summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/platforms
AgeCommit message (Collapse)Author
2020-01-29mm/memory_hotplug: make remove_memory() take the device_hotplug_lockDavid Hildenbrand
commit d15e59260f62bd5e0f625cf5f5240f6ffac78ab6 upstream. Patch series "mm: online/offline_pages called w.o. mem_hotplug_lock", v3. Reading through the code and studying how mem_hotplug_lock is to be used, I noticed that there are two places where we can end up calling device_online()/device_offline() - online_pages()/offline_pages() without the mem_hotplug_lock. And there are other places where we call device_online()/device_offline() without the device_hotplug_lock. While e.g. echo "online" > /sys/devices/system/memory/memory9/state is fine, e.g. echo 1 > /sys/devices/system/memory/memory9/online Will not take the mem_hotplug_lock. However the device_lock() and device_hotplug_lock. E.g. via memory_probe_store(), we can end up calling add_memory()->online_pages() without the device_hotplug_lock. So we can have concurrent callers in online_pages(). We e.g. touch in online_pages() basically unprotected zone->present_pages then. Looks like there is a longer history to that (see Patch #2 for details), and fixing it to work the way it was intended is not really possible. We would e.g. have to take the mem_hotplug_lock in device/base/core.c, which sounds wrong. Summary: We had a lock inversion on mem_hotplug_lock and device_lock(). More details can be found in patch 3 and patch 6. I propose the general rules (documentation added in patch 6): 1. add_memory/add_memory_resource() must only be called with device_hotplug_lock. 2. remove_memory() must only be called with device_hotplug_lock. This is already documented and holds for all callers. 3. device_online()/device_offline() must only be called with device_hotplug_lock. This is already documented and true for now in core code. Other callers (related to memory hotplug) have to be fixed up. 4. mem_hotplug_lock is taken inside of add_memory/remove_memory/ online_pages/offline_pages. To me, this looks way cleaner than what we have right now (and easier to verify). And looking at the documentation of remove_memory, using lock_device_hotplug also for add_memory() feels natural. This patch (of 6): remove_memory() is exported right now but requires the device_hotplug_lock, which is not exported. So let's provide a variant that takes the lock and only export that one. The lock is already held in arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c arch/powerpc/platforms/powernv/memtrace.c Apart from that, there are not other users in the tree. Link: http://lkml.kernel.org/r/20180925091457.28651-2-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-27powerpc/pseries/mobility: rebuild cacheinfo hierarchy post-migrationNathan Lynch
[ Upstream commit e610a466d16a086e321f0bd421e2fc75cff28605 ] It's common for the platform to replace the cache device nodes after a migration. Since the cacheinfo code is never informed about this, it never drops its references to the source system's cache nodes, causing it to wind up in an inconsistent state resulting in warnings and oopses as soon as CPU online/offline occurs after the migration, e.g. cache for /cpus/l3-cache@3113(Unified) refers to cache for /cpus/l2-cache@200d(Unified) WARNING: CPU: 15 PID: 86 at arch/powerpc/kernel/cacheinfo.c:176 release_cache+0x1bc/0x1d0 [...] NIP release_cache+0x1bc/0x1d0 LR release_cache+0x1b8/0x1d0 Call Trace: release_cache+0x1b8/0x1d0 (unreliable) cacheinfo_cpu_offline+0x1c4/0x2c0 unregister_cpu_online+0x1b8/0x260 cpuhp_invoke_callback+0x114/0xf40 cpuhp_thread_fun+0x270/0x310 smpboot_thread_fn+0x2c8/0x390 kthread+0x1b8/0x1c0 ret_from_kernel_thread+0x5c/0x68 Using device tree notifiers won't work since we want to rebuild the hierarchy only after all the removals and additions have occurred and the device tree is in a consistent state. Call cacheinfo_teardown() before processing device tree updates, and rebuild the hierarchy afterward. Fixes: 410bccf97881 ("powerpc/pseries: Partition migration in the kernel") Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27powerpc/pseries/memory-hotplug: Fix return value type of find_aa_indexYueHaibing
[ Upstream commit b45e9d761ba2d60044b610297e3ef9f947ac157f ] The variable 'aa_index' is defined as an unsigned value in update_lmb_associativity_index(), but find_aa_index() may return -1 when dlpar_clone_property() fails. So change find_aa_index() to return a bool, which indicates whether 'aa_index' was found or not. Fixes: c05a5a40969e ("powerpc/pseries: Dynamic add entires to associativity lookup array") Signed-off-by: YueHaibing <yuehaibing@huawei.com> Reviewed-by: Nathan Fontenot nfont@linux.vnet.ibm.com> [mpe: Tweak changelog, rename is_found to just found] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-17powerpc/powernv: Disable native PCIe port managementOliver O'Halloran
commit 9d72dcef891030545f39ad386a30cf91df517fb2 upstream. On PowerNV the PCIe topology is (currently) managed by the powernv platform code in Linux in cooperation with the platform firmware. Linux's native PCIe port service drivers operate independently of both and this can cause problems. The main issue is that the portbus driver will conflict with the platform specific hotplug driver (pnv_php) over ownership of the MSI used to notify the host when a hotplug event occurs. The portbus driver claims this MSI on behalf of the individual port services because the same interrupt is used for hotplug events, PMEs (on root ports), and link bandwidth change notifications. The portbus driver will always claim the interrupt even if the individual port service drivers, such as pciehp, are compiled out. The second, bigger, problem is that the hotplug port service driver fundamentally does not work on PowerNV. The platform assumes that all PCI devices have a corresponding arch-specific handle derived from the DT node for the device (pci_dn) and without one the platform will not allow a PCI device to be enabled. This problem is largely due to historical baggage, but it can't be resolved without significant re-factoring of the platform PCI support. We can fix these problems in the interim by setting the "pcie_ports_disabled" flag during platform initialisation. The flag indicates the platform owns the PCIe ports which stops the portbus driver from being registered. This does have the side effect of disabling all port services drivers that is: AER, PME, BW notifications, hotplug, and DPC. However, this is not a huge disadvantage on PowerNV since these services are either unused or handled through other means. Fixes: 66725152fb9f ("PCI/hotplug: PowerPC PowerNV PCI hotplug driver") Signed-off-by: Oliver O'Halloran <oohall@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191118065553.30362-1-oohall@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-12powerpc/vcpu: Assume dedicated processors as non-preemptSrikar Dronamraju
commit 14c73bd344da60abaf7da3ea2e7733ddda35bbac upstream. With commit 247f2f6f3c70 ("sched/core: Don't schedule threads on pre-empted vCPUs"), the scheduler avoids preempted vCPUs to schedule tasks on wakeup. This leads to wrong choice of CPU, which in-turn leads to larger wakeup latencies. Eventually, it leads to performance regression in latency sensitive benchmarks like soltp, schbench etc. On Powerpc, vcpu_is_preempted() only looks at yield_count. If the yield_count is odd, the vCPU is assumed to be preempted. However yield_count is increased whenever the LPAR enters CEDE state (idle). So any CPU that has entered CEDE state is assumed to be preempted. Even if vCPU of dedicated LPAR is preempted/donated, it should have right of first-use since they are supposed to own the vCPU. On a Power9 System with 32 cores: # lscpu Architecture: ppc64le Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 8 Core(s) per socket: 1 Socket(s): 16 NUMA node(s): 2 Model: 2.2 (pvr 004e 0202) Model name: POWER9 (architected), altivec supported Hypervisor vendor: pHyp Virtualization type: para L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 10240K NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 # perf stat -a -r 5 ./schbench v5.4 v5.4 + patch Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 45 75.0000th: 62 75.0th: 63 90.0000th: 71 90.0th: 74 95.0000th: 77 95.0th: 78 *99.0000th: 91 *99.0th: 82 99.5000th: 707 99.5th: 83 99.9000th: 6920 99.9th: 86 min=0, max=10048 min=0, max=96 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 46 75.0000th: 61 75.0th: 64 90.0000th: 72 90.0th: 75 95.0000th: 79 95.0th: 79 *99.0000th: 691 *99.0th: 83 99.5000th: 3972 99.5th: 85 99.9000th: 8368 99.9th: 91 min=0, max=16606 min=0, max=117 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 46 75.0000th: 61 75.0th: 64 90.0000th: 71 90.0th: 75 95.0000th: 77 95.0th: 79 *99.0000th: 106 *99.0th: 83 99.5000th: 2364 99.5th: 84 99.9000th: 7480 99.9th: 90 min=0, max=10001 min=0, max=95 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 47 75.0000th: 62 75.0th: 65 90.0000th: 72 90.0th: 75 95.0000th: 78 95.0th: 79 *99.0000th: 93 *99.0th: 84 99.5000th: 108 99.5th: 85 99.9000th: 6792 99.9th: 90 min=0, max=17681 min=0, max=117 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 46 50.0th: 45 75.0000th: 62 75.0th: 64 90.0000th: 73 90.0th: 75 95.0000th: 79 95.0th: 79 *99.0000th: 113 *99.0th: 82 99.5000th: 2724 99.5th: 83 99.9000th: 6184 99.9th: 93 min=0, max=9887 min=0, max=111 Performance counter stats for 'system wide' (5 runs): context-switches 43,373 ( +- 0.40% ) 44,597 ( +- 0.55% ) cpu-migrations 1,211 ( +- 5.04% ) 220 ( +- 6.23% ) page-faults 15,983 ( +- 5.21% ) 15,360 ( +- 3.38% ) Waiman Long suggested using static_keys. Fixes: 247f2f6f3c70 ("sched/core: Don't schedule threads on pre-empted vCPUs") Cc: stable@vger.kernel.org # v4.18+ Reported-by: Parth Shah <parth@linux.ibm.com> Reported-by: Ihor Pasichnyk <Ihor.Pasichnyk@ibm.com> Tested-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Waiman Long <longman@redhat.com> Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Phil Auld <pauld@redhat.com> Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.ibm.com> Tested-by: Parth Shah <parth@linux.ibm.com> [mpe: Move the key and setting of the key to pseries/setup.c] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191213035036.6913-1-mpe@ellerman.id.au Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-09KVM: PPC: Book3S HV: use smp_mb() when setting/clearing host_ipi flagMichael Roth
[ Upstream commit 3a83f677a6eeff65751b29e3648d7c69c3be83f3 ] On a 2-socket Power9 system with 32 cores/128 threads (SMT4) and 1TB of memory running the following guest configs: guest A: - 224GB of memory - 56 VCPUs (sockets=1,cores=28,threads=2), where: VCPUs 0-1 are pinned to CPUs 0-3, VCPUs 2-3 are pinned to CPUs 4-7, ... VCPUs 54-55 are pinned to CPUs 108-111 guest B: - 4GB of memory - 4 VCPUs (sockets=1,cores=4,threads=1) with the following workloads (with KSM and THP enabled in all): guest A: stress --cpu 40 --io 20 --vm 20 --vm-bytes 512M guest B: stress --cpu 4 --io 4 --vm 4 --vm-bytes 512M host: stress --cpu 4 --io 4 --vm 2 --vm-bytes 256M the below soft-lockup traces were observed after an hour or so and persisted until the host was reset (this was found to be reliably reproducible for this configuration, for kernels 4.15, 4.18, 5.0, and 5.3-rc5): [ 1253.183290] rcu: INFO: rcu_sched self-detected stall on CPU [ 1253.183319] rcu: 124-....: (5250 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=1941 [ 1256.287426] watchdog: BUG: soft lockup - CPU#105 stuck for 23s! [CPU 52/KVM:19709] [ 1264.075773] watchdog: BUG: soft lockup - CPU#24 stuck for 23s! [worker:19913] [ 1264.079769] watchdog: BUG: soft lockup - CPU#31 stuck for 23s! [worker:20331] [ 1264.095770] watchdog: BUG: soft lockup - CPU#45 stuck for 23s! [worker:20338] [ 1264.131773] watchdog: BUG: soft lockup - CPU#64 stuck for 23s! [avocado:19525] [ 1280.408480] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1316.198012] rcu: INFO: rcu_sched self-detected stall on CPU [ 1316.198032] rcu: 124-....: (21003 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=8243 [ 1340.411024] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1379.212609] rcu: INFO: rcu_sched self-detected stall on CPU [ 1379.212629] rcu: 124-....: (36756 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=14714 [ 1404.413615] watchdog: BUG: soft lockup - CPU#124 stuck for 22s! [ksmd:791] [ 1442.227095] rcu: INFO: rcu_sched self-detected stall on CPU [ 1442.227115] rcu: 124-....: (52509 ticks this GP) idle=10a/1/0x4000000000000002 softirq=5408/5408 fqs=21403 [ 1455.111787] INFO: task worker:19907 blocked for more than 120 seconds. [ 1455.111822] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111833] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111884] INFO: task worker:19908 blocked for more than 120 seconds. [ 1455.111905] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111925] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.111966] INFO: task worker:20328 blocked for more than 120 seconds. [ 1455.111986] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.111998] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112048] INFO: task worker:20330 blocked for more than 120 seconds. [ 1455.112068] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112097] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112138] INFO: task worker:20332 blocked for more than 120 seconds. [ 1455.112159] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112179] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112210] INFO: task worker:20333 blocked for more than 120 seconds. [ 1455.112231] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112242] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112282] INFO: task worker:20335 blocked for more than 120 seconds. [ 1455.112303] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 [ 1455.112332] "echo 0 > /proc/sys/kernel/hung_task_timeout_secs" disables this message. [ 1455.112372] INFO: task worker:20336 blocked for more than 120 seconds. [ 1455.112392] Tainted: G L 5.3.0-rc5-mdr-vanilla+ #1 CPUs 45, 24, and 124 are stuck on spin locks, likely held by CPUs 105 and 31. CPUs 105 and 31 are stuck in smp_call_function_many(), waiting on target CPU 42. For instance: # CPU 105 registers (via xmon) R00 = c00000000020b20c R16 = 00007d1bcd800000 R01 = c00000363eaa7970 R17 = 0000000000000001 R02 = c0000000019b3a00 R18 = 000000000000006b R03 = 000000000000002a R19 = 00007d537d7aecf0 R04 = 000000000000002a R20 = 60000000000000e0 R05 = 000000000000002a R21 = 0801000000000080 R06 = c0002073fb0caa08 R22 = 0000000000000d60 R07 = c0000000019ddd78 R23 = 0000000000000001 R08 = 000000000000002a R24 = c00000000147a700 R09 = 0000000000000001 R25 = c0002073fb0ca908 R10 = c000008ffeb4e660 R26 = 0000000000000000 R11 = c0002073fb0ca900 R27 = c0000000019e2464 R12 = c000000000050790 R28 = c0000000000812b0 R13 = c000207fff623e00 R29 = c0002073fb0ca808 R14 = 00007d1bbee00000 R30 = c0002073fb0ca800 R15 = 00007d1bcd600000 R31 = 0000000000000800 pc = c00000000020b260 smp_call_function_many+0x3d0/0x460 cfar= c00000000020b270 smp_call_function_many+0x3e0/0x460 lr = c00000000020b20c smp_call_function_many+0x37c/0x460 msr = 900000010288b033 cr = 44024824 ctr = c000000000050790 xer = 0000000000000000 trap = 100 CPU 42 is running normally, doing VCPU work: # CPU 42 stack trace (via xmon) [link register ] c00800001be17188 kvmppc_book3s_radix_page_fault+0x90/0x2b0 [kvm_hv] [c000008ed3343820] c000008ed3343850 (unreliable) [c000008ed33438d0] c00800001be11b6c kvmppc_book3s_hv_page_fault+0x264/0xe30 [kvm_hv] [c000008ed33439d0] c00800001be0d7b4 kvmppc_vcpu_run_hv+0x8dc/0xb50 [kvm_hv] [c000008ed3343ae0] c00800001c10891c kvmppc_vcpu_run+0x34/0x48 [kvm] [c000008ed3343b00] c00800001c10475c kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm] [c000008ed3343b90] c00800001c0f5a78 kvm_vcpu_ioctl+0x470/0x7c8 [kvm] [c000008ed3343d00] c000000000475450 do_vfs_ioctl+0xe0/0xc70 [c000008ed3343db0] c0000000004760e4 ksys_ioctl+0x104/0x120 [c000008ed3343e00] c000000000476128 sys_ioctl+0x28/0x80 [c000008ed3343e20] c00000000000b388 system_call+0x5c/0x70 --- Exception: c00 (System Call) at 00007d545cfd7694 SP (7d53ff7edf50) is in userspace It was subsequently found that ipi_message[PPC_MSG_CALL_FUNCTION] was set for CPU 42 by at least 1 of the CPUs waiting in smp_call_function_many(), but somehow the corresponding call_single_queue entries were never processed by CPU 42, causing the callers to spin in csd_lock_wait() indefinitely. Nick Piggin suggested something similar to the following sequence as a possible explanation (interleaving of CALL_FUNCTION/RESCHEDULE IPI messages seems to be most common, but any mix of CALL_FUNCTION and !CALL_FUNCTION messages could trigger it): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() 105: smp_muxed_ipi_set_message(): 105: smb_mb() // STORE DEFERRED DUE TO RE-ORDERING --105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 42: // returns to executing guest | // RE-ORDERED STORE COMPLETES ->105: message[CALL_FUNCTION] = 1 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue This can be prevented with an smp_mb() at the beginning of kvmppc_set_host_ipi(), such that stores to message[<type>] (or other state indicated by the host_ipi flag) are ordered vs. the store to to host_ipi. However, doing so might still allow for the following scenario (not yet observed): CPU X: smp_muxed_ipi_set_message(): X: smp_mb() X: message[RESCHEDULE] = 1 X: doorbell_global_ipi(42): X: kvmppc_set_host_ipi(42, 1) X: ppc_msgsnd_sync()/smp_mb() X: ppc_msgsnd() -> 42 42: doorbell_exception(): // from CPU X 42: ppc_msgsync() // STORE DEFERRED DUE TO RE-ORDERING -- 42: kvmppc_set_host_ipi(42, 0) | 42: smp_ipi_demux_relaxed() | 105: smp_muxed_ipi_set_message(): | 105: smb_mb() | 105: message[CALL_FUNCTION] = 1 | 105: doorbell_global_ipi(42): | 105: kvmppc_set_host_ipi(42, 1) | // RE-ORDERED STORE COMPLETES -> 42: kvmppc_set_host_ipi(42, 0) 42: // returns to executing guest 105: ppc_msgsnd_sync()/smp_mb() 105: ppc_msgsnd() -> 42 42: local_paca->kvm_hstate.host_ipi == 0 // IPI ignored 105: // hangs waiting on 42 to process messages/call_single_queue Fixing this scenario would require an smp_mb() *after* clearing host_ipi flag in kvmppc_set_host_ipi() to order the store vs. subsequent processing of IPI messages. To handle both cases, this patch splits kvmppc_set_host_ipi() into separate set/clear functions, where we execute smp_mb() prior to setting host_ipi flag, and after clearing host_ipi flag. These functions pair with each other to synchronize the sender and receiver sides. With that change in place the above workload ran for 20 hours without triggering any lock-ups. Fixes: 755563bc79c7 ("powerpc/powernv: Fixes for hypervisor doorbell handling") # v4.0 Signed-off-by: Michael Roth <mdroth@linux.vnet.ibm.com> Acked-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190911223155.16045-1-mdroth@linux.vnet.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-09powerpc/pseries/hvconsole: Fix stack overread via udbgDaniel Axtens
[ Upstream commit 934bda59f286d0221f1a3ebab7f5156a996cc37d ] While developing KASAN for 64-bit book3s, I hit the following stack over-read. It occurs because the hypercall to put characters onto the terminal takes 2 longs (128 bits/16 bytes) of characters at a time, and so hvc_put_chars() would unconditionally copy 16 bytes from the argument buffer, regardless of supplied length. However, udbg_hvc_putc() can call hvc_put_chars() with a single-byte buffer, leading to the error. ================================================================== BUG: KASAN: stack-out-of-bounds in hvc_put_chars+0xdc/0x110 Read of size 8 at addr c0000000023e7a90 by task swapper/0 CPU: 0 PID: 0 Comm: swapper Not tainted 5.2.0-rc2-next-20190528-02824-g048a6ab4835b #113 Call Trace: dump_stack+0x104/0x154 (unreliable) print_address_description+0xa0/0x30c __kasan_report+0x20c/0x224 kasan_report+0x18/0x30 __asan_report_load8_noabort+0x24/0x40 hvc_put_chars+0xdc/0x110 hvterm_raw_put_chars+0x9c/0x110 udbg_hvc_putc+0x154/0x200 udbg_write+0xf0/0x240 console_unlock+0x868/0xd30 register_console+0x970/0xe90 register_early_udbg_console+0xf8/0x114 setup_arch+0x108/0x790 start_kernel+0x104/0x784 start_here_common+0x1c/0x534 Memory state around the buggy address: c0000000023e7980: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c0000000023e7a00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 f1 f1 >c0000000023e7a80: f1 f1 01 f2 f2 f2 00 00 00 00 00 00 00 00 00 00 ^ c0000000023e7b00: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 c0000000023e7b80: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ================================================================== Document that a 16-byte buffer is requred, and provide it in udbg. Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-04Revert "powerpc/vcpu: Assume dedicated processors as non-preempt"Greg Kroah-Hartman
This reverts commit 4ba32bdbd8c66d9c7822aea8dcf4e51410df84a8 which is commit 14c73bd344da60abaf7da3ea2e7733ddda35bbac upstream. It breaks the build. Cc: Guenter Roeck <linux@roeck-us.net> Cc: Parth Shah <parth@linux.ibm.com> Cc: Ihor Pasichnyk <Ihor.Pasichnyk@ibm.com> Cc: Juri Lelli <juri.lelli@redhat.com> Cc: Waiman Long <longman@redhat.com> Cc: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Cc: Phil Auld <pauld@redhat.com> Cc: Vaidyanathan Srinivasan <svaidy@linux.ibm.com> Cc: Parth Shah <parth@linux.ibm.com> Cc: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-04powerpc/pseries/cmm: Implement release() function for sysfs deviceDavid Hildenbrand
[ Upstream commit 7d8212747435c534c8d564fbef4541a463c976ff ] When unloading the module, one gets ------------[ cut here ]------------ Device 'cmm0' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt. WARNING: CPU: 0 PID: 19308 at drivers/base/core.c:1244 .device_release+0xcc/0xf0 ... We only have one static fake device. There is nothing to do when releasing the device (via cmm_exit()). Signed-off-by: David Hildenbrand <david@redhat.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191031142933.10779-2-david@redhat.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-31powerpc/vcpu: Assume dedicated processors as non-preemptSrikar Dronamraju
commit 14c73bd344da60abaf7da3ea2e7733ddda35bbac upstream. With commit 247f2f6f3c70 ("sched/core: Don't schedule threads on pre-empted vCPUs"), the scheduler avoids preempted vCPUs to schedule tasks on wakeup. This leads to wrong choice of CPU, which in-turn leads to larger wakeup latencies. Eventually, it leads to performance regression in latency sensitive benchmarks like soltp, schbench etc. On Powerpc, vcpu_is_preempted() only looks at yield_count. If the yield_count is odd, the vCPU is assumed to be preempted. However yield_count is increased whenever the LPAR enters CEDE state (idle). So any CPU that has entered CEDE state is assumed to be preempted. Even if vCPU of dedicated LPAR is preempted/donated, it should have right of first-use since they are supposed to own the vCPU. On a Power9 System with 32 cores: # lscpu Architecture: ppc64le Byte Order: Little Endian CPU(s): 128 On-line CPU(s) list: 0-127 Thread(s) per core: 8 Core(s) per socket: 1 Socket(s): 16 NUMA node(s): 2 Model: 2.2 (pvr 004e 0202) Model name: POWER9 (architected), altivec supported Hypervisor vendor: pHyp Virtualization type: para L1d cache: 32K L1i cache: 32K L2 cache: 512K L3 cache: 10240K NUMA node0 CPU(s): 0-63 NUMA node1 CPU(s): 64-127 # perf stat -a -r 5 ./schbench v5.4 v5.4 + patch Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 45 75.0000th: 62 75.0th: 63 90.0000th: 71 90.0th: 74 95.0000th: 77 95.0th: 78 *99.0000th: 91 *99.0th: 82 99.5000th: 707 99.5th: 83 99.9000th: 6920 99.9th: 86 min=0, max=10048 min=0, max=96 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 46 75.0000th: 61 75.0th: 64 90.0000th: 72 90.0th: 75 95.0000th: 79 95.0th: 79 *99.0000th: 691 *99.0th: 83 99.5000th: 3972 99.5th: 85 99.9000th: 8368 99.9th: 91 min=0, max=16606 min=0, max=117 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 46 75.0000th: 61 75.0th: 64 90.0000th: 71 90.0th: 75 95.0000th: 77 95.0th: 79 *99.0000th: 106 *99.0th: 83 99.5000th: 2364 99.5th: 84 99.9000th: 7480 99.9th: 90 min=0, max=10001 min=0, max=95 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 45 50.0th: 47 75.0000th: 62 75.0th: 65 90.0000th: 72 90.0th: 75 95.0000th: 78 95.0th: 79 *99.0000th: 93 *99.0th: 84 99.5000th: 108 99.5th: 85 99.9000th: 6792 99.9th: 90 min=0, max=17681 min=0, max=117 Latency percentiles (usec) Latency percentiles (usec) 50.0000th: 46 50.0th: 45 75.0000th: 62 75.0th: 64 90.0000th: 73 90.0th: 75 95.0000th: 79 95.0th: 79 *99.0000th: 113 *99.0th: 82 99.5000th: 2724 99.5th: 83 99.9000th: 6184 99.9th: 93 min=0, max=9887 min=0, max=111 Performance counter stats for 'system wide' (5 runs): context-switches 43,373 ( +- 0.40% ) 44,597 ( +- 0.55% ) cpu-migrations 1,211 ( +- 5.04% ) 220 ( +- 6.23% ) page-faults 15,983 ( +- 5.21% ) 15,360 ( +- 3.38% ) Waiman Long suggested using static_keys. Fixes: 247f2f6f3c70 ("sched/core: Don't schedule threads on pre-empted vCPUs") Cc: stable@vger.kernel.org # v4.18+ Reported-by: Parth Shah <parth@linux.ibm.com> Reported-by: Ihor Pasichnyk <Ihor.Pasichnyk@ibm.com> Tested-by: Juri Lelli <juri.lelli@redhat.com> Acked-by: Waiman Long <longman@redhat.com> Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Acked-by: Phil Auld <pauld@redhat.com> Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.ibm.com> Tested-by: Parth Shah <parth@linux.ibm.com> [mpe: Move the key and setting of the key to pseries/setup.c] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191213035036.6913-1-mpe@ellerman.id.au Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-12-05powerpc/pseries/dlpar: Fix a missing check in dlpar_parse_cc_property()Gen Zhang
[ Upstream commit efa9ace68e487ddd29c2b4d6dd23242158f1f607 ] In dlpar_parse_cc_property(), 'prop->name' is allocated by kstrdup(). kstrdup() may return NULL, so it should be checked and handle error. And prop should be freed if 'prop->name' is NULL. Signed-off-by: Gen Zhang <blackgod016574@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05powerpc/pseries: Fix node leak in update_lmb_associativity_index()Michael Ellerman
[ Upstream commit 47918bc68b7427e961035949cc1501a864578a69 ] In update_lmb_associativity_index() we lookup dr_node using of_find_node_by_path() which takes a reference for us. In the non-error case we forget to drop the reference. Note that find_aa_index() does modify properties of the node, but doesn't need an extra reference held once it's returned. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05powerpc/83xx: handle machine check caused by watchdog timerChristophe Leroy
[ Upstream commit 0deae39cec6dab3a66794f3e9e83ca4dc30080f1 ] When the watchdog timer is set in interrupt mode, it causes a machine check when it times out. The purpose of this mode is to ease debugging, not to crash the kernel and reboot the machine. This patch implements a special handling for that, in order to not crash the kernel if the watchdog times out while in interrupt or within the idle task. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> [scottwood: added missing #include] Signed-off-by: Scott Wood <oss@buserror.net> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-05powerpc/powernv/eeh/npu: Fix uninitialized variables in ↵Alexey Kardashevskiy
opal_pci_eeh_freeze_status [ Upstream commit c20577014f85f36d4e137d3d52a1f61225b4a3d2 ] The current implementation of the OPAL_PCI_EEH_FREEZE_STATUS call in skiboot's NPU driver does not touch the pci_error_type parameter so it might have garbage but the powernv code analyzes it nevertheless. This initializes pcierr and fstate to zero in all call sites. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Sam Bobroff <sbobroff@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01powerpc/powernv: hold device_hotplug_lock when calling device_online()David Hildenbrand
[ Upstream commit cec1680591d6d5b10ecc10f370210089416e98af ] device_online() should be called with device_hotplug_lock() held. Link: http://lkml.kernel.org/r/20180925091457.28651-5-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Len Brown <lenb@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01mm/memory_hotplug: make add_memory() take the device_hotplug_lockDavid Hildenbrand
[ Upstream commit 8df1d0e4a265f25dc1e7e7624ccdbcb4a6630c89 ] add_memory() currently does not take the device_hotplug_lock, however is aleady called under the lock from arch/powerpc/platforms/pseries/hotplug-memory.c drivers/acpi/acpi_memhotplug.c to synchronize against CPU hot-remove and similar. In general, we should hold the device_hotplug_lock when adding memory to synchronize against online/offline request (e.g. from user space) - which already resulted in lock inversions due to device_lock() and mem_hotplug_lock - see 30467e0b3be ("mm, hotplug: fix concurrent memory hot-add deadlock"). add_memory()/add_memory_resource() will create memory block devices, so this really feels like the right thing to do. Holding the device_hotplug_lock makes sure that a memory block device can really only be accessed (e.g. via .online/.state) from user space, once the memory has been fully added to the system. The lock is not held yet in drivers/xen/balloon.c arch/powerpc/platforms/powernv/memtrace.c drivers/s390/char/sclp_cmd.c drivers/hv/hv_balloon.c So, let's either use the locked variants or take the lock. Don't export add_memory_resource(), as it once was exported to be used by XEN, which is never built as a module. If somebody requires it, we also have to export a locked variant (as device_hotplug_lock is never exported). Link: http://lkml.kernel.org/r/20180925091457.28651-3-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Reviewed-by: Oscar Salvador <osalvador@suse.de> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Len Brown <lenb@kernel.org> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Juergen Gross <jgross@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Michal Hocko <mhocko@suse.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: Mathieu Malaterre <malat@debian.org> Cc: Pavel Tatashin <pavel.tatashin@microsoft.com> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Cc: Balbir Singh <bsingharora@gmail.com> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01powerpc/pseries: Export raw per-CPU VPA data via debugfsAravinda Prasad
[ Upstream commit c6c26fb55e8e4b3fc376be5611685990a17de27a ] This patch exports the raw per-CPU VPA data via debugfs. A per-CPU file is created which exports the VPA data of that CPU to help debug some of the VPA related issues or to analyze the per-CPU VPA related statistics. v3: Removed offline CPU check. v2: Included offline CPU check and other review comments. Signed-off-by: Aravinda Prasad <aravinda@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-12-01powerpc: Fix signedness bug in update_flash_db()Dan Carpenter
[ Upstream commit 014704e6f54189a203cc14c7c0bb411b940241bc ] The "count < sizeof(struct os_area_db)" comparison is type promoted to size_t so negative values of "count" are treated as very high values and we accidentally return success instead of a negative error code. This doesn't really change runtime much but it fixes a static checker warning. Signed-off-by: Dan Carpenter <dan.carpenter@oracle.com> Acked-by: Geoff Levand <geoff@infradead.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-24powerpc/pseries: Fix how we iterate over the DTL entriesNaveen N. Rao
[ Upstream commit 9258227e9dd1da8feddb07ad9702845546a581c9 ] When CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set, we look up dtl_idx in the lppaca to determine the number of entries in the buffer. Since lppaca is in big endian, we need to do an endian conversion before using this in our calculation to determine the number of entries in the buffer. Without this, we do not iterate over the existing entries in the DTL buffer properly. Fixes: 7c105b63bd98 ("powerpc: Add CONFIG_CPU_LITTLE_ENDIAN kernel config option.") Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-24powerpc/pseries: Fix DTL buffer registrationNaveen N. Rao
[ Upstream commit db787af1b8a6b4be428ee2ea7d409dafcaa4a43c ] When CONFIG_VIRT_CPU_ACCOUNTING_NATIVE is not set, we register the DTL buffer for a cpu when the associated file under powerpc/dtl in debugfs is opened. When doing so, we need to set the size of the buffer being registered in the second u32 word of the buffer. This needs to be in big endian, but we are not doing the conversion resulting in the below error showing up in dmesg: dtl_start: DTL registration for cpu 0 (hw 0) failed with -4 Fix this in the obvious manner. Fixes: 7c105b63bd98 ("powerpc: Add CONFIG_CPU_LITTLE_ENDIAN kernel config option.") Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-20powerpc/pseries/memory-hotplug: Only update DT once per memory DLPAR requestNathan Fontenot
[ Upstream commit 063b8b1251fd069f3740339fca56119d218f11ba ] The updates to powerpc numa and memory hotplug code now use the in-kernel LMB array instead of the device tree. This change allows the pseries memory DLPAR code to only update the device tree once after successfully handling a DLPAR request. Prior to the in-kernel LMB array, the numa code looked up the affinity for memory being added in the device tree, the code now looks this up in the LMB array. This change means the memory hotplug code can just update the affinity for an LMB in the LMB array instead of updating the device tree. This also provides a savings in kernel memory. When updating the device tree old properties are never free'ed since there is no usecount on properties. This behavior leads to a new copy of the property being allocated every time a LMB is added or removed (i.e. a request to add 100 LMBs creates 100 new copies of the property). With this update only a single new property is created when a DLPAR request completes successfully. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-06powerpc/powernv: Fix CPU idle to be called with IRQs disabledNicholas Piggin
[ Upstream commit 7d6475051fb3d9339c5c760ed9883bc0a9048b21 ] Commit e78a7614f3876 ("idle: Prevent late-arriving interrupts from disrupting offline") changes arch_cpu_idle_dead to be called with interrupts disabled, which triggers the WARN in pnv_smp_cpu_kill_self. Fix this by fixing up irq_happened after hard disabling, rather than requiring there are no pending interrupts, similarly to what was done done until commit 2525db04d1cc5 ("powerpc/powernv: Simplify lazy IRQ handling in CPU offline"). Fixes: e78a7614f3876 ("idle: Prevent late-arriving interrupts from disrupting offline") Reported-by: Paul Mackerras <paulus@samba.org> Signed-off-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Add unexpected_mask rather than checking for known bad values, change the WARN_ON() to a WARN_ON_ONCE()] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191022115814.22456-1-npiggin@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-11-06powerpc/powernv: hold device_hotplug_lock when calling memtrace_offline_pages()David Hildenbrand
[ Upstream commit 5666848774ef43d3db5151ec518f1deb63515c20 ] Let's perform all checking + offlining + removing under device_hotplug_lock, so nobody can mess with these devices via sysfs concurrently. [david@redhat.com: take device_hotplug_lock outside of loop] Link: http://lkml.kernel.org/r/20180927092554.13567-6-david@redhat.com Link: http://lkml.kernel.org/r/20180925091457.28651-6-david@redhat.com Signed-off-by: David Hildenbrand <david@redhat.com> Reviewed-by: Pavel Tatashin <pavel.tatashin@microsoft.com> Reviewed-by: Rashmica Gupta <rashmica.g@gmail.com> Acked-by: Balbir Singh <bsingharora@gmail.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Michael Ellerman <mpe@ellerman.id.au> Cc: Rashmica Gupta <rashmica.g@gmail.com> Cc: Michael Neuling <mikey@neuling.org> Cc: Boris Ostrovsky <boris.ostrovsky@oracle.com> Cc: Dan Williams <dan.j.williams@intel.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Haiyang Zhang <haiyangz@microsoft.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: John Allen <jallen@linux.vnet.ibm.com> Cc: Jonathan Corbet <corbet@lwn.net> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Juergen Gross <jgross@suse.com> Cc: Kate Stewart <kstewart@linuxfoundation.org> Cc: "K. Y. Srinivasan" <kys@microsoft.com> Cc: Len Brown <lenb@kernel.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Mathieu Malaterre <malat@debian.org> Cc: Michal Hocko <mhocko@suse.com> Cc: Nathan Fontenot <nfont@linux.vnet.ibm.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Philippe Ombredanne <pombredanne@nexb.com> Cc: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Cc: "Rafael J. Wysocki" <rjw@rjwysocki.net> Cc: Stephen Hemminger <sthemmin@microsoft.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Vlastimil Babka <vbabka@suse.cz> Cc: YASUAKI ISHIMATSU <yasu.isimatu@gmail.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-11powerpc/pseries: Fix cpu_hotplug_lock acquisition in resize_hpt()Gautham R. Shenoy
[ Upstream commit c784be435d5dae28d3b03db31753dd7a18733f0c ] The calls to arch_add_memory()/arch_remove_memory() are always made with the read-side cpu_hotplug_lock acquired via memory_hotplug_begin(). On pSeries, arch_add_memory()/arch_remove_memory() eventually call resize_hpt() which in turn calls stop_machine() which acquires the read-side cpu_hotplug_lock again, thereby resulting in the recursive acquisition of this lock. In the absence of CONFIG_PROVE_LOCKING, we hadn't observed a system lockup during a memory hotplug operation because cpus_read_lock() is a per-cpu rwsem read, which, in the fast-path (in the absence of the writer, which in our case is a CPU-hotplug operation) simply increments the read_count on the semaphore. Thus a recursive read in the fast-path doesn't cause any problems. However, we can hit this problem in practice if there is a concurrent CPU-Hotplug operation in progress which is waiting to acquire the write-side of the lock. This will cause the second recursive read to block until the writer finishes. While the writer is blocked since the first read holds the lock. Thus both the reader as well as the writers fail to make any progress thereby blocking both CPU-Hotplug as well as Memory Hotplug operations. Memory-Hotplug CPU-Hotplug CPU 0 CPU 1 ------ ------ 1. down_read(cpu_hotplug_lock.rw_sem) [memory_hotplug_begin] 2. down_write(cpu_hotplug_lock.rw_sem) [cpu_up/cpu_down] 3. down_read(cpu_hotplug_lock.rw_sem) [stop_machine()] Lockdep complains as follows in these code-paths. swapper/0/1 is trying to acquire lock: (____ptrval____) (cpu_hotplug_lock.rw_sem){++++}, at: stop_machine+0x2c/0x60 but task is already holding lock: (____ptrval____) (cpu_hotplug_lock.rw_sem){++++}, at: mem_hotplug_begin+0x20/0x50 other info that might help us debug this: Possible unsafe locking scenario: CPU0 ---- lock(cpu_hotplug_lock.rw_sem); lock(cpu_hotplug_lock.rw_sem); *** DEADLOCK *** May be due to missing lock nesting notation 3 locks held by swapper/0/1: #0: (____ptrval____) (&dev->mutex){....}, at: __driver_attach+0x12c/0x1b0 #1: (____ptrval____) (cpu_hotplug_lock.rw_sem){++++}, at: mem_hotplug_begin+0x20/0x50 #2: (____ptrval____) (mem_hotplug_lock.rw_sem){++++}, at: percpu_down_write+0x54/0x1a0 stack backtrace: CPU: 0 PID: 1 Comm: swapper/0 Not tainted 5.0.0-rc5-58373-gbc99402235f3-dirty #166 Call Trace: dump_stack+0xe8/0x164 (unreliable) __lock_acquire+0x1110/0x1c70 lock_acquire+0x240/0x290 cpus_read_lock+0x64/0xf0 stop_machine+0x2c/0x60 pseries_lpar_resize_hpt+0x19c/0x2c0 resize_hpt_for_hotplug+0x70/0xd0 arch_add_memory+0x58/0xfc devm_memremap_pages+0x5e8/0x8f0 pmem_attach_disk+0x764/0x830 nvdimm_bus_probe+0x118/0x240 really_probe+0x230/0x4b0 driver_probe_device+0x16c/0x1e0 __driver_attach+0x148/0x1b0 bus_for_each_dev+0x90/0x130 driver_attach+0x34/0x50 bus_add_driver+0x1a8/0x360 driver_register+0x108/0x170 __nd_driver_register+0xd0/0xf0 nd_pmem_driver_init+0x34/0x48 do_one_initcall+0x1e0/0x45c kernel_init_freeable+0x540/0x64c kernel_init+0x2c/0x160 ret_from_kernel_thread+0x5c/0x68 Fix this issue by 1) Requiring all the calls to pseries_lpar_resize_hpt() be made with cpu_hotplug_lock held. 2) In pseries_lpar_resize_hpt() invoke stop_machine_cpuslocked() as a consequence of 1) 3) To satisfy 1), in hpt_order_set(), call mmu_hash_ops.resize_hpt() with cpu_hotplug_lock held. Fixes: dbcf929c0062 ("powerpc/pseries: Add support for hash table resizing") Cc: stable@vger.kernel.org # v4.11+ Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/1557906352-29048-1-git-send-email-ego@linux.vnet.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-11powerpc/powernv/ioda: Fix race in TCE level allocationAlexey Kardashevskiy
commit 56090a3902c80c296e822d11acdb6a101b322c52 upstream. pnv_tce() returns a pointer to a TCE entry and originally a TCE table would be pre-allocated. For the default case of 2GB window the table needs only a single level and that is fine. However if more levels are requested, it is possible to get a race when 2 threads want a pointer to a TCE entry from the same page of TCEs. This adds cmpxchg to handle the race. Note that once TCE is non-zero, it cannot become zero again. Fixes: a68bd1267b72 ("powerpc/powernv/ioda: Allocate indirect TCE levels on demand") CC: stable@vger.kernel.org # v4.19+ Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190718051139.74787-2-aik@ozlabs.ru Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-11powerpc/powernv: Restrict OPAL symbol map to only be readable by rootAndrew Donnellan
commit e7de4f7b64c23e503a8c42af98d56f2a7462bd6d upstream. Currently the OPAL symbol map is globally readable, which seems bad as it contains physical addresses. Restrict it to root. Fixes: c8742f85125d ("powerpc/powernv: Expose OPAL firmware symbol map") Cc: stable@vger.kernel.org # v3.19+ Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190503075253.22798-1-ajd@linux.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-07powerpc/pseries: correctly track irq state in default idleNathan Lynch
[ Upstream commit 92c94dfb69e350471473fd3075c74bc68150879e ] prep_irq_for_idle() is intended to be called before entering H_CEDE (and it is used by the pseries cpuidle driver). However the default pseries idle routine does not call it, leading to mismanaged lazy irq state when the cpuidle driver isn't in use. Manifestations of this include: * Dropped IPIs in the time immediately after a cpu comes online (before it has installed the cpuidle handler), making the online operation block indefinitely waiting for the new cpu to respond. * Hitting this WARN_ON in arch_local_irq_restore(): /* * We should already be hard disabled here. We had bugs * where that wasn't the case so let's dbl check it and * warn if we are wrong. Only do that when IRQ tracing * is enabled as mfmsr() can be costly. */ if (WARN_ON_ONCE(mfmsr() & MSR_EE)) __hard_irq_disable(); Call prep_irq_for_idle() from pseries_lpar_idle() and honor its result. Fixes: 363edbe2614a ("powerpc: Default arch idle could cede processor on pseries") Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190910225244.25056-1-nathanl@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-07powerpc/pseries/mobility: use cond_resched when updating device treeNathan Lynch
[ Upstream commit ccfb5bd71d3d1228090a8633800ae7cdf42a94ac ] After a partition migration, pseries_devicetree_update() processes changes to the device tree communicated from the platform to Linux. This is a relatively heavyweight operation, with multiple device tree searches, memory allocations, and conversations with partition firmware. There's a few levels of nested loops which are bounded only by decisions made by the platform, outside of Linux's control, and indeed we have seen RCU stalls on large systems while executing this call graph. Use cond_resched() in these loops so that the cpu is yielded when needed. Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190802192926.19277-4-nathanl@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-07powerpc/powernv/ioda2: Allocate TCE table levels on demand for default DMA ↵Alexey Kardashevskiy
window [ Upstream commit c37c792dec0929dbb6360a609fb00fa20bb16fc2 ] We allocate only the first level of multilevel TCE tables for KVM already (alloc_userspace_copy==true), and the rest is allocated on demand. This is not enabled though for bare metal. This removes the KVM limitation (implicit, via the alloc_userspace_copy parameter) and always allocates just the first level. The on-demand allocation of missing levels is already implemented. As from now on DMA map might happen with disabled interrupts, this allocates TCEs with GFP_ATOMIC; otherwise lockdep reports errors 1]. In practice just a single page is allocated there so chances for failure are quite low. To save time when creating a new clean table, this skips non-allocated indirect TCE entries in pnv_tce_free just like we already do in the VFIO IOMMU TCE driver. This changes the default level number from 1 to 2 to reduce the amount of memory required for the default 32bit DMA window at the boot time. The default window size is up to 2GB which requires 4MB of TCEs which is unlikely to be used entirely or at all as most devices these days are 64bit capable so by switching to 2 levels by default we save 4032KB of RAM per a device. While at this, add __GFP_NOWARN to alloc_pages_node() as the userspace can trigger this path via VFIO, see the failure and try creating a table again with different parameters which might succeed. [1]: === BUG: sleeping function called from invalid context at mm/page_alloc.c:4596 in_atomic(): 1, irqs_disabled(): 1, pid: 1038, name: scsi_eh_1 2 locks held by scsi_eh_1/1038: #0: 000000005efd659a (&host->eh_mutex){+.+.}, at: ata_eh_acquire+0x34/0x80 #1: 0000000006cf56a6 (&(&host->lock)->rlock){....}, at: ata_exec_internal_sg+0xb0/0x5c0 irq event stamp: 500 hardirqs last enabled at (499): [<c000000000cb8a74>] _raw_spin_unlock_irqrestore+0x94/0xd0 hardirqs last disabled at (500): [<c000000000cb85c4>] _raw_spin_lock_irqsave+0x44/0x120 softirqs last enabled at (0): [<c000000000101120>] copy_process.isra.4.part.5+0x640/0x1a80 softirqs last disabled at (0): [<0000000000000000>] 0x0 CPU: 73 PID: 1038 Comm: scsi_eh_1 Not tainted 5.2.0-rc6-le_nv2_aikATfstn1-p1 #634 Call Trace: [c000003d064cef50] [c000000000c8e6c4] dump_stack+0xe8/0x164 (unreliable) [c000003d064cefa0] [c00000000014ed78] ___might_sleep+0x2f8/0x310 [c000003d064cf020] [c0000000003ca084] __alloc_pages_nodemask+0x2a4/0x1560 [c000003d064cf220] [c0000000000c2530] pnv_alloc_tce_level.isra.0+0x90/0x130 [c000003d064cf290] [c0000000000c2888] pnv_tce+0x128/0x3b0 [c000003d064cf360] [c0000000000c2c00] pnv_tce_build+0xb0/0xf0 [c000003d064cf3c0] [c0000000000bbd9c] pnv_ioda2_tce_build+0x3c/0xb0 [c000003d064cf400] [c00000000004cfe0] ppc_iommu_map_sg+0x210/0x550 [c000003d064cf510] [c00000000004b7a4] dma_iommu_map_sg+0x74/0xb0 [c000003d064cf530] [c000000000863944] ata_qc_issue+0x134/0x470 [c000003d064cf5b0] [c000000000863ec4] ata_exec_internal_sg+0x244/0x5c0 [c000003d064cf700] [c0000000008642d0] ata_exec_internal+0x90/0xe0 [c000003d064cf780] [c0000000008650ac] ata_dev_read_id+0x2ec/0x640 [c000003d064cf8d0] [c000000000878e28] ata_eh_recover+0x948/0x16d0 [c000003d064cfa10] [c00000000087d760] sata_pmp_error_handler+0x480/0xbf0 [c000003d064cfbc0] [c000000000884624] ahci_error_handler+0x74/0xe0 [c000003d064cfbf0] [c000000000879fa8] ata_scsi_port_error_handler+0x2d8/0x7c0 [c000003d064cfca0] [c00000000087a544] ata_scsi_error+0xb4/0x100 [c000003d064cfd00] [c000000000802450] scsi_error_handler+0x120/0x510 [c000003d064cfdb0] [c000000000140c48] kthread+0x1b8/0x1c0 [c000003d064cfe20] [c00000000000bd8c] ret_from_kernel_thread+0x5c/0x70 ata1: SATA link up 6.0 Gbps (SStatus 133 SControl 300) irq event stamp: 2305 ======================================================== hardirqs last enabled at (2305): [<c00000000000e4c8>] fast_exc_return_irq+0x28/0x34 hardirqs last disabled at (2303): [<c000000000cb9fd0>] __do_softirq+0x4a0/0x654 WARNING: possible irq lock inversion dependency detected 5.2.0-rc6-le_nv2_aikATfstn1-p1 #634 Tainted: G W softirqs last enabled at (2304): [<c000000000cba054>] __do_softirq+0x524/0x654 softirqs last disabled at (2297): [<c00000000010f278>] irq_exit+0x128/0x180 -------------------------------------------------------- swapper/0/0 just changed the state of lock: 0000000006cf56a6 (&(&host->lock)->rlock){-...}, at: ahci_single_level_irq_intr+0xac/0x120 but this lock took another, HARDIRQ-unsafe lock in the past: (fs_reclaim){+.+.} and interrupts could create inverse lock ordering between them. other info that might help us debug this: Possible interrupt unsafe locking scenario: CPU0 CPU1 ---- ---- lock(fs_reclaim); local_irq_disable(); lock(&(&host->lock)->rlock); lock(fs_reclaim); <Interrupt> lock(&(&host->lock)->rlock); *** DEADLOCK *** no locks held by swapper/0/0. the shortest dependencies between 2nd lock and 1st lock: -> (fs_reclaim){+.+.} ops: 167579 { HARDIRQ-ON-W at: lock_acquire+0xf8/0x2a0 fs_reclaim_acquire.part.23+0x44/0x60 kmem_cache_alloc_node_trace+0x80/0x590 alloc_desc+0x64/0x270 __irq_alloc_descs+0x2e4/0x3a0 irq_domain_alloc_descs+0xb0/0x150 irq_create_mapping+0x168/0x2c0 xics_smp_probe+0x2c/0x98 pnv_smp_probe+0x40/0x9c smp_prepare_cpus+0x524/0x6c4 kernel_init_freeable+0x1b4/0x650 kernel_init+0x2c/0x148 ret_from_kernel_thread+0x5c/0x70 SOFTIRQ-ON-W at: lock_acquire+0xf8/0x2a0 fs_reclaim_acquire.part.23+0x44/0x60 kmem_cache_alloc_node_trace+0x80/0x590 alloc_desc+0x64/0x270 __irq_alloc_descs+0x2e4/0x3a0 irq_domain_alloc_descs+0xb0/0x150 irq_create_mapping+0x168/0x2c0 xics_smp_probe+0x2c/0x98 pnv_smp_probe+0x40/0x9c smp_prepare_cpus+0x524/0x6c4 kernel_init_freeable+0x1b4/0x650 kernel_init+0x2c/0x148 ret_from_kernel_thread+0x5c/0x70 INITIAL USE at: lock_acquire+0xf8/0x2a0 fs_reclaim_acquire.part.23+0x44/0x60 kmem_cache_alloc_node_trace+0x80/0x590 alloc_desc+0x64/0x270 __irq_alloc_descs+0x2e4/0x3a0 irq_domain_alloc_descs+0xb0/0x150 irq_create_mapping+0x168/0x2c0 xics_smp_probe+0x2c/0x98 pnv_smp_probe+0x40/0x9c smp_prepare_cpus+0x524/0x6c4 kernel_init_freeable+0x1b4/0x650 kernel_init+0x2c/0x148 ret_from_kernel_thread+0x5c/0x70 } === Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: Alistair Popple <alistair@popple.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190718051139.74787-4-aik@ozlabs.ru Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-10-05powerpc/imc: Dont create debugfs files for cpu-less nodesMadhavan Srinivasan
commit 41ba17f20ea835c489e77bd54e2da73184e22060 upstream. Commit <684d984038aa> ('powerpc/powernv: Add debugfs interface for imc-mode and imc') added debugfs interface for the nest imc pmu devices to support changing of different ucode modes. Primarily adding this capability for debug. But when doing so, the code did not consider the case of cpu-less nodes. So when reading the _cmd_ or _mode_ file of a cpu-less node will create this crash. Faulting instruction address: 0xc0000000000d0d58 Oops: Kernel access of bad area, sig: 11 [#1] ... CPU: 67 PID: 5301 Comm: cat Not tainted 5.2.0-rc6-next-20190627+ #19 NIP: c0000000000d0d58 LR: c00000000049aa18 CTR:c0000000000d0d50 REGS: c00020194548f9e0 TRAP: 0300 Not tainted (5.2.0-rc6-next-20190627+) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR:28022822 XER: 00000000 CFAR: c00000000049aa14 DAR: 000000000003fc08 DSISR:40000000 IRQMASK: 0 ... NIP imc_mem_get+0x8/0x20 LR simple_attr_read+0x118/0x170 Call Trace: simple_attr_read+0x70/0x170 (unreliable) debugfs_attr_read+0x6c/0xb0 __vfs_read+0x3c/0x70 vfs_read+0xbc/0x1a0 ksys_read+0x7c/0x140 system_call+0x5c/0x70 Patch fixes the issue with a more robust check for vbase to NULL. Before patch, ls output for the debugfs imc directory # ls /sys/kernel/debug/powerpc/imc/ imc_cmd_0 imc_cmd_251 imc_cmd_253 imc_cmd_255 imc_mode_0 imc_mode_251 imc_mode_253 imc_mode_255 imc_cmd_250 imc_cmd_252 imc_cmd_254 imc_cmd_8 imc_mode_250 imc_mode_252 imc_mode_254 imc_mode_8 After patch, ls output for the debugfs imc directory # ls /sys/kernel/debug/powerpc/imc/ imc_cmd_0 imc_cmd_8 imc_mode_0 imc_mode_8 Actual bug here is that, we have two loops with potentially different loop counts. That is, in imc_get_mem_addr_nest(), loop count is obtained from the dt entries. But in case of export_imc_mode_and_cmd(), loop was based on for_each_nid() count. Patch fixes the loop count in latter based on the struct mem_info. Ideally it would be better to have array size in struct imc_pmu. Fixes: 684d984038aa ('powerpc/powernv: Add debugfs interface for imc-mode and imc') Reported-by: Qian Cai <cai@lca.pw> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20190827101635.6942-1-maddy@linux.vnet.ibm.com Cc: Jan Stancek <jstancek@redhat.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-10-01powerpc/xive: Fix bogus error code returned by OPALGreg Kurz
commit 6ccb4ac2bf8a35c694ead92f8ac5530a16e8f2c8 upstream. There's a bug in skiboot that causes the OPAL_XIVE_ALLOCATE_IRQ call to return the 32-bit value 0xffffffff when OPAL has run out of IRQs. Unfortunatelty, OPAL return values are signed 64-bit entities and errors are supposed to be negative. If that happens, the linux code confusingly treats 0xffffffff as a valid IRQ number and panics at some point. A fix was recently merged in skiboot: e97391ae2bb5 ("xive: fix return value of opal_xive_allocate_irq()") but we need a workaround anyway to support older skiboots already in the field. Internally convert 0xffffffff to OPAL_RESOURCE which is the usual error returned upon resource exhaustion. Cc: stable@vger.kernel.org # v4.12+ Signed-off-by: Greg Kurz <groug@kaod.org> Reviewed-by: Cédric Le Goater <clg@kaod.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/156821713818.1985334.14123187368108582810.stgit@bahia.lan (groug: fix arch/powerpc/platforms/powernv/opal-wrappers.S instead of non-existing arch/powerpc/platforms/powernv/opal-call.c) Signed-off-by: Greg Kurz <groug@kaod.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-31powerpc/4xx/uic: clear pending interrupt after irq type/pol changeChristian Lamparter
[ Upstream commit 3ab3a0689e74e6aa5b41360bc18861040ddef5b1 ] When testing out gpio-keys with a button, a spurious interrupt (and therefore a key press or release event) gets triggered as soon as the driver enables the irq line for the first time. This patch clears any potential bogus generated interrupt that was caused by the switching of the associated irq's type and polarity. Signed-off-by: Christian Lamparter <chunkeey@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-31powerpc/pseries/mobility: prevent cpu hotplug during DT updateNathan Lynch
[ Upstream commit e59a175faa8df9d674247946f2a5a9c29c835725 ] CPU online/offline code paths are sensitive to parts of the device tree (various cpu node properties, cache nodes) that can be changed as a result of a migration. Prevent CPU hotplug while the device tree potentially is inconsistent. Fixes: 410bccf97881 ("powerpc/pseries: Partition migration in the kernel") Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Reviewed-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-07-26powerpc/pseries: Fix oops in hotplug memory notifierNathan Lynch
commit 0aa82c482ab2ece530a6f44897b63b274bb43c8e upstream. During post-migration device tree updates, we can oops in pseries_update_drconf_memory() if the source device tree has an ibm,dynamic-memory-v2 property and the destination has a ibm,dynamic_memory (v1) property. The notifier processes an "update" for the ibm,dynamic-memory property but it's really an add in this scenario. So make sure the old property object is there before dereferencing it. Fixes: 2b31e3aec1db ("powerpc/drmem: Add support for ibm, dynamic-memory-v2 property") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-26powerpc/powernv/npu: Fix reference leakGreg Kurz
commit 02c5f5394918b9b47ff4357b1b18335768cd867d upstream. Since 902bdc57451c, get_pci_dev() calls pci_get_domain_bus_and_slot(). This has the effect of incrementing the reference count of the PCI device, as explained in drivers/pci/search.c: * Given a PCI domain, bus, and slot/function number, the desired PCI * device is located in the list of PCI devices. If the device is * found, its reference count is increased and this function returns a * pointer to its data structure. The caller must decrement the * reference count by calling pci_dev_put(). If no device is found, * %NULL is returned. Nothing was done to call pci_dev_put() and the reference count of GPU and NPU PCI devices rockets up. A natural way to fix this would be to teach the callers about the change, so that they call pci_dev_put() when done with the pointer. This turns out to be quite intrusive, as it affects many paths in npu-dma.c, pci-ioda.c and vfio_pci_nvlink2.c. Also, the issue appeared in 4.16 and some affected code got moved around since then: it would be problematic to backport the fix to stable releases. All that code never cared for reference counting anyway. Call pci_dev_put() from get_pci_dev() to revert to the previous behavior. Fixes: 902bdc57451c ("powerpc/powernv/idoa: Remove unnecessary pcidev from pci_dn") Cc: stable@vger.kernel.org # v4.16 Signed-off-by: Greg Kurz <groug@kaod.org> Reviewed-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-07-26powerpc/32s: fix suspend/resume when IBATs 4-7 are usedChristophe Leroy
commit 6ecb78ef56e08d2119d337ae23cb951a640dc52d upstream. Previously, only IBAT1 and IBAT2 were used to map kernel linear mem. Since commit 63b2bc619565 ("powerpc/mm/32s: Use BATs for STRICT_KERNEL_RWX"), we may have all 8 BATs used for mapping kernel text. But the suspend/restore functions only save/restore BATs 0 to 3, and clears BATs 4 to 7. Make suspend and restore functions respectively save and reload the 8 BATs on CPUs having MMU_FTR_USE_HIGH_BATS feature. Reported-by: Andreas Schwab <schwab@linux-m68k.org> Cc: stable@vger.kernel.org Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-06-22powerpc/powernv: Return for invalid IMC domainAnju T Sudhakar
[ Upstream commit b59bd3527fe3c1939340df558d7f9d568fc9f882 ] Currently init_imc_pmu() can fail either because we try to register an IMC unit with an invalid domain (i.e an IMC node not supported by the kernel) or something went wrong while registering a valid IMC unit. In both the cases kernel provides a 'Register failed' error message. For example when trace-imc node is not supported by the kernel, but skiboot advertises a trace-imc node we print: IMC Unknown Device type IMC PMU (null) Register failed To avoid confusion just print the unknown device type message, before attempting PMU registration, so the second message isn't printed. Fixes: 8f95faaac56c ("powerpc/powernv: Detect and create IMC device") Reported-by: Pavaman Subramaniyam <pavsubra@in.ibm.com> Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> [mpe: Reword change log a bit] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-06-04jump_label: move 'asm goto' support test to KconfigMasahiro Yamada
commit e9666d10a5677a494260d60d1fa0b73cc7646eb3 upstream. Currently, CONFIG_JUMP_LABEL just means "I _want_ to use jump label". The jump label is controlled by HAVE_JUMP_LABEL, which is defined like this: #if defined(CC_HAVE_ASM_GOTO) && defined(CONFIG_JUMP_LABEL) # define HAVE_JUMP_LABEL #endif We can improve this by testing 'asm goto' support in Kconfig, then make JUMP_LABEL depend on CC_HAS_ASM_GOTO. Ugly #ifdef HAVE_JUMP_LABEL will go away, and CONFIG_JUMP_LABEL will match to the real kernel capability. Signed-off-by: Masahiro Yamada <yamada.masahiro@socionext.com> Acked-by: Michael Ellerman <mpe@ellerman.id.au> (powerpc) Tested-by: Sedat Dilek <sedat.dilek@gmail.com> [nc: Fix trivial conflicts in 4.19 arch/xtensa/kernel/jump_label.c doesn't exist yet Ensured CC_HAVE_ASM_GOTO and HAVE_JUMP_LABEL were sufficiently eliminated] Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-05-31powerpc/perf: Fix loop exit condition in nest_imc_event_initAnju T Sudhakar
[ Upstream commit 860b7d2286236170a36f94946d03ca9888d32571 ] The data structure (i.e struct imc_mem_info) to hold the memory address information for nest imc units is allocated based on the number of nodes in the system. nest_imc_event_init() traverse this struct array to calculate the memory base address for the event-cpu. If we fail to find a match for the event cpu's chip-id in imc_mem_info struct array, then the do-while loop will iterate until we crash. Fix this by changing the loop exit condition based on the number of non zero vbase elements in the array, since the allocation is done for nr_chips + 1. Reported-by: Dan Carpenter <dan.carpenter@oracle.com> Fixes: 885dcd709ba91 ("powerpc/perf: Add nest IMC PMU support") Signed-off-by: Anju T Sudhakar <anju@linux.vnet.ibm.com> Reviewed-by: Madhavan Srinivasan <maddy@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-05-02powerpc/mm/radix: Make Radix require HUGETLB_PAGEMichael Ellerman
commit 8adddf349fda0d3de2f6bb41ddf838cbf36a8ad2 upstream. Joel reported weird crashes using skiroot_defconfig, in his case we jumped into an NX page: kernel tried to execute exec-protected page (c000000002bff4f0) - exploit attempt? (uid: 0) BUG: Unable to handle kernel instruction fetch Faulting instruction address: 0xc000000002bff4f0 Looking at the disassembly, we had simply branched to that address: c000000000c001bc 49fff335 bl c000000002bff4f0 But that didn't match the original kernel image: c000000000c001bc 4bfff335 bl c000000000bff4f0 <kobject_get+0x8> When STRICT_KERNEL_RWX is enabled, and we're using the radix MMU, we call radix__change_memory_range() late in boot to change page protections. We do that both to mark rodata read only and also to mark init text no-execute. That involves walking the kernel page tables, and clearing _PAGE_WRITE or _PAGE_EXEC respectively. With radix we may use hugepages for the linear mapping, so the code in radix__change_memory_range() uses eg. pmd_huge() to test if it has found a huge mapping, and if so it stops the page table walk and changes the PMD permissions. However if the kernel is built without HUGETLBFS support, pmd_huge() is just a #define that always returns 0. That causes the code in radix__change_memory_range() to incorrectly interpret the PMD value as a pointer to a PTE page rather than as a PTE at the PMD level. We can see this using `dv` in xmon which also uses pmd_huge(): 0:mon> dv c000000000000000 pgd @ 0xc000000001740000 pgdp @ 0xc000000001740000 = 0x80000000ffffb009 pudp @ 0xc0000000ffffb000 = 0x80000000ffffa009 pmdp @ 0xc0000000ffffa000 = 0xc00000000000018f <- this is a PTE ptep @ 0xc000000000000100 = 0xa64bb17da64ab07d <- kernel text The end result is we treat the value at 0xc000000000000100 as a PTE and clear _PAGE_WRITE or _PAGE_EXEC, potentially corrupting the code at that address. In Joel's specific case we cleared the sign bit in the offset of the branch, causing a backward branch to turn into a forward branch which caused us to branch into a non-executable page. However the exact nature of the crash depends on kernel version, compiler version, and other factors. We need to fix radix__change_memory_range() to not use accessors that depend on HUGETLBFS, but we also have radix memory hotplug code that uses pmd_huge() etc that will also need fixing. So for now just disallow the broken combination of Radix with HUGETLBFS disabled. The only defconfig we have that is affected is skiroot_defconfig, so turn on HUGETLBFS there so that it still gets Radix. Fixes: 566ca99af026 ("powerpc/mm/radix: Add dummy radix_enabled()") Cc: stable@vger.kernel.org # v4.7+ Reported-by: Joel Stanley <joel@jms.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-04-05powerpc/pseries: Perform full re-add of CPU for topology update post-migrationNathan Fontenot
[ Upstream commit 81b61324922c67f73813d8a9c175f3c153f6a1c6 ] On pseries systems, performing a partition migration can result in altering the nodes a CPU is assigned to on the destination system. For exampl, pre-migration on the source system CPUs are in node 1 and 3, post-migration on the destination system CPUs are in nodes 2 and 3. Handling the node change for a CPU can cause corruption in the slab cache if we hit a timing where a CPUs node is changed while cache_reap() is invoked. The corruption occurs because the slab cache code appears to rely on the CPU and slab cache pages being on the same node. The current dynamic updating of a CPUs node done in arch/powerpc/mm/numa.c does not prevent us from hitting this scenario. Changing the device tree property update notification handler that recognizes an affinity change for a CPU to do a full DLPAR remove and add of the CPU instead of dynamically changing its node resolves this issue. Signed-off-by: Nathan Fontenot <nfont@linux.vnet.ibm.com> Signed-off-by: Michael W. Bringmann <mwb@linux.vnet.ibm.com> Tested-by: Michael W. Bringmann <mwb@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-05powerpc/powernv/ioda: Fix locked_vm counting for memory used by IOMMU tablesAlexey Kardashevskiy
[ Upstream commit 11f5acce2fa43b015a8120fa7620fa4efd0a2952 ] We store 2 multilevel tables in iommu_table - one for the hardware and one with the corresponding userspace addresses. Before allocating the tables, the iommu_table_group_ops::get_table_size() hook returns the combined size of the two and VFIO SPAPR TCE IOMMU driver adjusts the locked_vm counter correctly. When the table is actually allocated, the amount of allocated memory is stored in iommu_table::it_allocated_size and used to decrement the locked_vm counter when we release the memory used by the table; .get_table_size() and .create_table() calculate it independently but the result is expected to be the same. However the allocator does not add the userspace table size to .it_allocated_size so when we destroy the table because of VFIO PCI unplug (i.e. VFIO container is gone but the userspace keeps running), we decrement locked_vm by just a half of size of memory we are releasing. To make things worse, since we enabled on-demand allocation of indirect levels, it_allocated_size contains only the amount of memory actually allocated at the table creation time which can just be a fraction. It is not a problem with incrementing locked_vm (as get_table_size() value is used) but it is with decrementing. As the result, we leak locked_vm and may not be able to allocate more IOMMU tables after few iterations of hotplug/unplug. This sets it_allocated_size in the pnv_pci_ioda2_ops::create_table() hook to what pnv_pci_ioda2_get_table_size() returns so from now on we have a single place which calculates the maximum memory a table can occupy. The original meaning of it_allocated_size is somewhat lost now though. We do not ditch it_allocated_size whatsoever here and we do not call get_table_size() from vfio_iommu_spapr_tce.c when decrementing locked_vm as we may have multiple IOMMU groups per container and even though they all are supposed to have the same get_table_size() implementation, there is a small chance for failure or confusion. Fixes: 090bad39b237 ("powerpc/powernv: Add indirect levels to it_userspace") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-04-03powerpc/pseries/energy: Use OF accessor functions to read ibm,drc-indexesGautham R. Shenoy
commit ce9afe08e71e3f7d64f337a6e932e50849230fc2 upstream. In cpu_to_drc_index() in the case when FW_FEATURE_DRC_INFO is absent, we currently use of_read_property() to obtain the pointer to the array corresponding to the property "ibm,drc-indexes". The elements of this array are of type __be32, but are accessed without any conversion to the OS-endianness, which is buggy on a Little Endian OS. Fix this by using of_property_read_u32_index() accessor function to safely read the elements of the array. Fixes: e83636ac3334 ("pseries/drc-info: Search DRC properties for CPU indexes") Cc: stable@vger.kernel.org # v4.16+ Reported-by: Pavithra R. Prakash <pavrampu@in.ibm.com> Signed-off-by: Gautham R. Shenoy <ego@linux.vnet.ibm.com> Reviewed-by: Vaidyanathan Srinivasan <svaidy@linux.vnet.ibm.com> [mpe: Make the WARN_ON a WARN_ON_ONCE so it's not retriggerable] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23powerpc/powernv: Don't reprogram SLW image on every KVM guest entry/exitPaul Mackerras
commit 19f8a5b5be2898573a5e1dc1db93e8d40117606a upstream. Commit 24be85a23d1f ("powerpc/powernv: Clear PECE1 in LPCR via stop-api only on Hotplug", 2017-07-21) added two calls to opal_slw_set_reg() inside pnv_cpu_offline(), with the aim of changing the LPCR value in the SLW image to disable wakeups from the decrementer while a CPU is offline. However, pnv_cpu_offline() gets called each time a secondary CPU thread is woken up to participate in running a KVM guest, that is, not just when a CPU is offlined. Since opal_slw_set_reg() is a very slow operation (with observed execution times around 20 milliseconds), this means that an offline secondary CPU can often be busy doing the opal_slw_set_reg() call when the primary CPU wants to grab all the secondary threads so that it can run a KVM guest. This leads to messages like "KVM: couldn't grab CPU n" being printed and guest execution failing. There is no need to reprogram the SLW image on every KVM guest entry and exit. So that we do it only when a CPU is really transitioning between online and offline, this moves the calls to pnv_program_cpu_hotplug_lpcr() into pnv_smp_cpu_kill_self(). Fixes: 24be85a23d1f ("powerpc/powernv: Clear PECE1 in LPCR via stop-api only on Hotplug") Cc: stable@vger.kernel.org # v4.14+ Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23powerpc/83xx: Also save/restore SPRG4-7 during suspendChristophe Leroy
commit 36da5ff0bea2dc67298150ead8d8471575c54c7d upstream. The 83xx has 8 SPRG registers and uses at least SPRG4 for DTLB handling LRU. Fixes: 2319f1239592 ("powerpc/mm: e300c2/c3/c4 TLB errata workaround") Cc: stable@vger.kernel.org Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23powerpc/powernv: Make opal log only readable by rootJordan Niethe
commit 7b62f9bd2246b7d3d086e571397c14ba52645ef1 upstream. Currently the opal log is globally readable. It is kernel policy to limit the visibility of physical addresses / kernel pointers to root. Given this and the fact the opal log may contain this information it would be better to limit the readability to root. Fixes: bfc36894a48b ("powerpc/powernv: Add OPAL message log interface") Cc: stable@vger.kernel.org # v3.15+ Signed-off-by: Jordan Niethe <jniethe5@gmail.com> Reviewed-by: Stewart Smith <stewart@linux.ibm.com> Reviewed-by: Andrew Donnellan <andrew.donnellan@au1.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-03-23powerpc/wii: properly disable use of BATs when requested.Christophe Leroy
commit 6d183ca8baec983dc4208ca45ece3c36763df912 upstream. 'nobats' kernel parameter or some options like CONFIG_DEBUG_PAGEALLOC deny the use of BATS for mapping memory. This patch makes sure that the specific wii RAM mapping function takes it into account as well. Fixes: de32400dd26e ("wii: use both mem1 and mem2 as ram") Cc: stable@vger.kernel.org Reviewed-by: Jonathan Neuschafer <j.neuschaefer@gmx.net> Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2019-02-12powerpc/fadump: Do not allow hot-remove memory from fadump reserved area.Mahesh Salgaonkar
[ Upstream commit 0db6896ff6332ba694f1e61b93ae3b2640317633 ] For fadump to work successfully there should not be any holes in reserved memory ranges where kernel has asked firmware to move the content of old kernel memory in event of crash. Now that fadump uses CMA for reserved area, this memory area is now not protected from hot-remove operations unless it is cma allocated. Hence, fadump service can fail to re-register after the hot-remove operation, if hot-removed memory belongs to fadump reserved region. To avoid this make sure that memory from fadump reserved area is not hot-removable if fadump is registered. However, if user still wants to remove that memory, he can do so by manually stopping fadump service before hot-remove operation. Signed-off-by: Mahesh Salgaonkar <mahesh@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12powerpc/powernv/ioda: Allocate indirect TCE levels of cached userspace ↵Alexey Kardashevskiy
addresses on demand [ Upstream commit bdbf649efe21173cae63b4b71db84176420f9039 ] The powernv platform maintains 2 TCE tables for VFIO - a hardware TCE table and a table with userspace addresses; the latter is used for marking pages dirty when corresponging TCEs are unmapped from the hardware table. a68bd1267b72 ("powerpc/powernv/ioda: Allocate indirect TCE levels on demand") enabled on-demand allocation of the hardware table, however it missed the other table so it has still been fully allocated at the boot time. This fixes the issue by allocating a single level, just like we do for the hardware table. Fixes: a68bd1267b72 ("powerpc/powernv/ioda: Allocate indirect TCE levels on demand") Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2019-02-12powerpc/pseries: add of_node_put() in dlpar_detach_node()Frank Rowand
[ Upstream commit 5b3f5c408d8cc59b87e47f1ab9803dbd006e4a91 ] The previous commit, "of: overlay: add missing of_node_get() in __of_attach_node_sysfs" added a missing of_node_get() to __of_attach_node_sysfs(). This results in a refcount imbalance for nodes attached with dlpar_attach_node(). The calling sequence from dlpar_attach_node() to __of_attach_node_sysfs() is: dlpar_attach_node() of_attach_node() __of_attach_node_sysfs() For more detailed description of the node refcount, see commit 68baf692c435 ("powerpc/pseries: Fix of_node_put() underflow during DLPAR remove"). Tested-by: Alan Tull <atull@kernel.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Frank Rowand <frank.rowand@sony.com> Signed-off-by: Sasha Levin <sashal@kernel.org>