summaryrefslogtreecommitdiffstats
path: root/drivers/video/kyro/STG4000VTG.c
blob: bd389709d23403d9b2d85950f267c78143838487 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
/*
 *  linux/drivers/video/kyro/STG4000VTG.c
 *
 *  Copyright (C) 2002 STMicroelectronics
 *
 * This file is subject to the terms and conditions of the GNU General Public
 * License.  See the file COPYING in the main directory of this archive
 * for more details.
 */

#include <linux/types.h>
#include <video/kyro.h>

#include "STG4000Reg.h"
#include "STG4000Interface.h"

void DisableVGA(volatile STG4000REG __iomem *pSTGReg)
{
	u32 tmp;
	volatile u32 count = 0, i;

	/* Reset the VGA registers */
	tmp = STG_READ_REG(SoftwareReset);
	CLEAR_BIT(8);
	STG_WRITE_REG(SoftwareReset, tmp);

	/* Just for Delay */
	for (i = 0; i < 1000; i++) {
		count++;
	}

	/* Pull-out the VGA registers from reset */
	tmp = STG_READ_REG(SoftwareReset);
	tmp |= SET_BIT(8);
	STG_WRITE_REG(SoftwareReset, tmp);
}

void StopVTG(volatile STG4000REG __iomem *pSTGReg)
{
	u32 tmp = 0;

	/* Stop Ver and Hor Sync Generator */
	tmp = (STG_READ_REG(DACSyncCtrl)) | SET_BIT(0) | SET_BIT(2);
	CLEAR_BIT(31);
	STG_WRITE_REG(DACSyncCtrl, tmp);
}

void StartVTG(volatile STG4000REG __iomem *pSTGReg)
{
	u32 tmp = 0;

	/* Start Ver and Hor Sync Generator */
	tmp = ((STG_READ_REG(DACSyncCtrl)) | SET_BIT(31));
	CLEAR_BIT(0);
	CLEAR_BIT(2);
	STG_WRITE_REG(DACSyncCtrl, tmp);
}

void SetupVTG(volatile STG4000REG __iomem *pSTGReg,
	      const struct kyrofb_info * pTiming)
{
	u32 tmp = 0;
	u32 margins = 0;
	u32 ulBorder;
	u32 xRes = pTiming->XRES;
	u32 yRes = pTiming->YRES;

	/* Horizontal */
	u32 HAddrTime, HRightBorder, HLeftBorder;
	u32 HBackPorcStrt, HFrontPorchStrt, HTotal,
	    HLeftBorderStrt, HRightBorderStrt, HDisplayStrt;

	/* Vertical */
	u32 VDisplayStrt, VBottomBorder, VTopBorder;
	u32 VBackPorchStrt, VTotal, VTopBorderStrt,
	    VFrontPorchStrt, VBottomBorderStrt, VAddrTime;

	/* Need to calculate the right border */
	if ((xRes == 640) && (yRes == 480)) {
		if ((pTiming->VFREQ == 60) || (pTiming->VFREQ == 72)) {
			margins = 8;
		}
	}

	/* Work out the Border */
	ulBorder =
	    (pTiming->HTot -
	     (pTiming->HST + (pTiming->HBP - margins) + xRes +
	      (pTiming->HFP - margins))) >> 1;

	/* Border the same for Vertical and Horizontal */
	VBottomBorder = HLeftBorder = VTopBorder = HRightBorder = ulBorder;

    /************ Get Timing values for Horizontal ******************/
	HAddrTime = xRes;
	HBackPorcStrt = pTiming->HST;
	HTotal = pTiming->HTot;
	HDisplayStrt =
	    pTiming->HST + (pTiming->HBP - margins) + HLeftBorder;
	HLeftBorderStrt = HDisplayStrt - HLeftBorder;
	HFrontPorchStrt =
	    pTiming->HST + (pTiming->HBP - margins) + HLeftBorder +
	    HAddrTime + HRightBorder;
	HRightBorderStrt = HFrontPorchStrt - HRightBorder;

    /************ Get Timing values for Vertical ******************/
	VAddrTime = yRes;
	VBackPorchStrt = pTiming->VST;
	VTotal = pTiming->VTot;
	VDisplayStrt =
	    pTiming->VST + (pTiming->VBP - margins) + VTopBorder;
	VTopBorderStrt = VDisplayStrt - VTopBorder;
	VFrontPorchStrt =
	    pTiming->VST + (pTiming->VBP - margins) + VTopBorder +
	    VAddrTime + VBottomBorder;
	VBottomBorderStrt = VFrontPorchStrt - VBottomBorder;

	/* Set Hor Timing 1, 2, 3 */
	tmp = STG_READ_REG(DACHorTim1);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (HTotal) | (HBackPorcStrt << 16);
	STG_WRITE_REG(DACHorTim1, tmp);

	tmp = STG_READ_REG(DACHorTim2);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (HDisplayStrt << 16) | HLeftBorderStrt;
	STG_WRITE_REG(DACHorTim2, tmp);

	tmp = STG_READ_REG(DACHorTim3);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (HFrontPorchStrt << 16) | HRightBorderStrt;
	STG_WRITE_REG(DACHorTim3, tmp);

	/* Set Ver Timing 1, 2, 3 */
	tmp = STG_READ_REG(DACVerTim1);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (VBackPorchStrt << 16) | (VTotal);
	STG_WRITE_REG(DACVerTim1, tmp);

	tmp = STG_READ_REG(DACVerTim2);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (VDisplayStrt << 16) | VTopBorderStrt;
	STG_WRITE_REG(DACVerTim2, tmp);

	tmp = STG_READ_REG(DACVerTim3);
	CLEAR_BITS_FRM_TO(0, 11);
	CLEAR_BITS_FRM_TO(16, 27);
	tmp |= (VFrontPorchStrt << 16) | VBottomBorderStrt;
	STG_WRITE_REG(DACVerTim3, tmp);

	/* Set Verical and Horizontal Polarity */
	tmp = STG_READ_REG(DACSyncCtrl) | SET_BIT(3) | SET_BIT(1);

	if ((pTiming->HSP > 0) && (pTiming->VSP < 0)) {	/* +hsync -vsync */
		tmp &= ~0x8;
	} else if ((pTiming->HSP < 0) && (pTiming->VSP > 0)) {	/* -hsync +vsync */
		tmp &= ~0x2;
	} else if ((pTiming->HSP < 0) && (pTiming->VSP < 0)) {	/* -hsync -vsync */
		tmp &= ~0xA;
	} else if ((pTiming->HSP > 0) && (pTiming->VSP > 0)) {	/* +hsync -vsync */
		tmp &= ~0x0;
	}

	STG_WRITE_REG(DACSyncCtrl, tmp);
}