aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
diff options
context:
space:
mode:
Diffstat (limited to 'drivers/net/ethernet/intel/i40evf/i40e_txrx.c')
-rw-r--r--drivers/net/ethernet/intel/i40evf/i40e_txrx.c2510
1 files changed, 0 insertions, 2510 deletions
diff --git a/drivers/net/ethernet/intel/i40evf/i40e_txrx.c b/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
deleted file mode 100644
index b56d22b530a7..000000000000
--- a/drivers/net/ethernet/intel/i40evf/i40e_txrx.c
+++ /dev/null
@@ -1,2510 +0,0 @@
-// SPDX-License-Identifier: GPL-2.0
-/* Copyright(c) 2013 - 2018 Intel Corporation. */
-
-#include <linux/prefetch.h>
-#include <net/busy_poll.h>
-
-#include "i40evf.h"
-#include "i40e_trace.h"
-#include "i40e_prototype.h"
-
-static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
- u32 td_tag)
-{
- return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
- ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
- ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
- ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
- ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
-}
-
-#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
-
-/**
- * i40e_unmap_and_free_tx_resource - Release a Tx buffer
- * @ring: the ring that owns the buffer
- * @tx_buffer: the buffer to free
- **/
-static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
- struct i40e_tx_buffer *tx_buffer)
-{
- if (tx_buffer->skb) {
- if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
- kfree(tx_buffer->raw_buf);
- else
- dev_kfree_skb_any(tx_buffer->skb);
- if (dma_unmap_len(tx_buffer, len))
- dma_unmap_single(ring->dev,
- dma_unmap_addr(tx_buffer, dma),
- dma_unmap_len(tx_buffer, len),
- DMA_TO_DEVICE);
- } else if (dma_unmap_len(tx_buffer, len)) {
- dma_unmap_page(ring->dev,
- dma_unmap_addr(tx_buffer, dma),
- dma_unmap_len(tx_buffer, len),
- DMA_TO_DEVICE);
- }
-
- tx_buffer->next_to_watch = NULL;
- tx_buffer->skb = NULL;
- dma_unmap_len_set(tx_buffer, len, 0);
- /* tx_buffer must be completely set up in the transmit path */
-}
-
-/**
- * i40evf_clean_tx_ring - Free any empty Tx buffers
- * @tx_ring: ring to be cleaned
- **/
-void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
-{
- unsigned long bi_size;
- u16 i;
-
- /* ring already cleared, nothing to do */
- if (!tx_ring->tx_bi)
- return;
-
- /* Free all the Tx ring sk_buffs */
- for (i = 0; i < tx_ring->count; i++)
- i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
-
- bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
- memset(tx_ring->tx_bi, 0, bi_size);
-
- /* Zero out the descriptor ring */
- memset(tx_ring->desc, 0, tx_ring->size);
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
-
- if (!tx_ring->netdev)
- return;
-
- /* cleanup Tx queue statistics */
- netdev_tx_reset_queue(txring_txq(tx_ring));
-}
-
-/**
- * i40evf_free_tx_resources - Free Tx resources per queue
- * @tx_ring: Tx descriptor ring for a specific queue
- *
- * Free all transmit software resources
- **/
-void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
-{
- i40evf_clean_tx_ring(tx_ring);
- kfree(tx_ring->tx_bi);
- tx_ring->tx_bi = NULL;
-
- if (tx_ring->desc) {
- dma_free_coherent(tx_ring->dev, tx_ring->size,
- tx_ring->desc, tx_ring->dma);
- tx_ring->desc = NULL;
- }
-}
-
-/**
- * i40evf_get_tx_pending - how many Tx descriptors not processed
- * @ring: the ring of descriptors
- * @in_sw: is tx_pending being checked in SW or HW
- *
- * Since there is no access to the ring head register
- * in XL710, we need to use our local copies
- **/
-u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw)
-{
- u32 head, tail;
-
- head = ring->next_to_clean;
- tail = readl(ring->tail);
-
- if (head != tail)
- return (head < tail) ?
- tail - head : (tail + ring->count - head);
-
- return 0;
-}
-
-/**
- * i40evf_detect_recover_hung - Function to detect and recover hung_queues
- * @vsi: pointer to vsi struct with tx queues
- *
- * VSI has netdev and netdev has TX queues. This function is to check each of
- * those TX queues if they are hung, trigger recovery by issuing SW interrupt.
- **/
-void i40evf_detect_recover_hung(struct i40e_vsi *vsi)
-{
- struct i40e_ring *tx_ring = NULL;
- struct net_device *netdev;
- unsigned int i;
- int packets;
-
- if (!vsi)
- return;
-
- if (test_bit(__I40E_VSI_DOWN, vsi->state))
- return;
-
- netdev = vsi->netdev;
- if (!netdev)
- return;
-
- if (!netif_carrier_ok(netdev))
- return;
-
- for (i = 0; i < vsi->back->num_active_queues; i++) {
- tx_ring = &vsi->back->tx_rings[i];
- if (tx_ring && tx_ring->desc) {
- /* If packet counter has not changed the queue is
- * likely stalled, so force an interrupt for this
- * queue.
- *
- * prev_pkt_ctr would be negative if there was no
- * pending work.
- */
- packets = tx_ring->stats.packets & INT_MAX;
- if (tx_ring->tx_stats.prev_pkt_ctr == packets) {
- i40evf_force_wb(vsi, tx_ring->q_vector);
- continue;
- }
-
- /* Memory barrier between read of packet count and call
- * to i40evf_get_tx_pending()
- */
- smp_rmb();
- tx_ring->tx_stats.prev_pkt_ctr =
- i40evf_get_tx_pending(tx_ring, true) ? packets : -1;
- }
- }
-}
-
-#define WB_STRIDE 4
-
-/**
- * i40e_clean_tx_irq - Reclaim resources after transmit completes
- * @vsi: the VSI we care about
- * @tx_ring: Tx ring to clean
- * @napi_budget: Used to determine if we are in netpoll
- *
- * Returns true if there's any budget left (e.g. the clean is finished)
- **/
-static bool i40e_clean_tx_irq(struct i40e_vsi *vsi,
- struct i40e_ring *tx_ring, int napi_budget)
-{
- u16 i = tx_ring->next_to_clean;
- struct i40e_tx_buffer *tx_buf;
- struct i40e_tx_desc *tx_desc;
- unsigned int total_bytes = 0, total_packets = 0;
- unsigned int budget = vsi->work_limit;
-
- tx_buf = &tx_ring->tx_bi[i];
- tx_desc = I40E_TX_DESC(tx_ring, i);
- i -= tx_ring->count;
-
- do {
- struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
-
- /* if next_to_watch is not set then there is no work pending */
- if (!eop_desc)
- break;
-
- /* prevent any other reads prior to eop_desc */
- smp_rmb();
-
- i40e_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
- /* if the descriptor isn't done, no work yet to do */
- if (!(eop_desc->cmd_type_offset_bsz &
- cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
- break;
-
- /* clear next_to_watch to prevent false hangs */
- tx_buf->next_to_watch = NULL;
-
- /* update the statistics for this packet */
- total_bytes += tx_buf->bytecount;
- total_packets += tx_buf->gso_segs;
-
- /* free the skb */
- napi_consume_skb(tx_buf->skb, napi_budget);
-
- /* unmap skb header data */
- dma_unmap_single(tx_ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
-
- /* clear tx_buffer data */
- tx_buf->skb = NULL;
- dma_unmap_len_set(tx_buf, len, 0);
-
- /* unmap remaining buffers */
- while (tx_desc != eop_desc) {
- i40e_trace(clean_tx_irq_unmap,
- tx_ring, tx_desc, tx_buf);
-
- tx_buf++;
- tx_desc++;
- i++;
- if (unlikely(!i)) {
- i -= tx_ring->count;
- tx_buf = tx_ring->tx_bi;
- tx_desc = I40E_TX_DESC(tx_ring, 0);
- }
-
- /* unmap any remaining paged data */
- if (dma_unmap_len(tx_buf, len)) {
- dma_unmap_page(tx_ring->dev,
- dma_unmap_addr(tx_buf, dma),
- dma_unmap_len(tx_buf, len),
- DMA_TO_DEVICE);
- dma_unmap_len_set(tx_buf, len, 0);
- }
- }
-
- /* move us one more past the eop_desc for start of next pkt */
- tx_buf++;
- tx_desc++;
- i++;
- if (unlikely(!i)) {
- i -= tx_ring->count;
- tx_buf = tx_ring->tx_bi;
- tx_desc = I40E_TX_DESC(tx_ring, 0);
- }
-
- prefetch(tx_desc);
-
- /* update budget accounting */
- budget--;
- } while (likely(budget));
-
- i += tx_ring->count;
- tx_ring->next_to_clean = i;
- u64_stats_update_begin(&tx_ring->syncp);
- tx_ring->stats.bytes += total_bytes;
- tx_ring->stats.packets += total_packets;
- u64_stats_update_end(&tx_ring->syncp);
- tx_ring->q_vector->tx.total_bytes += total_bytes;
- tx_ring->q_vector->tx.total_packets += total_packets;
-
- if (tx_ring->flags & I40E_TXR_FLAGS_WB_ON_ITR) {
- /* check to see if there are < 4 descriptors
- * waiting to be written back, then kick the hardware to force
- * them to be written back in case we stay in NAPI.
- * In this mode on X722 we do not enable Interrupt.
- */
- unsigned int j = i40evf_get_tx_pending(tx_ring, false);
-
- if (budget &&
- ((j / WB_STRIDE) == 0) && (j > 0) &&
- !test_bit(__I40E_VSI_DOWN, vsi->state) &&
- (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
- tx_ring->arm_wb = true;
- }
-
- /* notify netdev of completed buffers */
- netdev_tx_completed_queue(txring_txq(tx_ring),
- total_packets, total_bytes);
-
-#define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
- if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
- (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
- /* Make sure that anybody stopping the queue after this
- * sees the new next_to_clean.
- */
- smp_mb();
- if (__netif_subqueue_stopped(tx_ring->netdev,
- tx_ring->queue_index) &&
- !test_bit(__I40E_VSI_DOWN, vsi->state)) {
- netif_wake_subqueue(tx_ring->netdev,
- tx_ring->queue_index);
- ++tx_ring->tx_stats.restart_queue;
- }
- }
-
- return !!budget;
-}
-
-/**
- * i40evf_enable_wb_on_itr - Arm hardware to do a wb, interrupts are not enabled
- * @vsi: the VSI we care about
- * @q_vector: the vector on which to enable writeback
- *
- **/
-static void i40e_enable_wb_on_itr(struct i40e_vsi *vsi,
- struct i40e_q_vector *q_vector)
-{
- u16 flags = q_vector->tx.ring[0].flags;
- u32 val;
-
- if (!(flags & I40E_TXR_FLAGS_WB_ON_ITR))
- return;
-
- if (q_vector->arm_wb_state)
- return;
-
- val = I40E_VFINT_DYN_CTLN1_WB_ON_ITR_MASK |
- I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK; /* set noitr */
-
- wr32(&vsi->back->hw,
- I40E_VFINT_DYN_CTLN1(q_vector->reg_idx), val);
- q_vector->arm_wb_state = true;
-}
-
-/**
- * i40evf_force_wb - Issue SW Interrupt so HW does a wb
- * @vsi: the VSI we care about
- * @q_vector: the vector on which to force writeback
- *
- **/
-void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
-{
- u32 val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
- I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
- I40E_VFINT_DYN_CTLN1_SWINT_TRIG_MASK |
- I40E_VFINT_DYN_CTLN1_SW_ITR_INDX_ENA_MASK
- /* allow 00 to be written to the index */;
-
- wr32(&vsi->back->hw,
- I40E_VFINT_DYN_CTLN1(q_vector->reg_idx),
- val);
-}
-
-static inline bool i40e_container_is_rx(struct i40e_q_vector *q_vector,
- struct i40e_ring_container *rc)
-{
- return &q_vector->rx == rc;
-}
-
-static inline unsigned int i40e_itr_divisor(struct i40e_q_vector *q_vector)
-{
- unsigned int divisor;
-
- switch (q_vector->adapter->link_speed) {
- case I40E_LINK_SPEED_40GB:
- divisor = I40E_ITR_ADAPTIVE_MIN_INC * 1024;
- break;
- case I40E_LINK_SPEED_25GB:
- case I40E_LINK_SPEED_20GB:
- divisor = I40E_ITR_ADAPTIVE_MIN_INC * 512;
- break;
- default:
- case I40E_LINK_SPEED_10GB:
- divisor = I40E_ITR_ADAPTIVE_MIN_INC * 256;
- break;
- case I40E_LINK_SPEED_1GB:
- case I40E_LINK_SPEED_100MB:
- divisor = I40E_ITR_ADAPTIVE_MIN_INC * 32;
- break;
- }
-
- return divisor;
-}
-
-/**
- * i40e_update_itr - update the dynamic ITR value based on statistics
- * @q_vector: structure containing interrupt and ring information
- * @rc: structure containing ring performance data
- *
- * Stores a new ITR value based on packets and byte
- * counts during the last interrupt. The advantage of per interrupt
- * computation is faster updates and more accurate ITR for the current
- * traffic pattern. Constants in this function were computed
- * based on theoretical maximum wire speed and thresholds were set based
- * on testing data as well as attempting to minimize response time
- * while increasing bulk throughput.
- **/
-static void i40e_update_itr(struct i40e_q_vector *q_vector,
- struct i40e_ring_container *rc)
-{
- unsigned int avg_wire_size, packets, bytes, itr;
- unsigned long next_update = jiffies;
-
- /* If we don't have any rings just leave ourselves set for maximum
- * possible latency so we take ourselves out of the equation.
- */
- if (!rc->ring || !ITR_IS_DYNAMIC(rc->ring->itr_setting))
- return;
-
- /* For Rx we want to push the delay up and default to low latency.
- * for Tx we want to pull the delay down and default to high latency.
- */
- itr = i40e_container_is_rx(q_vector, rc) ?
- I40E_ITR_ADAPTIVE_MIN_USECS | I40E_ITR_ADAPTIVE_LATENCY :
- I40E_ITR_ADAPTIVE_MAX_USECS | I40E_ITR_ADAPTIVE_LATENCY;
-
- /* If we didn't update within up to 1 - 2 jiffies we can assume
- * that either packets are coming in so slow there hasn't been
- * any work, or that there is so much work that NAPI is dealing
- * with interrupt moderation and we don't need to do anything.
- */
- if (time_after(next_update, rc->next_update))
- goto clear_counts;
-
- /* If itr_countdown is set it means we programmed an ITR within
- * the last 4 interrupt cycles. This has a side effect of us
- * potentially firing an early interrupt. In order to work around
- * this we need to throw out any data received for a few
- * interrupts following the update.
- */
- if (q_vector->itr_countdown) {
- itr = rc->target_itr;
- goto clear_counts;
- }
-
- packets = rc->total_packets;
- bytes = rc->total_bytes;
-
- if (i40e_container_is_rx(q_vector, rc)) {
- /* If Rx there are 1 to 4 packets and bytes are less than
- * 9000 assume insufficient data to use bulk rate limiting
- * approach unless Tx is already in bulk rate limiting. We
- * are likely latency driven.
- */
- if (packets && packets < 4 && bytes < 9000 &&
- (q_vector->tx.target_itr & I40E_ITR_ADAPTIVE_LATENCY)) {
- itr = I40E_ITR_ADAPTIVE_LATENCY;
- goto adjust_by_size;
- }
- } else if (packets < 4) {
- /* If we have Tx and Rx ITR maxed and Tx ITR is running in
- * bulk mode and we are receiving 4 or fewer packets just
- * reset the ITR_ADAPTIVE_LATENCY bit for latency mode so
- * that the Rx can relax.
- */
- if (rc->target_itr == I40E_ITR_ADAPTIVE_MAX_USECS &&
- (q_vector->rx.target_itr & I40E_ITR_MASK) ==
- I40E_ITR_ADAPTIVE_MAX_USECS)
- goto clear_counts;
- } else if (packets > 32) {
- /* If we have processed over 32 packets in a single interrupt
- * for Tx assume we need to switch over to "bulk" mode.
- */
- rc->target_itr &= ~I40E_ITR_ADAPTIVE_LATENCY;
- }
-
- /* We have no packets to actually measure against. This means
- * either one of the other queues on this vector is active or
- * we are a Tx queue doing TSO with too high of an interrupt rate.
- *
- * Between 4 and 56 we can assume that our current interrupt delay
- * is only slightly too low. As such we should increase it by a small
- * fixed amount.
- */
- if (packets < 56) {
- itr = rc->target_itr + I40E_ITR_ADAPTIVE_MIN_INC;
- if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
- itr &= I40E_ITR_ADAPTIVE_LATENCY;
- itr += I40E_ITR_ADAPTIVE_MAX_USECS;
- }
- goto clear_counts;
- }
-
- if (packets <= 256) {
- itr = min(q_vector->tx.current_itr, q_vector->rx.current_itr);
- itr &= I40E_ITR_MASK;
-
- /* Between 56 and 112 is our "goldilocks" zone where we are
- * working out "just right". Just report that our current
- * ITR is good for us.
- */
- if (packets <= 112)
- goto clear_counts;
-
- /* If packet count is 128 or greater we are likely looking
- * at a slight overrun of the delay we want. Try halving
- * our delay to see if that will cut the number of packets
- * in half per interrupt.
- */
- itr /= 2;
- itr &= I40E_ITR_MASK;
- if (itr < I40E_ITR_ADAPTIVE_MIN_USECS)
- itr = I40E_ITR_ADAPTIVE_MIN_USECS;
-
- goto clear_counts;
- }
-
- /* The paths below assume we are dealing with a bulk ITR since
- * number of packets is greater than 256. We are just going to have
- * to compute a value and try to bring the count under control,
- * though for smaller packet sizes there isn't much we can do as
- * NAPI polling will likely be kicking in sooner rather than later.
- */
- itr = I40E_ITR_ADAPTIVE_BULK;
-
-adjust_by_size:
- /* If packet counts are 256 or greater we can assume we have a gross
- * overestimation of what the rate should be. Instead of trying to fine
- * tune it just use the formula below to try and dial in an exact value
- * give the current packet size of the frame.
- */
- avg_wire_size = bytes / packets;
-
- /* The following is a crude approximation of:
- * wmem_default / (size + overhead) = desired_pkts_per_int
- * rate / bits_per_byte / (size + ethernet overhead) = pkt_rate
- * (desired_pkt_rate / pkt_rate) * usecs_per_sec = ITR value
- *
- * Assuming wmem_default is 212992 and overhead is 640 bytes per
- * packet, (256 skb, 64 headroom, 320 shared info), we can reduce the
- * formula down to
- *
- * (170 * (size + 24)) / (size + 640) = ITR
- *
- * We first do some math on the packet size and then finally bitshift
- * by 8 after rounding up. We also have to account for PCIe link speed
- * difference as ITR scales based on this.
- */
- if (avg_wire_size <= 60) {
- /* Start at 250k ints/sec */
- avg_wire_size = 4096;
- } else if (avg_wire_size <= 380) {
- /* 250K ints/sec to 60K ints/sec */
- avg_wire_size *= 40;
- avg_wire_size += 1696;
- } else if (avg_wire_size <= 1084) {
- /* 60K ints/sec to 36K ints/sec */
- avg_wire_size *= 15;
- avg_wire_size += 11452;
- } else if (avg_wire_size <= 1980) {
- /* 36K ints/sec to 30K ints/sec */
- avg_wire_size *= 5;
- avg_wire_size += 22420;
- } else {
- /* plateau at a limit of 30K ints/sec */
- avg_wire_size = 32256;
- }
-
- /* If we are in low latency mode halve our delay which doubles the
- * rate to somewhere between 100K to 16K ints/sec
- */
- if (itr & I40E_ITR_ADAPTIVE_LATENCY)
- avg_wire_size /= 2;
-
- /* Resultant value is 256 times larger than it needs to be. This
- * gives us room to adjust the value as needed to either increase
- * or decrease the value based on link speeds of 10G, 2.5G, 1G, etc.
- *
- * Use addition as we have already recorded the new latency flag
- * for the ITR value.
- */
- itr += DIV_ROUND_UP(avg_wire_size, i40e_itr_divisor(q_vector)) *
- I40E_ITR_ADAPTIVE_MIN_INC;
-
- if ((itr & I40E_ITR_MASK) > I40E_ITR_ADAPTIVE_MAX_USECS) {
- itr &= I40E_ITR_ADAPTIVE_LATENCY;
- itr += I40E_ITR_ADAPTIVE_MAX_USECS;
- }
-
-clear_counts:
- /* write back value */
- rc->target_itr = itr;
-
- /* next update should occur within next jiffy */
- rc->next_update = next_update + 1;
-
- rc->total_bytes = 0;
- rc->total_packets = 0;
-}
-
-/**
- * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
- * @tx_ring: the tx ring to set up
- *
- * Return 0 on success, negative on error
- **/
-int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
-{
- struct device *dev = tx_ring->dev;
- int bi_size;
-
- if (!dev)
- return -ENOMEM;
-
- /* warn if we are about to overwrite the pointer */
- WARN_ON(tx_ring->tx_bi);
- bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
- tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
- if (!tx_ring->tx_bi)
- goto err;
-
- /* round up to nearest 4K */
- tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
- tx_ring->size = ALIGN(tx_ring->size, 4096);
- tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
- &tx_ring->dma, GFP_KERNEL);
- if (!tx_ring->desc) {
- dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
- tx_ring->size);
- goto err;
- }
-
- tx_ring->next_to_use = 0;
- tx_ring->next_to_clean = 0;
- tx_ring->tx_stats.prev_pkt_ctr = -1;
- return 0;
-
-err:
- kfree(tx_ring->tx_bi);
- tx_ring->tx_bi = NULL;
- return -ENOMEM;
-}
-
-/**
- * i40evf_clean_rx_ring - Free Rx buffers
- * @rx_ring: ring to be cleaned
- **/
-void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
-{
- unsigned long bi_size;
- u16 i;
-
- /* ring already cleared, nothing to do */
- if (!rx_ring->rx_bi)
- return;
-
- if (rx_ring->skb) {
- dev_kfree_skb(rx_ring->skb);
- rx_ring->skb = NULL;
- }
-
- /* Free all the Rx ring sk_buffs */
- for (i = 0; i < rx_ring->count; i++) {
- struct i40e_rx_buffer *rx_bi = &rx_ring->rx_bi[i];
-
- if (!rx_bi->page)
- continue;
-
- /* Invalidate cache lines that may have been written to by
- * device so that we avoid corrupting memory.
- */
- dma_sync_single_range_for_cpu(rx_ring->dev,
- rx_bi->dma,
- rx_bi->page_offset,
- rx_ring->rx_buf_len,
- DMA_FROM_DEVICE);
-
- /* free resources associated with mapping */
- dma_unmap_page_attrs(rx_ring->dev, rx_bi->dma,
- i40e_rx_pg_size(rx_ring),
- DMA_FROM_DEVICE,
- I40E_RX_DMA_ATTR);
-
- __page_frag_cache_drain(rx_bi->page, rx_bi->pagecnt_bias);
-
- rx_bi->page = NULL;
- rx_bi->page_offset = 0;
- }
-
- bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
- memset(rx_ring->rx_bi, 0, bi_size);
-
- /* Zero out the descriptor ring */
- memset(rx_ring->desc, 0, rx_ring->size);
-
- rx_ring->next_to_alloc = 0;
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
-}
-
-/**
- * i40evf_free_rx_resources - Free Rx resources
- * @rx_ring: ring to clean the resources from
- *
- * Free all receive software resources
- **/
-void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
-{
- i40evf_clean_rx_ring(rx_ring);
- kfree(rx_ring->rx_bi);
- rx_ring->rx_bi = NULL;
-
- if (rx_ring->desc) {
- dma_free_coherent(rx_ring->dev, rx_ring->size,
- rx_ring->desc, rx_ring->dma);
- rx_ring->desc = NULL;
- }
-}
-
-/**
- * i40evf_setup_rx_descriptors - Allocate Rx descriptors
- * @rx_ring: Rx descriptor ring (for a specific queue) to setup
- *
- * Returns 0 on success, negative on failure
- **/
-int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
-{
- struct device *dev = rx_ring->dev;
- int bi_size;
-
- /* warn if we are about to overwrite the pointer */
- WARN_ON(rx_ring->rx_bi);
- bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
- rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
- if (!rx_ring->rx_bi)
- goto err;
-
- u64_stats_init(&rx_ring->syncp);
-
- /* Round up to nearest 4K */
- rx_ring->size = rx_ring->count * sizeof(union i40e_32byte_rx_desc);
- rx_ring->size = ALIGN(rx_ring->size, 4096);
- rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
- &rx_ring->dma, GFP_KERNEL);
-
- if (!rx_ring->desc) {
- dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
- rx_ring->size);
- goto err;
- }
-
- rx_ring->next_to_alloc = 0;
- rx_ring->next_to_clean = 0;
- rx_ring->next_to_use = 0;
-
- return 0;
-err:
- kfree(rx_ring->rx_bi);
- rx_ring->rx_bi = NULL;
- return -ENOMEM;
-}
-
-/**
- * i40e_release_rx_desc - Store the new tail and head values
- * @rx_ring: ring to bump
- * @val: new head index
- **/
-static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
-{
- rx_ring->next_to_use = val;
-
- /* update next to alloc since we have filled the ring */
- rx_ring->next_to_alloc = val;
-
- /* Force memory writes to complete before letting h/w
- * know there are new descriptors to fetch. (Only
- * applicable for weak-ordered memory model archs,
- * such as IA-64).
- */
- wmb();
- writel(val, rx_ring->tail);
-}
-
-/**
- * i40e_rx_offset - Return expected offset into page to access data
- * @rx_ring: Ring we are requesting offset of
- *
- * Returns the offset value for ring into the data buffer.
- */
-static inline unsigned int i40e_rx_offset(struct i40e_ring *rx_ring)
-{
- return ring_uses_build_skb(rx_ring) ? I40E_SKB_PAD : 0;
-}
-
-/**
- * i40e_alloc_mapped_page - recycle or make a new page
- * @rx_ring: ring to use
- * @bi: rx_buffer struct to modify
- *
- * Returns true if the page was successfully allocated or
- * reused.
- **/
-static bool i40e_alloc_mapped_page(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *bi)
-{
- struct page *page = bi->page;
- dma_addr_t dma;
-
- /* since we are recycling buffers we should seldom need to alloc */
- if (likely(page)) {
- rx_ring->rx_stats.page_reuse_count++;
- return true;
- }
-
- /* alloc new page for storage */
- page = dev_alloc_pages(i40e_rx_pg_order(rx_ring));
- if (unlikely(!page)) {
- rx_ring->rx_stats.alloc_page_failed++;
- return false;
- }
-
- /* map page for use */
- dma = dma_map_page_attrs(rx_ring->dev, page, 0,
- i40e_rx_pg_size(rx_ring),
- DMA_FROM_DEVICE,
- I40E_RX_DMA_ATTR);
-
- /* if mapping failed free memory back to system since
- * there isn't much point in holding memory we can't use
- */
- if (dma_mapping_error(rx_ring->dev, dma)) {
- __free_pages(page, i40e_rx_pg_order(rx_ring));
- rx_ring->rx_stats.alloc_page_failed++;
- return false;
- }
-
- bi->dma = dma;
- bi->page = page;
- bi->page_offset = i40e_rx_offset(rx_ring);
-
- /* initialize pagecnt_bias to 1 representing we fully own page */
- bi->pagecnt_bias = 1;
-
- return true;
-}
-
-/**
- * i40e_receive_skb - Send a completed packet up the stack
- * @rx_ring: rx ring in play
- * @skb: packet to send up
- * @vlan_tag: vlan tag for packet
- **/
-static void i40e_receive_skb(struct i40e_ring *rx_ring,
- struct sk_buff *skb, u16 vlan_tag)
-{
- struct i40e_q_vector *q_vector = rx_ring->q_vector;
-
- if ((rx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
- (vlan_tag & VLAN_VID_MASK))
- __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
-
- napi_gro_receive(&q_vector->napi, skb);
-}
-
-/**
- * i40evf_alloc_rx_buffers - Replace used receive buffers
- * @rx_ring: ring to place buffers on
- * @cleaned_count: number of buffers to replace
- *
- * Returns false if all allocations were successful, true if any fail
- **/
-bool i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
-{
- u16 ntu = rx_ring->next_to_use;
- union i40e_rx_desc *rx_desc;
- struct i40e_rx_buffer *bi;
-
- /* do nothing if no valid netdev defined */
- if (!rx_ring->netdev || !cleaned_count)
- return false;
-
- rx_desc = I40E_RX_DESC(rx_ring, ntu);
- bi = &rx_ring->rx_bi[ntu];
-
- do {
- if (!i40e_alloc_mapped_page(rx_ring, bi))
- goto no_buffers;
-
- /* sync the buffer for use by the device */
- dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
- bi->page_offset,
- rx_ring->rx_buf_len,
- DMA_FROM_DEVICE);
-
- /* Refresh the desc even if buffer_addrs didn't change
- * because each write-back erases this info.
- */
- rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
-
- rx_desc++;
- bi++;
- ntu++;
- if (unlikely(ntu == rx_ring->count)) {
- rx_desc = I40E_RX_DESC(rx_ring, 0);
- bi = rx_ring->rx_bi;
- ntu = 0;
- }
-
- /* clear the status bits for the next_to_use descriptor */
- rx_desc->wb.qword1.status_error_len = 0;
-
- cleaned_count--;
- } while (cleaned_count);
-
- if (rx_ring->next_to_use != ntu)
- i40e_release_rx_desc(rx_ring, ntu);
-
- return false;
-
-no_buffers:
- if (rx_ring->next_to_use != ntu)
- i40e_release_rx_desc(rx_ring, ntu);
-
- /* make sure to come back via polling to try again after
- * allocation failure
- */
- return true;
-}
-
-/**
- * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
- * @vsi: the VSI we care about
- * @skb: skb currently being received and modified
- * @rx_desc: the receive descriptor
- **/
-static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
- struct sk_buff *skb,
- union i40e_rx_desc *rx_desc)
-{
- struct i40e_rx_ptype_decoded decoded;
- u32 rx_error, rx_status;
- bool ipv4, ipv6;
- u8 ptype;
- u64 qword;
-
- qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
- ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >> I40E_RXD_QW1_PTYPE_SHIFT;
- rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
- I40E_RXD_QW1_ERROR_SHIFT;
- rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
- I40E_RXD_QW1_STATUS_SHIFT;
- decoded = decode_rx_desc_ptype(ptype);
-
- skb->ip_summed = CHECKSUM_NONE;
-
- skb_checksum_none_assert(skb);
-
- /* Rx csum enabled and ip headers found? */
- if (!(vsi->netdev->features & NETIF_F_RXCSUM))
- return;
-
- /* did the hardware decode the packet and checksum? */
- if (!(rx_status & BIT(I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
- return;
-
- /* both known and outer_ip must be set for the below code to work */
- if (!(decoded.known && decoded.outer_ip))
- return;
-
- ipv4 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
- (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4);
- ipv6 = (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP) &&
- (decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6);
-
- if (ipv4 &&
- (rx_error & (BIT(I40E_RX_DESC_ERROR_IPE_SHIFT) |
- BIT(I40E_RX_DESC_ERROR_EIPE_SHIFT))))
- goto checksum_fail;
-
- /* likely incorrect csum if alternate IP extension headers found */
- if (ipv6 &&
- rx_status & BIT(I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
- /* don't increment checksum err here, non-fatal err */
- return;
-
- /* there was some L4 error, count error and punt packet to the stack */
- if (rx_error & BIT(I40E_RX_DESC_ERROR_L4E_SHIFT))
- goto checksum_fail;
-
- /* handle packets that were not able to be checksummed due
- * to arrival speed, in this case the stack can compute
- * the csum.
- */
- if (rx_error & BIT(I40E_RX_DESC_ERROR_PPRS_SHIFT))
- return;
-
- /* Only report checksum unnecessary for TCP, UDP, or SCTP */
- switch (decoded.inner_prot) {
- case I40E_RX_PTYPE_INNER_PROT_TCP:
- case I40E_RX_PTYPE_INNER_PROT_UDP:
- case I40E_RX_PTYPE_INNER_PROT_SCTP:
- skb->ip_summed = CHECKSUM_UNNECESSARY;
- /* fall though */
- default:
- break;
- }
-
- return;
-
-checksum_fail:
- vsi->back->hw_csum_rx_error++;
-}
-
-/**
- * i40e_ptype_to_htype - get a hash type
- * @ptype: the ptype value from the descriptor
- *
- * Returns a hash type to be used by skb_set_hash
- **/
-static inline int i40e_ptype_to_htype(u8 ptype)
-{
- struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
-
- if (!decoded.known)
- return PKT_HASH_TYPE_NONE;
-
- if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
- decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
- return PKT_HASH_TYPE_L4;
- else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
- decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
- return PKT_HASH_TYPE_L3;
- else
- return PKT_HASH_TYPE_L2;
-}
-
-/**
- * i40e_rx_hash - set the hash value in the skb
- * @ring: descriptor ring
- * @rx_desc: specific descriptor
- * @skb: skb currently being received and modified
- * @rx_ptype: Rx packet type
- **/
-static inline void i40e_rx_hash(struct i40e_ring *ring,
- union i40e_rx_desc *rx_desc,
- struct sk_buff *skb,
- u8 rx_ptype)
-{
- u32 hash;
- const __le64 rss_mask =
- cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
- I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
-
- if (ring->netdev->features & NETIF_F_RXHASH)
- return;
-
- if ((rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask) {
- hash = le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
- skb_set_hash(skb, hash, i40e_ptype_to_htype(rx_ptype));
- }
-}
-
-/**
- * i40evf_process_skb_fields - Populate skb header fields from Rx descriptor
- * @rx_ring: rx descriptor ring packet is being transacted on
- * @rx_desc: pointer to the EOP Rx descriptor
- * @skb: pointer to current skb being populated
- * @rx_ptype: the packet type decoded by hardware
- *
- * This function checks the ring, descriptor, and packet information in
- * order to populate the hash, checksum, VLAN, protocol, and
- * other fields within the skb.
- **/
-static inline
-void i40evf_process_skb_fields(struct i40e_ring *rx_ring,
- union i40e_rx_desc *rx_desc, struct sk_buff *skb,
- u8 rx_ptype)
-{
- i40e_rx_hash(rx_ring, rx_desc, skb, rx_ptype);
-
- i40e_rx_checksum(rx_ring->vsi, skb, rx_desc);
-
- skb_record_rx_queue(skb, rx_ring->queue_index);
-
- /* modifies the skb - consumes the enet header */
- skb->protocol = eth_type_trans(skb, rx_ring->netdev);
-}
-
-/**
- * i40e_cleanup_headers - Correct empty headers
- * @rx_ring: rx descriptor ring packet is being transacted on
- * @skb: pointer to current skb being fixed
- *
- * Also address the case where we are pulling data in on pages only
- * and as such no data is present in the skb header.
- *
- * In addition if skb is not at least 60 bytes we need to pad it so that
- * it is large enough to qualify as a valid Ethernet frame.
- *
- * Returns true if an error was encountered and skb was freed.
- **/
-static bool i40e_cleanup_headers(struct i40e_ring *rx_ring, struct sk_buff *skb)
-{
- /* if eth_skb_pad returns an error the skb was freed */
- if (eth_skb_pad(skb))
- return true;
-
- return false;
-}
-
-/**
- * i40e_reuse_rx_page - page flip buffer and store it back on the ring
- * @rx_ring: rx descriptor ring to store buffers on
- * @old_buff: donor buffer to have page reused
- *
- * Synchronizes page for reuse by the adapter
- **/
-static void i40e_reuse_rx_page(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *old_buff)
-{
- struct i40e_rx_buffer *new_buff;
- u16 nta = rx_ring->next_to_alloc;
-
- new_buff = &rx_ring->rx_bi[nta];
-
- /* update, and store next to alloc */
- nta++;
- rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
-
- /* transfer page from old buffer to new buffer */
- new_buff->dma = old_buff->dma;
- new_buff->page = old_buff->page;
- new_buff->page_offset = old_buff->page_offset;
- new_buff->pagecnt_bias = old_buff->pagecnt_bias;
-}
-
-/**
- * i40e_page_is_reusable - check if any reuse is possible
- * @page: page struct to check
- *
- * A page is not reusable if it was allocated under low memory
- * conditions, or it's not in the same NUMA node as this CPU.
- */
-static inline bool i40e_page_is_reusable(struct page *page)
-{
- return (page_to_nid(page) == numa_mem_id()) &&
- !page_is_pfmemalloc(page);
-}
-
-/**
- * i40e_can_reuse_rx_page - Determine if this page can be reused by
- * the adapter for another receive
- *
- * @rx_buffer: buffer containing the page
- *
- * If page is reusable, rx_buffer->page_offset is adjusted to point to
- * an unused region in the page.
- *
- * For small pages, @truesize will be a constant value, half the size
- * of the memory at page. We'll attempt to alternate between high and
- * low halves of the page, with one half ready for use by the hardware
- * and the other half being consumed by the stack. We use the page
- * ref count to determine whether the stack has finished consuming the
- * portion of this page that was passed up with a previous packet. If
- * the page ref count is >1, we'll assume the "other" half page is
- * still busy, and this page cannot be reused.
- *
- * For larger pages, @truesize will be the actual space used by the
- * received packet (adjusted upward to an even multiple of the cache
- * line size). This will advance through the page by the amount
- * actually consumed by the received packets while there is still
- * space for a buffer. Each region of larger pages will be used at
- * most once, after which the page will not be reused.
- *
- * In either case, if the page is reusable its refcount is increased.
- **/
-static bool i40e_can_reuse_rx_page(struct i40e_rx_buffer *rx_buffer)
-{
- unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
- struct page *page = rx_buffer->page;
-
- /* Is any reuse possible? */
- if (unlikely(!i40e_page_is_reusable(page)))
- return false;
-
-#if (PAGE_SIZE < 8192)
- /* if we are only owner of page we can reuse it */
- if (unlikely((page_count(page) - pagecnt_bias) > 1))
- return false;
-#else
-#define I40E_LAST_OFFSET \
- (SKB_WITH_OVERHEAD(PAGE_SIZE) - I40E_RXBUFFER_2048)
- if (rx_buffer->page_offset > I40E_LAST_OFFSET)
- return false;
-#endif
-
- /* If we have drained the page fragment pool we need to update
- * the pagecnt_bias and page count so that we fully restock the
- * number of references the driver holds.
- */
- if (unlikely(!pagecnt_bias)) {
- page_ref_add(page, USHRT_MAX);
- rx_buffer->pagecnt_bias = USHRT_MAX;
- }
-
- return true;
-}
-
-/**
- * i40e_add_rx_frag - Add contents of Rx buffer to sk_buff
- * @rx_ring: rx descriptor ring to transact packets on
- * @rx_buffer: buffer containing page to add
- * @skb: sk_buff to place the data into
- * @size: packet length from rx_desc
- *
- * This function will add the data contained in rx_buffer->page to the skb.
- * It will just attach the page as a frag to the skb.
- *
- * The function will then update the page offset.
- **/
-static void i40e_add_rx_frag(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *rx_buffer,
- struct sk_buff *skb,
- unsigned int size)
-{
-#if (PAGE_SIZE < 8192)
- unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
-#else
- unsigned int truesize = SKB_DATA_ALIGN(size + i40e_rx_offset(rx_ring));
-#endif
-
- skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
- rx_buffer->page_offset, size, truesize);
-
- /* page is being used so we must update the page offset */
-#if (PAGE_SIZE < 8192)
- rx_buffer->page_offset ^= truesize;
-#else
- rx_buffer->page_offset += truesize;
-#endif
-}
-
-/**
- * i40e_get_rx_buffer - Fetch Rx buffer and synchronize data for use
- * @rx_ring: rx descriptor ring to transact packets on
- * @size: size of buffer to add to skb
- *
- * This function will pull an Rx buffer from the ring and synchronize it
- * for use by the CPU.
- */
-static struct i40e_rx_buffer *i40e_get_rx_buffer(struct i40e_ring *rx_ring,
- const unsigned int size)
-{
- struct i40e_rx_buffer *rx_buffer;
-
- rx_buffer = &rx_ring->rx_bi[rx_ring->next_to_clean];
- prefetchw(rx_buffer->page);
-
- /* we are reusing so sync this buffer for CPU use */
- dma_sync_single_range_for_cpu(rx_ring->dev,
- rx_buffer->dma,
- rx_buffer->page_offset,
- size,
- DMA_FROM_DEVICE);
-
- /* We have pulled a buffer for use, so decrement pagecnt_bias */
- rx_buffer->pagecnt_bias--;
-
- return rx_buffer;
-}
-
-/**
- * i40e_construct_skb - Allocate skb and populate it
- * @rx_ring: rx descriptor ring to transact packets on
- * @rx_buffer: rx buffer to pull data from
- * @size: size of buffer to add to skb
- *
- * This function allocates an skb. It then populates it with the page
- * data from the current receive descriptor, taking care to set up the
- * skb correctly.
- */
-static struct sk_buff *i40e_construct_skb(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *rx_buffer,
- unsigned int size)
-{
- void *va;
-#if (PAGE_SIZE < 8192)
- unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
-#else
- unsigned int truesize = SKB_DATA_ALIGN(size);
-#endif
- unsigned int headlen;
- struct sk_buff *skb;
-
- /* prefetch first cache line of first page */
- va = page_address(rx_buffer->page) + rx_buffer->page_offset;
- prefetch(va);
-#if L1_CACHE_BYTES < 128
- prefetch(va + L1_CACHE_BYTES);
-#endif
-
- /* allocate a skb to store the frags */
- skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
- I40E_RX_HDR_SIZE,
- GFP_ATOMIC | __GFP_NOWARN);
- if (unlikely(!skb))
- return NULL;
-
- /* Determine available headroom for copy */
- headlen = size;
- if (headlen > I40E_RX_HDR_SIZE)
- headlen = eth_get_headlen(va, I40E_RX_HDR_SIZE);
-
- /* align pull length to size of long to optimize memcpy performance */
- memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
-
- /* update all of the pointers */
- size -= headlen;
- if (size) {
- skb_add_rx_frag(skb, 0, rx_buffer->page,
- rx_buffer->page_offset + headlen,
- size, truesize);
-
- /* buffer is used by skb, update page_offset */
-#if (PAGE_SIZE < 8192)
- rx_buffer->page_offset ^= truesize;
-#else
- rx_buffer->page_offset += truesize;
-#endif
- } else {
- /* buffer is unused, reset bias back to rx_buffer */
- rx_buffer->pagecnt_bias++;
- }
-
- return skb;
-}
-
-/**
- * i40e_build_skb - Build skb around an existing buffer
- * @rx_ring: Rx descriptor ring to transact packets on
- * @rx_buffer: Rx buffer to pull data from
- * @size: size of buffer to add to skb
- *
- * This function builds an skb around an existing Rx buffer, taking care
- * to set up the skb correctly and avoid any memcpy overhead.
- */
-static struct sk_buff *i40e_build_skb(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *rx_buffer,
- unsigned int size)
-{
- void *va;
-#if (PAGE_SIZE < 8192)
- unsigned int truesize = i40e_rx_pg_size(rx_ring) / 2;
-#else
- unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
- SKB_DATA_ALIGN(I40E_SKB_PAD + size);
-#endif
- struct sk_buff *skb;
-
- /* prefetch first cache line of first page */
- va = page_address(rx_buffer->page) + rx_buffer->page_offset;
- prefetch(va);
-#if L1_CACHE_BYTES < 128
- prefetch(va + L1_CACHE_BYTES);
-#endif
- /* build an skb around the page buffer */
- skb = build_skb(va - I40E_SKB_PAD, truesize);
- if (unlikely(!skb))
- return NULL;
-
- /* update pointers within the skb to store the data */
- skb_reserve(skb, I40E_SKB_PAD);
- __skb_put(skb, size);
-
- /* buffer is used by skb, update page_offset */
-#if (PAGE_SIZE < 8192)
- rx_buffer->page_offset ^= truesize;
-#else
- rx_buffer->page_offset += truesize;
-#endif
-
- return skb;
-}
-
-/**
- * i40e_put_rx_buffer - Clean up used buffer and either recycle or free
- * @rx_ring: rx descriptor ring to transact packets on
- * @rx_buffer: rx buffer to pull data from
- *
- * This function will clean up the contents of the rx_buffer. It will
- * either recycle the buffer or unmap it and free the associated resources.
- */
-static void i40e_put_rx_buffer(struct i40e_ring *rx_ring,
- struct i40e_rx_buffer *rx_buffer)
-{
- if (i40e_can_reuse_rx_page(rx_buffer)) {
- /* hand second half of page back to the ring */
- i40e_reuse_rx_page(rx_ring, rx_buffer);
- rx_ring->rx_stats.page_reuse_count++;
- } else {
- /* we are not reusing the buffer so unmap it */
- dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
- i40e_rx_pg_size(rx_ring),
- DMA_FROM_DEVICE, I40E_RX_DMA_ATTR);
- __page_frag_cache_drain(rx_buffer->page,
- rx_buffer->pagecnt_bias);
- }
-
- /* clear contents of buffer_info */
- rx_buffer->page = NULL;
-}
-
-/**
- * i40e_is_non_eop - process handling of non-EOP buffers
- * @rx_ring: Rx ring being processed
- * @rx_desc: Rx descriptor for current buffer
- * @skb: Current socket buffer containing buffer in progress
- *
- * This function updates next to clean. If the buffer is an EOP buffer
- * this function exits returning false, otherwise it will place the
- * sk_buff in the next buffer to be chained and return true indicating
- * that this is in fact a non-EOP buffer.
- **/
-static bool i40e_is_non_eop(struct i40e_ring *rx_ring,
- union i40e_rx_desc *rx_desc,
- struct sk_buff *skb)
-{
- u32 ntc = rx_ring->next_to_clean + 1;
-
- /* fetch, update, and store next to clean */
- ntc = (ntc < rx_ring->count) ? ntc : 0;
- rx_ring->next_to_clean = ntc;
-
- prefetch(I40E_RX_DESC(rx_ring, ntc));
-
- /* if we are the last buffer then there is nothing else to do */
-#define I40E_RXD_EOF BIT(I40E_RX_DESC_STATUS_EOF_SHIFT)
- if (likely(i40e_test_staterr(rx_desc, I40E_RXD_EOF)))
- return false;
-
- rx_ring->rx_stats.non_eop_descs++;
-
- return true;
-}
-
-/**
- * i40e_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
- * @rx_ring: rx descriptor ring to transact packets on
- * @budget: Total limit on number of packets to process
- *
- * This function provides a "bounce buffer" approach to Rx interrupt
- * processing. The advantage to this is that on systems that have
- * expensive overhead for IOMMU access this provides a means of avoiding
- * it by maintaining the mapping of the page to the system.
- *
- * Returns amount of work completed
- **/
-static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
-{
- unsigned int total_rx_bytes = 0, total_rx_packets = 0;
- struct sk_buff *skb = rx_ring->skb;
- u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
- bool failure = false;
-
- while (likely(total_rx_packets < (unsigned int)budget)) {
- struct i40e_rx_buffer *rx_buffer;
- union i40e_rx_desc *rx_desc;
- unsigned int size;
- u16 vlan_tag;
- u8 rx_ptype;
- u64 qword;
-
- /* return some buffers to hardware, one at a time is too slow */
- if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
- failure = failure ||
- i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
- cleaned_count = 0;
- }
-
- rx_desc = I40E_RX_DESC(rx_ring, rx_ring->next_to_clean);
-
- /* status_error_len will always be zero for unused descriptors
- * because it's cleared in cleanup, and overlaps with hdr_addr
- * which is always zero because packet split isn't used, if the
- * hardware wrote DD then the length will be non-zero
- */
- qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
-
- /* This memory barrier is needed to keep us from reading
- * any other fields out of the rx_desc until we have
- * verified the descriptor has been written back.
- */
- dma_rmb();
-
- size = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
- I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
- if (!size)
- break;
-
- i40e_trace(clean_rx_irq, rx_ring, rx_desc, skb);
- rx_buffer = i40e_get_rx_buffer(rx_ring, size);
-
- /* retrieve a buffer from the ring */
- if (skb)
- i40e_add_rx_frag(rx_ring, rx_buffer, skb, size);
- else if (ring_uses_build_skb(rx_ring))
- skb = i40e_build_skb(rx_ring, rx_buffer, size);
- else
- skb = i40e_construct_skb(rx_ring, rx_buffer, size);
-
- /* exit if we failed to retrieve a buffer */
- if (!skb) {
- rx_ring->rx_stats.alloc_buff_failed++;
- rx_buffer->pagecnt_bias++;
- break;
- }
-
- i40e_put_rx_buffer(rx_ring, rx_buffer);
- cleaned_count++;
-
- if (i40e_is_non_eop(rx_ring, rx_desc, skb))
- continue;
-
- /* ERR_MASK will only have valid bits if EOP set, and
- * what we are doing here is actually checking
- * I40E_RX_DESC_ERROR_RXE_SHIFT, since it is the zeroth bit in
- * the error field
- */
- if (unlikely(i40e_test_staterr(rx_desc, BIT(I40E_RXD_QW1_ERROR_SHIFT)))) {
- dev_kfree_skb_any(skb);
- skb = NULL;
- continue;
- }
-
- if (i40e_cleanup_headers(rx_ring, skb)) {
- skb = NULL;
- continue;
- }
-
- /* probably a little skewed due to removing CRC */
- total_rx_bytes += skb->len;
-
- qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
- rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
- I40E_RXD_QW1_PTYPE_SHIFT;
-
- /* populate checksum, VLAN, and protocol */
- i40evf_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
-
-
- vlan_tag = (qword & BIT(I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)) ?
- le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1) : 0;
-
- i40e_trace(clean_rx_irq_rx, rx_ring, rx_desc, skb);
- i40e_receive_skb(rx_ring, skb, vlan_tag);
- skb = NULL;
-
- /* update budget accounting */
- total_rx_packets++;
- }
-
- rx_ring->skb = skb;
-
- u64_stats_update_begin(&rx_ring->syncp);
- rx_ring->stats.packets += total_rx_packets;
- rx_ring->stats.bytes += total_rx_bytes;
- u64_stats_update_end(&rx_ring->syncp);
- rx_ring->q_vector->rx.total_packets += total_rx_packets;
- rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
-
- /* guarantee a trip back through this routine if there was a failure */
- return failure ? budget : (int)total_rx_packets;
-}
-
-static inline u32 i40e_buildreg_itr(const int type, u16 itr)
-{
- u32 val;
-
- /* We don't bother with setting the CLEARPBA bit as the data sheet
- * points out doing so is "meaningless since it was already
- * auto-cleared". The auto-clearing happens when the interrupt is
- * asserted.
- *
- * Hardware errata 28 for also indicates that writing to a
- * xxINT_DYN_CTLx CSR with INTENA_MSK (bit 31) set to 0 will clear
- * an event in the PBA anyway so we need to rely on the automask
- * to hold pending events for us until the interrupt is re-enabled
- *
- * The itr value is reported in microseconds, and the register
- * value is recorded in 2 microsecond units. For this reason we
- * only need to shift by the interval shift - 1 instead of the
- * full value.
- */
- itr &= I40E_ITR_MASK;
-
- val = I40E_VFINT_DYN_CTLN1_INTENA_MASK |
- (type << I40E_VFINT_DYN_CTLN1_ITR_INDX_SHIFT) |
- (itr << (I40E_VFINT_DYN_CTLN1_INTERVAL_SHIFT - 1));
-
- return val;
-}
-
-/* a small macro to shorten up some long lines */
-#define INTREG I40E_VFINT_DYN_CTLN1
-
-/* The act of updating the ITR will cause it to immediately trigger. In order
- * to prevent this from throwing off adaptive update statistics we defer the
- * update so that it can only happen so often. So after either Tx or Rx are
- * updated we make the adaptive scheme wait until either the ITR completely
- * expires via the next_update expiration or we have been through at least
- * 3 interrupts.
- */
-#define ITR_COUNTDOWN_START 3
-
-/**
- * i40e_update_enable_itr - Update itr and re-enable MSIX interrupt
- * @vsi: the VSI we care about
- * @q_vector: q_vector for which itr is being updated and interrupt enabled
- *
- **/
-static inline void i40e_update_enable_itr(struct i40e_vsi *vsi,
- struct i40e_q_vector *q_vector)
-{
- struct i40e_hw *hw = &vsi->back->hw;
- u32 intval;
-
- /* These will do nothing if dynamic updates are not enabled */
- i40e_update_itr(q_vector, &q_vector->tx);
- i40e_update_itr(q_vector, &q_vector->rx);
-
- /* This block of logic allows us to get away with only updating
- * one ITR value with each interrupt. The idea is to perform a
- * pseudo-lazy update with the following criteria.
- *
- * 1. Rx is given higher priority than Tx if both are in same state
- * 2. If we must reduce an ITR that is given highest priority.
- * 3. We then give priority to increasing ITR based on amount.
- */
- if (q_vector->rx.target_itr < q_vector->rx.current_itr) {
- /* Rx ITR needs to be reduced, this is highest priority */
- intval = i40e_buildreg_itr(I40E_RX_ITR,
- q_vector->rx.target_itr);
- q_vector->rx.current_itr = q_vector->rx.target_itr;
- q_vector->itr_countdown = ITR_COUNTDOWN_START;
- } else if ((q_vector->tx.target_itr < q_vector->tx.current_itr) ||
- ((q_vector->rx.target_itr - q_vector->rx.current_itr) <
- (q_vector->tx.target_itr - q_vector->tx.current_itr))) {
- /* Tx ITR needs to be reduced, this is second priority
- * Tx ITR needs to be increased more than Rx, fourth priority
- */
- intval = i40e_buildreg_itr(I40E_TX_ITR,
- q_vector->tx.target_itr);
- q_vector->tx.current_itr = q_vector->tx.target_itr;
- q_vector->itr_countdown = ITR_COUNTDOWN_START;
- } else if (q_vector->rx.current_itr != q_vector->rx.target_itr) {
- /* Rx ITR needs to be increased, third priority */
- intval = i40e_buildreg_itr(I40E_RX_ITR,
- q_vector->rx.target_itr);
- q_vector->rx.current_itr = q_vector->rx.target_itr;
- q_vector->itr_countdown = ITR_COUNTDOWN_START;
- } else {
- /* No ITR update, lowest priority */
- intval = i40e_buildreg_itr(I40E_ITR_NONE, 0);
- if (q_vector->itr_countdown)
- q_vector->itr_countdown--;
- }
-
- if (!test_bit(__I40E_VSI_DOWN, vsi->state))
- wr32(hw, INTREG(q_vector->reg_idx), intval);
-}
-
-/**
- * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
- * @napi: napi struct with our devices info in it
- * @budget: amount of work driver is allowed to do this pass, in packets
- *
- * This function will clean all queues associated with a q_vector.
- *
- * Returns the amount of work done
- **/
-int i40evf_napi_poll(struct napi_struct *napi, int budget)
-{
- struct i40e_q_vector *q_vector =
- container_of(napi, struct i40e_q_vector, napi);
- struct i40e_vsi *vsi = q_vector->vsi;
- struct i40e_ring *ring;
- bool clean_complete = true;
- bool arm_wb = false;
- int budget_per_ring;
- int work_done = 0;
-
- if (test_bit(__I40E_VSI_DOWN, vsi->state)) {
- napi_complete(napi);
- return 0;
- }
-
- /* Since the actual Tx work is minimal, we can give the Tx a larger
- * budget and be more aggressive about cleaning up the Tx descriptors.
- */
- i40e_for_each_ring(ring, q_vector->tx) {
- if (!i40e_clean_tx_irq(vsi, ring, budget)) {
- clean_complete = false;
- continue;
- }
- arm_wb |= ring->arm_wb;
- ring->arm_wb = false;
- }
-
- /* Handle case where we are called by netpoll with a budget of 0 */
- if (budget <= 0)
- goto tx_only;
-
- /* We attempt to distribute budget to each Rx queue fairly, but don't
- * allow the budget to go below 1 because that would exit polling early.
- */
- budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
-
- i40e_for_each_ring(ring, q_vector->rx) {
- int cleaned = i40e_clean_rx_irq(ring, budget_per_ring);
-
- work_done += cleaned;
- /* if we clean as many as budgeted, we must not be done */
- if (cleaned >= budget_per_ring)
- clean_complete = false;
- }
-
- /* If work not completed, return budget and polling will return */
- if (!clean_complete) {
- int cpu_id = smp_processor_id();
-
- /* It is possible that the interrupt affinity has changed but,
- * if the cpu is pegged at 100%, polling will never exit while
- * traffic continues and the interrupt will be stuck on this
- * cpu. We check to make sure affinity is correct before we
- * continue to poll, otherwise we must stop polling so the
- * interrupt can move to the correct cpu.
- */
- if (!cpumask_test_cpu(cpu_id, &q_vector->affinity_mask)) {
- /* Tell napi that we are done polling */
- napi_complete_done(napi, work_done);
-
- /* Force an interrupt */
- i40evf_force_wb(vsi, q_vector);
-
- /* Return budget-1 so that polling stops */
- return budget - 1;
- }
-tx_only:
- if (arm_wb) {
- q_vector->tx.ring[0].tx_stats.tx_force_wb++;
- i40e_enable_wb_on_itr(vsi, q_vector);
- }
- return budget;
- }
-
- if (vsi->back->flags & I40E_TXR_FLAGS_WB_ON_ITR)
- q_vector->arm_wb_state = false;
-
- /* Work is done so exit the polling mode and re-enable the interrupt */
- napi_complete_done(napi, work_done);
-
- i40e_update_enable_itr(vsi, q_vector);
-
- return min(work_done, budget - 1);
-}
-
-/**
- * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
- * @skb: send buffer
- * @tx_ring: ring to send buffer on
- * @flags: the tx flags to be set
- *
- * Checks the skb and set up correspondingly several generic transmit flags
- * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
- *
- * Returns error code indicate the frame should be dropped upon error and the
- * otherwise returns 0 to indicate the flags has been set properly.
- **/
-static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
- struct i40e_ring *tx_ring,
- u32 *flags)
-{
- __be16 protocol = skb->protocol;
- u32 tx_flags = 0;
-
- if (protocol == htons(ETH_P_8021Q) &&
- !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
- /* When HW VLAN acceleration is turned off by the user the
- * stack sets the protocol to 8021q so that the driver
- * can take any steps required to support the SW only
- * VLAN handling. In our case the driver doesn't need
- * to take any further steps so just set the protocol
- * to the encapsulated ethertype.
- */
- skb->protocol = vlan_get_protocol(skb);
- goto out;
- }
-
- /* if we have a HW VLAN tag being added, default to the HW one */
- if (skb_vlan_tag_present(skb)) {
- tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
- tx_flags |= I40E_TX_FLAGS_HW_VLAN;
- /* else if it is a SW VLAN, check the next protocol and store the tag */
- } else if (protocol == htons(ETH_P_8021Q)) {
- struct vlan_hdr *vhdr, _vhdr;
-
- vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
- if (!vhdr)
- return -EINVAL;
-
- protocol = vhdr->h_vlan_encapsulated_proto;
- tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
- tx_flags |= I40E_TX_FLAGS_SW_VLAN;
- }
-
-out:
- *flags = tx_flags;
- return 0;
-}
-
-/**
- * i40e_tso - set up the tso context descriptor
- * @first: pointer to first Tx buffer for xmit
- * @hdr_len: ptr to the size of the packet header
- * @cd_type_cmd_tso_mss: Quad Word 1
- *
- * Returns 0 if no TSO can happen, 1 if tso is going, or error
- **/
-static int i40e_tso(struct i40e_tx_buffer *first, u8 *hdr_len,
- u64 *cd_type_cmd_tso_mss)
-{
- struct sk_buff *skb = first->skb;
- u64 cd_cmd, cd_tso_len, cd_mss;
- union {
- struct iphdr *v4;
- struct ipv6hdr *v6;
- unsigned char *hdr;
- } ip;
- union {
- struct tcphdr *tcp;
- struct udphdr *udp;
- unsigned char *hdr;
- } l4;
- u32 paylen, l4_offset;
- u16 gso_segs, gso_size;
- int err;
-
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return 0;
-
- if (!skb_is_gso(skb))
- return 0;
-
- err = skb_cow_head(skb, 0);
- if (err < 0)
- return err;
-
- ip.hdr = skb_network_header(skb);
- l4.hdr = skb_transport_header(skb);
-
- /* initialize outer IP header fields */
- if (ip.v4->version == 4) {
- ip.v4->tot_len = 0;
- ip.v4->check = 0;
- } else {
- ip.v6->payload_len = 0;
- }
-
- if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
- SKB_GSO_GRE_CSUM |
- SKB_GSO_IPXIP4 |
- SKB_GSO_IPXIP6 |
- SKB_GSO_UDP_TUNNEL |
- SKB_GSO_UDP_TUNNEL_CSUM)) {
- if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
- (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
- l4.udp->len = 0;
-
- /* determine offset of outer transport header */
- l4_offset = l4.hdr - skb->data;
-
- /* remove payload length from outer checksum */
- paylen = skb->len - l4_offset;
- csum_replace_by_diff(&l4.udp->check,
- (__force __wsum)htonl(paylen));
- }
-
- /* reset pointers to inner headers */
- ip.hdr = skb_inner_network_header(skb);
- l4.hdr = skb_inner_transport_header(skb);
-
- /* initialize inner IP header fields */
- if (ip.v4->version == 4) {
- ip.v4->tot_len = 0;
- ip.v4->check = 0;
- } else {
- ip.v6->payload_len = 0;
- }
- }
-
- /* determine offset of inner transport header */
- l4_offset = l4.hdr - skb->data;
-
- /* remove payload length from inner checksum */
- paylen = skb->len - l4_offset;
- csum_replace_by_diff(&l4.tcp->check, (__force __wsum)htonl(paylen));
-
- /* compute length of segmentation header */
- *hdr_len = (l4.tcp->doff * 4) + l4_offset;
-
- /* pull values out of skb_shinfo */
- gso_size = skb_shinfo(skb)->gso_size;
- gso_segs = skb_shinfo(skb)->gso_segs;
-
- /* update GSO size and bytecount with header size */
- first->gso_segs = gso_segs;
- first->bytecount += (first->gso_segs - 1) * *hdr_len;
-
- /* find the field values */
- cd_cmd = I40E_TX_CTX_DESC_TSO;
- cd_tso_len = skb->len - *hdr_len;
- cd_mss = gso_size;
- *cd_type_cmd_tso_mss |= (cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
- (cd_tso_len << I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
- (cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
- return 1;
-}
-
-/**
- * i40e_tx_enable_csum - Enable Tx checksum offloads
- * @skb: send buffer
- * @tx_flags: pointer to Tx flags currently set
- * @td_cmd: Tx descriptor command bits to set
- * @td_offset: Tx descriptor header offsets to set
- * @tx_ring: Tx descriptor ring
- * @cd_tunneling: ptr to context desc bits
- **/
-static int i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
- u32 *td_cmd, u32 *td_offset,
- struct i40e_ring *tx_ring,
- u32 *cd_tunneling)
-{
- union {
- struct iphdr *v4;
- struct ipv6hdr *v6;
- unsigned char *hdr;
- } ip;
- union {
- struct tcphdr *tcp;
- struct udphdr *udp;
- unsigned char *hdr;
- } l4;
- unsigned char *exthdr;
- u32 offset, cmd = 0;
- __be16 frag_off;
- u8 l4_proto = 0;
-
- if (skb->ip_summed != CHECKSUM_PARTIAL)
- return 0;
-
- ip.hdr = skb_network_header(skb);
- l4.hdr = skb_transport_header(skb);
-
- /* compute outer L2 header size */
- offset = ((ip.hdr - skb->data) / 2) << I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
-
- if (skb->encapsulation) {
- u32 tunnel = 0;
- /* define outer network header type */
- if (*tx_flags & I40E_TX_FLAGS_IPV4) {
- tunnel |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
- I40E_TX_CTX_EXT_IP_IPV4 :
- I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
-
- l4_proto = ip.v4->protocol;
- } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
- tunnel |= I40E_TX_CTX_EXT_IP_IPV6;
-
- exthdr = ip.hdr + sizeof(*ip.v6);
- l4_proto = ip.v6->nexthdr;
- if (l4.hdr != exthdr)
- ipv6_skip_exthdr(skb, exthdr - skb->data,
- &l4_proto, &frag_off);
- }
-
- /* define outer transport */
- switch (l4_proto) {
- case IPPROTO_UDP:
- tunnel |= I40E_TXD_CTX_UDP_TUNNELING;
- *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
- break;
- case IPPROTO_GRE:
- tunnel |= I40E_TXD_CTX_GRE_TUNNELING;
- *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
- break;
- case IPPROTO_IPIP:
- case IPPROTO_IPV6:
- *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
- l4.hdr = skb_inner_network_header(skb);
- break;
- default:
- if (*tx_flags & I40E_TX_FLAGS_TSO)
- return -1;
-
- skb_checksum_help(skb);
- return 0;
- }
-
- /* compute outer L3 header size */
- tunnel |= ((l4.hdr - ip.hdr) / 4) <<
- I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT;
-
- /* switch IP header pointer from outer to inner header */
- ip.hdr = skb_inner_network_header(skb);
-
- /* compute tunnel header size */
- tunnel |= ((ip.hdr - l4.hdr) / 2) <<
- I40E_TXD_CTX_QW0_NATLEN_SHIFT;
-
- /* indicate if we need to offload outer UDP header */
- if ((*tx_flags & I40E_TX_FLAGS_TSO) &&
- !(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
- (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
- tunnel |= I40E_TXD_CTX_QW0_L4T_CS_MASK;
-
- /* record tunnel offload values */
- *cd_tunneling |= tunnel;
-
- /* switch L4 header pointer from outer to inner */
- l4.hdr = skb_inner_transport_header(skb);
- l4_proto = 0;
-
- /* reset type as we transition from outer to inner headers */
- *tx_flags &= ~(I40E_TX_FLAGS_IPV4 | I40E_TX_FLAGS_IPV6);
- if (ip.v4->version == 4)
- *tx_flags |= I40E_TX_FLAGS_IPV4;
- if (ip.v6->version == 6)
- *tx_flags |= I40E_TX_FLAGS_IPV6;
- }
-
- /* Enable IP checksum offloads */
- if (*tx_flags & I40E_TX_FLAGS_IPV4) {
- l4_proto = ip.v4->protocol;
- /* the stack computes the IP header already, the only time we
- * need the hardware to recompute it is in the case of TSO.
- */
- cmd |= (*tx_flags & I40E_TX_FLAGS_TSO) ?
- I40E_TX_DESC_CMD_IIPT_IPV4_CSUM :
- I40E_TX_DESC_CMD_IIPT_IPV4;
- } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
- cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
-
- exthdr = ip.hdr + sizeof(*ip.v6);
- l4_proto = ip.v6->nexthdr;
- if (l4.hdr != exthdr)
- ipv6_skip_exthdr(skb, exthdr - skb->data,
- &l4_proto, &frag_off);
- }
-
- /* compute inner L3 header size */
- offset |= ((l4.hdr - ip.hdr) / 4) << I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
-
- /* Enable L4 checksum offloads */
- switch (l4_proto) {
- case IPPROTO_TCP:
- /* enable checksum offloads */
- cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
- offset |= l4.tcp->doff << I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- case IPPROTO_SCTP:
- /* enable SCTP checksum offload */
- cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
- offset |= (sizeof(struct sctphdr) >> 2) <<
- I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- case IPPROTO_UDP:
- /* enable UDP checksum offload */
- cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
- offset |= (sizeof(struct udphdr) >> 2) <<
- I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
- break;
- default:
- if (*tx_flags & I40E_TX_FLAGS_TSO)
- return -1;
- skb_checksum_help(skb);
- return 0;
- }
-
- *td_cmd |= cmd;
- *td_offset |= offset;
-
- return 1;
-}
-
-/**
- * i40e_create_tx_ctx Build the Tx context descriptor
- * @tx_ring: ring to create the descriptor on
- * @cd_type_cmd_tso_mss: Quad Word 1
- * @cd_tunneling: Quad Word 0 - bits 0-31
- * @cd_l2tag2: Quad Word 0 - bits 32-63
- **/
-static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
- const u64 cd_type_cmd_tso_mss,
- const u32 cd_tunneling, const u32 cd_l2tag2)
-{
- struct i40e_tx_context_desc *context_desc;
- int i = tx_ring->next_to_use;
-
- if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
- !cd_tunneling && !cd_l2tag2)
- return;
-
- /* grab the next descriptor */
- context_desc = I40E_TX_CTXTDESC(tx_ring, i);
-
- i++;
- tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
-
- /* cpu_to_le32 and assign to struct fields */
- context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
- context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
- context_desc->rsvd = cpu_to_le16(0);
- context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
-}
-
-/**
- * __i40evf_chk_linearize - Check if there are more than 8 buffers per packet
- * @skb: send buffer
- *
- * Note: Our HW can't DMA more than 8 buffers to build a packet on the wire
- * and so we need to figure out the cases where we need to linearize the skb.
- *
- * For TSO we need to count the TSO header and segment payload separately.
- * As such we need to check cases where we have 7 fragments or more as we
- * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
- * the segment payload in the first descriptor, and another 7 for the
- * fragments.
- **/
-bool __i40evf_chk_linearize(struct sk_buff *skb)
-{
- const struct skb_frag_struct *frag, *stale;
- int nr_frags, sum;
-
- /* no need to check if number of frags is less than 7 */
- nr_frags = skb_shinfo(skb)->nr_frags;
- if (nr_frags < (I40E_MAX_BUFFER_TXD - 1))
- return false;
-
- /* We need to walk through the list and validate that each group
- * of 6 fragments totals at least gso_size.
- */
- nr_frags -= I40E_MAX_BUFFER_TXD - 2;
- frag = &skb_shinfo(skb)->frags[0];
-
- /* Initialize size to the negative value of gso_size minus 1. We
- * use this as the worst case scenerio in which the frag ahead
- * of us only provides one byte which is why we are limited to 6
- * descriptors for a single transmit as the header and previous
- * fragment are already consuming 2 descriptors.
- */
- sum = 1 - skb_shinfo(skb)->gso_size;
-
- /* Add size of frags 0 through 4 to create our initial sum */
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
- sum += skb_frag_size(frag++);
-
- /* Walk through fragments adding latest fragment, testing it, and
- * then removing stale fragments from the sum.
- */
- for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
- int stale_size = skb_frag_size(stale);
-
- sum += skb_frag_size(frag++);
-
- /* The stale fragment may present us with a smaller
- * descriptor than the actual fragment size. To account
- * for that we need to remove all the data on the front and
- * figure out what the remainder would be in the last
- * descriptor associated with the fragment.
- */
- if (stale_size > I40E_MAX_DATA_PER_TXD) {
- int align_pad = -(stale->page_offset) &
- (I40E_MAX_READ_REQ_SIZE - 1);
-
- sum -= align_pad;
- stale_size -= align_pad;
-
- do {
- sum -= I40E_MAX_DATA_PER_TXD_ALIGNED;
- stale_size -= I40E_MAX_DATA_PER_TXD_ALIGNED;
- } while (stale_size > I40E_MAX_DATA_PER_TXD);
- }
-
- /* if sum is negative we failed to make sufficient progress */
- if (sum < 0)
- return true;
-
- if (!nr_frags--)
- break;
-
- sum -= stale_size;
- }
-
- return false;
-}
-
-/**
- * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
- * @tx_ring: the ring to be checked
- * @size: the size buffer we want to assure is available
- *
- * Returns -EBUSY if a stop is needed, else 0
- **/
-int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
-{
- netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
- /* Memory barrier before checking head and tail */
- smp_mb();
-
- /* Check again in a case another CPU has just made room available. */
- if (likely(I40E_DESC_UNUSED(tx_ring) < size))
- return -EBUSY;
-
- /* A reprieve! - use start_queue because it doesn't call schedule */
- netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
- ++tx_ring->tx_stats.restart_queue;
- return 0;
-}
-
-/**
- * i40evf_tx_map - Build the Tx descriptor
- * @tx_ring: ring to send buffer on
- * @skb: send buffer
- * @first: first buffer info buffer to use
- * @tx_flags: collected send information
- * @hdr_len: size of the packet header
- * @td_cmd: the command field in the descriptor
- * @td_offset: offset for checksum or crc
- **/
-static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
- struct i40e_tx_buffer *first, u32 tx_flags,
- const u8 hdr_len, u32 td_cmd, u32 td_offset)
-{
- unsigned int data_len = skb->data_len;
- unsigned int size = skb_headlen(skb);
- struct skb_frag_struct *frag;
- struct i40e_tx_buffer *tx_bi;
- struct i40e_tx_desc *tx_desc;
- u16 i = tx_ring->next_to_use;
- u32 td_tag = 0;
- dma_addr_t dma;
-
- if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
- td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
- td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
- I40E_TX_FLAGS_VLAN_SHIFT;
- }
-
- first->tx_flags = tx_flags;
-
- dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
-
- tx_desc = I40E_TX_DESC(tx_ring, i);
- tx_bi = first;
-
- for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
- unsigned int max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
-
- if (dma_mapping_error(tx_ring->dev, dma))
- goto dma_error;
-
- /* record length, and DMA address */
- dma_unmap_len_set(tx_bi, len, size);
- dma_unmap_addr_set(tx_bi, dma, dma);
-
- /* align size to end of page */
- max_data += -dma & (I40E_MAX_READ_REQ_SIZE - 1);
- tx_desc->buffer_addr = cpu_to_le64(dma);
-
- while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
- tx_desc->cmd_type_offset_bsz =
- build_ctob(td_cmd, td_offset,
- max_data, td_tag);
-
- tx_desc++;
- i++;
-
- if (i == tx_ring->count) {
- tx_desc = I40E_TX_DESC(tx_ring, 0);
- i = 0;
- }
-
- dma += max_data;
- size -= max_data;
-
- max_data = I40E_MAX_DATA_PER_TXD_ALIGNED;
- tx_desc->buffer_addr = cpu_to_le64(dma);
- }
-
- if (likely(!data_len))
- break;
-
- tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
- size, td_tag);
-
- tx_desc++;
- i++;
-
- if (i == tx_ring->count) {
- tx_desc = I40E_TX_DESC(tx_ring, 0);
- i = 0;
- }
-
- size = skb_frag_size(frag);
- data_len -= size;
-
- dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
- DMA_TO_DEVICE);
-
- tx_bi = &tx_ring->tx_bi[i];
- }
-
- netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
-
- i++;
- if (i == tx_ring->count)
- i = 0;
-
- tx_ring->next_to_use = i;
-
- i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
-
- /* write last descriptor with RS and EOP bits */
- td_cmd |= I40E_TXD_CMD;
- tx_desc->cmd_type_offset_bsz =
- build_ctob(td_cmd, td_offset, size, td_tag);
-
- /* Force memory writes to complete before letting h/w know there
- * are new descriptors to fetch.
- *
- * We also use this memory barrier to make certain all of the
- * status bits have been updated before next_to_watch is written.
- */
- wmb();
-
- /* set next_to_watch value indicating a packet is present */
- first->next_to_watch = tx_desc;
-
- /* notify HW of packet */
- if (netif_xmit_stopped(txring_txq(tx_ring)) || !skb->xmit_more) {
- writel(i, tx_ring->tail);
-
- /* we need this if more than one processor can write to our tail
- * at a time, it synchronizes IO on IA64/Altix systems
- */
- mmiowb();
- }
-
- return;
-
-dma_error:
- dev_info(tx_ring->dev, "TX DMA map failed\n");
-
- /* clear dma mappings for failed tx_bi map */
- for (;;) {
- tx_bi = &tx_ring->tx_bi[i];
- i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
- if (tx_bi == first)
- break;
- if (i == 0)
- i = tx_ring->count;
- i--;
- }
-
- tx_ring->next_to_use = i;
-}
-
-/**
- * i40e_xmit_frame_ring - Sends buffer on Tx ring
- * @skb: send buffer
- * @tx_ring: ring to send buffer on
- *
- * Returns NETDEV_TX_OK if sent, else an error code
- **/
-static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
- struct i40e_ring *tx_ring)
-{
- u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
- u32 cd_tunneling = 0, cd_l2tag2 = 0;
- struct i40e_tx_buffer *first;
- u32 td_offset = 0;
- u32 tx_flags = 0;
- __be16 protocol;
- u32 td_cmd = 0;
- u8 hdr_len = 0;
- int tso, count;
-
- /* prefetch the data, we'll need it later */
- prefetch(skb->data);
-
- i40e_trace(xmit_frame_ring, skb, tx_ring);
-
- count = i40e_xmit_descriptor_count(skb);
- if (i40e_chk_linearize(skb, count)) {
- if (__skb_linearize(skb)) {
- dev_kfree_skb_any(skb);
- return NETDEV_TX_OK;
- }
- count = i40e_txd_use_count(skb->len);
- tx_ring->tx_stats.tx_linearize++;
- }
-
- /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
- * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
- * + 4 desc gap to avoid the cache line where head is,
- * + 1 desc for context descriptor,
- * otherwise try next time
- */
- if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
- tx_ring->tx_stats.tx_busy++;
- return NETDEV_TX_BUSY;
- }
-
- /* record the location of the first descriptor for this packet */
- first = &tx_ring->tx_bi[tx_ring->next_to_use];
- first->skb = skb;
- first->bytecount = skb->len;
- first->gso_segs = 1;
-
- /* prepare the xmit flags */
- if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
- goto out_drop;
-
- /* obtain protocol of skb */
- protocol = vlan_get_protocol(skb);
-
- /* setup IPv4/IPv6 offloads */
- if (protocol == htons(ETH_P_IP))
- tx_flags |= I40E_TX_FLAGS_IPV4;
- else if (protocol == htons(ETH_P_IPV6))
- tx_flags |= I40E_TX_FLAGS_IPV6;
-
- tso = i40e_tso(first, &hdr_len, &cd_type_cmd_tso_mss);
-
- if (tso < 0)
- goto out_drop;
- else if (tso)
- tx_flags |= I40E_TX_FLAGS_TSO;
-
- /* Always offload the checksum, since it's in the data descriptor */
- tso = i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
- tx_ring, &cd_tunneling);
- if (tso < 0)
- goto out_drop;
-
- skb_tx_timestamp(skb);
-
- /* always enable CRC insertion offload */
- td_cmd |= I40E_TX_DESC_CMD_ICRC;
-
- i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
- cd_tunneling, cd_l2tag2);
-
- i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
- td_cmd, td_offset);
-
- return NETDEV_TX_OK;
-
-out_drop:
- i40e_trace(xmit_frame_ring_drop, first->skb, tx_ring);
- dev_kfree_skb_any(first->skb);
- first->skb = NULL;
- return NETDEV_TX_OK;
-}
-
-/**
- * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
- * @skb: send buffer
- * @netdev: network interface device structure
- *
- * Returns NETDEV_TX_OK if sent, else an error code
- **/
-netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
-{
- struct i40evf_adapter *adapter = netdev_priv(netdev);
- struct i40e_ring *tx_ring = &adapter->tx_rings[skb->queue_mapping];
-
- /* hardware can't handle really short frames, hardware padding works
- * beyond this point
- */
- if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
- if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
- return NETDEV_TX_OK;
- skb->len = I40E_MIN_TX_LEN;
- skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
- }
-
- return i40e_xmit_frame_ring(skb, tx_ring);
-}