aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/trace/histograms.txt
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/trace/histograms.txt')
-rw-r--r--Documentation/trace/histograms.txt186
1 files changed, 186 insertions, 0 deletions
diff --git a/Documentation/trace/histograms.txt b/Documentation/trace/histograms.txt
new file mode 100644
index 000000000000..6f2aeabf7faa
--- /dev/null
+++ b/Documentation/trace/histograms.txt
@@ -0,0 +1,186 @@
+ Using the Linux Kernel Latency Histograms
+
+
+This document gives a short explanation how to enable, configure and use
+latency histograms. Latency histograms are primarily relevant in the
+context of real-time enabled kernels (CONFIG_PREEMPT/CONFIG_PREEMPT_RT)
+and are used in the quality management of the Linux real-time
+capabilities.
+
+
+* Purpose of latency histograms
+
+A latency histogram continuously accumulates the frequencies of latency
+data. There are two types of histograms
+- potential sources of latencies
+- effective latencies
+
+
+* Potential sources of latencies
+
+Potential sources of latencies are code segments where interrupts,
+preemption or both are disabled (aka critical sections). To create
+histograms of potential sources of latency, the kernel stores the time
+stamp at the start of a critical section, determines the time elapsed
+when the end of the section is reached, and increments the frequency
+counter of that latency value - irrespective of whether any concurrently
+running process is affected by latency or not.
+- Configuration items (in the Kernel hacking/Tracers submenu)
+ CONFIG_INTERRUPT_OFF_LATENCY
+ CONFIG_PREEMPT_OFF_LATENCY
+
+
+* Effective latencies
+
+Effective latencies are actually occuring during wakeup of a process. To
+determine effective latencies, the kernel stores the time stamp when a
+process is scheduled to be woken up, and determines the duration of the
+wakeup time shortly before control is passed over to this process. Note
+that the apparent latency in user space may be somewhat longer, since the
+process may be interrupted after control is passed over to it but before
+the execution in user space takes place. Simply measuring the interval
+between enqueuing and wakeup may also not appropriate in cases when a
+process is scheduled as a result of a timer expiration. The timer may have
+missed its deadline, e.g. due to disabled interrupts, but this latency
+would not be registered. Therefore, the offsets of missed timers are
+recorded in a separate histogram. If both wakeup latency and missed timer
+offsets are configured and enabled, a third histogram may be enabled that
+records the overall latency as a sum of the timer latency, if any, and the
+wakeup latency. This histogram is called "timerandwakeup".
+- Configuration items (in the Kernel hacking/Tracers submenu)
+ CONFIG_WAKEUP_LATENCY
+ CONFIG_MISSED_TIMER_OFSETS
+
+
+* Usage
+
+The interface to the administration of the latency histograms is located
+in the debugfs file system. To mount it, either enter
+
+mount -t sysfs nodev /sys
+mount -t debugfs nodev /sys/kernel/debug
+
+from shell command line level, or add
+
+nodev /sys sysfs defaults 0 0
+nodev /sys/kernel/debug debugfs defaults 0 0
+
+to the file /etc/fstab. All latency histogram related files are then
+available in the directory /sys/kernel/debug/tracing/latency_hist. A
+particular histogram type is enabled by writing non-zero to the related
+variable in the /sys/kernel/debug/tracing/latency_hist/enable directory.
+Select "preemptirqsoff" for the histograms of potential sources of
+latencies and "wakeup" for histograms of effective latencies etc. The
+histogram data - one per CPU - are available in the files
+
+/sys/kernel/debug/tracing/latency_hist/preemptoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/irqsoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/preemptirqsoff/CPUx
+/sys/kernel/debug/tracing/latency_hist/wakeup/CPUx
+/sys/kernel/debug/tracing/latency_hist/wakeup/sharedprio/CPUx
+/sys/kernel/debug/tracing/latency_hist/missed_timer_offsets/CPUx
+/sys/kernel/debug/tracing/latency_hist/timerandwakeup/CPUx
+
+The histograms are reset by writing non-zero to the file "reset" in a
+particular latency directory. To reset all latency data, use
+
+#!/bin/sh
+
+TRACINGDIR=/sys/kernel/debug/tracing
+HISTDIR=$TRACINGDIR/latency_hist
+
+if test -d $HISTDIR
+then
+ cd $HISTDIR
+ for i in `find . | grep /reset$`
+ do
+ echo 1 >$i
+ done
+fi
+
+
+* Data format
+
+Latency data are stored with a resolution of one microsecond. The
+maximum latency is 10,240 microseconds. The data are only valid, if the
+overflow register is empty. Every output line contains the latency in
+microseconds in the first row and the number of samples in the second
+row. To display only lines with a positive latency count, use, for
+example,
+
+grep -v " 0$" /sys/kernel/debug/tracing/latency_hist/preemptoff/CPU0
+
+#Minimum latency: 0 microseconds.
+#Average latency: 0 microseconds.
+#Maximum latency: 25 microseconds.
+#Total samples: 3104770694
+#There are 0 samples greater or equal than 10240 microseconds
+#usecs samples
+ 0 2984486876
+ 1 49843506
+ 2 58219047
+ 3 5348126
+ 4 2187960
+ 5 3388262
+ 6 959289
+ 7 208294
+ 8 40420
+ 9 4485
+ 10 14918
+ 11 18340
+ 12 25052
+ 13 19455
+ 14 5602
+ 15 969
+ 16 47
+ 17 18
+ 18 14
+ 19 1
+ 20 3
+ 21 2
+ 22 5
+ 23 2
+ 25 1
+
+
+* Wakeup latency of a selected process
+
+To only collect wakeup latency data of a particular process, write the
+PID of the requested process to
+
+/sys/kernel/debug/tracing/latency_hist/wakeup/pid
+
+PIDs are not considered, if this variable is set to 0.
+
+
+* Details of the process with the highest wakeup latency so far
+
+Selected data of the process that suffered from the highest wakeup
+latency that occurred in a particular CPU are available in the file
+
+/sys/kernel/debug/tracing/latency_hist/wakeup/max_latency-CPUx.
+
+In addition, other relevant system data at the time when the
+latency occurred are given.
+
+The format of the data is (all in one line):
+<PID> <Priority> <Latency> (<Timeroffset>) <Command> \
+<- <PID> <Priority> <Command> <Timestamp>
+
+The value of <Timeroffset> is only relevant in the combined timer
+and wakeup latency recording. In the wakeup recording, it is
+always 0, in the missed_timer_offsets recording, it is the same
+as <Latency>.
+
+When retrospectively searching for the origin of a latency and
+tracing was not enabled, it may be helpful to know the name and
+some basic data of the task that (finally) was switching to the
+late real-tlme task. In addition to the victim's data, also the
+data of the possible culprit are therefore displayed after the
+"<-" symbol.
+
+Finally, the timestamp of the time when the latency occurred
+in <seconds>.<microseconds> after the most recent system boot
+is provided.
+
+These data are also reset when the wakeup histogram is reset.