwait time to 100000 cycles by default. A quote from Andy: "What I want to avoid is the case where it works dramatically differently on NO_HZ_FULL systems as compared to everything else. Also, UMWAIT may behave a bit differently if the max timeout is hit, and I'd like that path to get exercised widely by making it happen even on default configs." A sysfs interface to adjust the time and the C0.2 enablement is provided in a follow up change. [ tglx: Renamed MSR_IA32_UMWAIT_CONTROL_MAX_TIME to MSR_IA32_UMWAIT_CONTROL_TIME_MASK because the constant is used as mask throughout the code. Massaged comments and changelog ] Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: "Borislav Petkov" <bp@alien8.de> Cc: "H Peter Anvin" <hpa@zytor.com> Cc: "Peter Zijlstra" <peterz@infradead.org> Cc: "Tony Luck" <tony.luck@intel.com> Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/1560994438-235698-3-git-send-email-fenghua.yu@intel.com
2019-06-24x86/cpufeatures: Enumerate user wait instructionsFenghua Yu
umonitor, umwait, and tpause are a set of user wait instructions. umonitor arms address monitoring hardware using an address. The address range is determined by using CPUID.0x5. A store to an address within the specified address range triggers the monitoring hardware to wake up the processor waiting in umwait. umwait instructs the processor to enter an implementation-dependent optimized state while monitoring a range of addresses. The optimized state may be either a light-weight power/performance optimized state (C0.1 state) or an improved power/performance optimized state (C0.2 state). tpause instructs the processor to enter an implementation-dependent optimized state C0.1 or C0.2 state and wake up when time-stamp counter reaches specified timeout. The three instructions may be executed at any privilege level. The instructions provide power saving method while waiting in user space. Additionally, they can allow a sibling hyperthread to make faster progress while this thread is waiting. One example of an application usage of umwait is when waiting for input data from another application, such as a user level multi-threaded packet processing engine. Availability of the user wait instructions is indicated by the presence of the CPUID feature flag WAITPKG CPUID.0x07.0x0:ECX[5]. Detailed information on the instructions and CPUID feature WAITPKG flag can be found in the latest Intel Architecture Instruction Set Extensions and Future Features Programming Reference and Intel 64 and IA-32 Architectures Software Developer's Manual. Signed-off-by: Fenghua Yu <fenghua.yu@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Ashok Raj <ashok.raj@intel.com> Reviewed-by: Andy Lutomirski <luto@kernel.org> Cc: "Borislav Petkov" <bp@alien8.de> Cc: "H Peter Anvin" <hpa@zytor.com> Cc: "Peter Zijlstra" <peterz@infradead.org> Cc: "Tony Luck" <tony.luck@intel.com> Cc: "Ravi V Shankar" <ravi.v.shankar@intel.com> Link: https://lkml.kernel.org/r/1560994438-235698-2-git-send-email-fenghua.yu@intel.com
2019-06-24x86/vdso: Give the [ph]vclock_page declarations real typesAndy Lutomirski
Clean up the vDSO code a bit by giving pvclock_page and hvclock_page their actual types instead of u8[PAGE_SIZE]. This shouldn't materially affect the generated code. Heavily based on a patch from Linus. [ tglx: Adapted to the unified VDSO code ] Co-developed-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Peter Zijlstra <peterz@infradead.org> Link: https://lkml.kernel.org/r/6920c5188f8658001af1fc56fd35b815706d300c.1561241273.git.luto@kernel.org
2019-06-22x86/vdso: Add clock_getres() entry pointVincenzo Frascino
The generic vDSO library provides an implementation of clock_getres() that can be leveraged by each architecture. Add the clock_getres() VDSO entry point on x86. [ tglx: Massaged changelog and cleaned up the function signature formatting ] Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Huw Davies <huw@codeweavers.com> Cc: Shijith Thotton <sthotton@marvell.com> Cc: Andre Przywara <andre.przywara@arm.com> Link: https://lkml.kernel.org/r/20190621095252.32307-24-vincenzo.frascino@arm.com
2019-06-22x86/vdso: Switch to generic vDSO implementationVincenzo Frascino
The x86 vDSO library requires some adaptations to take advantage of the newly introduced generic vDSO library. Introduce the following changes: - Modification of vdso.c to be compliant with the common vdso datapage - Use of lib/vdso for gettimeofday [ tglx: Massaged changelog and cleaned up the function signature formatting ] Signed-off-by: Vincenzo Frascino <vincenzo.frascino@arm.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: linux-arch@vger.kernel.org Cc: linux-arm-kernel@lists.infradead.org Cc: linux-mips@vger.kernel.org Cc: linux-kselftest@vger.kernel.org Cc: Catalin Marinas <catalin.marinas@arm.com> Cc: Will Deacon <will.deacon@arm.com> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Russell King <linux@armlinux.org.uk> Cc: Ralf Baechle <ralf@linux-mips.org> Cc: Paul Burton <paul.burton@mips.com> Cc: Daniel Lezcano <daniel.lezcano@linaro.org> Cc: Mark Salyzyn <salyzyn@android.com> Cc: Peter Collingbourne <pcc@google.com> Cc: Shuah Khan <shuah@kernel.org> Cc: Dmitry Safonov <0x7f454c46@gmail.com> Cc: Rasmus Villemoes <linux@rasmusvillemoes.dk> Cc: Huw Davies <huw@codeweavers.com> Cc: Shijith Thotton <sthotton@marvell.com> Cc: Andre Przywara <andre.przywara@arm.com> Link: https://lkml.kernel.org/r/20190621095252.32307-23-vincenzo.frascino@arm.com
2019-06-22x86/asm: Pin sensitive CR0 bitsKees Cook
With sensitive CR4 bits pinned now, it's possible that the WP bit for CR0 might become a target as well. Following the same reasoning for the CR4 pinning, pin CR0's WP bit. Contrary to the cpu feature dependend CR4 pinning this can be done with a constant value. Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: kernel-hardening@lists.openwall.com Link: https://lkml.kernel.org/r/20190618045503.39105-4-keescook@chromium.org
2019-06-22x86/asm: Pin sensitive CR4 bitsKees Cook
Several recent exploits have used direct calls to the native_write_cr4() function to disable SMEP and SMAP before then continuing their exploits using userspace memory access. Direct calls of this form can be mitigate by pinning bits of CR4 so that they cannot be changed through a common function. This is not intended to be a general ROP protection (which would require CFI to defend against properly), but rather a way to avoid trivial direct function calling (or CFI bypasses via a matching function prototype) as seen in: https://googleprojectzero.blogspot.com/2017/05/exploiting-linux-kernel-via-packet.html (https://github.com/xairy/kernel-exploits/tree/master/CVE-2017-7308) The goals of this change: - Pin specific bits (SMEP, SMAP, and UMIP) when writing CR4. - Avoid setting the bits too early (they must become pinned only after CPU feature detection and selection has finished). - Pinning mask needs to be read-only during normal runtime. - Pinning needs to be checked after write to validate the cr4 state Using __ro_after_init on the mask is done so it can't be first disabled with a malicious write. Since these bits are global state (once established by the boot CPU and kernel boot parameters), they are safe to write to secondary CPUs before those CPUs have finished feature detection. As such, the bits are set at the first cr4 write, so that cr4 write bugs can be detected (instead of silently papered over). This uses a few bytes less storage of a location we don't have: read-only per-CPU data. A check is performed after the register write because an attack could just skip directly to the register write. Such a direct jump is possible because of how this function may be built by the compiler (especially due to the removal of frame pointers) where it doesn't add a stack frame (function exit may only be a retq without pops) which is sufficient for trivial exploitation like in the timer overwrites mentioned above). The asm argument constraints gain the "+" modifier to convince the compiler that it shouldn't make ordering assumptions about the arguments or memory, and treat them as changed. Signed-off-by: Kees Cook <keescook@chromium.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: kernel-hardening@lists.openwall.com Link: https://lkml.kernel.org/r/20190618045503.39105-3-keescook@chromium.org
2019-06-22x86/cpu: Create Zhaoxin processors architecture support fileTony W Wang-oc
Add x86 architecture support for new Zhaoxin processors. Carve out initialization code needed by Zhaoxin processors into a separate compilation unit. To identify Zhaoxin CPU, add a new vendor type X86_VENDOR_ZHAOXIN for system recognition. Signed-off-by: Tony W Wang-oc <TonyWWang-oc@zhaoxin.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "hpa@zytor.com" <hpa@zytor.com> Cc: "gregkh@linuxfoundation.org" <gregkh@linuxfoundation.org> Cc: "rjw@rjwysocki.net" <rjw@rjwysocki.net> Cc: "lenb@kernel.org" <lenb@kernel.org> Cc: David Wang <DavidWang@zhaoxin.com> Cc: "Cooper Yan(BJ-RD)" <CooperYan@zhaoxin.com> Cc: "Qiyuan Wang(BJ-RD)" <QiyuanWang@zhaoxin.com> Cc: "Herry Yang(BJ-RD)" <HerryYang@zhaoxin.com> Link: https://lkml.kernel.org/r/01042674b2f741b2aed1f797359bdffb@zhaoxin.com
2019-06-22x86/cpu: Split Tremont based Atoms from the restAndy Shevchenko
Split Tremont based Atoms from the rest to keep logical grouping. Signed-off-by: Andy Shevchenko <andriy.shevchenko@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20190617115537.33309-1-andriy.shevchenko@linux.intel.com
2019-06-22x86/elf: Enumerate kernel FSGSBASE capability in AT_HWCAP2Andi Kleen
The kernel needs to explicitly enable FSGSBASE. So, the application needs to know if it can safely use these instructions. Just looking at the CPUID bit is not enough because it may be running in a kernel that does not enable the instructions. One way for the application would be to just try and catch the SIGILL. But that is difficult to do in libraries which may not want to overwrite the signal handlers of the main application. Enumerate the enabled FSGSBASE capability in bit 1 of AT_HWCAP2 in the ELF aux vector. AT_HWCAP2 is already used by PPC for similar purposes. The application can access it open coded or by using the getauxval() function in newer versions of glibc. [ tglx: Massaged changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Link: https://lkml.kernel.org/r/1557309753-24073-18-git-send-email-chang.seok.bae@intel.com
2019-06-22x86/entry/64: Introduce the FIND_PERCPU_BASE macroChang S. Bae
GSBASE is used to find per-CPU data in the kernel. But when GSBASE is unknown, the per-CPU base can be found from the per_cpu_offset table with a CPU NR. The CPU NR is extracted from the limit field of the CPUNODE entry in GDT, or by the RDPID instruction. This is a prerequisite for using FSGSBASE in the low level entry code. Also, add the GAS-compatible RDPID macro as binutils 2.21 do not support it. Support is added in version 2.27. [ tglx: Massaged changelog ] Suggested-by: H. Peter Anvin <hpa@zytor.com> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Dave Hansen <dave.hansen@linux.intel.com> Link: https://lkml.kernel.org/r/1557309753-24073-12-git-send-email-chang.seok.bae@intel.com
2019-06-22x86/fsgsbase/64: Enable FSGSBASE instructions in helper functionsChang S. Bae
Add cpu feature conditional FSGSBASE access to the relevant helper functions. That allows to accelerate certain FS/GS base operations in subsequent changes. Note, that while possible, the user space entry/exit GSBASE operations are not going to use the new FSGSBASE instructions. The reason is that it would require additional storage for the user space value which adds more complexity to the low level code and experiments have shown marginal benefit. This may be revisited later but for now the SWAPGS based handling in the entry code is preserved except for the paranoid entry/exit code. To preserve the SWAPGS entry mechanism introduce __[rd|wr]gsbase_inactive() helpers. Note, for Xen PV, paravirt hooks can be added later as they might allow a very efficient but different implementation. [ tglx: Massaged changelog ] Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: Andrew Cooper <andrew.cooper3@citrix.com> Cc: H. Peter Anvin <hpa@zytor.com> Link: https://lkml.kernel.org/r/1557309753-24073-7-git-send-email-chang.seok.bae@intel.com
2019-06-22x86/fsgsbase/64: Add intrinsics for FSGSBASE instructionsAndi Kleen
[ luto: Rename the variables from FS and GS to FSBASE and GSBASE and make <asm/fsgsbase.h> safe to include on 32-bit kernels. ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Chang S. Bae <chang.seok.bae@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Andy Lutomirski <luto@kernel.org> Reviewed-by: Andi Kleen <ak@linux.intel.com> Cc: Ravi Shankar <ravi.v.shankar@intel.com> Cc: H. Peter Anvin <hpa@zytor.com> Link: https://lkml.kernel.org/r/1557309753-24073-6-git-send-email-chang.seok.bae@intel.com
2019-06-21Merge tag 'spdx-5.2-rc6' of ↵Linus Torvalds
git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx Pull still more SPDX updates from Greg KH: "Another round of SPDX updates for 5.2-rc6 Here is what I am guessing is going to be the last "big" SPDX update for 5.2. It contains all of the remaining GPLv2 and GPLv2+ updates that were "easy" to determine by pattern matching. The ones after this are going to be a bit more difficult and the people on the spdx list will be discussing them on a case-by-case basis now. Another 5000+ files are fixed up, so our overall totals are: Files checked: 64545 Files with SPDX: 45529 Compared to the 5.1 kernel which was: Files checked: 63848 Files with SPDX: 22576 This is a huge improvement. Also, we deleted another 20000 lines of boilerplate license crud, always nice to see in a diffstat" * tag 'spdx-5.2-rc6' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh/spdx: (65 commits) treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 507 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 506 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 505 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 504 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 503 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 502 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 501 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 500 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 499 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 498 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 497 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 496 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 495 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 491 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 490 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 489 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 488 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 487 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 486 treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 485 ...