aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/admin-guide
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/admin-guide')
-rw-r--r--Documentation/admin-guide/devices.txt6
-rw-r--r--Documentation/admin-guide/hw-vuln/gather_data_sampling.rst109
-rw-r--r--Documentation/admin-guide/hw-vuln/index.rst2
-rw-r--r--Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst260
-rw-r--r--Documentation/admin-guide/hw-vuln/spectre.rst79
-rw-r--r--Documentation/admin-guide/kernel-parameters.txt141
-rw-r--r--Documentation/admin-guide/security-bugs.rst39
7 files changed, 575 insertions, 61 deletions
diff --git a/Documentation/admin-guide/devices.txt b/Documentation/admin-guide/devices.txt
index 1649117e6087..9cd7926c8781 100644
--- a/Documentation/admin-guide/devices.txt
+++ b/Documentation/admin-guide/devices.txt
@@ -2993,10 +2993,10 @@
65 = /dev/infiniband/issm1 Second InfiniBand IsSM device
...
127 = /dev/infiniband/issm63 63rd InfiniBand IsSM device
- 128 = /dev/infiniband/uverbs0 First InfiniBand verbs device
- 129 = /dev/infiniband/uverbs1 Second InfiniBand verbs device
+ 192 = /dev/infiniband/uverbs0 First InfiniBand verbs device
+ 193 = /dev/infiniband/uverbs1 Second InfiniBand verbs device
...
- 159 = /dev/infiniband/uverbs31 31st InfiniBand verbs device
+ 223 = /dev/infiniband/uverbs31 31st InfiniBand verbs device
232 char Biometric Devices
0 = /dev/biometric/sensor0/fingerprint first fingerprint sensor on first device
diff --git a/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst b/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst
new file mode 100644
index 000000000000..264bfa937f7d
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/gather_data_sampling.rst
@@ -0,0 +1,109 @@
+.. SPDX-License-Identifier: GPL-2.0
+
+GDS - Gather Data Sampling
+==========================
+
+Gather Data Sampling is a hardware vulnerability which allows unprivileged
+speculative access to data which was previously stored in vector registers.
+
+Problem
+-------
+When a gather instruction performs loads from memory, different data elements
+are merged into the destination vector register. However, when a gather
+instruction that is transiently executed encounters a fault, stale data from
+architectural or internal vector registers may get transiently forwarded to the
+destination vector register instead. This will allow a malicious attacker to
+infer stale data using typical side channel techniques like cache timing
+attacks. GDS is a purely sampling-based attack.
+
+The attacker uses gather instructions to infer the stale vector register data.
+The victim does not need to do anything special other than use the vector
+registers. The victim does not need to use gather instructions to be
+vulnerable.
+
+Because the buffers are shared between Hyper-Threads cross Hyper-Thread attacks
+are possible.
+
+Attack scenarios
+----------------
+Without mitigation, GDS can infer stale data across virtually all
+permission boundaries:
+
+ Non-enclaves can infer SGX enclave data
+ Userspace can infer kernel data
+ Guests can infer data from hosts
+ Guest can infer guest from other guests
+ Users can infer data from other users
+
+Because of this, it is important to ensure that the mitigation stays enabled in
+lower-privilege contexts like guests and when running outside SGX enclaves.
+
+The hardware enforces the mitigation for SGX. Likewise, VMMs should ensure
+that guests are not allowed to disable the GDS mitigation. If a host erred and
+allowed this, a guest could theoretically disable GDS mitigation, mount an
+attack, and re-enable it.
+
+Mitigation mechanism
+--------------------
+This issue is mitigated in microcode. The microcode defines the following new
+bits:
+
+ ================================ === ============================
+ IA32_ARCH_CAPABILITIES[GDS_CTRL] R/O Enumerates GDS vulnerability
+ and mitigation support.
+ IA32_ARCH_CAPABILITIES[GDS_NO] R/O Processor is not vulnerable.
+ IA32_MCU_OPT_CTRL[GDS_MITG_DIS] R/W Disables the mitigation
+ 0 by default.
+ IA32_MCU_OPT_CTRL[GDS_MITG_LOCK] R/W Locks GDS_MITG_DIS=0. Writes
+ to GDS_MITG_DIS are ignored
+ Can't be cleared once set.
+ ================================ === ============================
+
+GDS can also be mitigated on systems that don't have updated microcode by
+disabling AVX. This can be done by setting gather_data_sampling="force" or
+"clearcpuid=avx" on the kernel command-line.
+
+If used, these options will disable AVX use by turning off XSAVE YMM support.
+However, the processor will still enumerate AVX support. Userspace that
+does not follow proper AVX enumeration to check both AVX *and* XSAVE YMM
+support will break.
+
+Mitigation control on the kernel command line
+---------------------------------------------
+The mitigation can be disabled by setting "gather_data_sampling=off" or
+"mitigations=off" on the kernel command line. Not specifying either will default
+to the mitigation being enabled. Specifying "gather_data_sampling=force" will
+use the microcode mitigation when available or disable AVX on affected systems
+where the microcode hasn't been updated to include the mitigation.
+
+GDS System Information
+------------------------
+The kernel provides vulnerability status information through sysfs. For
+GDS this can be accessed by the following sysfs file:
+
+/sys/devices/system/cpu/vulnerabilities/gather_data_sampling
+
+The possible values contained in this file are:
+
+ ============================== =============================================
+ Not affected Processor not vulnerable.
+ Vulnerable Processor vulnerable and mitigation disabled.
+ Vulnerable: No microcode Processor vulnerable and microcode is missing
+ mitigation.
+ Mitigation: AVX disabled,
+ no microcode Processor is vulnerable and microcode is missing
+ mitigation. AVX disabled as mitigation.
+ Mitigation: Microcode Processor is vulnerable and mitigation is in
+ effect.
+ Mitigation: Microcode (locked) Processor is vulnerable and mitigation is in
+ effect and cannot be disabled.
+ Unknown: Dependent on
+ hypervisor status Running on a virtual guest processor that is
+ affected but with no way to know if host
+ processor is mitigated or vulnerable.
+ ============================== =============================================
+
+GDS Default mitigation
+----------------------
+The updated microcode will enable the mitigation by default. The kernel's
+default action is to leave the mitigation enabled.
diff --git a/Documentation/admin-guide/hw-vuln/index.rst b/Documentation/admin-guide/hw-vuln/index.rst
index ca4dbdd9016d..245468b0f2be 100644
--- a/Documentation/admin-guide/hw-vuln/index.rst
+++ b/Documentation/admin-guide/hw-vuln/index.rst
@@ -15,3 +15,5 @@ are configurable at compile, boot or run time.
tsx_async_abort
multihit.rst
special-register-buffer-data-sampling.rst
+ processor_mmio_stale_data.rst
+ gather_data_sampling.rst
diff --git a/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
new file mode 100644
index 000000000000..c98fd11907cc
--- /dev/null
+++ b/Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
@@ -0,0 +1,260 @@
+=========================================
+Processor MMIO Stale Data Vulnerabilities
+=========================================
+
+Processor MMIO Stale Data Vulnerabilities are a class of memory-mapped I/O
+(MMIO) vulnerabilities that can expose data. The sequences of operations for
+exposing data range from simple to very complex. Because most of the
+vulnerabilities require the attacker to have access to MMIO, many environments
+are not affected. System environments using virtualization where MMIO access is
+provided to untrusted guests may need mitigation. These vulnerabilities are
+not transient execution attacks. However, these vulnerabilities may propagate
+stale data into core fill buffers where the data can subsequently be inferred
+by an unmitigated transient execution attack. Mitigation for these
+vulnerabilities includes a combination of microcode update and software
+changes, depending on the platform and usage model. Some of these mitigations
+are similar to those used to mitigate Microarchitectural Data Sampling (MDS) or
+those used to mitigate Special Register Buffer Data Sampling (SRBDS).
+
+Data Propagators
+================
+Propagators are operations that result in stale data being copied or moved from
+one microarchitectural buffer or register to another. Processor MMIO Stale Data
+Vulnerabilities are operations that may result in stale data being directly
+read into an architectural, software-visible state or sampled from a buffer or
+register.
+
+Fill Buffer Stale Data Propagator (FBSDP)
+-----------------------------------------
+Stale data may propagate from fill buffers (FB) into the non-coherent portion
+of the uncore on some non-coherent writes. Fill buffer propagation by itself
+does not make stale data architecturally visible. Stale data must be propagated
+to a location where it is subject to reading or sampling.
+
+Sideband Stale Data Propagator (SSDP)
+-------------------------------------
+The sideband stale data propagator (SSDP) is limited to the client (including
+Intel Xeon server E3) uncore implementation. The sideband response buffer is
+shared by all client cores. For non-coherent reads that go to sideband
+destinations, the uncore logic returns 64 bytes of data to the core, including
+both requested data and unrequested stale data, from a transaction buffer and
+the sideband response buffer. As a result, stale data from the sideband
+response and transaction buffers may now reside in a core fill buffer.
+
+Primary Stale Data Propagator (PSDP)
+------------------------------------
+The primary stale data propagator (PSDP) is limited to the client (including
+Intel Xeon server E3) uncore implementation. Similar to the sideband response
+buffer, the primary response buffer is shared by all client cores. For some
+processors, MMIO primary reads will return 64 bytes of data to the core fill
+buffer including both requested data and unrequested stale data. This is
+similar to the sideband stale data propagator.
+
+Vulnerabilities
+===============
+Device Register Partial Write (DRPW) (CVE-2022-21166)
+-----------------------------------------------------
+Some endpoint MMIO registers incorrectly handle writes that are smaller than
+the register size. Instead of aborting the write or only copying the correct
+subset of bytes (for example, 2 bytes for a 2-byte write), more bytes than
+specified by the write transaction may be written to the register. On
+processors affected by FBSDP, this may expose stale data from the fill buffers
+of the core that created the write transaction.
+
+Shared Buffers Data Sampling (SBDS) (CVE-2022-21125)
+----------------------------------------------------
+After propagators may have moved data around the uncore and copied stale data
+into client core fill buffers, processors affected by MFBDS can leak data from
+the fill buffer. It is limited to the client (including Intel Xeon server E3)
+uncore implementation.
+
+Shared Buffers Data Read (SBDR) (CVE-2022-21123)
+------------------------------------------------
+It is similar to Shared Buffer Data Sampling (SBDS) except that the data is
+directly read into the architectural software-visible state. It is limited to
+the client (including Intel Xeon server E3) uncore implementation.
+
+Affected Processors
+===================
+Not all the CPUs are affected by all the variants. For instance, most
+processors for the server market (excluding Intel Xeon E3 processors) are
+impacted by only Device Register Partial Write (DRPW).
+
+Below is the list of affected Intel processors [#f1]_:
+
+ =================== ============ =========
+ Common name Family_Model Steppings
+ =================== ============ =========
+ HASWELL_X 06_3FH 2,4
+ SKYLAKE_L 06_4EH 3
+ BROADWELL_X 06_4FH All
+ SKYLAKE_X 06_55H 3,4,6,7,11
+ BROADWELL_D 06_56H 3,4,5
+ SKYLAKE 06_5EH 3
+ ICELAKE_X 06_6AH 4,5,6
+ ICELAKE_D 06_6CH 1
+ ICELAKE_L 06_7EH 5
+ ATOM_TREMONT_D 06_86H All
+ LAKEFIELD 06_8AH 1
+ KABYLAKE_L 06_8EH 9 to 12
+ ATOM_TREMONT 06_96H 1
+ ATOM_TREMONT_L 06_9CH 0
+ KABYLAKE 06_9EH 9 to 13
+ COMETLAKE 06_A5H 2,3,5
+ COMETLAKE_L 06_A6H 0,1
+ ROCKETLAKE 06_A7H 1
+ =================== ============ =========
+
+If a CPU is in the affected processor list, but not affected by a variant, it
+is indicated by new bits in MSR IA32_ARCH_CAPABILITIES. As described in a later
+section, mitigation largely remains the same for all the variants, i.e. to
+clear the CPU fill buffers via VERW instruction.
+
+New bits in MSRs
+================
+Newer processors and microcode update on existing affected processors added new
+bits to IA32_ARCH_CAPABILITIES MSR. These bits can be used to enumerate
+specific variants of Processor MMIO Stale Data vulnerabilities and mitigation
+capability.
+
+MSR IA32_ARCH_CAPABILITIES
+--------------------------
+Bit 13 - SBDR_SSDP_NO - When set, processor is not affected by either the
+ Shared Buffers Data Read (SBDR) vulnerability or the sideband stale
+ data propagator (SSDP).
+Bit 14 - FBSDP_NO - When set, processor is not affected by the Fill Buffer
+ Stale Data Propagator (FBSDP).
+Bit 15 - PSDP_NO - When set, processor is not affected by Primary Stale Data
+ Propagator (PSDP).
+Bit 17 - FB_CLEAR - When set, VERW instruction will overwrite CPU fill buffer
+ values as part of MD_CLEAR operations. Processors that do not
+ enumerate MDS_NO (meaning they are affected by MDS) but that do
+ enumerate support for both L1D_FLUSH and MD_CLEAR implicitly enumerate
+ FB_CLEAR as part of their MD_CLEAR support.
+Bit 18 - FB_CLEAR_CTRL - Processor supports read and write to MSR
+ IA32_MCU_OPT_CTRL[FB_CLEAR_DIS]. On such processors, the FB_CLEAR_DIS
+ bit can be set to cause the VERW instruction to not perform the
+ FB_CLEAR action. Not all processors that support FB_CLEAR will support
+ FB_CLEAR_CTRL.
+
+MSR IA32_MCU_OPT_CTRL
+---------------------
+Bit 3 - FB_CLEAR_DIS - When set, VERW instruction does not perform the FB_CLEAR
+action. This may be useful to reduce the performance impact of FB_CLEAR in
+cases where system software deems it warranted (for example, when performance
+is more critical, or the untrusted software has no MMIO access). Note that
+FB_CLEAR_DIS has no impact on enumeration (for example, it does not change
+FB_CLEAR or MD_CLEAR enumeration) and it may not be supported on all processors
+that enumerate FB_CLEAR.
+
+Mitigation
+==========
+Like MDS, all variants of Processor MMIO Stale Data vulnerabilities have the
+same mitigation strategy to force the CPU to clear the affected buffers before
+an attacker can extract the secrets.
+
+This is achieved by using the otherwise unused and obsolete VERW instruction in
+combination with a microcode update. The microcode clears the affected CPU
+buffers when the VERW instruction is executed.
+
+Kernel reuses the MDS function to invoke the buffer clearing:
+
+ mds_clear_cpu_buffers()
+
+On MDS affected CPUs, the kernel already invokes CPU buffer clear on
+kernel/userspace, hypervisor/guest and C-state (idle) transitions. No
+additional mitigation is needed on such CPUs.
+
+For CPUs not affected by MDS or TAA, mitigation is needed only for the attacker
+with MMIO capability. Therefore, VERW is not required for kernel/userspace. For
+virtualization case, VERW is only needed at VMENTER for a guest with MMIO
+capability.
+
+Mitigation points
+-----------------
+Return to user space
+^^^^^^^^^^^^^^^^^^^^
+Same mitigation as MDS when affected by MDS/TAA, otherwise no mitigation
+needed.
+
+C-State transition
+^^^^^^^^^^^^^^^^^^
+Control register writes by CPU during C-state transition can propagate data
+from fill buffer to uncore buffers. Execute VERW before C-state transition to
+clear CPU fill buffers.
+
+Guest entry point
+^^^^^^^^^^^^^^^^^
+Same mitigation as MDS when processor is also affected by MDS/TAA, otherwise
+execute VERW at VMENTER only for MMIO capable guests. On CPUs not affected by
+MDS/TAA, guest without MMIO access cannot extract secrets using Processor MMIO
+Stale Data vulnerabilities, so there is no need to execute VERW for such guests.
+
+Mitigation control on the kernel command line
+---------------------------------------------
+The kernel command line allows to control the Processor MMIO Stale Data
+mitigations at boot time with the option "mmio_stale_data=". The valid
+arguments for this option are:
+
+ ========== =================================================================
+ full If the CPU is vulnerable, enable mitigation; CPU buffer clearing
+ on exit to userspace and when entering a VM. Idle transitions are
+ protected as well. It does not automatically disable SMT.
+ full,nosmt Same as full, with SMT disabled on vulnerable CPUs. This is the
+ complete mitigation.
+ off Disables mitigation completely.
+ ========== =================================================================
+
+If the CPU is affected and mmio_stale_data=off is not supplied on the kernel
+command line, then the kernel selects the appropriate mitigation.
+
+Mitigation status information
+-----------------------------
+The Linux kernel provides a sysfs interface to enumerate the current
+vulnerability status of the system: whether the system is vulnerable, and
+which mitigations are active. The relevant sysfs file is:
+
+ /sys/devices/system/cpu/vulnerabilities/mmio_stale_data
+
+The possible values in this file are:
+
+ .. list-table::
+
+ * - 'Not affected'
+ - The processor is not vulnerable
+ * - 'Vulnerable'
+ - The processor is vulnerable, but no mitigation enabled
+ * - 'Vulnerable: Clear CPU buffers attempted, no microcode'
+ - The processor is vulnerable, but microcode is not updated. The
+ mitigation is enabled on a best effort basis.
+ * - 'Mitigation: Clear CPU buffers'
+ - The processor is vulnerable and the CPU buffer clearing mitigation is
+ enabled.
+ * - 'Unknown: No mitigations'
+ - The processor vulnerability status is unknown because it is
+ out of Servicing period. Mitigation is not attempted.
+
+Definitions:
+------------
+
+Servicing period: The process of providing functional and security updates to
+Intel processors or platforms, utilizing the Intel Platform Update (IPU)
+process or other similar mechanisms.
+
+End of Servicing Updates (ESU): ESU is the date at which Intel will no
+longer provide Servicing, such as through IPU or other similar update
+processes. ESU dates will typically be aligned to end of quarter.
+
+If the processor is vulnerable then the following information is appended to
+the above information:
+
+ ======================== ===========================================
+ 'SMT vulnerable' SMT is enabled
+ 'SMT disabled' SMT is disabled
+ 'SMT Host state unknown' Kernel runs in a VM, Host SMT state unknown
+ ======================== ===========================================
+
+References
+----------
+.. [#f1] Affected Processors
+ https://www.intel.com/content/www/us/en/developer/topic-technology/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
diff --git a/Documentation/admin-guide/hw-vuln/spectre.rst b/Documentation/admin-guide/hw-vuln/spectre.rst
index e05e581af5cf..0fba3758d0da 100644
--- a/Documentation/admin-guide/hw-vuln/spectre.rst
+++ b/Documentation/admin-guide/hw-vuln/spectre.rst
@@ -60,8 +60,8 @@ privileged data touched during the speculative execution.
Spectre variant 1 attacks take advantage of speculative execution of
conditional branches, while Spectre variant 2 attacks use speculative
execution of indirect branches to leak privileged memory.
-See :ref:`[1] <spec_ref1>` :ref:`[5] <spec_ref5>` :ref:`[7] <spec_ref7>`
-:ref:`[10] <spec_ref10>` :ref:`[11] <spec_ref11>`.
+See :ref:`[1] <spec_ref1>` :ref:`[5] <spec_ref5>` :ref:`[6] <spec_ref6>`
+:ref:`[7] <spec_ref7>` :ref:`[10] <spec_ref10>` :ref:`[11] <spec_ref11>`.
Spectre variant 1 (Bounds Check Bypass)
---------------------------------------
@@ -131,6 +131,19 @@ steer its indirect branch speculations to gadget code, and measure the
speculative execution's side effects left in level 1 cache to infer the
victim's data.
+Yet another variant 2 attack vector is for the attacker to poison the
+Branch History Buffer (BHB) to speculatively steer an indirect branch
+to a specific Branch Target Buffer (BTB) entry, even if the entry isn't
+associated with the source address of the indirect branch. Specifically,
+the BHB might be shared across privilege levels even in the presence of
+Enhanced IBRS.
+
+Currently the only known real-world BHB attack vector is via
+unprivileged eBPF. Therefore, it's highly recommended to not enable
+unprivileged eBPF, especially when eIBRS is used (without retpolines).
+For a full mitigation against BHB attacks, it's recommended to use
+retpolines (or eIBRS combined with retpolines).
+
Attack scenarios
----------------
@@ -364,13 +377,15 @@ The possible values in this file are:
- Kernel status:
- ==================================== =================================
- 'Not affected' The processor is not vulnerable
- 'Vulnerable' Vulnerable, no mitigation
- 'Mitigation: Full generic retpoline' Software-focused mitigation
- 'Mitigation: Full AMD retpoline' AMD-specific software mitigation
- 'Mitigation: Enhanced IBRS' Hardware-focused mitigation
- ==================================== =================================
+ ======================================== =================================
+ 'Not affected' The processor is not vulnerable
+ 'Mitigation: None' Vulnerable, no mitigation
+ 'Mitigation: Retpolines' Use Retpoline thunks
+ 'Mitigation: LFENCE' Use LFENCE instructions
+ 'Mitigation: Enhanced IBRS' Hardware-focused mitigation
+ 'Mitigation: Enhanced IBRS + Retpolines' Hardware-focused + Retpolines
+ 'Mitigation: Enhanced IBRS + LFENCE' Hardware-focused + LFENCE
+ ======================================== =================================
- Firmware status: Show if Indirect Branch Restricted Speculation (IBRS) is
used to protect against Spectre variant 2 attacks when calling firmware (x86 only).
@@ -407,6 +422,14 @@ The possible values in this file are:
'RSB filling' Protection of RSB on context switch enabled
============= ===========================================
+ - EIBRS Post-barrier Return Stack Buffer (PBRSB) protection status:
+
+ =========================== =======================================================
+ 'PBRSB-eIBRS: SW sequence' CPU is affected and protection of RSB on VMEXIT enabled
+ 'PBRSB-eIBRS: Vulnerable' CPU is vulnerable
+ 'PBRSB-eIBRS: Not affected' CPU is not affected by PBRSB
+ =========================== =======================================================
+
Full mitigation might require a microcode update from the CPU
vendor. When the necessary microcode is not available, the kernel will
report vulnerability.
@@ -456,8 +479,16 @@ Spectre variant 2
On Intel Skylake-era systems the mitigation covers most, but not all,
cases. See :ref:`[3] <spec_ref3>` for more details.
- On CPUs with hardware mitigation for Spectre variant 2 (e.g. Enhanced
- IBRS on x86), retpoline is automatically disabled at run time.
+ On CPUs with hardware mitigation for Spectre variant 2 (e.g. IBRS
+ or enhanced IBRS on x86), retpoline is automatically disabled at run time.
+
+ Systems which support enhanced IBRS (eIBRS) enable IBRS protection once at
+ boot, by setting the IBRS bit, and they're automatically protected against
+ Spectre v2 variant attacks, including cross-thread branch target injections
+ on SMT systems (STIBP). In other words, eIBRS enables STIBP too.
+
+ Legacy IBRS systems clear the IBRS bit on exit to userspace and
+ therefore explicitly enable STIBP for that
The retpoline mitigation is turned on by default on vulnerable
CPUs. It can be forced on or off by the administrator
@@ -468,7 +499,7 @@ Spectre variant 2
before invoking any firmware code to prevent Spectre variant 2 exploits
using the firmware.
- Using kernel address space randomization (CONFIG_RANDOMIZE_SLAB=y
+ Using kernel address space randomization (CONFIG_RANDOMIZE_BASE=y
and CONFIG_SLAB_FREELIST_RANDOM=y in the kernel configuration) makes
attacks on the kernel generally more difficult.
@@ -481,9 +512,12 @@ Spectre variant 2
For Spectre variant 2 mitigation, individual user programs
can be compiled with return trampolines for indirect branches.
This protects them from consuming poisoned entries in the branch
- target buffer left by malicious software. Alternatively, the
- programs can disable their indirect branch speculation via prctl()
- (See :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
+ target buffer left by malicious software.
+
+ On legacy IBRS systems, at return to userspace, implicit STIBP is disabled
+ because the kernel clears the IBRS bit. In this case, the userspace programs
+ can disable indirect branch speculation via prctl() (See
+ :ref:`Documentation/userspace-api/spec_ctrl.rst <set_spec_ctrl>`).
On x86, this will turn on STIBP to guard against attacks from the
sibling thread when the user program is running, and use IBPB to
flush the branch target buffer when switching to/from the program.
@@ -584,12 +618,13 @@ kernel command line.
Specific mitigations can also be selected manually:
- retpoline
- replace indirect branches
- retpoline,generic
- google's original retpoline
- retpoline,amd
- AMD-specific minimal thunk
+ retpoline auto pick between generic,lfence
+ retpoline,generic Retpolines
+ retpoline,lfence LFENCE; indirect branch
+ retpoline,amd alias for retpoline,lfence
+ eibrs enhanced IBRS
+ eibrs,retpoline enhanced IBRS + Retpolines
+ eibrs,lfence enhanced IBRS + LFENCE
Not specifying this option is equivalent to
spectre_v2=auto.
@@ -730,7 +765,7 @@ AMD white papers:
.. _spec_ref6:
-[6] `Software techniques for managing speculation on AMD processors <https://developer.amd.com/wp-content/resources/90343-B_SoftwareTechniquesforManagingSpeculation_WP_7-18Update_FNL.pdf>`_.
+[6] `Software techniques for managing speculation on AMD processors <https://developer.amd.com/wp-content/resources/Managing-Speculation-on-AMD-Processors.pdf>`_.
ARM white papers:
diff --git a/Documentation/admin-guide/kernel-parameters.txt b/Documentation/admin-guide/kernel-parameters.txt
index 30752db57587..84c34f7e8984 100644
--- a/Documentation/admin-guide/kernel-parameters.txt
+++ b/Documentation/admin-guide/kernel-parameters.txt
@@ -558,7 +558,13 @@
loops can be debugged more effectively on production
systems.
- clearcpuid=BITNUM [X86]
+ clocksource.max_cswd_read_retries= [KNL]
+ Number of clocksource_watchdog() retries due to
+ external delays before the clock will be marked
+ unstable. Defaults to three retries, that is,
+ four attempts to read the clock under test.
+
+ clearcpuid=BITNUM[,BITNUM...] [X86]
Disable CPUID feature X for the kernel. See
arch/x86/include/asm/cpufeatures.h for the valid bit
numbers. Note the Linux specific bits are not necessarily
@@ -804,10 +810,6 @@
debugpat [X86] Enable PAT debugging
- decnet.addr= [HW,NET]
- Format: <area>[,<node>]
- See also Documentation/networking/decnet.txt.
-
default_hugepagesz=
[same as hugepagesz=] The size of the default
HugeTLB page size. This is the size represented by
@@ -1288,6 +1290,26 @@
Format: off | on
default: on
+ gather_data_sampling=
+ [X86,INTEL] Control the Gather Data Sampling (GDS)
+ mitigation.
+
+ Gather Data Sampling is a hardware vulnerability which
+ allows unprivileged speculative access to data which was
+ previously stored in vector registers.
+
+ This issue is mitigated by default in updated microcode.
+ The mitigation may have a performance impact but can be
+ disabled. On systems without the microcode mitigation
+ disabling AVX serves as a mitigation.
+
+ force: Disable AVX to mitigate systems without
+ microcode mitigation. No effect if the microcode
+ mitigation is present. Known to cause crashes in
+ userspace with buggy AVX enumeration.
+
+ off: Disable GDS mitigation.
+
gcov_persist= [GCOV] When non-zero (default), profiling data for
kernel modules is saved and remains accessible via
debugfs, even when the module is unloaded/reloaded.
@@ -1433,6 +1455,8 @@
architectures force reset to be always executed
i8042.unlock [HW] Unlock (ignore) the keylock
i8042.kbdreset [HW] Reset device connected to KBD port
+ i8042.probe_defer
+ [HW] Allow deferred probing upon i8042 probe errors
i810= [HW,DRM]
@@ -2013,8 +2037,12 @@
Default is 1 (enabled)
kvm-intel.emulate_invalid_guest_state=
- [KVM,Intel] Enable emulation of invalid guest states
- Default is 0 (disabled)
+ [KVM,Intel] Disable emulation of invalid guest state.
+ Ignored if kvm-intel.enable_unrestricted_guest=1, as
+ guest state is never invalid for unrestricted guests.
+ This param doesn't apply to nested guests (L2), as KVM
+ never emulates invalid L2 guest state.
+ Default is 1 (enabled)
kvm-intel.flexpriority=
[KVM,Intel] Disable FlexPriority feature (TPR shadow).
@@ -2547,19 +2575,23 @@
Disable all optional CPU mitigations. This
improves system performance, but it may also
expose users to several CPU vulnerabilities.
- Equivalent to: nopti [X86,PPC]
+ Equivalent to: gather_data_sampling=off [X86]
kpti=0 [ARM64]
- nospectre_v1 [PPC]
+ kvm.nx_huge_pages=off [X86]
+ l1tf=off [X86]
+ mds=off [X86]
+ mmio_stale_data=off [X86]
+ no_entry_flush [PPC]
+ no_uaccess_flush [PPC]
nobp=0 [S390]
+ nopti [X86,PPC]
+ nospectre_v1 [PPC]
nospectre_v1 [X86]
nospectre_v2 [X86,PPC,S390,ARM64]
- spectre_v2_user=off [X86]
spec_store_bypass_disable=off [X86,PPC]
+ spectre_v2_user=off [X86]
ssbd=force-off [ARM64]
- l1tf=off [X86]
- mds=off [X86]
tsx_async_abort=off [X86]
- kvm.nx_huge_pages=off [X86]
Exceptions:
This does not have any effect on
@@ -2581,6 +2613,7 @@
Equivalent to: l1tf=flush,nosmt [X86]
mds=full,nosmt [X86]
tsx_async_abort=full,nosmt [X86]
+ mmio_stale_data=full,nosmt [X86]
mminit_loglevel=
[KNL] When CONFIG_DEBUG_MEMORY_INIT is set, this
@@ -2590,6 +2623,40 @@
log everything. Information is printed at KERN_DEBUG
so loglevel=8 may also need to be specified.
+ mmio_stale_data=
+ [X86,INTEL] Control mitigation for the Processor
+ MMIO Stale Data vulnerabilities.
+
+ Processor MMIO Stale Data is a class of
+ vulnerabilities that may expose data after an MMIO
+ operation. Exposed data could originate or end in
+ the same CPU buffers as affected by MDS and TAA.
+ Therefore, similar to MDS and TAA, the mitigation
+ is to clear the affected CPU buffers.
+
+ This parameter controls the mitigation. The
+ options are:
+
+ full - Enable mitigation on vulnerable CPUs
+
+ full,nosmt - Enable mitigation and disable SMT on
+ vulnerable CPUs.
+
+ off - Unconditionally disable mitigation
+
+ On MDS or TAA affected machines,
+ mmio_stale_data=off can be prevented by an active
+ MDS or TAA mitigation as these vulnerabilities are
+ mitigated with the same mechanism so in order to
+ disable this mitigation, you need to specify
+ mds=off and tsx_async_abort=off too.
+
+ Not specifying this option is equivalent to
+ mmio_stale_data=full.
+
+ For details see:
+ Documentation/admin-guide/hw-vuln/processor_mmio_stale_data.rst
+
module.sig_enforce
[KNL] When CONFIG_MODULE_SIG is set, this means that
modules without (valid) signatures will fail to load.
@@ -2870,6 +2937,8 @@
noefi Disable EFI runtime services support.
+ no_entry_flush [PPC] Don't flush the L1-D cache when entering the kernel.
+
noexec [IA-64]
noexec [X86]
@@ -2919,6 +2988,9 @@
nospec_store_bypass_disable
[HW] Disable all mitigations for the Speculative Store Bypass vulnerability
+ no_uaccess_flush
+ [PPC] Don't flush the L1-D cache after accessing user data.
+
noxsave [BUGS=X86] Disables x86 extended register state save
and restore using xsave. The kernel will fallback to
enabling legacy floating-point and sse state.
@@ -3642,6 +3714,12 @@
fully seed the kernel's CRNG. Default is controlled
by CONFIG_RANDOM_TRUST_CPU.
+ random.trust_bootloader={on,off}
+ [KNL] Enable or disable trusting the use of a
+ seed passed by the bootloader (if available) to
+ fully seed the kernel's CRNG. Default is controlled
+ by CONFIG_RANDOM_TRUST_BOOTLOADER.
+
ras=option[,option,...] [KNL] RAS-specific options
cec_disable [X86]
@@ -4071,6 +4149,18 @@
retain_initrd [RAM] Keep initrd memory after extraction
+ retbleed= [X86] Control mitigation of RETBleed (Arbitrary
+ Speculative Code Execution with Return Instructions)
+ vulnerability.
+
+ off - unconditionally disable
+ auto - automatically select a migitation
+
+ Selecting 'auto' will choose a mitigation method at run
+ time according to the CPU.
+
+ Not specifying this option is equivalent to retbleed=auto.
+
rfkill.default_state=
0 "airplane mode". All wifi, bluetooth, wimax, gps, fm,
etc. communication is blocked by default.
@@ -4310,8 +4400,13 @@
Specific mitigations can also be selected manually:
retpoline - replace indirect branches
- retpoline,generic - google's original retpoline
- retpoline,amd - AMD-specific minimal thunk
+ retpoline,generic - Retpolines
+ retpoline,lfence - LFENCE; indirect branch
+ retpoline,amd - alias for retpoline,lfence
+ eibrs - enhanced IBRS
+ eibrs,retpoline - enhanced IBRS + Retpolines
+ eibrs,lfence - enhanced IBRS + LFENCE
+ ibrs - use IBRS to protect kernel
Not specifying this option is equivalent to
spectre_v2=auto.
@@ -4991,6 +5086,7 @@
device);
j = NO_REPORT_LUNS (don't use report luns
command, uas only);
+ k = NO_SAME (do not use WRITE_SAME, uas only)
l = NOT_LOCKABLE (don't try to lock and
unlock ejectable media, not on uas);
m = MAX_SECTORS_64 (don't transfer more
@@ -5270,6 +5366,21 @@
with /sys/devices/system/xen_memory/xen_memory0/scrub_pages.
Default value controlled with CONFIG_XEN_SCRUB_PAGES_DEFAULT.
+ xen.balloon_boot_timeout= [XEN]
+ The time (in seconds) to wait before giving up to boot
+ in case initial ballooning fails to free enough memory.
+ Applies only when running as HVM or PVH guest and
+ started with less memory configured than allowed at
+ max. Default is 180.
+
+ xen.event_eoi_delay= [XEN]
+ How long to delay EOI handling in case of event
+ storms (jiffies). Default is 10.
+
+ xen.event_loop_timeout= [XEN]
+ After which time (jiffies) the event handling loop
+ should start to delay EOI handling. Default is 2.
+
xirc2ps_cs= [NET,PCMCIA]
Format:
<irq>,<irq_mask>,<io>,<full_duplex>,<do_sound>,<lockup_hack>[,<irq2>[,<irq3>[,<irq4>]]]
diff --git a/Documentation/admin-guide/security-bugs.rst b/Documentation/admin-guide/security-bugs.rst
index 30187d49dc2c..67161e1b0f0b 100644
--- a/Documentation/admin-guide/security-bugs.rst
+++ b/Documentation/admin-guide/security-bugs.rst
@@ -56,31 +56,28 @@ information submitted to the security list and any followup discussions
of the report are treated confidentially even after the embargo has been
lifted, in perpetuity.
-Coordination
-------------
-
-Fixes for sensitive bugs, such as those that might lead to privilege
-escalations, may need to be coordinated with the private
-<linux-distros@vs.openwall.org> mailing list so that distribution vendors
-are well prepared to issue a fixed kernel upon public disclosure of the
-upstream fix. Distros will need some time to test the proposed patch and
-will generally request at least a few days of embargo, and vendor update
-publication prefers to happen Tuesday through Thursday. When appropriate,
-the security team can assist with this coordination, or the reporter can
-include linux-distros from the start. In this case, remember to prefix
-the email Subject line with "[vs]" as described in the linux-distros wiki:
-<http://oss-security.openwall.org/wiki/mailing-lists/distros#how-to-use-the-lists>
+Coordination with other groups
+------------------------------
+
+The kernel security team strongly recommends that reporters of potential
+security issues NEVER contact the "linux-distros" mailing list until
+AFTER discussing it with the kernel security team. Do not Cc: both
+lists at once. You may contact the linux-distros mailing list after a
+fix has been agreed on and you fully understand the requirements that
+doing so will impose on you and the kernel community.
+
+The different lists have different goals and the linux-distros rules do
+not contribute to actually fixing any potential security problems.
CVE assignment
--------------
-The security team does not normally assign CVEs, nor do we require them
-for reports or fixes, as this can needlessly complicate the process and
-may delay the bug handling. If a reporter wishes to have a CVE identifier
-assigned ahead of public disclosure, they will need to contact the private
-linux-distros list, described above. When such a CVE identifier is known
-before a patch is provided, it is desirable to mention it in the commit
-message if the reporter agrees.
+The security team does not assign CVEs, nor do we require them for
+reports or fixes, as this can needlessly complicate the process and may
+delay the bug handling. If a reporter wishes to have a CVE identifier
+assigned, they should find one by themselves, for example by contacting
+MITRE directly. However under no circumstances will a patch inclusion
+be delayed to wait for a CVE identifier to arrive.
Non-disclosure agreements
-------------------------