summaryrefslogtreecommitdiffstats
path: root/kernel/sched
diff options
context:
space:
mode:
Diffstat (limited to 'kernel/sched')
-rw-r--r--kernel/sched/core.c368
-rw-r--r--kernel/sched/fair.c113
-rw-r--r--kernel/sched/idle_task.c1
-rw-r--r--kernel/sched/sched.h25
4 files changed, 383 insertions, 124 deletions
diff --git a/kernel/sched/core.c b/kernel/sched/core.c
index d5594a4268d4..5d011ef4c0df 100644
--- a/kernel/sched/core.c
+++ b/kernel/sched/core.c
@@ -1096,7 +1096,7 @@ void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
* a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
*
* sched_move_task() holds both and thus holding either pins the cgroup,
- * see set_task_rq().
+ * see task_group().
*
* Furthermore, all task_rq users should acquire both locks, see
* task_rq_lock().
@@ -2081,7 +2081,6 @@ context_switch(struct rq *rq, struct task_struct *prev,
#endif
/* Here we just switch the register state and the stack. */
- rcu_switch_from(prev);
switch_to(prev, next, prev);
barrier();
@@ -2161,11 +2160,73 @@ unsigned long this_cpu_load(void)
}
+/*
+ * Global load-average calculations
+ *
+ * We take a distributed and async approach to calculating the global load-avg
+ * in order to minimize overhead.
+ *
+ * The global load average is an exponentially decaying average of nr_running +
+ * nr_uninterruptible.
+ *
+ * Once every LOAD_FREQ:
+ *
+ * nr_active = 0;
+ * for_each_possible_cpu(cpu)
+ * nr_active += cpu_of(cpu)->nr_running + cpu_of(cpu)->nr_uninterruptible;
+ *
+ * avenrun[n] = avenrun[0] * exp_n + nr_active * (1 - exp_n)
+ *
+ * Due to a number of reasons the above turns in the mess below:
+ *
+ * - for_each_possible_cpu() is prohibitively expensive on machines with
+ * serious number of cpus, therefore we need to take a distributed approach
+ * to calculating nr_active.
+ *
+ * \Sum_i x_i(t) = \Sum_i x_i(t) - x_i(t_0) | x_i(t_0) := 0
+ * = \Sum_i { \Sum_j=1 x_i(t_j) - x_i(t_j-1) }
+ *
+ * So assuming nr_active := 0 when we start out -- true per definition, we
+ * can simply take per-cpu deltas and fold those into a global accumulate
+ * to obtain the same result. See calc_load_fold_active().
+ *
+ * Furthermore, in order to avoid synchronizing all per-cpu delta folding
+ * across the machine, we assume 10 ticks is sufficient time for every
+ * cpu to have completed this task.
+ *
+ * This places an upper-bound on the IRQ-off latency of the machine. Then
+ * again, being late doesn't loose the delta, just wrecks the sample.
+ *
+ * - cpu_rq()->nr_uninterruptible isn't accurately tracked per-cpu because
+ * this would add another cross-cpu cacheline miss and atomic operation
+ * to the wakeup path. Instead we increment on whatever cpu the task ran
+ * when it went into uninterruptible state and decrement on whatever cpu
+ * did the wakeup. This means that only the sum of nr_uninterruptible over
+ * all cpus yields the correct result.
+ *
+ * This covers the NO_HZ=n code, for extra head-aches, see the comment below.
+ */
+
/* Variables and functions for calc_load */
static atomic_long_t calc_load_tasks;
static unsigned long calc_load_update;
unsigned long avenrun[3];
-EXPORT_SYMBOL(avenrun);
+EXPORT_SYMBOL(avenrun); /* should be removed */
+
+/**
+ * get_avenrun - get the load average array
+ * @loads: pointer to dest load array
+ * @offset: offset to add
+ * @shift: shift count to shift the result left
+ *
+ * These values are estimates at best, so no need for locking.
+ */
+void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
+{
+ loads[0] = (avenrun[0] + offset) << shift;
+ loads[1] = (avenrun[1] + offset) << shift;
+ loads[2] = (avenrun[2] + offset) << shift;
+}
static long calc_load_fold_active(struct rq *this_rq)
{
@@ -2182,6 +2243,9 @@ static long calc_load_fold_active(struct rq *this_rq)
return delta;
}
+/*
+ * a1 = a0 * e + a * (1 - e)
+ */
static unsigned long
calc_load(unsigned long load, unsigned long exp, unsigned long active)
{
@@ -2193,30 +2257,118 @@ calc_load(unsigned long load, unsigned long exp, unsigned long active)
#ifdef CONFIG_NO_HZ
/*
- * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
+ * Handle NO_HZ for the global load-average.
+ *
+ * Since the above described distributed algorithm to compute the global
+ * load-average relies on per-cpu sampling from the tick, it is affected by
+ * NO_HZ.
+ *
+ * The basic idea is to fold the nr_active delta into a global idle-delta upon
+ * entering NO_HZ state such that we can include this as an 'extra' cpu delta
+ * when we read the global state.
+ *
+ * Obviously reality has to ruin such a delightfully simple scheme:
+ *
+ * - When we go NO_HZ idle during the window, we can negate our sample
+ * contribution, causing under-accounting.
+ *
+ * We avoid this by keeping two idle-delta counters and flipping them
+ * when the window starts, thus separating old and new NO_HZ load.
+ *
+ * The only trick is the slight shift in index flip for read vs write.
+ *
+ * 0s 5s 10s 15s
+ * +10 +10 +10 +10
+ * |-|-----------|-|-----------|-|-----------|-|
+ * r:0 0 1 1 0 0 1 1 0
+ * w:0 1 1 0 0 1 1 0 0
+ *
+ * This ensures we'll fold the old idle contribution in this window while
+ * accumlating the new one.
+ *
+ * - When we wake up from NO_HZ idle during the window, we push up our
+ * contribution, since we effectively move our sample point to a known
+ * busy state.
+ *
+ * This is solved by pushing the window forward, and thus skipping the
+ * sample, for this cpu (effectively using the idle-delta for this cpu which
+ * was in effect at the time the window opened). This also solves the issue
+ * of having to deal with a cpu having been in NOHZ idle for multiple
+ * LOAD_FREQ intervals.
*
* When making the ILB scale, we should try to pull this in as well.
*/
-static atomic_long_t calc_load_tasks_idle;
+static atomic_long_t calc_load_idle[2];
+static int calc_load_idx;
+
+static inline int calc_load_write_idx(void)
+{
+ int idx = calc_load_idx;
+
+ /*
+ * See calc_global_nohz(), if we observe the new index, we also
+ * need to observe the new update time.
+ */
+ smp_rmb();
+
+ /*
+ * If the folding window started, make sure we start writing in the
+ * next idle-delta.
+ */
+ if (!time_before(jiffies, calc_load_update))
+ idx++;
+
+ return idx & 1;
+}
+
+static inline int calc_load_read_idx(void)
+{
+ return calc_load_idx & 1;
+}
-void calc_load_account_idle(struct rq *this_rq)
+void calc_load_enter_idle(void)
{
+ struct rq *this_rq = this_rq();
long delta;
+ /*
+ * We're going into NOHZ mode, if there's any pending delta, fold it
+ * into the pending idle delta.
+ */
delta = calc_load_fold_active(this_rq);
- if (delta)
- atomic_long_add(delta, &calc_load_tasks_idle);
+ if (delta) {
+ int idx = calc_load_write_idx();
+ atomic_long_add(delta, &calc_load_idle[idx]);
+ }
}
-static long calc_load_fold_idle(void)
+void calc_load_exit_idle(void)
{
- long delta = 0;
+ struct rq *this_rq = this_rq();
+
+ /*
+ * If we're still before the sample window, we're done.
+ */
+ if (time_before(jiffies, this_rq->calc_load_update))
+ return;
/*
- * Its got a race, we don't care...
+ * We woke inside or after the sample window, this means we're already
+ * accounted through the nohz accounting, so skip the entire deal and
+ * sync up for the next window.
*/
- if (atomic_long_read(&calc_load_tasks_idle))
- delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
+ this_rq->calc_load_update = calc_load_update;
+ if (time_before(jiffies, this_rq->calc_load_update + 10))
+ this_rq->calc_load_update += LOAD_FREQ;
+}
+
+static long calc_load_fold_idle(void)
+{
+ int idx = calc_load_read_idx();
+ long delta = 0;
+
+ if (atomic_long_read(&calc_load_idle[idx]))
+ delta = atomic_long_xchg(&calc_load_idle[idx], 0);
return delta;
}
@@ -2302,66 +2454,39 @@ static void calc_global_nohz(void)
{
long delta, active, n;
- /*
- * If we crossed a calc_load_update boundary, make sure to fold
- * any pending idle changes, the respective CPUs might have
- * missed the tick driven calc_load_account_active() update
- * due to NO_HZ.
- */
- delta = calc_load_fold_idle();
- if (delta)
- atomic_long_add(delta, &calc_load_tasks);
-
- /*
- * It could be the one fold was all it took, we done!
- */
- if (time_before(jiffies, calc_load_update + 10))
- return;
+ if (!time_before(jiffies, calc_load_update + 10)) {
+ /*
+ * Catch-up, fold however many we are behind still
+ */
+ delta = jiffies - calc_load_update - 10;
+ n = 1 + (delta / LOAD_FREQ);
- /*
- * Catch-up, fold however many we are behind still
- */
- delta = jiffies - calc_load_update - 10;
- n = 1 + (delta / LOAD_FREQ);
+ active = atomic_long_read(&calc_load_tasks);
+ active = active > 0 ? active * FIXED_1 : 0;
- active = atomic_long_read(&calc_load_tasks);
- active = active > 0 ? active * FIXED_1 : 0;
+ avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
+ avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
+ avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
- avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
- avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
- avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
+ calc_load_update += n * LOAD_FREQ;
+ }
- calc_load_update += n * LOAD_FREQ;
-}
-#else
-void calc_load_account_idle(struct rq *this_rq)
-{
+ /*
+ * Flip the idle index...
+ *
+ * Make sure we first write the new time then flip the index, so that
+ * calc_load_write_idx() will see the new time when it reads the new
+ * index, this avoids a double flip messing things up.
+ */
+ smp_wmb();
+ calc_load_idx++;
}
+#else /* !CONFIG_NO_HZ */
-static inline long calc_load_fold_idle(void)
-{
- return 0;
-}
+static inline long calc_load_fold_idle(void) { return 0; }
+static inline void calc_global_nohz(void) { }
-static void calc_global_nohz(void)
-{
-}
-#endif
-
-/**
- * get_avenrun - get the load average array
- * @loads: pointer to dest load array
- * @offset: offset to add
- * @shift: shift count to shift the result left
- *
- * These values are estimates at best, so no need for locking.
- */
-void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
-{
- loads[0] = (avenrun[0] + offset) << shift;
- loads[1] = (avenrun[1] + offset) << shift;
- loads[2] = (avenrun[2] + offset) << shift;
-}
+#endif /* CONFIG_NO_HZ */
/*
* calc_load - update the avenrun load estimates 10 ticks after the
@@ -2369,11 +2494,18 @@ void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
*/
void calc_global_load(unsigned long ticks)
{
- long active;
+ long active, delta;
if (time_before(jiffies, calc_load_update + 10))
return;
+ /*
+ * Fold the 'old' idle-delta to include all NO_HZ cpus.
+ */
+ delta = calc_load_fold_idle();
+ if (delta)
+ atomic_long_add(delta, &calc_load_tasks);
+
active = atomic_long_read(&calc_load_tasks);
active = active > 0 ? active * FIXED_1 : 0;
@@ -2384,12 +2516,7 @@ void calc_global_load(unsigned long ticks)
calc_load_update += LOAD_FREQ;
/*
- * Account one period with whatever state we found before
- * folding in the nohz state and ageing the entire idle period.
- *
- * This avoids loosing a sample when we go idle between
- * calc_load_account_active() (10 ticks ago) and now and thus
- * under-accounting.
+ * In case we idled for multiple LOAD_FREQ intervals, catch up in bulk.
*/
calc_global_nohz();
}
@@ -2406,7 +2533,6 @@ static void calc_load_account_active(struct rq *this_rq)
return;
delta = calc_load_fold_active(this_rq);
- delta += calc_load_fold_idle();
if (delta)
atomic_long_add(delta, &calc_load_tasks);
@@ -2414,6 +2540,10 @@ static void calc_load_account_active(struct rq *this_rq)
}
/*
+ * End of global load-average stuff
+ */
+
+/*
* The exact cpuload at various idx values, calculated at every tick would be
* load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
*
@@ -5894,6 +6024,11 @@ static void destroy_sched_domains(struct sched_domain *sd, int cpu)
* SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
* allows us to avoid some pointer chasing select_idle_sibling().
*
+ * Iterate domains and sched_groups downward, assigning CPUs to be
+ * select_idle_sibling() hw buddy. Cross-wiring hw makes bouncing
+ * due to random perturbation self canceling, ie sw buddies pull
+ * their counterpart to their CPU's hw counterpart.
+ *
* Also keep a unique ID per domain (we use the first cpu number in
* the cpumask of the domain), this allows us to quickly tell if
* two cpus are in the same cache domain, see cpus_share_cache().
@@ -5907,8 +6042,40 @@ static void update_top_cache_domain(int cpu)
int id = cpu;
sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
- if (sd)
+ if (sd) {
+ struct sched_domain *tmp = sd;
+ struct sched_group *sg, *prev;
+ bool right;
+
+ /*
+ * Traverse to first CPU in group, and count hops
+ * to cpu from there, switching direction on each
+ * hop, never ever pointing the last CPU rightward.
+ */
+ do {
+ id = cpumask_first(sched_domain_span(tmp));
+ prev = sg = tmp->groups;
+ right = 1;
+
+ while (cpumask_first(sched_group_cpus(sg)) != id)
+ sg = sg->next;
+
+ while (!cpumask_test_cpu(cpu, sched_group_cpus(sg))) {
+ prev = sg;
+ sg = sg->next;
+ right = !right;
+ }
+
+ /* A CPU went down, never point back to domain start. */
+ if (right && cpumask_first(sched_group_cpus(sg->next)) == id)
+ right = false;
+
+ sg = right ? sg->next : prev;
+ tmp->idle_buddy = cpumask_first(sched_group_cpus(sg));
+ } while ((tmp = tmp->child));
+
id = cpumask_first(sched_domain_span(sd));
+ }
rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
per_cpu(sd_llc_id, cpu) = id;
@@ -6967,34 +7134,66 @@ match2:
mutex_unlock(&sched_domains_mutex);
}
+static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
+
/*
* Update cpusets according to cpu_active mask. If cpusets are
* disabled, cpuset_update_active_cpus() becomes a simple wrapper
* around partition_sched_domains().
+ *
+ * If we come here as part of a suspend/resume, don't touch cpusets because we
+ * want to restore it back to its original state upon resume anyway.
*/
static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
- switch (action & ~CPU_TASKS_FROZEN) {
+ switch (action) {
+ case CPU_ONLINE_FROZEN:
+ case CPU_DOWN_FAILED_FROZEN:
+
+ /*
+ * num_cpus_frozen tracks how many CPUs are involved in suspend
+ * resume sequence. As long as this is not the last online
+ * operation in the resume sequence, just build a single sched
+ * domain, ignoring cpusets.
+ */
+ num_cpus_frozen--;
+ if (likely(num_cpus_frozen)) {
+ partition_sched_domains(1, NULL, NULL);
+ break;
+ }
+
+ /*
+ * This is the last CPU online operation. So fall through and
+ * restore the original sched domains by considering the
+ * cpuset configurations.
+ */
+
case CPU_ONLINE:
case CPU_DOWN_FAILED:
- cpuset_update_active_cpus();
- return NOTIFY_OK;
+ cpuset_update_active_cpus(true);
+ break;
default:
return NOTIFY_DONE;
}
+ return NOTIFY_OK;
}
static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
void *hcpu)
{
- switch (action & ~CPU_TASKS_FROZEN) {
+ switch (action) {
case CPU_DOWN_PREPARE:
- cpuset_update_active_cpus();
- return NOTIFY_OK;
+ cpuset_update_active_cpus(false);
+ break;
+ case CPU_DOWN_PREPARE_FROZEN:
+ num_cpus_frozen++;
+ partition_sched_domains(1, NULL, NULL);
+ break;
default:
return NOTIFY_DONE;
}
+ return NOTIFY_OK;
}
void __init sched_init_smp(void)
@@ -7459,6 +7658,7 @@ void sched_destroy_group(struct task_group *tg)
*/
void sched_move_task(struct task_struct *tsk)
{
+ struct task_group *tg;
int on_rq, running;
unsigned long flags;
struct rq *rq;
@@ -7473,6 +7673,12 @@ void sched_move_task(struct task_struct *tsk)
if (unlikely(running))
tsk->sched_class->put_prev_task(rq, tsk);
+ tg = container_of(task_subsys_state_check(tsk, cpu_cgroup_subsys_id,
+ lockdep_is_held(&tsk->sighand->siglock)),
+ struct task_group, css);
+ tg = autogroup_task_group(tsk, tg);
+ tsk->sched_task_group = tg;
+
#ifdef CONFIG_FAIR_GROUP_SCHED
if (tsk->sched_class->task_move_group)
tsk->sched_class->task_move_group(tsk, on_rq);
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index c099cc6eebe3..22321db64952 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -2637,8 +2637,6 @@ static int select_idle_sibling(struct task_struct *p, int target)
int cpu = smp_processor_id();
int prev_cpu = task_cpu(p);
struct sched_domain *sd;
- struct sched_group *sg;
- int i;
/*
* If the task is going to be woken-up on this cpu and if it is
@@ -2655,29 +2653,17 @@ static int select_idle_sibling(struct task_struct *p, int target)
return prev_cpu;
/*
- * Otherwise, iterate the domains and find an elegible idle cpu.
+ * Otherwise, check assigned siblings to find an elegible idle cpu.
*/
sd = rcu_dereference(per_cpu(sd_llc, target));
- for_each_lower_domain(sd) {
- sg = sd->groups;
- do {
- if (!cpumask_intersects(sched_group_cpus(sg),
- tsk_cpus_allowed(p)))
- goto next;
-
- for_each_cpu(i, sched_group_cpus(sg)) {
- if (!idle_cpu(i))
- goto next;
- }
- target = cpumask_first_and(sched_group_cpus(sg),
- tsk_cpus_allowed(p));
- goto done;
-next:
- sg = sg->next;
- } while (sg != sd->groups);
+ for_each_lower_domain(sd) {
+ if (!cpumask_test_cpu(sd->idle_buddy, tsk_cpus_allowed(p)))
+ continue;
+ if (idle_cpu(sd->idle_buddy))
+ return sd->idle_buddy;
}
-done:
+
return target;
}
@@ -3068,16 +3054,19 @@ static unsigned long __read_mostly max_load_balance_interval = HZ/10;
#define LBF_ALL_PINNED 0x01
#define LBF_NEED_BREAK 0x02
+#define LBF_SOME_PINNED 0x04
struct lb_env {
struct sched_domain *sd;
- int src_cpu;
struct rq *src_rq;
+ int src_cpu;
int dst_cpu;
struct rq *dst_rq;
+ struct cpumask *dst_grpmask;
+ int new_dst_cpu;
enum cpu_idle_type idle;
long imbalance;
unsigned int flags;
@@ -3145,9 +3134,31 @@ int can_migrate_task(struct task_struct *p, struct lb_env *env)
* 3) are cache-hot on their current CPU.
*/
if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
+ int new_dst_cpu;
+
schedstat_inc(p, se.statistics.nr_failed_migrations_affine);
+
+ /*
+ * Remember if this task can be migrated to any other cpu in
+ * our sched_group. We may want to revisit it if we couldn't
+ * meet load balance goals by pulling other tasks on src_cpu.
+ *
+ * Also avoid computing new_dst_cpu if we have already computed
+ * one in current iteration.
+ */
+ if (!env->dst_grpmask || (env->flags & LBF_SOME_PINNED))
+ return 0;
+
+ new_dst_cpu = cpumask_first_and(env->dst_grpmask,
+ tsk_cpus_allowed(p));
+ if (new_dst_cpu < nr_cpu_ids) {
+ env->flags |= LBF_SOME_PINNED;
+ env->new_dst_cpu = new_dst_cpu;
+ }
return 0;
}
+
+ /* Record that we found atleast one task that could run on dst_cpu */
env->flags &= ~LBF_ALL_PINNED;
if (task_running(env->src_rq, p)) {
@@ -4227,7 +4238,8 @@ static int load_balance(int this_cpu, struct rq *this_rq,
struct sched_domain *sd, enum cpu_idle_type idle,
int *balance)
{
- int ld_moved, active_balance = 0;
+ int ld_moved, cur_ld_moved, active_balance = 0;
+ int lb_iterations, max_lb_iterations;
struct sched_group *group;
struct rq *busiest;
unsigned long flags;
@@ -4237,11 +4249,13 @@ static int load_balance(int this_cpu, struct rq *this_rq,
.sd = sd,
.dst_cpu = this_cpu,
.dst_rq = this_rq,
+ .dst_grpmask = sched_group_cpus(sd->groups),
.idle = idle,
.loop_break = sched_nr_migrate_break,
};
cpumask_copy(cpus, cpu_active_mask);
+ max_lb_iterations = cpumask_weight(env.dst_grpmask);
schedstat_inc(sd, lb_count[idle]);
@@ -4267,6 +4281,7 @@ redo:
schedstat_add(sd, lb_imbalance[idle], env.imbalance);
ld_moved = 0;
+ lb_iterations = 1;
if (busiest->nr_running > 1) {
/*
* Attempt to move tasks. If find_busiest_group has found
@@ -4284,7 +4299,13 @@ more_balance:
double_rq_lock(this_rq, busiest);
if (!env.loop)
update_h_load(env.src_cpu);
- ld_moved += move_tasks(&env);
+
+ /*
+ * cur_ld_moved - load moved in current iteration
+ * ld_moved - cumulative load moved across iterations
+ */
+ cur_ld_moved = move_tasks(&env);
+ ld_moved += cur_ld_moved;
double_rq_unlock(this_rq, busiest);
local_irq_restore(flags);
@@ -4296,14 +4317,52 @@ more_balance:
/*
* some other cpu did the load balance for us.
*/
- if (ld_moved && this_cpu != smp_processor_id())
- resched_cpu(this_cpu);
+ if (cur_ld_moved && env.dst_cpu != smp_processor_id())
+ resched_cpu(env.dst_cpu);
+
+ /*
+ * Revisit (affine) tasks on src_cpu that couldn't be moved to
+ * us and move them to an alternate dst_cpu in our sched_group
+ * where they can run. The upper limit on how many times we
+ * iterate on same src_cpu is dependent on number of cpus in our
+ * sched_group.
+ *
+ * This changes load balance semantics a bit on who can move
+ * load to a given_cpu. In addition to the given_cpu itself
+ * (or a ilb_cpu acting on its behalf where given_cpu is
+ * nohz-idle), we now have balance_cpu in a position to move
+ * load to given_cpu. In rare situations, this may cause
+ * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
+ * _independently_ and at _same_ time to move some load to
+ * given_cpu) causing exceess load to be moved to given_cpu.
+ * This however should not happen so much in practice and
+ * moreover subsequent load balance cycles should correct the
+ * excess load moved.
+ */
+ if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0 &&
+ lb_iterations++ < max_lb_iterations) {
+
+ this_rq = cpu_rq(env.new_dst_cpu);
+ env.dst_rq = this_rq;
+ env.dst_cpu = env.new_dst_cpu;
+ env.flags &= ~LBF_SOME_PINNED;
+ env.loop = 0;
+ env.loop_break = sched_nr_migrate_break;
+ /*
+ * Go back to "more_balance" rather than "redo" since we
+ * need to continue with same src_cpu.
+ */
+ goto more_balance;
+ }
/* All tasks on this runqueue were pinned by CPU affinity */
if (unlikely(env.flags & LBF_ALL_PINNED)) {
cpumask_clear_cpu(cpu_of(busiest), cpus);
- if (!cpumask_empty(cpus))
+ if (!cpumask_empty(cpus)) {
+ env.loop = 0;
+ env.loop_break = sched_nr_migrate_break;
goto redo;
+ }
goto out_balanced;
}
}
diff --git a/kernel/sched/idle_task.c b/kernel/sched/idle_task.c
index b44d604b35d1..b6baf370cae9 100644
--- a/kernel/sched/idle_task.c
+++ b/kernel/sched/idle_task.c
@@ -25,7 +25,6 @@ static void check_preempt_curr_idle(struct rq *rq, struct task_struct *p, int fl
static struct task_struct *pick_next_task_idle(struct rq *rq)
{
schedstat_inc(rq, sched_goidle);
- calc_load_account_idle(rq);
return rq->idle;
}
diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h
index 6d52cea7f33d..c35a1a7dd4d6 100644
--- a/kernel/sched/sched.h
+++ b/kernel/sched/sched.h
@@ -538,22 +538,19 @@ extern int group_balance_cpu(struct sched_group *sg);
/*
* Return the group to which this tasks belongs.
*
- * We use task_subsys_state_check() and extend the RCU verification with
- * pi->lock and rq->lock because cpu_cgroup_attach() holds those locks for each
- * task it moves into the cgroup. Therefore by holding either of those locks,
- * we pin the task to the current cgroup.
+ * We cannot use task_subsys_state() and friends because the cgroup
+ * subsystem changes that value before the cgroup_subsys::attach() method
+ * is called, therefore we cannot pin it and might observe the wrong value.
+ *
+ * The same is true for autogroup's p->signal->autogroup->tg, the autogroup
+ * core changes this before calling sched_move_task().
+ *
+ * Instead we use a 'copy' which is updated from sched_move_task() while
+ * holding both task_struct::pi_lock and rq::lock.
*/
static inline struct task_group *task_group(struct task_struct *p)
{
- struct task_group *tg;
- struct cgroup_subsys_state *css;
-
- css = task_subsys_state_check(p, cpu_cgroup_subsys_id,
- lockdep_is_held(&p->pi_lock) ||
- lockdep_is_held(&task_rq(p)->lock));
- tg = container_of(css, struct task_group, css);
-
- return autogroup_task_group(p, tg);
+ return p->sched_task_group;
}
/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
@@ -942,8 +939,6 @@ static inline u64 sched_avg_period(void)
return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
}
-void calc_load_account_idle(struct rq *this_rq);
-
#ifdef CONFIG_SCHED_HRTICK
/*