summaryrefslogtreecommitdiffstats
path: root/arch/x86/include
AgeCommit message (Collapse)Author
2018-11-04perf/x86/amd/uncore: Set ThreadMask and SliceMask for L3 Cache perf eventsNatarajan, Janakarajan
[ Upstream commit d7cbbe49a9304520181fb8c9272d1327deec8453 ] In Family 17h, some L3 Cache Performance events require the ThreadMask and SliceMask to be set. For other events, these fields do not affect the count either way. Set ThreadMask and SliceMask to 0xFF and 0xF respectively. Signed-off-by: Janakarajan Natarajan <Janakarajan.Natarajan@amd.com> Signed-off-by: Peter Zijlstra (Intel) <peterz@infradead.org> Cc: Alexander Shishkin <alexander.shishkin@linux.intel.com> Cc: Arnaldo Carvalho de Melo <acme@kernel.org> Cc: Arnaldo Carvalho de Melo <acme@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: H . Peter Anvin <hpa@zytor.com> Cc: Jiri Olsa <jolsa@redhat.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Namhyung Kim <namhyung@kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Stephane Eranian <eranian@google.com> Cc: Suravee <Suravee.Suthikulpanit@amd.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vince Weaver <vincent.weaver@maine.edu> Link: http://lkml.kernel.org/r/Message-ID: Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2018-10-18mm: Preserve _PAGE_DEVMAP across mprotect() callsJan Kara
commit 4628a64591e6cee181237060961e98c615c33966 upstream. Currently _PAGE_DEVMAP bit is not preserved in mprotect(2) calls. As a result we will see warnings such as: BUG: Bad page map in process JobWrk0013 pte:800001803875ea25 pmd:7624381067 addr:00007f0930720000 vm_flags:280000f9 anon_vma: (null) mapping:ffff97f2384056f0 index:0 file:457-000000fe00000030-00000009-000000ca-00000001_2001.fileblock fault:xfs_filemap_fault [xfs] mmap:xfs_file_mmap [xfs] readpage: (null) CPU: 3 PID: 15848 Comm: JobWrk0013 Tainted: G W 4.12.14-2.g7573215-default #1 SLE12-SP4 (unreleased) Hardware name: Intel Corporation S2600WFD/S2600WFD, BIOS SE5C620.86B.01.00.0833.051120182255 05/11/2018 Call Trace: dump_stack+0x5a/0x75 print_bad_pte+0x217/0x2c0 ? enqueue_task_fair+0x76/0x9f0 _vm_normal_page+0xe5/0x100 zap_pte_range+0x148/0x740 unmap_page_range+0x39a/0x4b0 unmap_vmas+0x42/0x90 unmap_region+0x99/0xf0 ? vma_gap_callbacks_rotate+0x1a/0x20 do_munmap+0x255/0x3a0 vm_munmap+0x54/0x80 SyS_munmap+0x1d/0x30 do_syscall_64+0x74/0x150 entry_SYSCALL_64_after_hwframe+0x3d/0xa2 ... when mprotect(2) gets used on DAX mappings. Also there is a wide variety of other failures that can result from the missing _PAGE_DEVMAP flag when the area gets used by get_user_pages() later. Fix the problem by including _PAGE_DEVMAP in a set of flags that get preserved by mprotect(2). Fixes: 69660fd797c3 ("x86, mm: introduce _PAGE_DEVMAP") Fixes: ebd31197931d ("powerpc/mm: Add devmap support for ppc64") Cc: <stable@vger.kernel.org> Signed-off-by: Jan Kara <jack@suse.cz> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: Johannes Thumshirn <jthumshirn@suse.de> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-18x86/kvm/lapic: always disable MMIO interface in x2APIC modeVitaly Kuznetsov
[ Upstream commit d1766202779e81d0f2a94c4650a6ba31497d369d ] When VMX is used with flexpriority disabled (because of no support or if disabled with module parameter) MMIO interface to lAPIC is still available in x2APIC mode while it shouldn't be (kvm-unit-tests): PASS: apic_disable: Local apic enabled in x2APIC mode PASS: apic_disable: CPUID.1H:EDX.APIC[bit 9] is set FAIL: apic_disable: *0xfee00030: 50014 The issue appears because we basically do nothing while switching to x2APIC mode when APIC access page is not used. apic_mmio_{read,write} only check if lAPIC is disabled before proceeding to actual write. When APIC access is virtualized we correctly manipulate with VMX controls in vmx_set_virtual_apic_mode() and we don't get vmexits from memory writes in x2APIC mode so there's no issue. Disabling MMIO interface seems to be easy. The question is: what do we do with these reads and writes? If we add apic_x2apic_mode() check to apic_mmio_in_range() and return -EOPNOTSUPP these reads and writes will go to userspace. When lAPIC is in kernel, Qemu uses this interface to inject MSIs only (see kvm_apic_mem_write() in hw/i386/kvm/apic.c). This somehow works with disabled lAPIC but when we're in xAPIC mode we will get a real injected MSI from every write to lAPIC. Not good. The simplest solution seems to be to just ignore writes to the region and return ~0 for all reads when we're in x2APIC mode. This is what this patch does. However, this approach is inconsistent with what currently happens when flexpriority is enabled: we allocate APIC access page and create KVM memory region so in x2APIC modes all reads and writes go to this pre-allocated page which is, btw, the same for all vCPUs. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-10-03x86/mm: Expand static page table for fixmap spaceFeng Tang
commit 05ab1d8a4b36ee912b7087c6da127439ed0a903e upstream. We met a kernel panic when enabling earlycon, which is due to the fixmap address of earlycon is not statically setup. Currently the static fixmap setup in head_64.S only covers 2M virtual address space, while it actually could be in 4M space with different kernel configurations, e.g. when VSYSCALL emulation is disabled. So increase the static space to 4M for now by defining FIXMAP_PMD_NUM to 2, and add a build time check to ensure that the fixmap is covered by the initial static page tables. Fixes: 1ad83c858c7d ("x86_64,vsyscall: Make vsyscall emulation configurable") Suggested-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Feng Tang <feng.tang@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: kernel test robot <rong.a.chen@intel.com> Reviewed-by: Juergen Gross <jgross@suse.com> (Xen parts) Cc: H Peter Anvin <hpa@linux.intel.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Michal Hocko <mhocko@kernel.org> Cc: Yinghai Lu <yinghai@kernel.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Andi Kleen <ak@linux.intel.com> Cc: Andy Lutomirsky <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180920025828.23699-1-feng.tang@intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-15x86/pae: use 64 bit atomic xchg function in native_ptep_get_and_clearJuergen Gross
commit b2d7a075a1ccef2fb321d595802190c8e9b39004 upstream. Using only 32-bit writes for the pte will result in an intermediate L1TF vulnerable PTE. When running as a Xen PV guest this will at once switch the guest to shadow mode resulting in a loss of performance. Use arch_atomic64_xchg() instead which will perform the requested operation atomically with all 64 bits. Some performance considerations according to: https://software.intel.com/sites/default/files/managed/ad/dc/Intel-Xeon-Scalable-Processor-throughput-latency.pdf The main number should be the latency, as there is no tight loop around native_ptep_get_and_clear(). "lock cmpxchg8b" has a latency of 20 cycles, while "lock xchg" (with a memory operand) isn't mentioned in that document. "lock xadd" (with xadd having 3 cycles less latency than xchg) has a latency of 11, so we can assume a latency of 14 for "lock xchg". Signed-off-by: Juergen Gross <jgross@suse.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Jan Beulich <jbeulich@suse.com> Tested-by: Jason Andryuk <jandryuk@gmail.com> Signed-off-by: Boris Ostrovsky <boris.ostrovsky@oracle.com> [ Atomic operations gained an arch_ prefix in 8bf705d13039 ("locking/atomic/x86: Switch atomic.h to use atomic-instrumented.h") so s/arch_atomic64_xchg/atomic64_xchg/ for backport.] Signed-off-by: Jason Andryuk <jandryuk@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-15x86/mce: Add notifier_block forward declarationArnd Bergmann
[ Upstream commit 704ae091b061082b37a9968621af4c290c641d50 ] Without linux/irq.h, there is no declaration of notifier_block, leading to a build warning: In file included from arch/x86/kernel/cpu/mcheck/threshold.c:10: arch/x86/include/asm/mce.h:151:46: error: 'struct notifier_block' declared inside parameter list will not be visible outside of this definition or declaration [-Werror] It's sufficient to declare the struct tag here, which avoids pulling in more header files. Fixes: 447ae3166702 ("x86: Don't include linux/irq.h from asm/hardirq.h") Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Nicolai Stange <nstange@suse.de> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Borislav Petkov <bp@suse.de> Link: https://lkml.kernel.org/r/20180817100156.3009043-1-arnd@arndb.de Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/speculation/l1tf: Increase l1tf memory limit for Nehalem+Andi Kleen
commit cc51e5428ea54f575d49cfcede1d4cb3a72b4ec4 upstream. On Nehalem and newer core CPUs the CPU cache internally uses 44 bits physical address space. The L1TF workaround is limited by this internal cache address width, and needs to have one bit free there for the mitigation to work. Older client systems report only 36bit physical address space so the range check decides that L1TF is not mitigated for a 36bit phys/32GB system with some memory holes. But since these actually have the larger internal cache width this warning is bogus because it would only really be needed if the system had more than 43bits of memory. Add a new internal x86_cache_bits field. Normally it is the same as the physical bits field reported by CPUID, but for Nehalem and newerforce it to be at least 44bits. Change the L1TF memory size warning to use the new cache_bits field to avoid bogus warnings and remove the bogus comment about memory size. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: x86@kernel.org Cc: linux-kernel@vger.kernel.org Cc: Michael Hocko <mhocko@suse.com> Cc: vbabka@suse.cz Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180824170351.34874-1-andi@firstfloor.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/irqflags: Mark native_restore_fl extern inlineNick Desaulniers
commit 1f59a4581b5ecfe9b4f049a7a2cf904d8352842d upstream. This should have been marked extern inline in order to pick up the out of line definition in arch/x86/kernel/irqflags.S. Fixes: 208cbb325589 ("x86/irqflags: Provide a declaration for native_save_fl") Reported-by: Ben Hutchings <ben.hutchings@codethink.co.uk> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Juergen Gross <jgross@suse.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180827214011.55428-1-ndesaulniers@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/nmi: Fix NMI uaccess race against CR3 switchingAndy Lutomirski
commit 4012e77a903d114f915fc607d6d2ed54a3d6c9b1 upstream. A NMI can hit in the middle of context switching or in the middle of switch_mm_irqs_off(). In either case, CR3 might not match current->mm, which could cause copy_from_user_nmi() and friends to read the wrong memory. Fix it by adding a new nmi_uaccess_okay() helper and checking it in copy_from_user_nmi() and in __copy_from_user_nmi()'s callers. Signed-off-by: Andy Lutomirski <luto@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Rik van Riel <riel@surriel.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Jann Horn <jannh@google.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/dd956eba16646fd0b15c3c0741269dfd84452dac.1535557289.git.luto@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/vdso: Fix lsl operand orderSamuel Neves
commit e78e5a91456fcecaa2efbb3706572fe043766f4d upstream. In the __getcpu function, lsl is using the wrong target and destination registers. Luckily, the compiler tends to choose %eax for both variables, so it has been working so far. Fixes: a582c540ac1b ("x86/vdso: Use RDPID in preference to LSL when available") Signed-off-by: Samuel Neves <sneves@dei.uc.pt> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andy Lutomirski <luto@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180901201452.27828-1-sneves@dei.uc.pt Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/speculation/l1tf: Fix off-by-one error when warning that system has too ↵Vlastimil Babka
much RAM commit b0a182f875689647b014bc01d36b340217792852 upstream. Two users have reported [1] that they have an "extremely unlikely" system with more than MAX_PA/2 memory and L1TF mitigation is not effective. In fact it's a CPU with 36bits phys limit (64GB) and 32GB memory, but due to holes in the e820 map, the main region is almost 500MB over the 32GB limit: [ 0.000000] BIOS-e820: [mem 0x0000000100000000-0x000000081effffff] usable Suggestions to use 'mem=32G' to enable the L1TF mitigation while losing the 500MB revealed, that there's an off-by-one error in the check in l1tf_select_mitigation(). l1tf_pfn_limit() returns the last usable pfn (inclusive) and the range check in the mitigation path does not take this into account. Instead of amending the range check, make l1tf_pfn_limit() return the first PFN which is over the limit which is less error prone. Adjust the other users accordingly. [1] https://bugzilla.suse.com/show_bug.cgi?id=1105536 Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Reported-by: George Anchev <studio@anchev.net> Reported-by: Christopher Snowhill <kode54@gmail.com> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Andi Kleen <ak@linux.intel.com> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180823134418.17008-1-vbabka@suse.cz Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-09-05x86/speculation/l1tf: Fix overflow in l1tf_pfn_limit() on 32bitVlastimil Babka
commit 9df9516940a61d29aedf4d91b483ca6597e7d480 upstream. On 32bit PAE kernels on 64bit hardware with enough physical bits, l1tf_pfn_limit() will overflow unsigned long. This in turn affects max_swapfile_size() and can lead to swapon returning -EINVAL. This has been observed in a 32bit guest with 42 bits physical address size, where max_swapfile_size() overflows exactly to 1 << 32, thus zero, and produces the following warning to dmesg: [ 6.396845] Truncating oversized swap area, only using 0k out of 2047996k Fix this by using unsigned long long instead. Fixes: 17dbca119312 ("x86/speculation/l1tf: Add sysfs reporting for l1tf") Fixes: 377eeaa8e11f ("x86/speculation/l1tf: Limit swap file size to MAX_PA/2") Reported-by: Dominique Leuenberger <dimstar@suse.de> Reported-by: Adrian Schroeter <adrian@suse.de> Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Andi Kleen <ak@linux.intel.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Michal Hocko <mhocko@kernel.org> Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180820095835.5298-1-vbabka@suse.cz Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-18x86/speculation/l1tf: Exempt zeroed PTEs from inversionSean Christopherson
commit f19f5c49bbc3ffcc9126cc245fc1b24cc29f4a37 upstream. It turns out that we should *not* invert all not-present mappings, because the all zeroes case is obviously special. clear_page() does not undergo the XOR logic to invert the address bits, i.e. PTE, PMD and PUD entries that have not been individually written will have val=0 and so will trigger __pte_needs_invert(). As a result, {pte,pmd,pud}_pfn() will return the wrong PFN value, i.e. all ones (adjusted by the max PFN mask) instead of zero. A zeroed entry is ok because the page at physical address 0 is reserved early in boot specifically to mitigate L1TF, so explicitly exempt them from the inversion when reading the PFN. Manifested as an unexpected mprotect(..., PROT_NONE) failure when called on a VMA that has VM_PFNMAP and was mmap'd to as something other than PROT_NONE but never used. mprotect() sends the PROT_NONE request down prot_none_walk(), which walks the PTEs to check the PFNs. prot_none_pte_entry() gets the bogus PFN from pte_pfn() and returns -EACCES because it thinks mprotect() is trying to adjust a high MMIO address. [ This is a very modified version of Sean's original patch, but all credit goes to Sean for doing this and also pointing out that sometimes the __pte_needs_invert() function only gets the protection bits, not the full eventual pte. But zero remains special even in just protection bits, so that's ok. - Linus ] Fixes: f22cc87f6c1f ("x86/speculation/l1tf: Invert all not present mappings") Signed-off-by: Sean Christopherson <sean.j.christopherson@intel.com> Acked-by: Andi Kleen <ak@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Josh Poimboeuf <jpoimboe@redhat.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Dave Hansen <dave.hansen@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-17x86: i8259: Add missing include fileGuenter Roeck
commit 0a957467c5fd46142bc9c52758ffc552d4c5e2f7 upstream. i8259.h uses inb/outb and thus needs to include asm/io.h to avoid the following build error, as seen with x86_64:defconfig and CONFIG_SMP=n. In file included from drivers/rtc/rtc-cmos.c:45:0: arch/x86/include/asm/i8259.h: In function 'inb_pic': arch/x86/include/asm/i8259.h:32:24: error: implicit declaration of function 'inb' arch/x86/include/asm/i8259.h: In function 'outb_pic': arch/x86/include/asm/i8259.h:45:2: error: implicit declaration of function 'outb' Reported-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Suggested-by: Sebastian Gottschall <s.gottschall@dd-wrt.com> Fixes: 447ae3166702 ("x86: Don't include linux/irq.h from asm/hardirq.h") Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/CPU/AMD: Have smp_num_siblings and cpu_llc_id always be presentBorislav Petkov
commit f8b64d08dde2714c62751d18ba77f4aeceb161d3 upstream. Move smp_num_siblings and cpu_llc_id to cpu/common.c so that they're always present as symbols and not only in the CONFIG_SMP case. Then, other code using them doesn't need ugly ifdeffery anymore. Get rid of some ifdeffery. Signed-off-by: Borislav Petkov <bpetkov@suse.de> Signed-off-by: Suravee Suthikulpanit <suravee.suthikulpanit@amd.com> Signed-off-by: Borislav Petkov <bp@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: http://lkml.kernel.org/r/1524864877-111962-2-git-send-email-suravee.suthikulpanit@amd.com Signed-off-by: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Make pmd/pud_mknotpresent() invertAndi Kleen
commit 0768f91530ff46683e0b372df14fd79fe8d156e5 upstream Some cases in THP like: - MADV_FREE - mprotect - split mark the PMD non present for temporarily to prevent races. The window for an L1TF attack in these contexts is very small, but it wants to be fixed for correctness sake. Use the proper low level functions for pmd/pud_mknotpresent() to address this. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Invert all not present mappingsAndi Kleen
commit f22cc87f6c1f771b57c407555cfefd811cdd9507 upstream For kernel mappings PAGE_PROTNONE is not necessarily set for a non present mapping, but the inversion logic explicitely checks for !PRESENT and PROT_NONE. Remove the PROT_NONE check and make the inversion unconditional for all not present mappings. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15KVM: VMX: Tell the nested hypervisor to skip L1D flush on vmentryPaolo Bonzini
commit 5b76a3cff011df2dcb6186c965a2e4d809a05ad4 upstream When nested virtualization is in use, VMENTER operations from the nested hypervisor into the nested guest will always be processed by the bare metal hypervisor, and KVM's "conditional cache flushes" mode in particular does a flush on nested vmentry. Therefore, include the "skip L1D flush on vmentry" bit in KVM's suggested ARCH_CAPABILITIES setting. Add the relevant Documentation. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation: Use ARCH_CAPABILITIES to skip L1D flush on vmentryPaolo Bonzini
commit 8e0b2b916662e09dd4d09e5271cdf214c6b80e62 upstream Bit 3 of ARCH_CAPABILITIES tells a hypervisor that L1D flush on vmentry is not needed. Add a new value to enum vmx_l1d_flush_state, which is used either if there is no L1TF bug at all, or if bit 3 is set in ARCH_CAPABILITIES. Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15KVM: X86: Allow userspace to define the microcode versionWanpeng Li
commit 518e7b94817abed94becfe6a44f1ece0d4745afe upstream Linux (among the others) has checks to make sure that certain features aren't enabled on a certain family/model/stepping if the microcode version isn't greater than or equal to a known good version. By exposing the real microcode version, we're preventing buggy guests that don't check that they are running virtualized (i.e., they should trust the hypervisor) from disabling features that are effectively not buggy. Suggested-by: Filippo Sironi <sironi@amazon.de> Signed-off-by: Wanpeng Li <wanpengli@tencent.com> Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Cc: Liran Alon <liran.alon@oracle.com> Cc: Nadav Amit <nadav.amit@gmail.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15KVM: x86: Add a framework for supporting MSR-based featuresTom Lendacky
commit 801e459a6f3a63af9d447e6249088c76ae16efc4 upstream Provide a new KVM capability that allows bits within MSRs to be recognized as features. Two new ioctls are added to the /dev/kvm ioctl routine to retrieve the list of these MSRs and then retrieve their values. A kvm_x86_ops callback is used to determine support for the listed MSR-based features. Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [Tweaked documentation. - Radim] Signed-off-by: Radim Krčmář <rkrcmar@redhat.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/irq: Let interrupt handlers set kvm_cpu_l1tf_flush_l1dNicolai Stange
commit ffcba43ff66c7dab34ec700debd491d2a4d319b4 upstream The last missing piece to having vmx_l1d_flush() take interrupts after VMEXIT into account is to set the kvm_cpu_l1tf_flush_l1d per-cpu flag on irq entry. Issue calls to kvm_set_cpu_l1tf_flush_l1d() from entering_irq(), ipi_entering_ack_irq(), smp_reschedule_interrupt() and uv_bau_message_interrupt(). Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86: Don't include linux/irq.h from asm/hardirq.hNicolai Stange
commit 447ae316670230d7d29430e2cbf1f5db4f49d14c upstream The next patch in this series will have to make the definition of irq_cpustat_t available to entering_irq(). Inclusion of asm/hardirq.h into asm/apic.h would cause circular header dependencies like asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/topology.h linux/smp.h asm/smp.h or linux/gfp.h linux/mmzone.h asm/mmzone.h asm/mmzone_64.h asm/smp.h asm/apic.h asm/hardirq.h linux/irq.h linux/irqdesc.h linux/kobject.h linux/sysfs.h linux/kernfs.h linux/idr.h linux/gfp.h and others. This causes compilation errors because of the header guards becoming effective in the second inclusion: symbols/macros that had been defined before wouldn't be available to intermediate headers in the #include chain anymore. A possible workaround would be to move the definition of irq_cpustat_t into its own header and include that from both, asm/hardirq.h and asm/apic.h. However, this wouldn't solve the real problem, namely asm/harirq.h unnecessarily pulling in all the linux/irq.h cruft: nothing in asm/hardirq.h itself requires it. Also, note that there are some other archs, like e.g. arm64, which don't have that #include in their asm/hardirq.h. Remove the linux/irq.h #include from x86' asm/hardirq.h. Fix resulting compilation errors by adding appropriate #includes to *.c files as needed. Note that some of these *.c files could be cleaned up a bit wrt. to their set of #includes, but that should better be done from separate patches, if at all. Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/KVM/VMX: Introduce per-host-cpu analogue of l1tf_flush_l1dNicolai Stange
commit 45b575c00d8e72d69d75dd8c112f044b7b01b069 upstream Part of the L1TF mitigation for vmx includes flushing the L1D cache upon VMENTRY. L1D flushes are costly and two modes of operations are provided to users: "always" and the more selective "conditional" mode. If operating in the latter, the cache would get flushed only if a host side code path considered unconfined had been traversed. "Unconfined" in this context means that it might have pulled in sensitive data like user data or kernel crypto keys. The need for L1D flushes is tracked by means of the per-vcpu flag l1tf_flush_l1d. KVM exit handlers considered unconfined set it. A vmx_l1d_flush() subsequently invoked before the next VMENTER will conduct a L1d flush based on its value and reset that flag again. Currently, interrupts delivered "normally" while in root operation between VMEXIT and VMENTER are not taken into account. Part of the reason is that these don't leave any traces and thus, the vmx code is unable to tell if any such has happened. As proposed by Paolo Bonzini, prepare for tracking all interrupts by introducing a new per-cpu flag, "kvm_cpu_l1tf_flush_l1d". It will be in strong analogy to the per-vcpu ->l1tf_flush_l1d. A later patch will make interrupt handlers set it. For the sake of cache locality, group kvm_cpu_l1tf_flush_l1d into x86' per-cpu irq_cpustat_t as suggested by Peter Zijlstra. Provide the helpers kvm_set_cpu_l1tf_flush_l1d(), kvm_clear_cpu_l1tf_flush_l1d() and kvm_get_cpu_l1tf_flush_l1d(). Make them trivial resp. non-existent for !CONFIG_KVM_INTEL as appropriate. Let vmx_l1d_flush() handle kvm_cpu_l1tf_flush_l1d in the same way as l1tf_flush_l1d. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Suggested-by: Peter Zijlstra <peterz@infradead.org> Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/irq: Demote irq_cpustat_t::__softirq_pending to u16Nicolai Stange
commit 9aee5f8a7e30330d0a8f4c626dc924ca5590aba5 upstream An upcoming patch will extend KVM's L1TF mitigation in conditional mode to also cover interrupts after VMEXITs. For tracking those, stores to a new per-cpu flag from interrupt handlers will become necessary. In order to improve cache locality, this new flag will be added to x86's irq_cpustat_t. Make some space available there by shrinking the ->softirq_pending bitfield from 32 to 16 bits: the number of bits actually used is only NR_SOFTIRQS, i.e. 10. Suggested-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Nicolai Stange <nstange@suse.de> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/bugs, kvm: Introduce boot-time control of L1TF mitigationsJiri Kosina
commit d90a7a0ec83fb86622cd7dae23255d3c50a99ec8 upstream Introduce the 'l1tf=' kernel command line option to allow for boot-time switching of mitigation that is used on processors affected by L1TF. The possible values are: full Provides all available mitigations for the L1TF vulnerability. Disables SMT and enables all mitigations in the hypervisors. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. full,force Same as 'full', but disables SMT control. Implies the 'nosmt=force' command line option. sysfs control of SMT and the hypervisor flush control is disabled. flush Leaves SMT enabled and enables the conditional hypervisor mitigation. Hypervisors will issue a warning when the first VM is started in a potentially insecure configuration, i.e. SMT enabled or L1D flush disabled. flush,nosmt Disables SMT and enables the conditional hypervisor mitigation. SMT control via /sys/devices/system/cpu/smt/control is still possible after boot. If SMT is reenabled or flushing disabled at runtime hypervisors will issue a warning. flush,nowarn Same as 'flush', but hypervisors will not warn when a VM is started in a potentially insecure configuration. off Disables hypervisor mitigations and doesn't emit any warnings. Default is 'flush'. Let KVM adhere to these semantics, which means: - 'lt1f=full,force' : Performe L1D flushes. No runtime control possible. - 'l1tf=full' - 'l1tf-flush' - 'l1tf=flush,nosmt' : Perform L1D flushes and warn on VM start if SMT has been runtime enabled or L1D flushing has been run-time enabled - 'l1tf=flush,nowarn' : Perform L1D flushes and no warnings are emitted. - 'l1tf=off' : L1D flushes are not performed and no warnings are emitted. KVM can always override the L1D flushing behavior using its 'vmentry_l1d_flush' module parameter except when lt1f=full,force is set. This makes KVM's private 'nosmt' option redundant, and as it is a bit non-systematic anyway (this is something to control globally, not on hypervisor level), remove that option. Add the missing Documentation entry for the l1tf vulnerability sysfs file while at it. Signed-off-by: Jiri Kosina <jkosina@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142323.202758176@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/l1tf: Handle EPT disabled state properThomas Gleixner
commit a7b9020b06ec6d7c3f3b0d4ef1a9eba12654f4f7 upstream If Extended Page Tables (EPT) are disabled or not supported, no L1D flushing is required. The setup function can just avoid setting up the L1D flush for the EPT=n case. Invoke it after the hardware setup has be done and enable_ept has the correct state and expose the EPT disabled state in the mitigation status as well. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.612160168@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/litf: Introduce vmx status variableThomas Gleixner
commit 72c6d2db64fa18c996ece8f06e499509e6c9a37e upstream Store the effective mitigation of VMX in a status variable and use it to report the VMX state in the l1tf sysfs file. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Jiri Kosina <jkosina@suse.cz> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Link: https://lkml.kernel.org/r/20180713142322.433098358@linutronix.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/KVM/VMX: Add L1D flush logicPaolo Bonzini
commit c595ceee45707f00f64f61c54fb64ef0cc0b4e85 upstream Add the logic for flushing L1D on VMENTER. The flush depends on the static key being enabled and the new l1tf_flush_l1d flag being set. The flags is set: - Always, if the flush module parameter is 'always' - Conditionally at: - Entry to vcpu_run(), i.e. after executing user space - From the sched_in notifier, i.e. when switching to a vCPU thread. - From vmexit handlers which are considered unsafe, i.e. where sensitive data can be brought into L1D: - The emulator, which could be a good target for other speculative execution-based threats, - The MMU, which can bring host page tables in the L1 cache. - External interrupts - Nested operations that require the MMU (see above). That is vmptrld, vmptrst, vmclear,vmwrite,vmread. - When handling invept,invvpid [ tglx: Split out from combo patch and reduced to a single flag ] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/KVM/VMX: Add L1D MSR based flushPaolo Bonzini
commit 3fa045be4c720146b18a19cea7a767dc6ad5df94 upstream 336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR (IA32_FLUSH_CMD aka 0x10B) which has similar write-only semantics to other MSRs defined in the document. The semantics of this MSR is to allow "finer granularity invalidation of caching structures than existing mechanisms like WBINVD. It will writeback and invalidate the L1 data cache, including all cachelines brought in by preceding instructions, without invalidating all caches (eg. L2 or LLC). Some processors may also invalidate the first level level instruction cache on a L1D_FLUSH command. The L1 data and instruction caches may be shared across the logical processors of a core." Use it instead of the loop based L1 flush algorithm. A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199511 [ tglx: Avoid allocating pages when the MSR is available ] Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15Revert "x86/apic: Ignore secondary threads if nosmt=force"Thomas Gleixner
commit 506a66f374891ff08e064a058c446b336c5ac760 upstream Dave Hansen reported, that it's outright dangerous to keep SMT siblings disabled completely so they are stuck in the BIOS and wait for SIPI. The reason is that Machine Check Exceptions are broadcasted to siblings and the soft disabled sibling has CR4.MCE = 0. If a MCE is delivered to a logical core with CR4.MCE = 0, it asserts IERR#, which shuts down or reboots the machine. The MCE chapter in the SDM contains the following blurb: Because the logical processors within a physical package are tightly coupled with respect to shared hardware resources, both logical processors are notified of machine check errors that occur within a given physical processor. If machine-check exceptions are enabled when a fatal error is reported, all the logical processors within a physical package are dispatched to the machine-check exception handler. If machine-check exceptions are disabled, the logical processors enter the shutdown state and assert the IERR# signal. When enabling machine-check exceptions, the MCE flag in control register CR4 should be set for each logical processor. Reverting the commit which ignores siblings at enumeration time solves only half of the problem. The core cpuhotplug logic needs to be adjusted as well. This thoughtful engineered mechanism also turns the boot process on all Intel HT enabled systems into a MCE lottery. MCE is enabled on the boot CPU before the secondary CPUs are brought up. Depending on the number of physical cores the window in which this situation can happen is smaller or larger. On a HSW-EX it's about 750ms: MCE is enabled on the boot CPU: [ 0.244017] mce: CPU supports 22 MCE banks The corresponding sibling #72 boots: [ 1.008005] .... node #0, CPUs: #72 That means if an MCE hits on physical core 0 (logical CPUs 0 and 72) between these two points the machine is going to shutdown. At least it's a known safe state. It's obvious that the early boot can be hit by an MCE as well and then runs into the same situation because MCEs are not yet enabled on the boot CPU. But after enabling them on the boot CPU, it does not make any sense to prevent the kernel from recovering. Adjust the nosmt kernel parameter documentation as well. Reverts: 2207def700f9 ("x86/apic: Ignore secondary threads if nosmt=force") Reported-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Tony Luck <tony.luck@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Fix up pte->pfn conversion for PAEMichal Hocko
commit e14d7dfb41f5807a0c1c26a13f2b8ef16af24935 upstream Jan has noticed that pte_pfn and co. resp. pfn_pte are incorrect for CONFIG_PAE because phys_addr_t is wider than unsigned long and so the pte_val reps. shift left would get truncated. Fix this up by using proper types. Fixes: 6b28baca9b1f ("x86/speculation/l1tf: Protect PROT_NONE PTEs against speculation") Reported-by: Jan Beulich <JBeulich@suse.com> Signed-off-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Protect PAE swap entries against L1TFVlastimil Babka
commit 0d0f6249058834ffe1ceaad0bb31464af66f6e7a upstream The PAE 3-level paging code currently doesn't mitigate L1TF by flipping the offset bits, and uses the high PTE word, thus bits 32-36 for type, 37-63 for offset. The lower word is zeroed, thus systems with less than 4GB memory are safe. With 4GB to 128GB the swap type selects the memory locations vulnerable to L1TF; with even more memory, also the swap offfset influences the address. This might be a problem with 32bit PAE guests running on large 64bit hosts. By continuing to keep the whole swap entry in either high or low 32bit word of PTE we would limit the swap size too much. Thus this patch uses the whole PAE PTE with the same layout as the 64bit version does. The macros just become a bit tricky since they assume the arch-dependent swp_entry_t to be 32bit. Signed-off-by: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Michal Hocko <mhocko@suse.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/cpufeatures: Add detection of L1D cache flush support.Konrad Rzeszutek Wilk
commit 11e34e64e4103955fc4568750914c75d65ea87ee upstream 336996-Speculative-Execution-Side-Channel-Mitigations.pdf defines a new MSR (IA32_FLUSH_CMD) which is detected by CPUID.7.EDX[28]=1 bit being set. This new MSR "gives software a way to invalidate structures with finer granularity than other architectual methods like WBINVD." A copy of this document is available at https://bugzilla.kernel.org/show_bug.cgi?id=199511 Signed-off-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/apic: Ignore secondary threads if nosmt=forceThomas Gleixner
commit 2207def700f902f169fc237b717252c326f9e464 upstream nosmt on the kernel command line merely prevents the onlining of the secondary SMT siblings. nosmt=force makes the APIC detection code ignore the secondary SMT siblings completely, so they even do not show up as possible CPUs. That reduces the amount of memory allocations for per cpu variables and saves other resources from being allocated too large. This is not fully equivalent to disabling SMT in the BIOS because the low level SMT enabling in the BIOS can result in partitioning of resources between the siblings, which is not undone by just ignoring them. Some CPUs can use the full resources when their sibling is not onlined, but this is depending on the CPU family and model and it's not well documented whether this applies to all partitioned resources. That means depending on the workload disabling SMT in the BIOS might result in better performance. Linus analysis of the Intel manual: The intel optimization manual is not very clear on what the partitioning rules are. I find: "In general, the buffers for staging instructions between major pipe stages are partitioned. These buffers include µop queues after the execution trace cache, the queues after the register rename stage, the reorder buffer which stages instructions for retirement, and the load and store buffers. In the case of load and store buffers, partitioning also provided an easier implementation to maintain memory ordering for each logical processor and detect memory ordering violations" but some of that partitioning may be relaxed if the HT thread is "not active": "In Intel microarchitecture code name Sandy Bridge, the micro-op queue is statically partitioned to provide 28 entries for each logical processor, irrespective of software executing in single thread or multiple threads. If one logical processor is not active in Intel microarchitecture code name Ivy Bridge, then a single thread executing on that processor core can use the 56 entries in the micro-op queue" but I do not know what "not active" means, and how dynamic it is. Some of that partitioning may be entirely static and depend on the early BIOS disabling of HT, and even if we park the cores, the resources will just be wasted. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/topology: Provide topology_smt_supported()Thomas Gleixner
commit f048c399e0f7490ab7296bc2c255d37eb14a9675 upstream Provide information whether SMT is supoorted by the CPUs. Preparatory patch for SMT control mechanism. Suggested-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/smp: Provide topology_is_primary_thread()Thomas Gleixner
commit 6a4d2657e048f096c7ffcad254010bd94891c8c0 upstream If the CPU is supporting SMT then the primary thread can be found by checking the lower APIC ID bits for zero. smp_num_siblings is used to build the mask for the APIC ID bits which need to be taken into account. This uses the MPTABLE or ACPI/MADT supplied APIC ID, which can be different than the initial APIC ID in CPUID. But according to AMD the lower bits have to be consistent. Intel gave a tentative confirmation as well. Preparatory patch to support disabling SMT at boot/runtime. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Acked-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Disallow non privileged high MMIO PROT_NONE mappingsAndi Kleen
commit 42e4089c7890725fcd329999252dc489b72f2921 upstream For L1TF PROT_NONE mappings are protected by inverting the PFN in the page table entry. This sets the high bits in the CPU's address space, thus making sure to point to not point an unmapped entry to valid cached memory. Some server system BIOSes put the MMIO mappings high up in the physical address space. If such an high mapping was mapped to unprivileged users they could attack low memory by setting such a mapping to PROT_NONE. This could happen through a special device driver which is not access protected. Normal /dev/mem is of course access protected. To avoid this forbid PROT_NONE mappings or mprotect for high MMIO mappings. Valid page mappings are allowed because the system is then unsafe anyways. It's not expected that users commonly use PROT_NONE on MMIO. But to minimize any impact this is only enforced if the mapping actually refers to a high MMIO address (defined as the MAX_PA-1 bit being set), and also skip the check for root. For mmaps this is straight forward and can be handled in vm_insert_pfn and in remap_pfn_range(). For mprotect it's a bit trickier. At the point where the actual PTEs are accessed a lot of state has been changed and it would be difficult to undo on an error. Since this is a uncommon case use a separate early page talk walk pass for MMIO PROT_NONE mappings that checks for this condition early. For non MMIO and non PROT_NONE there are no changes. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Add sysfs reporting for l1tfAndi Kleen
commit 17dbca119312b4e8173d4e25ff64262119fcef38 upstream L1TF core kernel workarounds are cheap and normally always enabled, However they still should be reported in sysfs if the system is vulnerable or mitigated. Add the necessary CPU feature/bug bits. - Extend the existing checks for Meltdowns to determine if the system is vulnerable. All CPUs which are not vulnerable to Meltdown are also not vulnerable to L1TF - Check for 32bit non PAE and emit a warning as there is no practical way for mitigation due to the limited physical address bits - If the system has more than MAX_PA/2 physical memory the invert page workarounds don't protect the system against the L1TF attack anymore, because an inverted physical address will also point to valid memory. Print a warning in this case and report that the system is vulnerable. Add a function which returns the PFN limit for the L1TF mitigation, which will be used in follow up patches for sanity and range checks. [ tglx: Renamed the CPU feature bit to L1TF_PTEINV ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Protect PROT_NONE PTEs against speculationAndi Kleen
commit 6b28baca9b1f0d4a42b865da7a05b1c81424bd5c upstream When PTEs are set to PROT_NONE the kernel just clears the Present bit and preserves the PFN, which creates attack surface for L1TF speculation speculation attacks. This is important inside guests, because L1TF speculation bypasses physical page remapping. While the host has its own migitations preventing leaking data from other VMs into the guest, this would still risk leaking the wrong page inside the current guest. This uses the same technique as Linus' swap entry patch: while an entry is is in PROTNONE state invert the complete PFN part part of it. This ensures that the the highest bit will point to non existing memory. The invert is done by pte/pmd_modify and pfn/pmd/pud_pte for PROTNONE and pte/pmd/pud_pfn undo it. This assume that no code path touches the PFN part of a PTE directly without using these primitives. This doesn't handle the case that MMIO is on the top of the CPU physical memory. If such an MMIO region was exposed by an unpriviledged driver for mmap it would be possible to attack some real memory. However this situation is all rather unlikely. For 32bit non PAE the inversion is not done because there are really not enough bits to protect anything. Q: Why does the guest need to be protected when the HyperVisor already has L1TF mitigations? A: Here's an example: Physical pages 1 2 get mapped into a guest as GPA 1 -> PA 2 GPA 2 -> PA 1 through EPT. The L1TF speculation ignores the EPT remapping. Now the guest kernel maps GPA 1 to process A and GPA 2 to process B, and they belong to different users and should be isolated. A sets the GPA 1 PA 2 PTE to PROT_NONE to bypass the EPT remapping and gets read access to the underlying physical page. Which in this case points to PA 2, so it can read process B's data, if it happened to be in L1, so isolation inside the guest is broken. There's nothing the hypervisor can do about this. This mitigation has to be done in the guest itself. [ tglx: Massaged changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Protect swap entries against L1TFLinus Torvalds
commit 2f22b4cd45b67b3496f4aa4c7180a1271c6452f6 upstream With L1 terminal fault the CPU speculates into unmapped PTEs, and resulting side effects allow to read the memory the PTE is pointing too, if its values are still in the L1 cache. For swapped out pages Linux uses unmapped PTEs and stores a swap entry into them. To protect against L1TF it must be ensured that the swap entry is not pointing to valid memory, which requires setting higher bits (between bit 36 and bit 45) that are inside the CPUs physical address space, but outside any real memory. To do this invert the offset to make sure the higher bits are always set, as long as the swap file is not too big. Note there is no workaround for 32bit !PAE, or on systems which have more than MAX_PA/2 worth of memory. The later case is very unlikely to happen on real systems. [AK: updated description and minor tweaks by. Split out from the original patch ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Change order of offset/type in swap entryLinus Torvalds
commit bcd11afa7adad8d720e7ba5ef58bdcd9775cf45f upstream If pages are swapped out, the swap entry is stored in the corresponding PTE, which has the Present bit cleared. CPUs vulnerable to L1TF speculate on PTE entries which have the present bit set and would treat the swap entry as phsyical address (PFN). To mitigate that the upper bits of the PTE must be set so the PTE points to non existent memory. The swap entry stores the type and the offset of a swapped out page in the PTE. type is stored in bit 9-13 and offset in bit 14-63. The hardware ignores the bits beyond the phsyical address space limit, so to make the mitigation effective its required to start 'offset' at the lowest possible bit so that even large swap offsets do not reach into the physical address space limit bits. Move offset to bit 9-58 and type to bit 59-63 which are the bits that hardware generally doesn't care about. That, in turn, means that if you on desktop chip with only 40 bits of physical addressing, now that the offset starts at bit 9, there needs to be 30 bits of offset actually *in use* until bit 39 ends up being set, which means when inverted it will again point into existing memory. So that's 4 terabyte of swap space (because the offset is counted in pages, so 30 bits of offset is 42 bits of actual coverage). With bigger physical addressing, that obviously grows further, until the limit of the offset is hit (at 50 bits of offset - 62 bits of actual swap file coverage). This is a preparatory change for the actual swap entry inversion to protect against L1TF. [ AK: Updated description and minor tweaks. Split into two parts ] [ tglx: Massaged changelog ] Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Tested-by: Andi Kleen <ak@linux.intel.com> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Vlastimil Babka <vbabka@suse.cz> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/speculation/l1tf: Increase 32bit PAE __PHYSICAL_PAGE_SHIFTAndi Kleen
commit 50896e180c6aa3a9c61a26ced99e15d602666a4c upstream L1 Terminal Fault (L1TF) is a speculation related vulnerability. The CPU speculates on PTE entries which do not have the PRESENT bit set, if the content of the resulting physical address is available in the L1D cache. The OS side mitigation makes sure that a !PRESENT PTE entry points to a physical address outside the actually existing and cachable memory space. This is achieved by inverting the upper bits of the PTE. Due to the address space limitations this only works for 64bit and 32bit PAE kernels, but not for 32bit non PAE. This mitigation applies to both host and guest kernels, but in case of a 64bit host (hypervisor) and a 32bit PAE guest, inverting the upper bits of the PAE address space (44bit) is not enough if the host has more than 43 bits of populated memory address space, because the speculation treats the PTE content as a physical host address bypassing EPT. The host (hypervisor) protects itself against the guest by flushing L1D as needed, but pages inside the guest are not protected against attacks from other processes inside the same guest. For the guest the inverted PTE mask has to match the host to provide the full protection for all pages the host could possibly map into the guest. The hosts populated address space is not known to the guest, so the mask must cover the possible maximal host address space, i.e. 52 bit. On 32bit PAE the maximum PTE mask is currently set to 44 bit because that is the limit imposed by 32bit unsigned long PFNs in the VMs. This limits the mask to be below what the host could possible use for physical pages. The L1TF PROT_NONE protection code uses the PTE masks to determine which bits to invert to make sure the higher bits are set for unmapped entries to prevent L1TF speculation attacks against EPT inside guests. In order to invert all bits that could be used by the host, increase __PHYSICAL_PAGE_SHIFT to 52 to match 64bit. The real limit for a 32bit PAE kernel is still 44 bits because all Linux PTEs are created from unsigned long PFNs, so they cannot be higher than 44 bits on a 32bit kernel. So these extra PFN bits should be never set. The only users of this macro are using it to look at PTEs, so it's safe. [ tglx: Massaged changelog ] Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Josh Poimboeuf <jpoimboe@redhat.com> Acked-by: Michal Hocko <mhocko@suse.com> Acked-by: Dave Hansen <dave.hansen@intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-08-15x86/irqflags: Provide a declaration for native_save_flNick Desaulniers
commit 208cbb32558907f68b3b2a081ca2337ac3744794 upstream. It was reported that the commit d0a8d9378d16 is causing users of gcc < 4.9 to observe -Werror=missing-prototypes errors. Indeed, it seems that: extern inline unsigned long native_save_fl(void) { return 0; } compiled with -Werror=missing-prototypes produces this warning in gcc < 4.9, but not gcc >= 4.9. Fixes: d0a8d9378d16 ("x86/paravirt: Make native_save_fl() extern inline"). Reported-by: David Laight <david.laight@aculab.com> Reported-by: Jean Delvare <jdelvare@suse.de> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: hpa@zytor.com Cc: jgross@suse.com Cc: kstewart@linuxfoundation.org Cc: gregkh@linuxfoundation.org Cc: boris.ostrovsky@oracle.com Cc: astrachan@google.com Cc: mka@chromium.org Cc: arnd@arndb.de Cc: tstellar@redhat.com Cc: sedat.dilek@gmail.com Cc: David.Laight@aculab.com Cc: stable@vger.kernel.org Link: https://lkml.kernel.org/r/20180803170550.164688-1-ndesaulniers@google.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-25x86/apm: Don't access __preempt_count with zeroed fsVille Syrjälä
commit 6f6060a5c9cc76fdbc22748264e6aa3779ec2427 upstream. APM_DO_POP_SEGS does not restore fs/gs which were zeroed by APM_DO_ZERO_SEGS. Trying to access __preempt_count with zeroed fs doesn't really work. Move the ibrs call outside the APM_DO_SAVE_SEGS/APM_DO_RESTORE_SEGS invocations so that fs is actually restored before calling preempt_enable(). Fixes the following sort of oopses: [ 0.313581] general protection fault: 0000 [#1] PREEMPT SMP [ 0.313803] Modules linked in: [ 0.314040] CPU: 0 PID: 268 Comm: kapmd Not tainted 4.16.0-rc1-triton-bisect-00090-gdd84441a7971 #19 [ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170 [ 0.316161] EFLAGS: 00210016 CPU: 0 [ 0.316161] EAX: 00000102 EBX: 00000000 ECX: 00000102 EDX: 00000000 [ 0.316161] ESI: 0000530e EDI: dea95f64 EBP: dea95f18 ESP: dea95ef0 [ 0.316161] DS: 007b ES: 007b FS: 0000 GS: 0000 SS: 0068 [ 0.316161] CR0: 80050033 CR2: 00000000 CR3: 015d3000 CR4: 000006d0 [ 0.316161] Call Trace: [ 0.316161] ? cpumask_weight.constprop.15+0x20/0x20 [ 0.316161] on_cpu0+0x44/0x70 [ 0.316161] apm+0x54e/0x720 [ 0.316161] ? __switch_to_asm+0x26/0x40 [ 0.316161] ? __schedule+0x17d/0x590 [ 0.316161] kthread+0xc0/0xf0 [ 0.316161] ? proc_apm_show+0x150/0x150 [ 0.316161] ? kthread_create_worker_on_cpu+0x20/0x20 [ 0.316161] ret_from_fork+0x2e/0x38 [ 0.316161] Code: da 8e c2 8e e2 8e ea 57 55 2e ff 1d e0 bb 5d b1 0f 92 c3 5d 5f 07 1f 89 47 0c 90 8d b4 26 00 00 00 00 90 8d b4 26 00 00 00 00 90 <64> ff 0d 84 16 5c b1 74 7f 8b 45 dc 8e e0 8b 45 d8 8e e8 8b 45 [ 0.316161] EIP: __apm_bios_call_simple+0xc8/0x170 SS:ESP: 0068:dea95ef0 [ 0.316161] ---[ end trace 656253db2deaa12c ]--- Fixes: dd84441a7971 ("x86/speculation: Use IBRS if available before calling into firmware") Signed-off-by: Ville Syrjälä <ville.syrjala@linux.intel.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: stable@vger.kernel.org Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Cc: x86@kernel.org Cc: David Woodhouse <dwmw@amazon.co.uk> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20180709133534.5963-1-ville.syrjala@linux.intel.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-22x86/paravirt: Make native_save_fl() extern inlineNick Desaulniers
commit d0a8d9378d16eb3c69bd8e6d23779fbdbee3a8c7 upstream. native_save_fl() is marked static inline, but by using it as a function pointer in arch/x86/kernel/paravirt.c, it MUST be outlined. paravirt's use of native_save_fl() also requires that no GPRs other than %rax are clobbered. Compilers have different heuristics which they use to emit stack guard code, the emittance of which can break paravirt's callee saved assumption by clobbering %rcx. Marking a function definition extern inline means that if this version cannot be inlined, then the out-of-line version will be preferred. By having the out-of-line version be implemented in assembly, it cannot be instrumented with a stack protector, which might violate custom calling conventions that code like paravirt rely on. The semantics of extern inline has changed since gnu89. This means that folks using GCC versions >= 5.1 may see symbol redefinition errors at link time for subdirs that override KBUILD_CFLAGS (making the C standard used implicit) regardless of this patch. This has been cleaned up earlier in the patch set, but is left as a note in the commit message for future travelers. Reports: https://lkml.org/lkml/2018/5/7/534 https://github.com/ClangBuiltLinux/linux/issues/16 Discussion: https://bugs.llvm.org/show_bug.cgi?id=37512 https://lkml.org/lkml/2018/5/24/1371 Thanks to the many folks that participated in the discussion. Debugged-by: Alistair Strachan <astrachan@google.com> Debugged-by: Matthias Kaehlcke <mka@chromium.org> Suggested-by: Arnd Bergmann <arnd@arndb.de> Suggested-by: H. Peter Anvin <hpa@zytor.com> Suggested-by: Tom Stellar <tstellar@redhat.com> Reported-by: Sedat Dilek <sedat.dilek@gmail.com> Tested-by: Sedat Dilek <sedat.dilek@gmail.com> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@redhat.com Cc: akataria@vmware.com Cc: akpm@linux-foundation.org Cc: andrea.parri@amarulasolutions.com Cc: ard.biesheuvel@linaro.org Cc: aryabinin@virtuozzo.com Cc: astrachan@google.com Cc: boris.ostrovsky@oracle.com Cc: brijesh.singh@amd.com Cc: caoj.fnst@cn.fujitsu.com Cc: geert@linux-m68k.org Cc: ghackmann@google.com Cc: gregkh@linuxfoundation.org Cc: jan.kiszka@siemens.com Cc: jarkko.sakkinen@linux.intel.com Cc: joe@perches.com Cc: jpoimboe@redhat.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: kstewart@linuxfoundation.org Cc: linux-efi@vger.kernel.org Cc: linux-kbuild@vger.kernel.org Cc: manojgupta@google.com Cc: mawilcox@microsoft.com Cc: michal.lkml@markovi.net Cc: mjg59@google.com Cc: mka@chromium.org Cc: pombredanne@nexb.com Cc: rientjes@google.com Cc: rostedt@goodmis.org Cc: thomas.lendacky@amd.com Cc: tweek@google.com Cc: virtualization@lists.linux-foundation.org Cc: will.deacon@arm.com Cc: yamada.masahiro@socionext.com Link: http://lkml.kernel.org/r/20180621162324.36656-4-ndesaulniers@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-22x86/asm: Add _ASM_ARG* constants for argument registers to <asm/asm.h>H. Peter Anvin
commit 0e2e160033283e20f688d8bad5b89460cc5bfcc4 upstream. i386 and x86-64 uses different registers for arguments; make them available so we don't have to #ifdef in the actual code. Native size and specified size (q, l, w, b) versions are provided. Signed-off-by: H. Peter Anvin <hpa@linux.intel.com> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Reviewed-by: Sedat Dilek <sedat.dilek@gmail.com> Acked-by: Juergen Gross <jgross@suse.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: acme@redhat.com Cc: akataria@vmware.com Cc: akpm@linux-foundation.org Cc: andrea.parri@amarulasolutions.com Cc: ard.biesheuvel@linaro.org Cc: arnd@arndb.de Cc: aryabinin@virtuozzo.com Cc: astrachan@google.com Cc: boris.ostrovsky@oracle.com Cc: brijesh.singh@amd.com Cc: caoj.fnst@cn.fujitsu.com Cc: geert@linux-m68k.org Cc: ghackmann@google.com Cc: gregkh@linuxfoundation.org Cc: jan.kiszka@siemens.com Cc: jarkko.sakkinen@linux.intel.com Cc: joe@perches.com Cc: jpoimboe@redhat.com Cc: keescook@google.com Cc: kirill.shutemov@linux.intel.com Cc: kstewart@linuxfoundation.org Cc: linux-efi@vger.kernel.org Cc: linux-kbuild@vger.kernel.org Cc: manojgupta@google.com Cc: mawilcox@microsoft.com Cc: michal.lkml@markovi.net Cc: mjg59@google.com Cc: mka@chromium.org Cc: pombredanne@nexb.com Cc: rientjes@google.com Cc: rostedt@goodmis.org Cc: thomas.lendacky@amd.com Cc: tstellar@redhat.com Cc: tweek@google.com Cc: virtualization@lists.linux-foundation.org Cc: will.deacon@arm.com Cc: yamada.masahiro@socionext.com Link: http://lkml.kernel.org/r/20180621162324.36656-3-ndesaulniers@google.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-07-03x86/spectre_v1: Disable compiler optimizations over array_index_mask_nospec()Dan Williams
commit eab6870fee877258122a042bfd99ee7908c40280 upstream. Mark Rutland noticed that GCC optimization passes have the potential to elide necessary invocations of the array_index_mask_nospec() instruction sequence, so mark the asm() volatile. Mark explains: "The volatile will inhibit *some* cases where the compiler could lift the array_index_nospec() call out of a branch, e.g. where there are multiple invocations of array_index_nospec() with the same arguments: if (idx < foo) { idx1 = array_idx_nospec(idx, foo) do_something(idx1); } < some other code > if (idx < foo) { idx2 = array_idx_nospec(idx, foo); do_something_else(idx2); } ... since the compiler can determine that the two invocations yield the same result, and reuse the first result (likely the same register as idx was in originally) for the second branch, effectively re-writing the above as: if (idx < foo) { idx = array_idx_nospec(idx, foo); do_something(idx); } < some other code > if (idx < foo) { do_something_else(idx); } ... if we don't take the first branch, then speculatively take the second, we lose the nospec protection. There's more info on volatile asm in the GCC docs: https://gcc.gnu.org/onlinedocs/gcc/Extended-Asm.html#Volatile " Reported-by: Mark Rutland <mark.rutland@arm.com> Signed-off-by: Dan Williams <dan.j.williams@intel.com> Acked-by: Mark Rutland <mark.rutland@arm.com> Acked-by: Thomas Gleixner <tglx@linutronix.de> Acked-by: Linus Torvalds <torvalds@linux-foundation.org> Cc: <stable@vger.kernel.org> Cc: Peter Zijlstra <peterz@infradead.org> Fixes: babdde2698d4 ("x86: Implement array_index_mask_nospec") Link: https://lkml.kernel.org/lkml/152838798950.14521.4893346294059739135.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Ingo Molnar <mingo@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-21kprobes/x86: Prohibit probing on exception masking instructionsMasami Hiramatsu
[ Upstream commit ee6a7354a3629f9b65bc18dbe393503e9440d6f5 ] Since MOV SS and POP SS instructions will delay the exceptions until the next instruction is executed, single-stepping on it by kprobes must be prohibited. However, kprobes usually executes those instructions directly on trampoline buffer (a.k.a. kprobe-booster), except for the kprobes which has post_handler. Thus if kprobe user probes MOV SS with post_handler, it will do single-stepping on the MOV SS. This means it is safe that if it is used via ftrace or perf/bpf since those don't use the post_handler. Anyway, since the stack switching is a rare case, it is safer just rejecting kprobes on such instructions. Signed-off-by: Masami Hiramatsu <mhiramat@kernel.org> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Ricardo Neri <ricardo.neri-calderon@linux.intel.com> Cc: Francis Deslauriers <francis.deslauriers@efficios.com> Cc: Oleg Nesterov <oleg@redhat.com> Cc: Alexei Starovoitov <ast@kernel.org> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Andy Lutomirski <luto@kernel.org> Cc: "H . Peter Anvin" <hpa@zytor.com> Cc: Yonghong Song <yhs@fb.com> Cc: Borislav Petkov <bp@suse.de> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: "David S . Miller" <davem@davemloft.net> Link: https://lkml.kernel.org/r/152587069574.17316.3311695234863248641.stgit@devbox Signed-off-by: Sasha Levin <alexander.levin@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2018-06-16kvm: x86: use correct privilege level for sgdt/sidt/fxsave/fxrstor accessPaolo Bonzini
commit 3c9fa24ca7c9c47605672916491f79e8ccacb9e6 upstream. The functions that were used in the emulation of fxrstor, fxsave, sgdt and sidt were originally meant for task switching, and as such they did not check privilege levels. This is very bad when the same functions are used in the emulation of unprivileged instructions. This is CVE-2018-10853. The obvious fix is to add a new argument to ops->read_std and ops->write_std, which decides whether the access is a "system" access or should use the processor's CPL. Fixes: 129a72a0d3c8 ("KVM: x86: Introduce segmented_write_std", 2017-01-12) Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>