aboutsummaryrefslogtreecommitdiffstats
path: root/arch/powerpc/include/asm
AgeCommit message (Collapse)Author
2023-10-25powerpc/64e: Fix wrong test in __ptep_test_and_clear_young()Christophe Leroy
[ Upstream commit 5ea0bbaa32e8f54e9a57cfee4a3b8769b80be0d2 ] Commit 45201c879469 ("powerpc/nohash: Remove hash related code from nohash headers.") replaced: if ((pte_val(*ptep) & (_PAGE_ACCESSED | _PAGE_HASHPTE)) == 0) return 0; By: if (pte_young(*ptep)) return 0; But it should be: if (!pte_young(*ptep)) return 0; Fix it. Fixes: 45201c879469 ("powerpc/nohash: Remove hash related code from nohash headers.") Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://msgid.link/8bb7f06494e21adada724ede47a4c3d97e879d40.1695659959.git.christophe.leroy@csgroup.eu Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30powerpc/32: add stack protector supportChristophe Leroy
[ Upstream commit c3ff2a5193fa61b1b284cfb1d79628814ed0e95a ] This functionality was tentatively added in the past (commit 6533b7c16ee5 ("powerpc: Initial stack protector (-fstack-protector) support")) but had to be reverted (commit f2574030b0e3 ("powerpc: Revert the initial stack protector support") because of GCC implementing it differently whether it had been built with libc support or not. Now, GCC offers the possibility to manually set the stack-protector mode (global or tls) regardless of libc support. This time, the patch selects HAVE_STACKPROTECTOR only if -mstack-protector-guard=tls is supported by GCC. On PPC32, as register r2 points to current task_struct at all time, the stack_canary located inside task_struct can be used directly by using the following GCC options: -mstack-protector-guard=tls -mstack-protector-guard-reg=r2 -mstack-protector-guard-offset=offsetof(struct task_struct, stack_canary)) The protector is disabled for prom_init and bootx_init as it is too early to handle it properly. $ echo CORRUPT_STACK > /sys/kernel/debug/provoke-crash/DIRECT [ 134.943666] Kernel panic - not syncing: stack-protector: Kernel stack is corrupted in: lkdtm_CORRUPT_STACK+0x64/0x64 [ 134.943666] [ 134.955414] CPU: 0 PID: 283 Comm: sh Not tainted 4.18.0-s3k-dev-12143-ga3272be41209 #835 [ 134.963380] Call Trace: [ 134.965860] [c6615d60] [c001f76c] panic+0x118/0x260 (unreliable) [ 134.971775] [c6615dc0] [c001f654] panic+0x0/0x260 [ 134.976435] [c6615dd0] [c032c368] lkdtm_CORRUPT_STACK_STRONG+0x0/0x64 [ 134.982769] [c6615e00] [ffffffff] 0xffffffff Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Stable-dep-of: 25ea739ea1d4 ("powerpc: Fail build if using recordmcount with binutils v2.37") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30powerpc/mm: dump block address translation on book3s/32Christophe Leroy
[ Upstream commit 7c91efce1608325634494b25ff6491320208e457 ] This patch adds a debugfs file to dump block address translation: ~# cat /sys/kernel/debug/powerpc/block_address_translation ---[ Instruction Block Address Translations ]--- 0: - 1: - 2: 0xc0000000-0xcfffffff 0x00000000 Kernel EXEC coherent 3: 0xd0000000-0xdfffffff 0x10000000 Kernel EXEC coherent 4: - 5: - 6: - 7: - ---[ Data Block Address Translations ]--- 0: - 1: - 2: 0xc0000000-0xcfffffff 0x00000000 Kernel RW coherent 3: 0xd0000000-0xdfffffff 0x10000000 Kernel RW coherent 4: - 5: - 6: - 7: - Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Stable-dep-of: 66b2ca086210 ("powerpc/64s/radix: Fix soft dirty tracking") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30powerpc/mm: Move pgtable_t into platform headersChristophe Leroy
[ Upstream commit d09780f3a8d48fd49136d7bae8f0ae30de7f261a ] This patch move pgtable_t into platform headers. It gets rid of the CONFIG_PPC_64K_PAGES case for PPC64 as nohash/64 doesn't support CONFIG_PPC_64K_PAGES. Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Stable-dep-of: 66b2ca086210 ("powerpc/64s/radix: Fix soft dirty tracking") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-30powerpc/mm: move platform specific mmu-xxx.h in platform directoriesChristophe Leroy
[ Upstream commit 994da93d196866f914c9d64aafb86e95e3decbb2 ] The purpose of this patch is to move platform specific mmu-xxx.h files in platform directories like pte-xxx.h files. In the meantime this patch creates common nohash and nohash/32 + nohash/64 mmu.h files for future common parts. Reviewed-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Stable-dep-of: 66b2ca086210 ("powerpc/64s/radix: Fix soft dirty tracking") Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-11word-at-a-time: use the same return type for has_zero regardless of endiannessndesaulniers@google.com
[ Upstream commit 79e8328e5acbe691bbde029a52c89d70dcbc22f3 ] Compiling big-endian targets with Clang produces the diagnostic: fs/namei.c:2173:13: warning: use of bitwise '|' with boolean operands [-Wbitwise-instead-of-logical] } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); ~^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ || fs/namei.c:2173:13: note: cast one or both operands to int to silence this warning It appears that when has_zero was introduced, two definitions were produced with different signatures (in particular different return types). Looking at the usage in hash_name() in fs/namei.c, I suspect that has_zero() is meant to be invoked twice per while loop iteration; using logical-or would not update `bdata` when `a` did not have zeros. So I think it's preferred to always return an unsigned long rather than a bool than update the while loop in hash_name() to use a logical-or rather than bitwise-or. [ Also changed powerpc version to do the same - Linus ] Link: https://github.com/ClangBuiltLinux/linux/issues/1832 Link: https://lore.kernel.org/lkml/20230801-bitwise-v1-1-799bec468dc4@google.com/ Fixes: 36126f8f2ed8 ("word-at-a-time: make the interfaces truly generic") Debugged-by: Nathan Chancellor <nathan@kernel.org> Signed-off-by: Nick Desaulniers <ndesaulniers@google.com> Acked-by: Heiko Carstens <hca@linux.ibm.com> Cc: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2023-08-08init: Remove check_bugs() leftoversThomas Gleixner
commit 61235b24b9cb37c13fcad5b9596d59a1afdcec30 upstream Everything is converted over to arch_cpu_finalize_init(). Remove the check_bugs() leftovers including the empty stubs in asm-generic, alpha, parisc, powerpc and xtensa. Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Link: https://lore.kernel.org/r/20230613224545.553215951@linutronix.de Signed-off-by: Daniel Sneddon <daniel.sneddon@linux.intel.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-25powerpc/mm: Switch obsolete dssall to .longAlexey Kardashevskiy
commit d51f86cfd8e378d4907958db77da3074f6dce3ba upstream. The dssall ("Data Stream Stop All") instruction is obsolete altogether with other Data Cache Instructions since ISA 2.03 (year 2006). LLVM IAS does not support it but PPC970 seems to be using it. This switches dssall to .long as there is no much point in fixing LLVM. Signed-off-by: Alexey Kardashevskiy <aik@ozlabs.ru> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20211221055904.555763-6-aik@ozlabs.ru [sudip: adjust context] Signed-off-by: Sudip Mukherjee <sudipm.mukherjee@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-25powerpc: define get_cycles macro for arch-overrideJason A. Donenfeld
commit 408835832158df0357e18e96da7f2d1ed6b80e7f upstream. PowerPC defines a get_cycles() function, but it does not do the usual `#define get_cycles get_cycles` dance, making it impossible for generic code to see if an arch-specific function was defined. While the get_cycles() ifdef is not currently used, the following timekeeping patch in this series will depend on the macro existing (or not existing) when defining random_get_entropy(). Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Arnd Bergmann <arnd@arndb.de> Cc: Benjamin Herrenschmidt <benh@ozlabs.org> Cc: Paul Mackerras <paulus@samba.org> Acked-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-25powerpc: Use bool in archrandom.hRichard Henderson
commit 98dcfce69729f9ce0fb14f96a39bbdba21429597 upstream. The generic interface uses bool not int; match that. Reviewed-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Richard Henderson <rth@twiddle.net> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20200110145422.49141-9-broonie@kernel.org Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-06-25powerpc: Remove arch_has_random, arch_has_random_seedRichard Henderson
commit cbac004995a0ce8453bdc555fab579e2bdb842a6 upstream. These symbols are currently part of the generic archrandom.h interface, but are currently unused and can be removed. Signed-off-by: Richard Henderson <rth@twiddle.net> Signed-off-by: Mark Brown <broonie@kernel.org> Link: https://lore.kernel.org/r/20200110145422.49141-3-broonie@kernel.org Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01powerpc/64s: Unmerge EX_LR and EX_DARMichael Ellerman
The SLB miss handler is not fully re-entrant, it is able to work because we ensure that the SLB entries for the kernel text and data segment, as well as the kernel stack are pinned in the SLB. Accesses to kernel data outside of those areas has to be carefully managed and can only occur in certain parts of the code. One way we deal with that is by storing some values in temporary slots in the paca. In v4.13 in commit dbeea1d6b4bd ("powerpc/64s/paca: EX_LR can be merged with EX_DAR") we merged the storage for two temporary slots for register storage during SLB miss handling. That was safe at the time because the two slots were never used at the same time. Unfortunately in v4.17 in commit c2b4d8b7417a ("powerpc/mm/hash64: Increase the VA range") we broke that condition, and introduced a case where the two slots could be in use at the same time, leading to one being corrupted. Specifically in slb_miss_common() when we detect that we're handling a fault for a large virtual address (> 512TB) we go to the "8" label, there we store the original fault address into paca->exslb[EX_DAR], before jumping to large_addr_slb() (using rfid). We then use the EXCEPTION_PROLOG_COMMON and RECONCILE_IRQ_STATE macros to do exception setup, before reloading the fault address from paca->exslb[EX_DAR] and storing it into pt_regs->dar (Data Address Register). However the code generated by those macros can cause a recursive SLB miss on a kernel address in three places. Firstly is the saving of the PPR (Program Priority Register), which happens on all CPUs since Power7, the PPR is saved to the thread struct which can be anywhere in memory. There is also the call to accumulate_stolen_time() if CONFIG_VIRT_CPU_ACCOUNTING_NATIVE=y and CONFIG_PPC_SPLPAR=y, and also the call to trace_hardirqs_off() if CONFIG_TRACE_IRQFLAGS=y. The latter two call into generic C code and can lead to accesses anywhere in memory. On modern 64-bit CPUs we have 1TB segments, so for any of those accesses to cause an SLB fault they must access memory more than 1TB away from the kernel text, data and kernel stack. That typically only happens on machines with more than 1TB of RAM. However it is possible on multi-node Power9 systems, because memory on the 2nd node begins at 32TB in the linear mapping. If we take a recursive SLB fault then we will corrupt the original fault address with the LR (Link Register) value, because the EX_DAR and EX_LR slots share storage. Subsequently we will think we're trying to fault that LR address, which is the wrong address, and will also mostly likely lead to a segfault because the LR address will be < 512TB and so will be rejected by slb_miss_large_addr(). This appears as a spurious segfault to userspace, and if show_unhandled_signals is enabled you will see a fault reported in dmesg with the LR address, not the expected fault address, eg: prog[123]: segfault (11) at 128a61808 nip 128a618cc lr 128a61808 code 3 in prog[128a60000+10000] prog[123]: code: 4bffffa4 39200040 3ce00004 7d2903a6 3c000200 78e707c6 780083e4 7d3b4b78 prog[123]: code: 7d455378 7d7d5b78 7d9f6378 7da46b78 <f8670000> 7d3a4b78 7d465378 7d7c5b78 Notice that the fault address == the LR, and the faulting instruction is a simple store that should never use LR. In upstream this was fixed in v4.20 in commit 48e7b7695745 ("powerpc/64s/hash: Convert SLB miss handlers to C"), however that is a huge rewrite and not backportable. The minimal fix for stable is to just unmerge the EX_LR and EX_DAR slots again, avoiding the corruption of the DAR value. This uses an extra 8 bytes per CPU, which is negligble. Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-05-01powerpc/64/interrupt: Temporarily save PPR on stack to fix register ↵Nicholas Piggin
corruption due to SLB miss This is a minimal stable kernel fix for the problem solved by 4c2de74cc869 ("powerpc/64: Interrupts save PPR on stack rather than thread_struct"). Upstream kernels between 4.17-4.20 have this bug, so I propose this patch for 4.19 stable. Longer description from mpe: In commit f384796c4 ("powerpc/mm: Add support for handling > 512TB address in SLB miss") we added support for using multiple context ids per process. Previously accessing past the first context id was a fatal error for the process. With the new support it became non-fatal, and so the previous "bad_addr_slb" handler was changed to be the "large_addr_slb" handler. That handler uses the EXCEPTION_PROLOG_COMMON() macro, which in-turn calls the SAVE_PPR() macro. At the point where SAVE_PPR() is used, the r9-13 register values from the original user fault are saved in paca->exslb. It's not until later in EXCEPTION_PROLOG_COMMON_2() that they are saved from paca->exslb onto the kernel stack. The PPR is saved into current->thread.ppr, which is notably not on the kernel stack the way pt_regs are. This means we can take an SLB miss on current->thread.ppr. If that happens in the "large_addr_slb" case we will clobber the saved user r9-r13 in paca->exslb with kernel values. Later we will save those clobbered values into the pt_regs on the stack, and when we return to userspace those kernel values will be restored. Typically this appears as some sort of segfault in userspace, with an address that looks like a kernel address. In dmesg it can appear as: [19117.440331] some_program[1869625]: unhandled signal 11 at c00000000f6bda10 nip 00007fff780d559c lr 00007fff781ae56c code 30001 The upstream fix for this issue was to move PPR into pt_regs, on the kernel stack, avoiding the possibility of an SLB fault when saving it. However changing the size of pt_regs is an intrusive change, and has side effects in other parts of the kernel. A minimal fix is to temporarily save the PPR in an unused part of pt_regs, then save the user register values from paca->exslb into pt_regs, and then move the saved PPR into thread.ppr. Fixes: f384796c40dc ("powerpc/mm: Add support for handling > 512TB address in SLB miss") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220316033235.903657-1-npiggin@gmail.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2022-04-15powerpc: Fix build errors with newer binutilsAnders Roxell
commit 8667d0d64dd1f84fd41b5897fd87fa9113ae05e3 upstream. Building tinyconfig with gcc (Debian 11.2.0-16) and assembler (Debian 2.37.90.20220207) the following build error shows up: {standard input}: Assembler messages: {standard input}:1190: Error: unrecognized opcode: `stbcix' {standard input}:1433: Error: unrecognized opcode: `lwzcix' {standard input}:1453: Error: unrecognized opcode: `stbcix' {standard input}:1460: Error: unrecognized opcode: `stwcix' {standard input}:1596: Error: unrecognized opcode: `stbcix' ... Rework to add assembler directives [1] around the instruction. Going through them one by one shows that the changes should be safe. Like __get_user_atomic_128_aligned() is only called in p9_hmi_special_emu(), which according to the name is specific to power9. And __raw_rm_read*() are only called in things that are powernv or book3s_hv specific. [1] https://sourceware.org/binutils/docs/as/PowerPC_002dPseudo.html#PowerPC_002dPseudo Cc: stable@vger.kernel.org Co-developed-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Arnd Bergmann <arnd@arndb.de> Signed-off-by: Anders Roxell <anders.roxell@linaro.org> Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org> [mpe: Make commit subject more descriptive] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20220224162215.3406642-2-anders.roxell@linaro.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26powerpc/security: Add a helper to query stf_barrier typeNaveen N. Rao
upstream commit 030905920f32e91a52794937f67434ac0b3ea41a Add a helper to return the stf_barrier type for the current processor. Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/3bd5d7f96ea1547991ac2ce3137dc2b220bae285.1633464148.git.naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-26powerpc/lib: Add helper to check if offset is within conditional branch rangeNaveen N. Rao
upstream commit 4549c3ea3160fa8b3f37dfe2f957657bb265eda9 Add a helper to check if a given offset is within the branch range for a powerpc conditional branch instruction, and update some sites to use the new helper. Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Song Liu <songliubraving@fb.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/442b69a34ced32ca346a0d9a855f3f6cfdbbbd41.1633464148.git.naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-11-06arch: pgtable: define MAX_POSSIBLE_PHYSMEM_BITS where neededArnd Bergmann
commit cef397038167ac15d085914493d6c86385773709 upstream. Stefan Agner reported a bug when using zsram on 32-bit Arm machines with RAM above the 4GB address boundary: Unable to handle kernel NULL pointer dereference at virtual address 00000000 pgd = a27bd01c [00000000] *pgd=236a0003, *pmd=1ffa64003 Internal error: Oops: 207 [#1] SMP ARM Modules linked in: mdio_bcm_unimac(+) brcmfmac cfg80211 brcmutil raspberrypi_hwmon hci_uart crc32_arm_ce bcm2711_thermal phy_generic genet CPU: 0 PID: 123 Comm: mkfs.ext4 Not tainted 5.9.6 #1 Hardware name: BCM2711 PC is at zs_map_object+0x94/0x338 LR is at zram_bvec_rw.constprop.0+0x330/0xa64 pc : [<c0602b38>] lr : [<c0bda6a0>] psr: 60000013 sp : e376bbe0 ip : 00000000 fp : c1e2921c r10: 00000002 r9 : c1dda730 r8 : 00000000 r7 : e8ff7a00 r6 : 00000000 r5 : 02f9ffa0 r4 : e3710000 r3 : 000fdffe r2 : c1e0ce80 r1 : ebf979a0 r0 : 00000000 Flags: nZCv IRQs on FIQs on Mode SVC_32 ISA ARM Segment user Control: 30c5383d Table: 235c2a80 DAC: fffffffd Process mkfs.ext4 (pid: 123, stack limit = 0x495a22e6) Stack: (0xe376bbe0 to 0xe376c000) As it turns out, zsram needs to know the maximum memory size, which is defined in MAX_PHYSMEM_BITS when CONFIG_SPARSEMEM is set, or in MAX_POSSIBLE_PHYSMEM_BITS on the x86 architecture. The same problem will be hit on all 32-bit architectures that have a physical address space larger than 4GB and happen to not enable sparsemem and include asm/sparsemem.h from asm/pgtable.h. After the initial discussion, I suggested just always defining MAX_POSSIBLE_PHYSMEM_BITS whenever CONFIG_PHYS_ADDR_T_64BIT is set, or provoking a build error otherwise. This addresses all configurations that can currently have this runtime bug, but leaves all other configurations unchanged. I looked up the possible number of bits in source code and datasheets, here is what I found: - on ARC, CONFIG_ARC_HAS_PAE40 controls whether 32 or 40 bits are used - on ARM, CONFIG_LPAE enables 40 bit addressing, without it we never support more than 32 bits, even though supersections in theory allow up to 40 bits as well. - on MIPS, some MIPS32r1 or later chips support 36 bits, and MIPS32r5 XPA supports up to 60 bits in theory, but 40 bits are more than anyone will ever ship - On PowerPC, there are three different implementations of 36 bit addressing, but 32-bit is used without CONFIG_PTE_64BIT - On RISC-V, the normal page table format can support 34 bit addressing. There is no highmem support on RISC-V, so anything above 2GB is unused, but it might be useful to eventually support CONFIG_ZRAM for high pages. Fixes: 61989a80fb3a ("staging: zsmalloc: zsmalloc memory allocation library") Fixes: 02390b87a945 ("mm/zsmalloc: Prepare to variable MAX_PHYSMEM_BITS") Acked-by: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Reviewed-by: Stefan Agner <stefan@agner.ch> Tested-by: Stefan Agner <stefan@agner.ch> Acked-by: Mike Rapoport <rppt@linux.ibm.com> Link: https://lore.kernel.org/linux-mm/bdfa44bf1c570b05d6c70898e2bbb0acf234ecdf.1604762181.git.stefan@agner.ch/ Signed-off-by: Arnd Bergmann <arnd@arndb.de> [florian: patch arch/powerpc/include/asm/pte-common.h for 4.19.y] Signed-off-by: Florian Fainelli <f.fainelli@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-07-20powerpc/ps3: Add dma_mask to ps3_dma_regionGeoff Levand
[ Upstream commit 9733862e50fdba55e7f1554e4286fcc5302ff28e ] Commit f959dcd6ddfd29235030e8026471ac1b022ad2b0 (dma-direct: Fix potential NULL pointer dereference) added a null check on the dma_mask pointer of the kernel's device structure. Add a dma_mask variable to the ps3_dma_region structure and set the device structure's dma_mask pointer to point to this new variable. Fixes runtime errors like these: # WARNING: Fixes tag on line 10 doesn't match correct format # WARNING: Fixes tag on line 10 doesn't match correct format ps3_system_bus_match:349: dev=8.0(sb_01), drv=8.0(ps3flash): match WARNING: CPU: 0 PID: 1 at kernel/dma/mapping.c:151 .dma_map_page_attrs+0x34/0x1e0 ps3flash sb_01: ps3stor_setup:193: map DMA region failed Signed-off-by: Geoff Levand <geoff@infradead.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/562d0c9ea0100a30c3b186bcc7adb34b0bbd2cd7.1622746428.git.geoff@infradead.org Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-07-20powerpc/barrier: Avoid collision with clang's __lwsync macroNathan Chancellor
commit 015d98149b326e0f1f02e44413112ca8b4330543 upstream. A change in clang 13 results in the __lwsync macro being defined as __builtin_ppc_lwsync, which emits 'lwsync' or 'msync' depending on what the target supports. This breaks the build because of -Werror in arch/powerpc, along with thousands of warnings: In file included from arch/powerpc/kernel/pmc.c:12: In file included from include/linux/bug.h:5: In file included from arch/powerpc/include/asm/bug.h:109: In file included from include/asm-generic/bug.h:20: In file included from include/linux/kernel.h:12: In file included from include/linux/bitops.h:32: In file included from arch/powerpc/include/asm/bitops.h:62: arch/powerpc/include/asm/barrier.h:49:9: error: '__lwsync' macro redefined [-Werror,-Wmacro-redefined] #define __lwsync() __asm__ __volatile__ (stringify_in_c(LWSYNC) : : :"memory") ^ <built-in>:308:9: note: previous definition is here #define __lwsync __builtin_ppc_lwsync ^ 1 error generated. Undefine this macro so that the runtime patching introduced by commit 2d1b2027626d ("powerpc: Fixup lwsync at runtime") continues to work properly with clang and the build no longer breaks. Cc: stable@vger.kernel.org Signed-off-by: Nathan Chancellor <nathan@kernel.org> Reviewed-by: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://github.com/ClangBuiltLinux/linux/issues/1386 Link: https://github.com/llvm/llvm-project/commit/62b5df7fe2b3fda1772befeda15598fbef96a614 Link: https://lore.kernel.org/r/20210528182752.1852002-1-nathan@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-05-22powerpc/64s: Fix pte update for kernel memory on radixJordan Niethe
[ Upstream commit b8b2f37cf632434456182e9002d63cbc4cccc50c ] When adding a PTE a ptesync is needed to order the update of the PTE with subsequent accesses otherwise a spurious fault may be raised. radix__set_pte_at() does not do this for performance gains. For non-kernel memory this is not an issue as any faults of this kind are corrected by the page fault handler. For kernel memory these faults are not handled. The current solution is that there is a ptesync in flush_cache_vmap() which should be called when mapping from the vmalloc region. However, map_kernel_page() does not call flush_cache_vmap(). This is troublesome in particular for code patching with Strict RWX on radix. In do_patch_instruction() the page frame that contains the instruction to be patched is mapped and then immediately patched. With no ordering or synchronization between setting up the PTE and writing to the page it is possible for faults. As the code patching is done using __put_user_asm_goto() the resulting fault is obscured - but using a normal store instead it can be seen: BUG: Unable to handle kernel data access on write at 0xc008000008f24a3c Faulting instruction address: 0xc00000000008bd74 Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Radix SMP NR_CPUS=2048 NUMA PowerNV Modules linked in: nop_module(PO+) [last unloaded: nop_module] CPU: 4 PID: 757 Comm: sh Tainted: P O 5.10.0-rc5-01361-ge3c1b78c8440-dirty #43 NIP: c00000000008bd74 LR: c00000000008bd50 CTR: c000000000025810 REGS: c000000016f634a0 TRAP: 0300 Tainted: P O (5.10.0-rc5-01361-ge3c1b78c8440-dirty) MSR: 9000000000009033 <SF,HV,EE,ME,IR,DR,RI,LE> CR: 44002884 XER: 00000000 CFAR: c00000000007c68c DAR: c008000008f24a3c DSISR: 42000000 IRQMASK: 1 This results in the kind of issue reported here: https://lore.kernel.org/linuxppc-dev/15AC5B0E-A221-4B8C-9039-FA96B8EF7C88@lca.pw/ Chris Riedl suggested a reliable way to reproduce the issue: $ mount -t debugfs none /sys/kernel/debug $ (while true; do echo function > /sys/kernel/debug/tracing/current_tracer ; echo nop > /sys/kernel/debug/tracing/current_tracer ; done) & Turning ftrace on and off does a large amount of code patching which in usually less then 5min will crash giving a trace like: ftrace-powerpc: (____ptrval____): replaced (4b473b11) != old (60000000) ------------[ ftrace bug ]------------ ftrace failed to modify [<c000000000bf8e5c>] napi_busy_loop+0xc/0x390 actual: 11:3b:47:4b Setting ftrace call site to call ftrace function ftrace record flags: 80000001 (1) expected tramp: c00000000006c96c ------------[ cut here ]------------ WARNING: CPU: 4 PID: 809 at kernel/trace/ftrace.c:2065 ftrace_bug+0x28c/0x2e8 Modules linked in: nop_module(PO-) [last unloaded: nop_module] CPU: 4 PID: 809 Comm: sh Tainted: P O 5.10.0-rc5-01360-gf878ccaf250a #1 NIP: c00000000024f334 LR: c00000000024f330 CTR: c0000000001a5af0 REGS: c000000004c8b760 TRAP: 0700 Tainted: P O (5.10.0-rc5-01360-gf878ccaf250a) MSR: 900000000282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 28008848 XER: 20040000 CFAR: c0000000001a9c98 IRQMASK: 0 GPR00: c00000000024f330 c000000004c8b9f0 c000000002770600 0000000000000022 GPR04: 00000000ffff7fff c000000004c8b6d0 0000000000000027 c0000007fe9bcdd8 GPR08: 0000000000000023 ffffffffffffffd8 0000000000000027 c000000002613118 GPR12: 0000000000008000 c0000007fffdca00 0000000000000000 0000000000000000 GPR16: 0000000023ec37c5 0000000000000000 0000000000000000 0000000000000008 GPR20: c000000004c8bc90 c0000000027a2d20 c000000004c8bcd0 c000000002612fe8 GPR24: 0000000000000038 0000000000000030 0000000000000028 0000000000000020 GPR28: c000000000ff1b68 c000000000bf8e5c c00000000312f700 c000000000fbb9b0 NIP ftrace_bug+0x28c/0x2e8 LR ftrace_bug+0x288/0x2e8 Call Trace: ftrace_bug+0x288/0x2e8 (unreliable) ftrace_modify_all_code+0x168/0x210 arch_ftrace_update_code+0x18/0x30 ftrace_run_update_code+0x44/0xc0 ftrace_startup+0xf8/0x1c0 register_ftrace_function+0x4c/0xc0 function_trace_init+0x80/0xb0 tracing_set_tracer+0x2a4/0x4f0 tracing_set_trace_write+0xd4/0x130 vfs_write+0xf0/0x330 ksys_write+0x84/0x140 system_call_exception+0x14c/0x230 system_call_common+0xf0/0x27c To fix this when updating kernel memory PTEs using ptesync. Fixes: f1cb8f9beba8 ("powerpc/64s/radix: avoid ptesync after set_pte and ptep_set_access_flags") Signed-off-by: Jordan Niethe <jniethe5@gmail.com> Reviewed-by: Nicholas Piggin <npiggin@gmail.com> [mpe: Tidy up change log slightly] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210208032957.1232102-1-jniethe5@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-30powerpc/4xx: Fix build errors from mfdcr()Michael Ellerman
[ Upstream commit eead089311f4d935ab5d1d8fbb0c42ad44699ada ] lkp reported a build error in fsp2.o: CC arch/powerpc/platforms/44x/fsp2.o {standard input}:577: Error: unsupported relocation against base Which comes from: pr_err("GESR0: 0x%08x\n", mfdcr(base + PLB4OPB_GESR0)); Where our mfdcr() macro is stringifying "base + PLB4OPB_GESR0", and passing that to the assembler, which obviously doesn't work. The mfdcr() macro already checks that the argument is constant using __builtin_constant_p(), and if not calls the out-of-line version of mfdcr(). But in this case GCC is smart enough to notice that "base + PLB4OPB_GESR0" will be constant, even though it's not something we can immediately stringify into a register number. Segher pointed out that passing the register number to the inline asm as a constant would be better, and in fact it fixes the build error, presumably because it gives GCC a chance to resolve the value. While we're at it, change mtdcr() similarly. Reported-by: kernel test robot <lkp@intel.com> Suggested-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Acked-by: Feng Tang <feng.tang@intel.com> Link: https://lore.kernel.org/r/20210218123058.748882-1-mpe@ellerman.id.au Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-03-24powerpc: Force inlining of cpu_has_feature() to avoid build failureChristophe Leroy
commit eed5fae00593ab9d261a0c1ffc1bdb786a87a55a upstream. The code relies on constant folding of cpu_has_feature() based on possible and always true values as defined per CPU_FTRS_ALWAYS and CPU_FTRS_POSSIBLE. Build failure is encountered with for instance book3e_all_defconfig on kisskb in the AMDGPU driver which uses cpu_has_feature(CPU_FTR_VSX_COMP) to decide whether calling kernel_enable_vsx() or not. The failure is due to cpu_has_feature() not being inlined with that configuration with gcc 4.9. In the same way as commit acdad8fb4a15 ("powerpc: Force inlining of mmu_has_feature to fix build failure"), for inlining of cpu_has_feature(). Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/b231dfa040ce4cc37f702f5c3a595fdeabfe0462.1615378209.git.christophe.leroy@csgroup.eu Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17powerpc/64s: Fix instruction encoding for lis in ppc_function_entry()Naveen N. Rao
commit cea15316ceee2d4a51dfdecd79e08a438135416c upstream. 'lis r2,N' is 'addis r2,0,N' and the instruction encoding in the macro LIS_R2 is incorrect (it currently maps to 'addis r0,r2,N'). Fix the same. Fixes: c71b7eff426f ("powerpc: Add ABIv2 support to ppc_function_entry") Cc: stable@vger.kernel.org # v3.16+ Reported-by: Jiri Olsa <jolsa@redhat.com> Signed-off-by: Naveen N. Rao <naveen.n.rao@linux.vnet.ibm.com> Acked-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20210304020411.16796-1-naveen.n.rao@linux.vnet.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2021-03-17powerpc/pci: Add ppc_md.discover_phbs()Oliver O'Halloran
[ Upstream commit 5537fcb319d016ce387f818dd774179bc03217f5 ] On many powerpc platforms the discovery and initalisation of pci_controllers (PHBs) happens inside of setup_arch(). This is very early in boot (pre-initcalls) and means that we're initialising the PHB long before many basic kernel services (slab allocator, debugfs, a real ioremap) are available. On PowerNV this causes an additional problem since we map the PHB registers with ioremap(). As of commit d538aadc2718 ("powerpc/ioremap: warn on early use of ioremap()") a warning is printed because we're using the "incorrect" API to setup and MMIO mapping in searly boot. The kernel does provide early_ioremap(), but that is not intended to create long-lived MMIO mappings and a seperate warning is printed by generic code if early_ioremap() mappings are "leaked." This is all fixable with dumb hacks like using early_ioremap() to setup the initial mapping then replacing it with a real ioremap later on in boot, but it does raise the question: Why the hell are we setting up the PHB's this early in boot? The old and wise claim it's due to "hysterical rasins." Aside from amused grapes there doesn't appear to be any real reason to maintain the current behaviour. Already most of the newer embedded platforms perform PHB discovery in an arch_initcall and between the end of setup_arch() and the start of initcalls none of the generic kernel code does anything PCI related. On powerpc scanning PHBs occurs in a subsys_initcall so it should be possible to move the PHB discovery to a core, postcore or arch initcall. This patch adds the ppc_md.discover_phbs hook and a core_initcall stub that calls it. The core_initcalls are the earliest to be called so this will any possibly issues with dependency between initcalls. This isn't just an academic issue either since on pseries and PowerNV EEH init occurs in an arch_initcall and depends on the pci_controllers being available, similarly the creation of pci_dns occurs at core_initcall_sync (i.e. between core and postcore initcalls). These problems need to be addressed seperately. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Oliver O'Halloran <oohall@gmail.com> [mpe: Make discover_phbs() static] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201103043523.916109-1-oohall@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2021-01-06powerpc/bitops: Fix possible undefined behaviour with fls() and fls64()Christophe Leroy
[ Upstream commit 1891ef21d92c4801ea082ee8ed478e304ddc6749 ] fls() and fls64() are using __builtin_ctz() and _builtin_ctzll(). On powerpc, those builtins trivially use ctlzw and ctlzd power instructions. Allthough those instructions provide the expected result with input argument 0, __builtin_ctz() and __builtin_ctzll() are documented as undefined for value 0. The easiest fix would be to use fls() and fls64() functions defined in include/asm-generic/bitops/builtin-fls.h and include/asm-generic/bitops/fls64.h, but GCC output is not optimal: 00000388 <testfls>: 388: 2c 03 00 00 cmpwi r3,0 38c: 41 82 00 10 beq 39c <testfls+0x14> 390: 7c 63 00 34 cntlzw r3,r3 394: 20 63 00 20 subfic r3,r3,32 398: 4e 80 00 20 blr 39c: 38 60 00 00 li r3,0 3a0: 4e 80 00 20 blr 000003b0 <testfls64>: 3b0: 2c 03 00 00 cmpwi r3,0 3b4: 40 82 00 1c bne 3d0 <testfls64+0x20> 3b8: 2f 84 00 00 cmpwi cr7,r4,0 3bc: 38 60 00 00 li r3,0 3c0: 4d 9e 00 20 beqlr cr7 3c4: 7c 83 00 34 cntlzw r3,r4 3c8: 20 63 00 20 subfic r3,r3,32 3cc: 4e 80 00 20 blr 3d0: 7c 63 00 34 cntlzw r3,r3 3d4: 20 63 00 40 subfic r3,r3,64 3d8: 4e 80 00 20 blr When the input of fls(x) is a constant, just check x for nullity and return either 0 or __builtin_clz(x). Otherwise, use cntlzw instruction directly. For fls64() on PPC64, do the same but with __builtin_clzll() and cntlzd instruction. On PPC32, lets take the generic fls64() which will use our fls(). The result is as expected: 00000388 <testfls>: 388: 7c 63 00 34 cntlzw r3,r3 38c: 20 63 00 20 subfic r3,r3,32 390: 4e 80 00 20 blr 000003a0 <testfls64>: 3a0: 2c 03 00 00 cmpwi r3,0 3a4: 40 82 00 10 bne 3b4 <testfls64+0x14> 3a8: 7c 83 00 34 cntlzw r3,r4 3ac: 20 63 00 20 subfic r3,r3,32 3b0: 4e 80 00 20 blr 3b4: 7c 63 00 34 cntlzw r3,r3 3b8: 20 63 00 40 subfic r3,r3,64 3bc: 4e 80 00 20 blr Fixes: 2fcff790dcb4 ("powerpc: Use builtin functions for fls()/__fls()/fls64()") Cc: stable@vger.kernel.org Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/348c2d3f19ffcff8abe50d52513f989c4581d000.1603375524.git.christophe.leroy@csgroup.eu Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-12-30powerpc: Fix incorrect stw{, ux, u, x} instructions in __set_pte_atMathieu Desnoyers
commit d85be8a49e733dcd23674aa6202870d54bf5600d upstream. The placeholder for instruction selection should use the second argument's operand, which is %1, not %0. This could generate incorrect assembly code if the memory addressing of operand %0 is a different form from that of operand %1. Also remove the %Un placeholder because having %Un placeholders for two operands which are based on the same local var (ptep) doesn't make much sense. By the way, it doesn't change the current behaviour because "<>" constraint is missing for the associated "=m". [chleroy: revised commit log iaw segher's comments and removed %U0] Fixes: 9bf2b5cdc5fe ("powerpc: Fixes for CONFIG_PTE_64BIT for SMP support") Cc: <stable@vger.kernel.org> # v2.6.28+ Signed-off-by: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Acked-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/96354bd77977a6a933fe9020da57629007fdb920.1603358942.git.christophe.leroy@csgroup.eu Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-12-30powerpc/feature: Fix CPU_FTRS_ALWAYS by removing CPU_FTRS_GENERIC_32Christophe Leroy
[ Upstream commit 78665179e569c7e1fe102fb6c21d0f5b6951f084 ] On 8xx, we get the following features: [ 0.000000] cpu_features = 0x0000000000000100 [ 0.000000] possible = 0x0000000000000120 [ 0.000000] always = 0x0000000000000000 This is not correct. As CONFIG_PPC_8xx is mutually exclusive with all other configurations, the three lines should be equal. The problem is due to CPU_FTRS_GENERIC_32 which is taken when CONFIG_BOOK3S_32 is NOT selected. This CPU_FTRS_GENERIC_32 is pointless because there is no generic configuration supporting all 32 bits but book3s/32. Remove this pointless generic features definition to unbreak the calculation of 'possible' features and 'always' features. Fixes: 76bc080ef5a3 ("[POWERPC] Make default cputable entries reflect selected CPU family") Signed-off-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/76a85f30bf981d1aeaae00df99321235494da254.1604426550.git.christophe.leroy@csgroup.eu Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-11-22powerpc/64s: flush L1D after user accessesNicholas Piggin
commit 9a32a7e78bd0cd9a9b6332cbdc345ee5ffd0c5de upstream. IBM Power9 processors can speculatively operate on data in the L1 cache before it has been completely validated, via a way-prediction mechanism. It is not possible for an attacker to determine the contents of impermissible memory using this method, since these systems implement a combination of hardware and software security measures to prevent scenarios where protected data could be leaked. However these measures don't address the scenario where an attacker induces the operating system to speculatively execute instructions using data that the attacker controls. This can be used for example to speculatively bypass "kernel user access prevention" techniques, as discovered by Anthony Steinhauser of Google's Safeside Project. This is not an attack by itself, but there is a possibility it could be used in conjunction with side-channels or other weaknesses in the privileged code to construct an attack. This issue can be mitigated by flushing the L1 cache between privilege boundaries of concern. This patch flushes the L1 cache after user accesses. This is part of the fix for CVE-2020-4788. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22powerpc/uaccess: Evaluate macro arguments once, before user access is allowedNicholas Piggin
commit d02f6b7dab8228487268298ea1f21081c0b4b3eb upstream. get/put_user() can be called with nontrivial arguments. fs/proc/page.c has a good example: if (put_user(stable_page_flags(ppage), out)) { stable_page_flags() is quite a lot of code, including spin locks in the page allocator. Ensure these arguments are evaluated before user access is allowed. This improves security by reducing code with access to userspace, but it also fixes a PREEMPT bug with KUAP on powerpc/64s: stable_page_flags() is currently called with AMR set to allow writes, it ends up calling spin_unlock(), which can call preempt_schedule. But the task switch code can not be called with AMR set (it relies on interrupts saving the register), so this blows up. It's fine if the code inside allow_user_access() is preemptible, because a timer or IPI will save the AMR, but it's not okay to explicitly cause a reschedule. Fixes: de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200407041245.600651-1-npiggin@gmail.com Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22powerpc: Fix __clear_user() with KUAP enabledAndrew Donnellan
commit 61e3acd8c693a14fc69b824cb5b08d02cb90a6e7 upstream. The KUAP implementation adds calls in clear_user() to enable and disable access to userspace memory. However, it doesn't add these to __clear_user(), which is used in the ptrace regset code. As there's only one direct user of __clear_user() (the regset code), and the time taken to set the AMR for KUAP purposes is going to dominate the cost of a quick access_ok(), there's not much point having a separate path. Rename __clear_user() to __arch_clear_user(), and make __clear_user() just call clear_user(). Reported-by: syzbot+f25ecf4b2982d8c7a640@syzkaller-ppc64.appspotmail.com Reported-by: Daniel Axtens <dja@axtens.net> Suggested-by: Michael Ellerman <mpe@ellerman.id.au> Fixes: de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection") Signed-off-by: Andrew Donnellan <ajd@linux.ibm.com> [mpe: Use __arch_clear_user() for the asm version like arm64 & nds32] Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191209132221.15328-1-ajd@linux.ibm.com Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22powerpc: Implement user_access_begin and friendsChristophe Leroy
commit 5cd623333e7cf4e3a334c70529268b65f2a6c2c7 upstream. Today, when a function like strncpy_from_user() is called, the userspace access protection is de-activated and re-activated for every word read. By implementing user_access_begin and friends, the protection is de-activated at the beginning of the copy and re-activated at the end. Implement user_access_begin(), user_access_end() and unsafe_get_user(), unsafe_put_user() and unsafe_copy_to_user() For the time being, we keep user_access_save() and user_access_restore() as nops. Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/36d4fbf9e56a75994aca4ee2214c77b26a5a8d35.1579866752.git.christophe.leroy@c-s.fr Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22powerpc: Add a framework for user access trackingChristophe Leroy
Backported from commit de78a9c42a79 ("powerpc: Add a framework for Kernel Userspace Access Protection"). Here we don't try to add the KUAP framework, we just want the helper functions because we want to put uaccess flush helpers in them. In terms of fixes, we don't need commit 1d8f739b07bd ("powerpc/kuap: Fix set direction in allow/prevent_user_access()") as we don't have real KUAP. Likewise as all our allows are noops and all our prevents are just flushes, we don't need commit 9dc086f1e9ef ("powerpc/futex: Fix incorrect user access blocking") The other 2 fixes we do need. The original description is: This patch implements a framework for Kernel Userspace Access Protection. Then subarches will have the possibility to provide their own implementation by providing setup_kuap() and allow/prevent_user_access(). Some platforms will need to know the area accessed and whether it is accessed from read, write or both. Therefore source, destination and size and handed over to the two functions. mpe: Rename to allow/prevent rather than unlock/lock, and add read/write wrappers. Drop the 32-bit code for now until we have an implementation for it. Add kuap to pt_regs for 64-bit as well as 32-bit. Don't split strings, use pr_crit_ratelimited(). Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Russell Currey <ruscur@russell.cc> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-22powerpc/64s: flush L1D on kernel entryNicholas Piggin
commit f79643787e0a0762d2409b7b8334e83f22d85695 upstream. IBM Power9 processors can speculatively operate on data in the L1 cache before it has been completely validated, via a way-prediction mechanism. It is not possible for an attacker to determine the contents of impermissible memory using this method, since these systems implement a combination of hardware and software security measures to prevent scenarios where protected data could be leaked. However these measures don't address the scenario where an attacker induces the operating system to speculatively execute instructions using data that the attacker controls. This can be used for example to speculatively bypass "kernel user access prevention" techniques, as discovered by Anthony Steinhauser of Google's Safeside Project. This is not an attack by itself, but there is a possibility it could be used in conjunction with side-channels or other weaknesses in the privileged code to construct an attack. This issue can be mitigated by flushing the L1 cache between privilege boundaries of concern. This patch flushes the L1 cache on kernel entry. This is part of the fix for CVE-2020-4788. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Daniel Axtens <dja@axtens.net> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05powerpc/drmem: Make lmb_size 64 bitAneesh Kumar K.V
commit ec72024e35dddb88a81e40071c87ceb18b5ee835 upstream. Similar to commit 89c140bbaeee ("pseries: Fix 64 bit logical memory block panic") make sure different variables tracking lmb_size are updated to be 64 bit. This was found by code audit. Cc: stable@vger.kernel.org Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Acked-by: Nathan Lynch <nathanl@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20201007114836.282468-2-aneesh.kumar@linux.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-11-05powerpc: select ARCH_WANT_IRQS_OFF_ACTIVATE_MMNicholas Piggin
[ Upstream commit 66acd46080bd9e5ad2be4b0eb1d498d5145d058e ] powerpc uses IPIs in some situations to switch a kernel thread away from a lazy tlb mm, which is subject to the TLB flushing race described in the changelog introducing ARCH_WANT_IRQS_OFF_ACTIVATE_MM. Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200914045219.3736466-3-npiggin@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-30powerpc/64s/radix: Fix mm_cpumask trimming race vs kthread_use_mmNicholas Piggin
[ Upstream commit a665eec0a22e11cdde708c1c256a465ebe768047 ] Commit 0cef77c7798a7 ("powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask") added a mechanism to trim the mm_cpumask of a process under certain conditions. One of the assumptions is that mm_users would not be incremented via a reference outside the process context with mmget_not_zero() then go on to kthread_use_mm() via that reference. That invariant was broken by io_uring code (see previous sparc64 fix), but I'll point Fixes: to the original powerpc commit because we are changing that assumption going forward, so this will make backports match up. Fix this by no longer relying on that assumption, but by having each CPU check the mm is not being used, and clearing their own bit from the mask only if it hasn't been switched-to by the time the IPI is processed. This relies on commit 38cf307c1f20 ("mm: fix kthread_use_mm() vs TLB invalidate") and ARCH_WANT_IRQS_OFF_ACTIVATE_MM to disable irqs over mm switch sequences. Fixes: 0cef77c7798a7 ("powerpc/64s/radix: flush remote CPUs out of single-threaded mm_cpumask") Signed-off-by: Nicholas Piggin <npiggin@gmail.com> Reviewed-by: Michael Ellerman <mpe@ellerman.id.au> Depends-on: 38cf307c1f20 ("mm: fix kthread_use_mm() vs TLB invalidate") Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200914045219.3736466-5-npiggin@gmail.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29powerpc/tau: Use appropriate temperature sample intervalFinn Thain
[ Upstream commit 66943005cc41f48e4d05614e8f76c0ca1812f0fd ] According to the MPC750 Users Manual, the SITV value in Thermal Management Register 3 is 13 bits long. The present code calculates the SITV value as 60 * 500 cycles. This would overflow to give 10 us on a 500 MHz CPU rather than the intended 60 us. (But according to the Microprocessor Datasheet, there is also a factor of 266 that has to be applied to this value on certain parts i.e. speed sort above 266 MHz.) Always use the maximum cycle count, as recommended by the Datasheet. Fixes: 1da177e4c3f41 ("Linux-2.6.12-rc2") Signed-off-by: Finn Thain <fthain@telegraphics.com.au> Tested-by: Stan Johnson <userm57@yahoo.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/896f542e5f0f1d6cf8218524c2b67d79f3d69b3c.1599260540.git.fthain@telegraphics.com.au Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-29powerpc/pseries: explicitly reschedule during drmem_lmb list traversalNathan Lynch
[ Upstream commit 9d6792ffe140240ae54c881cc4183f9acc24b4df ] The drmem lmb list can have hundreds of thousands of entries, and unfortunately lookups take the form of linear searches. As long as this is the case, traversals have the potential to monopolize the CPU and provoke lockup reports, workqueue stalls, and the like unless they explicitly yield. Rather than placing cond_resched() calls within various for_each_drmem_lmb() loop blocks in the code, put it in the iteration expression of the loop macro itself so users can't omit it. Introduce a drmem_lmb_next() iteration helper function which calls cond_resched() at a regular interval during array traversal. Each iteration of the loop in DLPAR code paths can involve around ten RTAS calls which can each take up to 250us, so this ensures the check is performed at worst every few milliseconds. Fixes: 6c6ea53725b3 ("powerpc/mm: Separate ibm, dynamic-memory data from DT format") Signed-off-by: Nathan Lynch <nathanl@linux.ibm.com> Reviewed-by: Christophe Leroy <christophe.leroy@csgroup.eu> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200813151131.2070161-1-nathanl@linux.ibm.com Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-10-01KVM: PPC: Book3S HV: Treat TM-related invalid form instructions on P9 like ↵Gustavo Romero
the valid ones [ Upstream commit 1dff3064c764b5a51c367b949b341d2e38972bec ] On P9 DD2.2 due to a CPU defect some TM instructions need to be emulated by KVM. This is handled at first by the hardware raising a softpatch interrupt when certain TM instructions that need KVM assistance are executed in the guest. Althought some TM instructions per Power ISA are invalid forms they can raise a softpatch interrupt too. For instance, 'tresume.' instruction as defined in the ISA must have bit 31 set (1), but an instruction that matches 'tresume.' PO and XO opcode fields but has bit 31 not set (0), like 0x7cfe9ddc, also raises a softpatch interrupt. Similarly for 'treclaim.' and 'trechkpt.' instructions with bit 31 = 0, i.e. 0x7c00075c and 0x7c0007dc, respectively. Hence, if a code like the following is executed in the guest it will raise a softpatch interrupt just like a 'tresume.' when the TM facility is enabled ('tabort. 0' in the example is used only to enable the TM facility): int main() { asm("tabort. 0; .long 0x7cfe9ddc;"); } Currently in such a case KVM throws a complete trace like: [345523.705984] WARNING: CPU: 24 PID: 64413 at arch/powerpc/kvm/book3s_hv_tm.c:211 kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv] [345523.705985] Modules linked in: kvm_hv(E) xt_conntrack ipt_REJECT nf_reject_ipv4 xt_tcpudp ip6table_mangle ip6table_nat iptable_mangle iptable_nat nf_nat nf_conntrack nf_defrag_ipv6 nf_defrag_ipv4 ebtable_filter ebtables ip6table_filter ip6_tables iptable_filter bridge stp llc sch_fq_codel ipmi_powernv at24 vmx_crypto ipmi_devintf ipmi_msghandler ibmpowernv uio_pdrv_genirq kvm opal_prd uio leds_powernv ib_iser rdma_cm iw_cm ib_cm ib_core iscsi_tcp libiscsi_tcp libiscsi scsi_transport_iscsi ip_tables x_tables autofs4 btrfs blake2b_generic zstd_compress raid10 raid456 async_raid6_recov async_memcpy async_pq async_xor async_tx libcrc32c xor raid6_pq raid1 raid0 multipath linear tg3 crct10dif_vpmsum crc32c_vpmsum ipr [last unloaded: kvm_hv] [345523.706030] CPU: 24 PID: 64413 Comm: CPU 0/KVM Tainted: G W E 5.5.0+ #1 [345523.706031] NIP: c0080000072cb9c0 LR: c0080000072b5e80 CTR: c0080000085c7850 [345523.706034] REGS: c000000399467680 TRAP: 0700 Tainted: G W E (5.5.0+) [345523.706034] MSR: 900000010282b033 <SF,HV,VEC,VSX,EE,FP,ME,IR,DR,RI,LE,TM[E]> CR: 24022428 XER: 00000000 [345523.706042] CFAR: c0080000072b5e7c IRQMASK: 0 GPR00: c0080000072b5e80 c000000399467910 c0080000072db500 c000000375ccc720 GPR04: c000000375ccc720 00000003fbec0000 0000a10395dda5a6 0000000000000000 GPR08: 000000007cfe9ddc 7cfe9ddc000005dc 7cfe9ddc7c0005dc c0080000072cd530 GPR12: c0080000085c7850 c0000003fffeb800 0000000000000001 00007dfb737f0000 GPR16: c0002001edcca558 0000000000000000 0000000000000000 0000000000000001 GPR20: c000000001b21258 c0002001edcca558 0000000000000018 0000000000000000 GPR24: 0000000001000000 ffffffffffffffff 0000000000000001 0000000000001500 GPR28: c0002001edcc4278 c00000037dd80000 800000050280f033 c000000375ccc720 [345523.706062] NIP [c0080000072cb9c0] kvmhv_p9_tm_emulation+0x68/0x620 [kvm_hv] [345523.706065] LR [c0080000072b5e80] kvmppc_handle_exit_hv.isra.53+0x3e8/0x798 [kvm_hv] [345523.706066] Call Trace: [345523.706069] [c000000399467910] [c000000399467940] 0xc000000399467940 (unreliable) [345523.706071] [c000000399467950] [c000000399467980] 0xc000000399467980 [345523.706075] [c0000003994679f0] [c0080000072bd1c4] kvmhv_run_single_vcpu+0xa1c/0xb80 [kvm_hv] [345523.706079] [c000000399467ac0] [c0080000072bd8e0] kvmppc_vcpu_run_hv+0x5b8/0xb00 [kvm_hv] [345523.706087] [c000000399467b90] [c0080000085c93cc] kvmppc_vcpu_run+0x34/0x48 [kvm] [345523.706095] [c000000399467bb0] [c0080000085c582c] kvm_arch_vcpu_ioctl_run+0x244/0x420 [kvm] [345523.706101] [c000000399467c40] [c0080000085b7498] kvm_vcpu_ioctl+0x3d0/0x7b0 [kvm] [345523.706105] [c000000399467db0] [c0000000004adf9c] ksys_ioctl+0x13c/0x170 [345523.706107] [c000000399467e00] [c0000000004adff8] sys_ioctl+0x28/0x80 [345523.706111] [c000000399467e20] [c00000000000b278] system_call+0x5c/0x68 [345523.706112] Instruction dump: [345523.706114] 419e0390 7f8a4840 409d0048 6d497c00 2f89075d 419e021c 6d497c00 2f8907dd [345523.706119] 419e01c0 6d497c00 2f8905dd 419e00a4 <0fe00000> 38210040 38600000 ebc1fff0 and then treats the executed instruction as a 'nop'. However the POWER9 User's Manual, in section "4.6.10 Book II Invalid Forms", informs that for TM instructions bit 31 is in fact ignored, thus for the TM-related invalid forms ignoring bit 31 and handling them like the valid forms is an acceptable way to handle them. POWER8 behaves the same way too. This commit changes the handling of the cases here described by treating the TM-related invalid forms that can generate a softpatch interrupt just like their valid forms (w/ bit 31 = 1) instead of as a 'nop' and by gently reporting any other unrecognized case to the host and treating it as illegal instruction instead of throwing a trace and treating it as a 'nop'. Signed-off-by: Gustavo Romero <gromero@linux.ibm.com> Reviewed-by: Segher Boessenkool <segher@kernel.crashing.org> Acked-By: Michael Neuling <mikey@neuling.org> Reviewed-by: Leonardo Bras <leonardo@linux.ibm.com> Signed-off-by: Paul Mackerras <paulus@ozlabs.org> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-08-26KVM: Pass MMU notifier range flags to kvm_unmap_hva_range()Will Deacon
commit fdfe7cbd58806522e799e2a50a15aee7f2cbb7b6 upstream. The 'flags' field of 'struct mmu_notifier_range' is used to indicate whether invalidate_range_{start,end}() are permitted to block. In the case of kvm_mmu_notifier_invalidate_range_start(), this field is not forwarded on to the architecture-specific implementation of kvm_unmap_hva_range() and therefore the backend cannot sensibly decide whether or not to block. Add an extra 'flags' parameter to kvm_unmap_hva_range() so that architectures are aware as to whether or not they are permitted to block. Cc: <stable@vger.kernel.org> Cc: Marc Zyngier <maz@kernel.org> Cc: Suzuki K Poulose <suzuki.poulose@arm.com> Cc: James Morse <james.morse@arm.com> Signed-off-by: Will Deacon <will@kernel.org> Message-Id: <20200811102725.7121-2-will@kernel.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> [will: Backport to 4.19; use 'blockable' instead of non-existent range flags] Signed-off-by: Will Deacon <will@kernel.org> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-08-21powerpc: Fix circular dependency between percpu.h and mmu.hMichael Ellerman
commit 0c83b277ada72b585e6a3e52b067669df15bcedb upstream. Recently random.h started including percpu.h (see commit f227e3ec3b5c ("random32: update the net random state on interrupt and activity")), which broke corenet64_smp_defconfig: In file included from /linux/arch/powerpc/include/asm/paca.h:18, from /linux/arch/powerpc/include/asm/percpu.h:13, from /linux/include/linux/random.h:14, from /linux/lib/uuid.c:14: /linux/arch/powerpc/include/asm/mmu.h:139:22: error: unknown type name 'next_tlbcam_idx' 139 | DECLARE_PER_CPU(int, next_tlbcam_idx); This is due to a circular header dependency: asm/mmu.h includes asm/percpu.h, which includes asm/paca.h, which includes asm/mmu.h Which means DECLARE_PER_CPU() isn't defined when mmu.h needs it. We can fix it by moving the include of paca.h below the include of asm-generic/percpu.h. This moves the include of paca.h out of the #ifdef __powerpc64__, but that is OK because paca.h is almost entirely inside #ifdef CONFIG_PPC64 anyway. It also moves the include of paca.h out of the #ifdef CONFIG_SMP, which could possibly break something, but seems to have no ill effects. Fixes: f227e3ec3b5c ("random32: update the net random state on interrupt and activity") Cc: stable@vger.kernel.org # v5.8 Reported-by: Stephen Rothwell <sfr@canb.auug.org.au> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200804130558.292328-1-mpe@ellerman.id.au Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-06-25powerpc/64s/pgtable: fix an undefined behaviourQian Cai
[ Upstream commit c2e929b18cea6cbf71364f22d742d9aad7f4677a ] Booting a power9 server with hash MMU could trigger an undefined behaviour because pud_offset(p4d, 0) will do, 0 >> (PAGE_SHIFT:16 + PTE_INDEX_SIZE:8 + H_PMD_INDEX_SIZE:10) Fix it by converting pud_index() and friends to static inline functions. UBSAN: shift-out-of-bounds in arch/powerpc/mm/ptdump/ptdump.c:282:15 shift exponent 34 is too large for 32-bit type 'int' CPU: 6 PID: 1 Comm: swapper/0 Not tainted 5.6.0-rc4-next-20200303+ #13 Call Trace: dump_stack+0xf4/0x164 (unreliable) ubsan_epilogue+0x18/0x78 __ubsan_handle_shift_out_of_bounds+0x160/0x21c walk_pagetables+0x2cc/0x700 walk_pud at arch/powerpc/mm/ptdump/ptdump.c:282 (inlined by) walk_pagetables at arch/powerpc/mm/ptdump/ptdump.c:311 ptdump_check_wx+0x8c/0xf0 mark_rodata_ro+0x48/0x80 kernel_init+0x74/0x194 ret_from_kernel_thread+0x5c/0x74 Suggested-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Qian Cai <cai@lca.pw> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Reviewed-by: Christophe Leroy <christophe.leroy@c-s.fr> Link: https://lore.kernel.org/r/20200306044852.3236-1-cai@lca.pw Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-06-25powerpc/64: Don't initialise init_task->thread.regsMichael Ellerman
[ Upstream commit 7ffa8b7dc11752827329e4e84a574ea6aaf24716 ] Aneesh increased the size of struct pt_regs by 16 bytes and started seeing this WARN_ON: smp: Bringing up secondary CPUs ... ------------[ cut here ]------------ WARNING: CPU: 0 PID: 0 at arch/powerpc/kernel/process.c:455 giveup_all+0xb4/0x110 Modules linked in: CPU: 0 PID: 0 Comm: swapper/0 Not tainted 5.7.0-rc2-gcc-8.2.0-1.g8f6a41f-default+ #318 NIP: c00000000001a2b4 LR: c00000000001a29c CTR: c0000000031d0000 REGS: c0000000026d3980 TRAP: 0700 Not tainted (5.7.0-rc2-gcc-8.2.0-1.g8f6a41f-default+) MSR: 800000000282b033 <SF,VEC,VSX,EE,FP,ME,IR,DR,RI,LE> CR: 48048224 XER: 00000000 CFAR: c000000000019cc8 IRQMASK: 1 GPR00: c00000000001a264 c0000000026d3c20 c0000000026d7200 800000000280b033 GPR04: 0000000000000001 0000000000000000 0000000000000077 30206d7372203164 GPR08: 0000000000002000 0000000002002000 800000000280b033 3230303030303030 GPR12: 0000000000008800 c0000000031d0000 0000000000800050 0000000002000066 GPR16: 000000000309a1a0 000000000309a4b0 000000000309a2d8 000000000309a890 GPR20: 00000000030d0098 c00000000264da40 00000000fd620000 c0000000ff798080 GPR24: c00000000264edf0 c0000001007469f0 00000000fd620000 c0000000020e5e90 GPR28: c00000000264edf0 c00000000264d200 000000001db60000 c00000000264d200 NIP [c00000000001a2b4] giveup_all+0xb4/0x110 LR [c00000000001a29c] giveup_all+0x9c/0x110 Call Trace: [c0000000026d3c20] [c00000000001a264] giveup_all+0x64/0x110 (unreliable) [c0000000026d3c90] [c00000000001ae34] __switch_to+0x104/0x480 [c0000000026d3cf0] [c000000000e0b8a0] __schedule+0x320/0x970 [c0000000026d3dd0] [c000000000e0c518] schedule_idle+0x38/0x70 [c0000000026d3df0] [c00000000019c7c8] do_idle+0x248/0x3f0 [c0000000026d3e70] [c00000000019cbb8] cpu_startup_entry+0x38/0x40 [c0000000026d3ea0] [c000000000011bb0] rest_init+0xe0/0xf8 [c0000000026d3ed0] [c000000002004820] start_kernel+0x990/0x9e0 [c0000000026d3f90] [c00000000000c49c] start_here_common+0x1c/0x400 Which was unexpected. The warning is checking the thread.regs->msr value of the task we are switching from: usermsr = tsk->thread.regs->msr; ... WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC))); ie. if MSR_VSX is set then both of MSR_FP and MSR_VEC are also set. Dumping tsk->thread.regs->msr we see that it's: 0x1db60000 Which is not a normal looking MSR, in fact the only valid bit is MSR_VSX, all the other bits are reserved in the current definition of the MSR. We can see from the oops that it was swapper/0 that we were switching from when we hit the warning, ie. init_task. So its thread.regs points to the base (high addresses) in init_stack. Dumping the content of init_task->thread.regs, with the members of pt_regs annotated (the 16 bytes larger version), we see: 0000000000000000 c000000002780080 gpr[0] gpr[1] 0000000000000000 c000000002666008 gpr[2] gpr[3] c0000000026d3ed0 0000000000000078 gpr[4] gpr[5] c000000000011b68 c000000002780080 gpr[6] gpr[7] 0000000000000000 0000000000000000 gpr[8] gpr[9] c0000000026d3f90 0000800000002200 gpr[10] gpr[11] c000000002004820 c0000000026d7200 gpr[12] gpr[13] 000000001db60000 c0000000010aabe8 gpr[14] gpr[15] c0000000010aabe8 c0000000010aabe8 gpr[16] gpr[17] c00000000294d598 0000000000000000 gpr[18] gpr[19] 0000000000000000 0000000000001ff8 gpr[20] gpr[21] 0000000000000000 c00000000206d608 gpr[22] gpr[23] c00000000278e0cc 0000000000000000 gpr[24] gpr[25] 000000002fff0000 c000000000000000 gpr[26] gpr[27] 0000000002000000 0000000000000028 gpr[28] gpr[29] 000000001db60000 0000000004750000 gpr[30] gpr[31] 0000000002000000 000000001db60000 nip msr 0000000000000000 0000000000000000 orig_r3 ctr c00000000000c49c 0000000000000000 link xer 0000000000000000 0000000000000000 ccr softe 0000000000000000 0000000000000000 trap dar 0000000000000000 0000000000000000 dsisr result 0000000000000000 0000000000000000 ppr kuap 0000000000000000 0000000000000000 pad[2] pad[3] This looks suspiciously like stack frames, not a pt_regs. If we look closely we can see return addresses from the stack trace above, c000000002004820 (start_kernel) and c00000000000c49c (start_here_common). init_task->thread.regs is setup at build time in processor.h: #define INIT_THREAD { \ .ksp = INIT_SP, \ .regs = (struct pt_regs *)INIT_SP - 1, /* XXX bogus, I think */ \ The early boot code where we setup the initial stack is: LOAD_REG_ADDR(r3,init_thread_union) /* set up a stack pointer */ LOAD_REG_IMMEDIATE(r1,THREAD_SIZE) add r1,r3,r1 li r0,0 stdu r0,-STACK_FRAME_OVERHEAD(r1) Which creates a stack frame of size 112 bytes (STACK_FRAME_OVERHEAD). Which is far too small to contain a pt_regs. So the result is init_task->thread.regs is pointing at some stack frames on the init stack, not at a pt_regs. We have gotten away with this for so long because with pt_regs at its current size the MSR happens to point into the first frame, at a location that is not written to by the early asm. With the 16 byte expansion the MSR falls into the second frame, which is used by the compiler, and collides with a saved register that tends to be non-zero. As far as I can see this has been wrong since the original merge of 64-bit ppc support, back in 2002. Conceptually swapper should have no regs, it never entered from userspace, and in fact that's what we do on 32-bit. It's also presumably what the "bogus" comment is referring to. So I think the right fix is to just not-initialise regs at all. I'm slightly worried this will break some code that isn't prepared for a NULL regs, but we'll have to see. Remove the comment in head_64.S which refers to us setting up the regs (even though we never did), and is otherwise not really accurate any more. Reported-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200428123130.73078-1-mpe@ellerman.id.au Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-04-17powerpc: Make setjmp/longjmp signature standardClement Courbet
commit c17eb4dca5a353a9dbbb8ad6934fe57af7165e91 upstream. Declaring setjmp()/longjmp() as taking longs makes the signature non-standard, and makes clang complain. In the past, this has been worked around by adding -ffreestanding to the compile flags. The implementation looks like it only ever propagates the value (in longjmp) or sets it to 1 (in setjmp), and we only call longjmp with integer parameters. This allows removing -ffreestanding from the compilation flags. Fixes: c9029ef9c957 ("powerpc: Avoid clang warnings around setjmp and longjmp") Cc: stable@vger.kernel.org # v4.14+ Signed-off-by: Clement Courbet <courbet@google.com> Reviewed-by: Nathan Chancellor <natechancellor@gmail.com> Tested-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200330080400.124803-1-courbet@google.com Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17powerpc: Add attributes for setjmp/longjmpSegher Boessenkool
commit aa497d4352414aad22e792b35d0aaaa12bbc37c5 upstream. The setjmp function should be declared as "returns_twice", or bad things can happen[1]. This does not actually change generated code in my testing. The longjmp function should be declared as "noreturn", so that the compiler can optimise calls to it better. This makes the generated code a little shorter. 1: https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-returns_005ftwice-function-attribute Signed-off-by: Segher Boessenkool <segher@kernel.crashing.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/c02ce4a573f3bac907e2c70957a2d1275f910013.1567605586.git.segher@kernel.crashing.org Signed-off-by: Nathan Chancellor <natechancellor@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17powerpc/hash64/devmap: Use H_PAGE_THP_HUGE when setting up huge devmap PTE ↵Aneesh Kumar K.V
entries commit 36b78402d97a3b9aeab136feb9b00d8647ec2c20 upstream. H_PAGE_THP_HUGE is used to differentiate between a THP hugepage and hugetlb hugepage entries. The difference is WRT how we handle hash fault on these address. THP address enables MPSS in segments. We want to manage devmap hugepage entries similar to THP pt entries. Hence use H_PAGE_THP_HUGE for devmap huge PTE entries. With current code while handling hash PTE fault, we do set is_thp = true when finding devmap PTE huge PTE entries. Current code also does the below sequence we setting up huge devmap entries. entry = pmd_mkhuge(pfn_t_pmd(pfn, prot)); if (pfn_t_devmap(pfn)) entry = pmd_mkdevmap(entry); In that case we would find both H_PAGE_THP_HUGE and PAGE_DEVMAP set for huge devmap PTE entries. This results in false positive error like below. kernel BUG at /home/kvaneesh/src/linux/mm/memory.c:4321! Oops: Exception in kernel mode, sig: 5 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries Modules linked in: CPU: 56 PID: 67996 Comm: t_mmap_dio Not tainted 5.6.0-rc4-59640-g371c804dedbc #128 .... NIP [c00000000044c9e4] __follow_pte_pmd+0x264/0x900 LR [c0000000005d45f8] dax_writeback_one+0x1a8/0x740 Call Trace: str_spec.74809+0x22ffb4/0x2d116c (unreliable) dax_writeback_one+0x1a8/0x740 dax_writeback_mapping_range+0x26c/0x700 ext4_dax_writepages+0x150/0x5a0 do_writepages+0x68/0x180 __filemap_fdatawrite_range+0x138/0x180 file_write_and_wait_range+0xa4/0x110 ext4_sync_file+0x370/0x6e0 vfs_fsync_range+0x70/0xf0 sys_msync+0x220/0x2e0 system_call+0x5c/0x68 This is because our pmd_trans_huge check doesn't exclude _PAGE_DEVMAP. To make this all consistent, update pmd_mkdevmap to set H_PAGE_THP_HUGE and pmd_trans_huge check now excludes _PAGE_DEVMAP correctly. Fixes: ebd31197931d ("powerpc/mm: Add devmap support for ppc64") Cc: stable@vger.kernel.org # v4.13+ Signed-off-by: Aneesh Kumar K.V <aneesh.kumar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200313094842.351830-1-aneesh.kumar@linux.ibm.com Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-04-17powerpc/pseries: Avoid NULL pointer dereference when drmem is unavailableLibor Pechacek
commit a83836dbc53e96f13fec248ecc201d18e1e3111d upstream. In guests without hotplugagble memory drmem structure is only zero initialized. Trying to manipulate DLPAR parameters results in a crash. $ echo "memory add count 1" > /sys/kernel/dlpar Oops: Kernel access of bad area, sig: 11 [#1] LE PAGE_SIZE=64K MMU=Hash SMP NR_CPUS=2048 NUMA pSeries ... NIP: c0000000000ff294 LR: c0000000000ff248 CTR: 0000000000000000 REGS: c0000000fb9d3880 TRAP: 0300 Tainted: G E (5.5.0-rc6-2-default) MSR: 8000000000009033 <SF,EE,ME,IR,DR,RI,LE> CR: 28242428 XER: 20000000 CFAR: c0000000009a6c10 DAR: 0000000000000010 DSISR: 40000000 IRQMASK: 0 ... NIP dlpar_memory+0x6e4/0xd00 LR dlpar_memory+0x698/0xd00 Call Trace: dlpar_memory+0x698/0xd00 (unreliable) handle_dlpar_errorlog+0xc0/0x190 dlpar_store+0x198/0x4a0 kobj_attr_store+0x30/0x50 sysfs_kf_write+0x64/0x90 kernfs_fop_write+0x1b0/0x290 __vfs_write+0x3c/0x70 vfs_write+0xd0/0x260 ksys_write+0xdc/0x130 system_call+0x5c/0x68 Taking closer look at the code, I can see that for_each_drmem_lmb is a macro expanding into `for (lmb = &drmem_info->lmbs[0]; lmb <= &drmem_info->lmbs[drmem_info->n_lmbs - 1]; lmb++)`. When drmem_info->lmbs is NULL, the loop would iterate through the whole address range if it weren't stopped by the NULL pointer dereference on the next line. This patch aligns for_each_drmem_lmb and for_each_drmem_lmb_in_range macro behavior with the common C semantics, where the end marker does not belong to the scanned range, and alters get_lmb_range() semantics. As a side effect, the wraparound observed in the crash is prevented. Fixes: 6c6ea53725b3 ("powerpc/mm: Separate ibm, dynamic-memory data from DT format") Cc: stable@vger.kernel.org # v4.16+ Signed-off-by: Libor Pechacek <lpechacek@suse.cz> Signed-off-by: Michal Suchanek <msuchanek@suse.de> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20200131132829.10281-1-msuchanek@suse.de Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-27powerpc/kgdb: add kgdb_arch_set/remove_breakpoint()Christophe Leroy
[ Upstream commit fb978ca207743badfe7efd9eebe68bcbb4969f79 ] Generic implementation fails to remove breakpoints after init when CONFIG_STRICT_KERNEL_RWX is selected: [ 13.251285] KGDB: BP remove failed: c001c338 [ 13.259587] kgdbts: ERROR PUT: end of test buffer on 'do_fork_test' line 8 expected OK got $E14#aa [ 13.268969] KGDB: re-enter exception: ALL breakpoints killed [ 13.275099] CPU: 0 PID: 1 Comm: init Not tainted 4.18.0-g82bbb913ffd8 #860 [ 13.282836] Call Trace: [ 13.285313] [c60e1ba0] [c0080ef0] kgdb_handle_exception+0x6f4/0x720 (unreliable) [ 13.292618] [c60e1c30] [c000e97c] kgdb_handle_breakpoint+0x3c/0x98 [ 13.298709] [c60e1c40] [c000af54] program_check_exception+0x104/0x700 [ 13.305083] [c60e1c60] [c000e45c] ret_from_except_full+0x0/0x4 [ 13.310845] [c60e1d20] [c02a22ac] run_simple_test+0x2b4/0x2d4 [ 13.316532] [c60e1d30] [c0081698] put_packet+0xb8/0x158 [ 13.321694] [c60e1d60] [c00820b4] gdb_serial_stub+0x230/0xc4c [ 13.327374] [c60e1dc0] [c0080af8] kgdb_handle_exception+0x2fc/0x720 [ 13.333573] [c60e1e50] [c000e928] kgdb_singlestep+0xb4/0xcc [ 13.339068] [c60e1e70] [c000ae1c] single_step_exception+0x90/0xac [ 13.345100] [c60e1e80] [c000e45c] ret_from_except_full+0x0/0x4 [ 13.350865] [c60e1f40] [c000e11c] ret_from_syscall+0x0/0x38 [ 13.356346] Kernel panic - not syncing: Recursive entry to debugger This patch creates powerpc specific version of kgdb_arch_set_breakpoint() and kgdb_arch_remove_breakpoint() using patch_instruction() Fixes: 1e0fc9d1eb2b ("powerpc/Kconfig: Enable STRICT_KERNEL_RWX for some configs") Signed-off-by: Christophe Leroy <christophe.leroy@c-s.fr> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Signed-off-by: Sasha Levin <sashal@kernel.org>
2020-01-27powerpc/archrandom: fix arch_get_random_seed_int()Ard Biesheuvel
commit b6afd1234cf93aa0d71b4be4788c47534905f0be upstream. Commit 01c9348c7620ec65 powerpc: Use hardware RNG for arch_get_random_seed_* not arch_get_random_* updated arch_get_random_[int|long]() to be NOPs, and moved the hardware RNG backing to arch_get_random_seed_[int|long]() instead. However, it failed to take into account that arch_get_random_int() was implemented in terms of arch_get_random_long(), and so we ended up with a version of the former that is essentially a NOP as well. Fix this by calling arch_get_random_seed_long() from arch_get_random_seed_int() instead. Fixes: 01c9348c7620ec65 ("powerpc: Use hardware RNG for arch_get_random_seed_* not arch_get_random_*") Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191204115015.18015-1-ardb@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2020-01-12powerpc/spinlocks: Include correct header for static keyJason A. Donenfeld
commit 6da3eced8c5f3b03340b0c395bacd552c4d52411 upstream. Recently, the spinlock implementation grew a static key optimization, but the jump_label.h header include was left out, leading to build errors: linux/arch/powerpc/include/asm/spinlock.h:44:7: error: implicit declaration of function ‘static_branch_unlikely’ 44 | if (!static_branch_unlikely(&shared_processor)) This commit adds the missing header. mpe: The build break is only seen with CONFIG_JUMP_LABEL=n. Fixes: 656c21d6af5d ("powerpc/shared: Use static key to detect shared processor") Signed-off-by: Jason A. Donenfeld <Jason@zx2c4.com> Reviewed-by: Srikar Dronamraju <srikar@linux.ibm.com> Signed-off-by: Michael Ellerman <mpe@ellerman.id.au> Link: https://lore.kernel.org/r/20191223133147.129983-1-Jason@zx2c4.com Cc: Srikar Dronamraju <srikar@linux.vnet.ibm.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>