summaryrefslogtreecommitdiffstats
path: root/documentation/sdk-manual/extensible.rst
diff options
context:
space:
mode:
Diffstat (limited to 'documentation/sdk-manual/extensible.rst')
-rw-r--r--documentation/sdk-manual/extensible.rst1584
1 files changed, 1584 insertions, 0 deletions
diff --git a/documentation/sdk-manual/extensible.rst b/documentation/sdk-manual/extensible.rst
new file mode 100644
index 0000000000..3f6a754d88
--- /dev/null
+++ b/documentation/sdk-manual/extensible.rst
@@ -0,0 +1,1584 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+************************
+Using the Extensible SDK
+************************
+
+This chapter describes the extensible SDK and how to install it.
+Information covers the pieces of the SDK, how to install it, and
+presents a look at using the ``devtool`` functionality. The extensible
+SDK makes it easy to add new applications and libraries to an image,
+modify the source for an existing component, test changes on the target
+hardware, and ease integration into the rest of the
+:term:`OpenEmbedded Build System`.
+
+.. note::
+
+ For a side-by-side comparison of main features supported for an
+ extensible SDK as compared to a standard SDK, see the
+ :ref:`sdk-manual/intro:introduction` section.
+
+In addition to the functionality available through ``devtool``, you can
+alternatively make use of the toolchain directly, for example from
+Makefile and Autotools. See the
+":ref:`sdk-manual/working-projects:using the sdk toolchain directly`" chapter
+for more information.
+
+Why use the Extensible SDK and What is in It?
+=============================================
+
+The extensible SDK provides a cross-development toolchain and libraries
+tailored to the contents of a specific image. You would use the
+Extensible SDK if you want a toolchain experience supplemented with the
+powerful set of ``devtool`` commands tailored for the Yocto Project
+environment.
+
+The installed extensible SDK consists of several files and directories.
+Basically, it contains an SDK environment setup script, some
+configuration files, an internal build system, and the ``devtool``
+functionality.
+
+Installing the Extensible SDK
+=============================
+
+Two ways to install the Extensible SDK
+--------------------------------------
+
+Extensible SDK can be installed in two different ways, and both have
+their own pros and cons:
+
+#. *Setting up the Extensible SDK environment directly in a Yocto build*. This
+ avoids having to produce, test, distribute and maintain separate SDK
+ installer archives, which can get very large. There is only one environment
+ for the regular Yocto build and the SDK and less code paths where things can
+ go not according to plan. It's easier to update the SDK: it simply means
+ updating the Yocto layers with git fetch or layer management tooling. The
+ SDK extensibility is better than in the second option: just run ``bitbake``
+ again to add more things to the sysroot, or add layers if even more things
+ are required.
+
+#. *Setting up the Extensible SDK from a standalone installer*. This has the
+ benefit of having a single, self-contained archive that includes all the
+ needed binary artifacts. So nothing needs to be rebuilt, and there is no
+ need to provide a well-functioning binary artefact cache over the network
+ for developers with underpowered laptops.
+
+.. _setting_up_ext_sdk_in_build:
+
+Setting up the Extensible SDK environment directly in a Yocto build
+-------------------------------------------------------------------
+
+#. Set up all the needed layers and a Yocto :term:`Build Directory`, e.g. a regular Yocto
+ build where ``bitbake`` can be executed.
+
+#. Run::
+
+ $ bitbake meta-ide-support
+ $ bitbake -c populate_sysroot gtk+3
+ # or any other target or native item that the application developer would need
+ $ bitbake build-sysroots -c build_native_sysroot && bitbake build-sysroots -c build_target_sysroot
+
+Setting up the Extensible SDK from a standalone installer
+---------------------------------------------------------
+
+The first thing you need to do is install the SDK on your :term:`Build
+Host` by running the ``*.sh`` installation script.
+
+You can download a tarball installer, which includes the pre-built
+toolchain, the ``runqemu`` script, the internal build system,
+``devtool``, and support files from the appropriate
+:yocto_dl:`toolchain </releases/yocto/yocto-&DISTRO;/toolchain/>` directory within the Index of
+Releases. Toolchains are available for several 32-bit and 64-bit
+architectures with the ``x86_64`` directories, respectively. The
+toolchains the Yocto Project provides are based off the
+``core-image-sato`` and ``core-image-minimal`` images and contain
+libraries appropriate for developing against that image.
+
+The names of the tarball installer scripts are such that a string
+representing the host system appears first in the filename and then is
+immediately followed by a string representing the target architecture.
+An extensible SDK has the string "-ext" as part of the name. Following
+is the general form::
+
+ poky-glibc-host_system-image_type-arch-toolchain-ext-release_version.sh
+
+ Where:
+ host_system is a string representing your development system:
+
+ i686 or x86_64.
+
+ image_type is the image for which the SDK was built:
+
+ core-image-sato or core-image-minimal
+
+ arch is a string representing the tuned target architecture:
+
+ aarch64, armv5e, core2-64, i586, mips32r2, mips64, ppc7400, or cortexa8hf-neon
+
+ release_version is a string representing the release number of the Yocto Project:
+
+ &DISTRO;, &DISTRO;+snapshot
+
+For example, the following SDK installer is for a 64-bit
+development host system and a i586-tuned target architecture based off
+the SDK for ``core-image-sato`` and using the current &DISTRO; snapshot::
+
+ poky-glibc-x86_64-core-image-sato-i586-toolchain-ext-&DISTRO;.sh
+
+.. note::
+
+ As an alternative to downloading an SDK, you can build the SDK
+ installer. For information on building the installer, see the
+ :ref:`sdk-manual/appendix-obtain:building an sdk installer`
+ section.
+
+The SDK and toolchains are self-contained and by default are installed
+into the ``poky_sdk`` folder in your home directory. You can choose to
+install the extensible SDK in any location when you run the installer.
+However, because files need to be written under that directory during
+the normal course of operation, the location you choose for installation
+must be writable for whichever users need to use the SDK.
+
+The following command shows how to run the installer given a toolchain
+tarball for a 64-bit x86 development host system and a 64-bit x86 target
+architecture. The example assumes the SDK installer is located in
+``~/Downloads/`` and has execution rights::
+
+ $ ./Downloads/poky-glibc-x86_64-core-image-minimal-core2-64-toolchain-ext-2.5.sh
+ Poky (Yocto Project Reference Distro) Extensible SDK installer version 2.5
+ ==========================================================================
+ Enter target directory for SDK (default: poky_sdk):
+ You are about to install the SDK to "/home/scottrif/poky_sdk". Proceed [Y/n]? Y
+ Extracting SDK..............done
+ Setting it up...
+ Extracting buildtools...
+ Preparing build system...
+ Parsing recipes: 100% |##################################################################| Time: 0:00:52
+ Initialising tasks: 100% |###############################################################| Time: 0:00:00
+ Checking sstate mirror object availability: 100% |#######################################| Time: 0:00:00
+ Loading cache: 100% |####################################################################| Time: 0:00:00
+ Initialising tasks: 100% |###############################################################| Time: 0:00:00
+ done
+ SDK has been successfully set up and is ready to be used.
+ Each time you wish to use the SDK in a new shell session, you need to source the environment setup script e.g.
+ $ . /home/scottrif/poky_sdk/environment-setup-core2-64-poky-linux
+
+.. note::
+
+ If you do not have write permissions for the directory into which you
+ are installing the SDK, the installer notifies you and exits. For
+ that case, set up the proper permissions in the directory and run the
+ installer again.
+
+.. _running_the_ext_sdk_env:
+
+Running the Extensible SDK Environment Setup Script
+===================================================
+
+Once you have the SDK installed, you must run the SDK environment setup
+script before you can actually use the SDK.
+
+When using a SDK directly in a Yocto build, you will find the script in
+``tmp/deploy/images/qemux86-64/`` in your :term:`Build Directory`.
+
+When using a standalone SDK installer, this setup script resides in
+the directory you chose when you installed the SDK, which is either the
+default ``poky_sdk`` directory or the directory you chose during
+installation.
+
+Before running the script, be sure it is the one that matches the
+architecture for which you are developing. Environment setup scripts
+begin with the string "``environment-setup``" and include as part of
+their name the tuned target architecture. As an example, the following
+commands set the working directory to where the SDK was installed and
+then source the environment setup script. In this example, the setup
+script is for an IA-based target machine using i586 tuning::
+
+ $ cd /home/scottrif/poky_sdk
+ $ source environment-setup-core2-64-poky-linux
+ SDK environment now set up; additionally you may now run devtool to perform development tasks.
+ Run devtool --help for further details.
+
+When using the environment script directly in a Yocto build, it can
+be run similarly::
+
+ $ source tmp/deploy/images/qemux86-64/environment-setup-core2-64-poky-linux
+
+Running the setup script defines many environment variables needed in order to
+use the SDK (e.g. ``PATH``, :term:`CC`, :term:`LD`, and so forth). If you want
+to see all the environment variables the script exports, examine the
+installation file itself.
+
+.. _using_devtool:
+
+Using ``devtool`` in Your SDK Workflow
+======================================
+
+The cornerstone of the extensible SDK is a command-line tool called
+``devtool``. This tool provides a number of features that help you
+build, test and package software within the extensible SDK, and
+optionally integrate it into an image built by the OpenEmbedded build
+system.
+
+.. note::
+
+ The use of ``devtool`` is not limited to the extensible SDK. You can use
+ ``devtool`` to help you easily develop any project whose build output must be
+ part of an image built using the build system.
+
+The ``devtool`` command line is organized similarly to
+:ref:`overview-manual/development-environment:git` in that it has a number of
+sub-commands for each function. You can run ``devtool --help`` to see
+all the commands.
+
+.. note::
+
+ See the ":doc:`/ref-manual/devtool-reference`"
+ section in the Yocto Project Reference Manual.
+
+``devtool`` subcommands provide entry-points into development:
+
+- *devtool add*: Assists in adding new software to be built.
+
+- *devtool modify*: Sets up an environment to enable you to modify
+ the source of an existing component.
+
+- *devtool ide-sdk*: Generates a configuration for an IDE.
+
+- *devtool upgrade*: Updates an existing recipe so that you can
+ build it for an updated set of source files.
+
+As with the build system, "recipes" represent software packages within
+``devtool``. When you use ``devtool add``, a recipe is automatically
+created. When you use ``devtool modify``, the specified existing recipe
+is used in order to determine where to get the source code and how to
+patch it. In both cases, an environment is set up so that when you build
+the recipe a source tree that is under your control is used in order to
+allow you to make changes to the source as desired. By default, new
+recipes and the source go into a "workspace" directory under the SDK.
+
+The remainder of this section presents the ``devtool add``,
+``devtool modify``, and ``devtool upgrade`` workflows.
+
+Use ``devtool add`` to Add an Application
+-----------------------------------------
+
+The ``devtool add`` command generates a new recipe based on existing
+source code. This command takes advantage of the
+:ref:`devtool-the-workspace-layer-structure`
+layer that many ``devtool`` commands use. The command is flexible enough
+to allow you to extract source code into both the workspace or a
+separate local Git repository and to use existing code that does not
+need to be extracted.
+
+Depending on your particular scenario, the arguments and options you use
+with ``devtool add`` form different combinations. The following diagram
+shows common development flows you would use with the ``devtool add``
+command:
+
+.. image:: figures/sdk-devtool-add-flow.png
+ :width: 100%
+
+#. *Generating the New Recipe*: The top part of the flow shows three
+ scenarios by which you could use ``devtool add`` to generate a recipe
+ based on existing source code.
+
+ In a shared development environment, it is typical for other
+ developers to be responsible for various areas of source code. As a
+ developer, you are probably interested in using that source code as
+ part of your development within the Yocto Project. All you need is
+ access to the code, a recipe, and a controlled area in which to do
+ your work.
+
+ Within the diagram, three possible scenarios feed into the
+ ``devtool add`` workflow:
+
+ - *Left*: The left scenario in the figure represents a common
+ situation where the source code does not exist locally and needs
+ to be extracted. In this situation, the source code is extracted
+ to the default workspace --- you do not want the files in some
+ specific location outside of the workspace. Thus, everything you
+ need will be located in the workspace::
+
+ $ devtool add recipe fetchuri
+
+ With this command, ``devtool`` extracts the upstream
+ source files into a local Git repository within the ``sources``
+ folder. The command then creates a recipe named recipe and a
+ corresponding append file in the workspace. If you do not provide
+ recipe, the command makes an attempt to determine the recipe name.
+
+ - *Middle*: The middle scenario in the figure also represents a
+ situation where the source code does not exist locally. In this
+ case, the code is again upstream and needs to be extracted to some
+ local area --- this time outside of the default workspace.
+
+ .. note::
+
+ If required, ``devtool`` always creates a Git repository locally
+ during the extraction.
+
+ Furthermore, the first positional argument ``srctree`` in this case
+ identifies where the ``devtool add`` command will locate the
+ extracted code outside of the workspace. You need to specify an
+ empty directory::
+
+ $ devtool add recipe srctree fetchuri
+
+ In summary, the source code is pulled from fetchuri and extracted into the
+ location defined by ``srctree`` as a local Git repository.
+
+ Within workspace, ``devtool`` creates a recipe named recipe along
+ with an associated append file.
+
+ - *Right*: The right scenario in the figure represents a situation
+ where the ``srctree`` has been previously prepared outside of the
+ ``devtool`` workspace.
+
+ The following command provides a new recipe name and identifies
+ the existing source tree location::
+
+ $ devtool add recipe srctree
+
+ The command examines the source code and creates a recipe named
+ recipe for the code and places the recipe into the workspace.
+
+ Because the extracted source code already exists, ``devtool`` does
+ not try to relocate the source code into the workspace --- only the
+ new recipe is placed in the workspace.
+
+ Aside from a recipe folder, the command also creates an associated
+ append folder and places an initial ``*.bbappend`` file within.
+
+#. *Edit the Recipe*: You can use ``devtool edit-recipe`` to open up the
+ editor as defined by the ``$EDITOR`` environment variable and modify
+ the file::
+
+ $ devtool edit-recipe recipe
+
+ From within the editor, you can make modifications to the recipe that
+ take effect when you build it later.
+
+#. *Build the Recipe or Rebuild the Image*: The next step you take
+ depends on what you are going to do with the new code.
+
+ If you need to eventually move the build output to the target
+ hardware, use the following ``devtool`` command::
+
+ $ devtool build recipe
+
+ On the other hand, if you want an image to contain the recipe's
+ packages from the workspace for immediate deployment onto a device
+ (e.g. for testing purposes), you can use the ``devtool build-image``
+ command::
+
+ $ devtool build-image image
+
+#. *Deploy the Build Output*: When you use the ``devtool build`` command
+ to build out your recipe, you probably want to see if the resulting
+ build output works as expected on the target hardware.
+
+ .. note::
+
+ This step assumes you have a previously built image that is
+ already either running in QEMU or is running on actual hardware.
+ Also, it is assumed that for deployment of the image to the
+ target, SSH is installed in the image and, if the image is running
+ on real hardware, you have network access to and from your
+ development machine.
+
+ You can deploy your build output to that target hardware by using the
+ ``devtool deploy-target`` command::
+
+ $ devtool deploy-target recipe target
+
+ The target is a live target machine running as an SSH server.
+
+ You can, of course, also deploy the image you build to actual
+ hardware by using the ``devtool build-image`` command. However,
+ ``devtool`` does not provide a specific command that allows you to
+ deploy the image to actual hardware.
+
+#. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+ creates any patches corresponding to commits in the local Git
+ repository, moves the new recipe to a more permanent layer, and then
+ resets the recipe so that the recipe is built normally rather than
+ from the workspace::
+
+ $ devtool finish recipe layer
+
+ .. note::
+
+ Any changes you want to turn into patches must be committed to the
+ Git repository in the source tree.
+
+ As mentioned, the ``devtool finish`` command moves the final recipe
+ to its permanent layer.
+
+ As a final process of the ``devtool finish`` command, the state of
+ the standard layers and the upstream source is restored so that you
+ can build the recipe from those areas rather than the workspace.
+
+ .. note::
+
+ You can use the ``devtool reset`` command to put things back should you
+ decide you do not want to proceed with your work. If you do use this
+ command, realize that the source tree is preserved.
+
+Use ``devtool modify`` to Modify the Source of an Existing Component
+--------------------------------------------------------------------
+
+The ``devtool modify`` command prepares the way to work on existing code
+that already has a local recipe in place that is used to build the
+software. The command is flexible enough to allow you to extract code
+from an upstream source, specify the existing recipe, and keep track of
+and gather any patch files from other developers that are associated
+with the code.
+
+Depending on your particular scenario, the arguments and options you use
+with ``devtool modify`` form different combinations. The following
+diagram shows common development flows for the ``devtool modify``
+command:
+
+.. image:: figures/sdk-devtool-modify-flow.png
+ :width: 100%
+
+#. *Preparing to Modify the Code*: The top part of the flow shows three
+ scenarios by which you could use ``devtool modify`` to prepare to
+ work on source files. Each scenario assumes the following:
+
+ - The recipe exists locally in a layer external to the ``devtool``
+ workspace.
+
+ - The source files exist either upstream in an un-extracted state or
+ locally in a previously extracted state.
+
+ The typical situation is where another developer has created a layer
+ for use with the Yocto Project and their recipe already resides in
+ that layer. Furthermore, their source code is readily available
+ either upstream or locally.
+
+ - *Left*: The left scenario in the figure represents a common
+ situation where the source code does not exist locally and it
+ needs to be extracted from an upstream source. In this situation,
+ the source is extracted into the default ``devtool`` workspace
+ location. The recipe, in this scenario, is in its own layer
+ outside the workspace (i.e. ``meta-``\ layername).
+
+ The following command identifies the recipe and, by default,
+ extracts the source files::
+
+ $ devtool modify recipe
+
+ Once ``devtool`` locates the recipe, ``devtool`` uses the recipe's
+ :term:`SRC_URI` statements to locate the source code and any local
+ patch files from other developers.
+
+ With this scenario, there is no ``srctree`` argument. Consequently, the
+ default behavior of the ``devtool modify`` command is to extract
+ the source files pointed to by the :term:`SRC_URI` statements into a
+ local Git structure. Furthermore, the location for the extracted
+ source is the default area within the ``devtool`` workspace. The
+ result is that the command sets up both the source code and an
+ append file within the workspace while the recipe remains in its
+ original location.
+
+ Additionally, if you have any non-patch local files (i.e. files
+ referred to with ``file://`` entries in :term:`SRC_URI` statement
+ excluding ``*.patch/`` or ``*.diff``), these files are copied to
+ an ``oe-local-files`` folder under the newly created source tree.
+ Copying the files here gives you a convenient area from which you
+ can modify the files. Any changes or additions you make to those
+ files are incorporated into the build the next time you build the
+ software just as are other changes you might have made to the
+ source.
+
+ - *Middle*: The middle scenario in the figure represents a situation
+ where the source code also does not exist locally. In this case,
+ the code is again upstream and needs to be extracted to some local
+ area as a Git repository. The recipe, in this scenario, is again
+ local and in its own layer outside the workspace.
+
+ The following command tells ``devtool`` the recipe with which to
+ work and, in this case, identifies a local area for the extracted
+ source files that exists outside of the default ``devtool``
+ workspace::
+
+ $ devtool modify recipe srctree
+
+ .. note::
+
+ You cannot provide a URL for ``srctree`` using the ``devtool`` command.
+
+ As with all extractions, the command uses the recipe's :term:`SRC_URI`
+ statements to locate the source files and any associated patch
+ files. Non-patch files are copied to an ``oe-local-files`` folder
+ under the newly created source tree.
+
+ Once the files are located, the command by default extracts them
+ into ``srctree``.
+
+ Within workspace, ``devtool`` creates an append file for the
+ recipe. The recipe remains in its original location but the source
+ files are extracted to the location you provide with ``srctree``.
+
+ - *Right*: The right scenario in the figure represents a situation
+ where the source tree (``srctree``) already exists locally as a
+ previously extracted Git structure outside of the ``devtool``
+ workspace. In this example, the recipe also exists elsewhere
+ locally in its own layer.
+
+ The following command tells ``devtool`` the recipe with which to
+ work, uses the "-n" option to indicate source does not need to be
+ extracted, and uses ``srctree`` to point to the previously extracted
+ source files::
+
+ $ devtool modify -n recipe srctree
+
+ If an ``oe-local-files`` subdirectory happens to exist and it
+ contains non-patch files, the files are used. However, if the
+ subdirectory does not exist and you run the ``devtool finish``
+ command, any non-patch files that might exist next to the recipe
+ are removed because it appears to ``devtool`` that you have
+ deleted those files.
+
+ Once the ``devtool modify`` command finishes, it creates only an
+ append file for the recipe in the ``devtool`` workspace. The
+ recipe and the source code remain in their original locations.
+
+#. *Edit the Source*: Once you have used the ``devtool modify`` command,
+ you are free to make changes to the source files. You can use any
+ editor you like to make and save your source code modifications.
+
+#. *Build the Recipe or Rebuild the Image*: The next step you take
+ depends on what you are going to do with the new code.
+
+ If you need to eventually move the build output to the target
+ hardware, use the following ``devtool`` command::
+
+ $ devtool build recipe
+
+ On the other hand, if you want an image to contain the recipe's
+ packages from the workspace for immediate deployment onto a device
+ (e.g. for testing purposes), you can use the ``devtool build-image``
+ command::
+
+ $ devtool build-image image
+
+#. *Deploy the Build Output*: When you use the ``devtool build`` command
+ to build out your recipe, you probably want to see if the resulting
+ build output works as expected on target hardware.
+
+ .. note::
+
+ This step assumes you have a previously built image that is
+ already either running in QEMU or running on actual hardware.
+ Also, it is assumed that for deployment of the image to the
+ target, SSH is installed in the image and if the image is running
+ on real hardware that you have network access to and from your
+ development machine.
+
+ You can deploy your build output to that target hardware by using the
+ ``devtool deploy-target`` command::
+
+ $ devtool deploy-target recipe target
+
+ The target is a live target machine running as an SSH server.
+
+ You can, of course, use other methods to deploy the image you built
+ using the ``devtool build-image`` command to actual hardware.
+ ``devtool`` does not provide a specific command to deploy the image
+ to actual hardware.
+
+#. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+ creates any patches corresponding to commits in the local Git
+ repository, updates the recipe to point to them (or creates a
+ ``.bbappend`` file to do so, depending on the specified destination
+ layer), and then resets the recipe so that the recipe is built
+ normally rather than from the workspace::
+
+ $ devtool finish recipe layer
+
+ .. note::
+
+ Any changes you want to turn into patches must be staged and
+ committed within the local Git repository before you use the
+ ``devtool finish`` command.
+
+ Because there is no need to move the recipe, ``devtool finish``
+ either updates the original recipe in the original layer or the
+ command creates a ``.bbappend`` file in a different layer as provided
+ by layer. Any work you did in the ``oe-local-files`` directory is
+ preserved in the original files next to the recipe during the
+ ``devtool finish`` command.
+
+ As a final process of the ``devtool finish`` command, the state of
+ the standard layers and the upstream source is restored so that you
+ can build the recipe from those areas rather than from the workspace.
+
+ .. note::
+
+ You can use the ``devtool reset`` command to put things back should you
+ decide you do not want to proceed with your work. If you do use this
+ command, realize that the source tree is preserved.
+
+``devtool ide-sdk`` configures IDEs for the extensible SDK
+----------------------------------------------------------
+
+``devtool ide-sdk`` automatically configures IDEs to use the extensible SDK.
+To make sure that all parts of the extensible SDK required by the generated
+IDE configuration are available, ``devtool ide-sdk`` uses BitBake in the
+background to bootstrap the extensible SDK.
+
+The extensible SDK supports two different development modes.
+``devtool ide-sdk`` supports both of them:
+
+#. *Modified mode*:
+
+ By default ``devtool ide-sdk`` generates IDE configurations for recipes in
+ workspaces created by ``devtool modify`` or ``devtool add`` as described in
+ :ref:`using_devtool`. This mode creates IDE configurations with support for
+ advanced features, such as deploying the binaries to the remote target
+ device and performing remote debugging sessions. The generated IDE
+ configurations use the per recipe sysroots as Bitbake does internally.
+
+ In order to use the tool, a few settings are needed. As a starting example,
+ the following lines of code can be added to the ``local.conf`` file::
+
+ # Build the companion debug file system
+ IMAGE_GEN_DEBUGFS = "1"
+ # Optimize build time: with devtool ide-sdk the dbg tar is not needed
+ IMAGE_FSTYPES_DEBUGFS = ""
+ # Without copying the binaries into roofs-dbg, GDB does not find all source files.
+ IMAGE_CLASSES += "image-combined-dbg"
+
+ # SSH is mandatory, no password simplifies the usage
+ EXTRA_IMAGE_FEATURES += "\
+ ssh-server-openssh \
+ debug-tweaks \
+ "
+
+ # Remote debugging needs gdbserver on the target device
+ IMAGE_INSTALL:append = " gdbserver"
+
+ # Add the recipes which should be modified to the image
+ # Otherwise some dependencies might be missing.
+ IMAGE_INSTALL:append = " my-recipe"
+
+ Assuming the BitBake environment is set up correctly and a workspace has
+ been created for the recipe using ``devtool modify my-recipe``, the
+ following command can create the SDK and the configuration for VSCode in
+ the recipe workspace::
+
+ $ devtool ide-sdk my-recipe core-image-minimal --target root@192.168.7.2
+
+ The command requires an image recipe (``core-image-minimal`` for this example)
+ that is used to create the SDK. This firmware image should also be installed
+ on the target device. It is possible to pass multiple package recipes.
+ ``devtool ide-sdk`` tries to create an IDE configuration for all package
+ recipes.
+
+ What this command does exactly depends on the recipe, more precisely on the
+ build tool used by the recipe. The basic idea is to configure the IDE so
+ that it calls the build tool exactly as ``bitbake`` does.
+
+ For example, a CMake preset is created for a recipe that inherits
+ :ref:`ref-classes-cmake`. In the case of VSCode, CMake presets are supported
+ by the CMake Tools plugin. This is an example of how the build
+ configuration used by ``bitbake`` is exported to an IDE configuration that
+ gives exactly the same build results.
+
+ Support for remote debugging with seamless integration into the IDE is
+ important for a cross-SDK. ``devtool ide-sdk`` automatically generates the
+ necessary helper scripts for deploying the compiled artifacts to the target
+ device as well as the necessary configuration for the debugger and the IDE.
+
+ .. note::
+
+ To ensure that the debug symbols on the build machine match the binaries
+ running on the target device, it is essential that the image built by
+ ``devtool ide-sdk`` is running on the target device.
+
+ ``devtool ide-sdk`` aims to support multiple programming languages and
+ multiple IDEs natively. "Natively" means that the IDE is configured to call
+ the build tool (e.g. CMake or Meson) directly. This has several advantages.
+ First of all, it is much faster than ``devtool build``, but it also allows
+ to use the very good integration of tools like CMake or GDB in VSCode and
+ other IDEs. However, supporting many programming languages and multiple
+ IDEs is quite an elaborate and constantly evolving thing. Support for IDEs
+ is therefore implemented as plugins. Plugins can also be provided by
+ optional layers.
+
+ The default IDE is VSCode. Some hints about using VSCode:
+
+ - To work on the source code of a recipe an instance of VSCode is started in
+ the recipe's workspace. Example::
+
+ code build/workspace/sources/my-recipe
+
+ - To work with CMake press ``Ctrl + Shift + p``, type ``cmake``. This will
+ show some possible commands like selecting a CMake preset, compiling or
+ running CTest.
+
+ For recipes inheriting :ref:`ref-classes-cmake-qemu` rather than
+ :ref:`ref-classes-cmake`, executing cross-compiled unit tests on the host
+ can be supported transparently with QEMU user-mode.
+
+ - To work with Meson press ``Ctrl + Shift + p``, type ``meson``. This will
+ show some possible commands like compiling or executing the unit tests.
+
+ A note on running cross-compiled unit tests on the host: Meson enables
+ support for QEMU user-mode by default. It is expected that the execution
+ of the unit tests from the IDE will work easily without any additional
+ steps, provided that the code is suitable for execution on the host
+ machine.
+
+ - For the deployment to the target device, just press ``Ctrl + Shift + p``,
+ type ``task``. Select ``install && deploy-target``.
+
+ - For remote debugging, switch to the debugging view by pressing the "play"
+ button with the ``bug icon`` on the left side. This will provide a green
+ play button with a drop-down list where a debug configuration can be
+ selected. After selecting one of the generated configurations, press the
+ "play" button.
+
+ Starting a remote debugging session automatically initiates the deployment
+ to the target device. If this is not desired, the
+ ``"dependsOn": ["install && deploy-target...]`` parameter of the tasks
+ with ``"label": "gdbserver start...`` can be removed from the
+ ``tasks.json`` file.
+
+ VSCode supports GDB with many different setups and configurations for many
+ different use cases. However, most of these setups have some limitations
+ when it comes to cross-development, support only a few target
+ architectures or require a high performance target device. Therefore
+ ``devtool ide-sdk`` supports the classic, generic setup with GDB on the
+ development host and gdbserver on the target device.
+
+ Roughly summarized, this means:
+
+ - The binaries are copied via SSH to the remote target device by a script
+ referred by ``tasks.json``.
+
+ - gdbserver is started on the remote target device via SSH by a script
+ referred by ``tasks.json``.
+
+ Changing the parameters that are passed to the debugging executable
+ requires modifying the generated script. The script is located at
+ ``oe-scripts/gdbserver_*``. Defining the parameters in the ``args``
+ field in the ``launch.json`` file does not work.
+
+ - VSCode connects to gdbserver as documented in
+ `Remote debugging or debugging with a local debugger server
+ <https://code.visualstudio.com/docs/cpp/launch-json-reference#_remote-debugging-or-debugging-with-a-local-debugger-server>`__.
+
+ Additionally ``--ide=none`` is supported. With the ``none`` IDE parameter,
+ some generic configuration files like ``gdbinit`` files and some helper
+ scripts starting gdbserver remotely on the target device as well as the GDB
+ client on the host are generated.
+
+ Here is a usage example for the ``cmake-example`` recipe from the
+ ``meta-selftest`` layer which inherits :ref:`ref-classes-cmake-qemu`:
+
+ .. code-block:: sh
+
+ # Create the SDK
+ devtool modify cmake-example
+ devtool ide-sdk cmake-example core-image-minimal -c --debug-build-config --ide=none
+
+ # Install the firmware on a target device or start QEMU
+ runqemu
+
+ # From exploring the workspace of cmake-example
+ cd build/workspace/sources/cmake-example
+
+ # Find cmake-native and save the path into a variable
+ # Note: using just cmake instead of $CMAKE_NATIVE would work in many cases
+ CMAKE_NATIVE="$(jq -r '.configurePresets[0] | "\(.cmakeExecutable)"' CMakeUserPresets.json)"
+
+ # List available CMake presets
+ "$CMAKE_NATIVE" --list-presets
+ Available configure presets:
+
+ "cmake-example-cortexa57" - cmake-example: cortexa57
+
+ # Re-compile the already compiled sources
+ "$CMAKE_NATIVE" --build --preset cmake-example-cortexa57
+ ninja: no work to do.
+ # Do a clean re-build
+ "$CMAKE_NATIVE" --build --preset cmake-example-cortexa57 --target clean
+ [1/1] Cleaning all built files...
+ Cleaning... 8 files.
+ "$CMAKE_NATIVE" --build --preset cmake-example-cortexa57 --target all
+ [7/7] Linking CXX executable cmake-example
+
+ # Run the cross-compiled unit tests with QEMU user-mode
+ "$CMAKE_NATIVE" --build --preset cmake-example-cortexa57 --target test
+ [0/1] Running tests...
+ Test project .../build/tmp/work/cortexa57-poky-linux/cmake-example/1.0/cmake-example-1.0
+ Start 1: test-cmake-example
+ 1/1 Test #1: test-cmake-example ............... Passed 0.03 sec
+
+ 100% tests passed, 0 tests failed out of 1
+
+ Total Test time (real) = 0.03 sec
+
+ # Using CTest directly is possible as well
+ CTEST_NATIVE="$(dirname "$CMAKE_NATIVE")/ctest"
+
+ # List available CMake presets
+ "$CTEST_NATIVE" --list-presets
+ Available test presets:
+
+ "cmake-example-cortexa57" - cmake-example: cortexa57
+
+ # Run the cross-compiled unit tests with QEMU user-mode
+ "$CTEST_NATIVE" --preset "cmake-example-cortexa57"
+ Test project ...build/tmp/work/cortexa57-poky-linux/cmake-example/1.0/cmake-example-1.0
+ Start 1: test-cmake-example
+ 1/1 Test #1: test-cmake-example ............... Passed 0.03 sec
+
+ 100% tests passed, 0 tests failed out of 1
+
+ Total Test time (real) = 0.03 sec
+
+ # Deploying the new build to the target device (default is QEUM at 192.168.7.2)
+ oe-scripts/install_and_deploy_cmake-example-cortexa57
+
+ # Start a remote debugging session with gdbserver on the target and GDB on the host
+ oe-scripts/gdbserver_1234_usr-bin-cmake-example_m
+ oe-scripts/gdb_1234_usr-bin-cmake-example
+ break main
+ run
+ step
+ stepi
+ continue
+ quit
+
+ # Stop gdbserver on the target device
+ oe-scripts/gdbserver_1234_usr-bin-cmake-example_m stop
+
+#. *Shared sysroots mode*
+
+ For some recipes and use cases a per-recipe sysroot based SDK is not
+ suitable. Optionally ``devtool ide-sdk`` configures the IDE to use the
+ toolchain provided by the extensible SDK as described in
+ :ref:`running_the_ext_sdk_env`. ``devtool ide-sdk --mode=shared`` is
+ basically a wrapper for the setup of the extensible SDK as described in
+ :ref:`setting_up_ext_sdk_in_build`. The IDE gets a configuration to use the
+ shared sysroots.
+
+ Creating a SDK with shared sysroots that contains all the dependencies needed
+ to work with ``my-recipe`` is possible with the following example command::
+
+ $ devtool ide-sdk --mode=shared my-recipe
+
+ For VSCode the cross-toolchain is exposed as a CMake kit. CMake kits are
+ defined in ``~/.local/share/CMakeTools/cmake-tools-kits.json``.
+ The following example shows how the cross-toolchain can be selected in
+ VSCode. First of all we need a folder containing a CMake project.
+ For this example, let's create a CMake project and start VSCode::
+
+ mkdir kit-test
+ echo "project(foo VERSION 1.0)" > kit-test/CMakeLists.txt
+ code kit-test
+
+ If there is a CMake project in the workspace, cross-compilation is supported:
+
+ - Press ``Ctrl + Shift + P``, type ``CMake: Scan for Kits``
+ - Press ``Ctrl + Shift + P``, type ``CMake: Select a Kit``
+
+ Finally most of the features provided by CMake and the IDE should be available.
+
+ Other IDEs than VSCode are supported as well. However,
+ ``devtool ide-sdk --mode=shared --ide=none my-recipe`` is currently
+ just a simple wrapper for the setup of the extensible SDK, as described in
+ :ref:`setting_up_ext_sdk_in_build`.
+
+Use ``devtool upgrade`` to Create a Version of the Recipe that Supports a Newer Version of the Software
+-------------------------------------------------------------------------------------------------------
+
+The ``devtool upgrade`` command upgrades an existing recipe to that of a
+more up-to-date version found upstream. Throughout the life of software,
+recipes continually undergo version upgrades by their upstream
+publishers. You can use the ``devtool upgrade`` workflow to make sure
+your recipes you are using for builds are up-to-date with their upstream
+counterparts.
+
+.. note::
+
+ Several methods exist by which you can upgrade recipes ---
+ ``devtool upgrade`` happens to be one. You can read about all the methods by
+ which you can upgrade recipes in the
+ :ref:`dev-manual/upgrading-recipes:upgrading recipes` section of the Yocto
+ Project Development Tasks Manual.
+
+The ``devtool upgrade`` command is flexible enough to allow you to specify
+source code revision and versioning schemes, extract code into or out of the
+``devtool`` :ref:`devtool-the-workspace-layer-structure`, and work with any
+source file forms that the
+:ref:`bitbake-user-manual/bitbake-user-manual-fetching:fetchers` support.
+
+The following diagram shows the common development flow used with the
+``devtool upgrade`` command:
+
+.. image:: figures/sdk-devtool-upgrade-flow.png
+ :width: 100%
+
+#. *Initiate the Upgrade*: The top part of the flow shows the typical
+ scenario by which you use the ``devtool upgrade`` command. The
+ following conditions exist:
+
+ - The recipe exists in a local layer external to the ``devtool``
+ workspace.
+
+ - The source files for the new release exist in the same location
+ pointed to by :term:`SRC_URI`
+ in the recipe (e.g. a tarball with the new version number in the
+ name, or as a different revision in the upstream Git repository).
+
+ A common situation is where third-party software has undergone a
+ revision so that it has been upgraded. The recipe you have access to
+ is likely in your own layer. Thus, you need to upgrade the recipe to
+ use the newer version of the software::
+
+ $ devtool upgrade -V version recipe
+
+ By default, the ``devtool upgrade`` command extracts source
+ code into the ``sources`` directory in the
+ :ref:`devtool-the-workspace-layer-structure`.
+ If you want the code extracted to any other location, you need to
+ provide the ``srctree`` positional argument with the command as follows::
+
+ $ devtool upgrade -V version recipe srctree
+
+ .. note::
+
+ In this example, the "-V" option specifies the new version. If you
+ don't use "-V", the command upgrades the recipe to the latest
+ version.
+
+ If the source files pointed to by the :term:`SRC_URI` statement in the
+ recipe are in a Git repository, you must provide the "-S" option and
+ specify a revision for the software.
+
+ Once ``devtool`` locates the recipe, it uses the :term:`SRC_URI` variable
+ to locate the source code and any local patch files from other
+ developers. The result is that the command sets up the source code,
+ the new version of the recipe, and an append file all within the
+ workspace.
+
+ Additionally, if you have any non-patch local files (i.e. files
+ referred to with ``file://`` entries in :term:`SRC_URI` statement
+ excluding ``*.patch/`` or ``*.diff``), these files are copied to an
+ ``oe-local-files`` folder under the newly created source tree.
+ Copying the files here gives you a convenient area from which you can
+ modify the files. Any changes or additions you make to those files
+ are incorporated into the build the next time you build the software
+ just as are other changes you might have made to the source.
+
+#. *Resolve any Conflicts created by the Upgrade*: Conflicts could happen
+ after upgrading the software to a new version. Conflicts occur
+ if your recipe specifies some patch files in :term:`SRC_URI` that
+ conflict with changes made in the new version of the software. For
+ such cases, you need to resolve the conflicts by editing the source
+ and following the normal ``git rebase`` conflict resolution process.
+
+ Before moving onto the next step, be sure to resolve any such
+ conflicts created through use of a newer or different version of the
+ software.
+
+#. *Build the Recipe or Rebuild the Image*: The next step you take
+ depends on what you are going to do with the new code.
+
+ If you need to eventually move the build output to the target
+ hardware, use the following ``devtool`` command::
+
+ $ devtool build recipe
+
+ On the other hand, if you want an image to contain the recipe's
+ packages from the workspace for immediate deployment onto a device
+ (e.g. for testing purposes), you can use the ``devtool build-image``
+ command::
+
+ $ devtool build-image image
+
+#. *Deploy the Build Output*: When you use the ``devtool build`` command
+ or ``bitbake`` to build your recipe, you probably want to see if the
+ resulting build output works as expected on target hardware.
+
+ .. note::
+
+ This step assumes you have a previously built image that is
+ already either running in QEMU or running on actual hardware.
+ Also, it is assumed that for deployment of the image to the
+ target, SSH is installed in the image and if the image is running
+ on real hardware that you have network access to and from your
+ development machine.
+
+ You can deploy your build output to that target hardware by using the
+ ``devtool deploy-target`` command::
+
+ $ devtool deploy-target recipe target
+
+ The target is a live target machine running as an SSH server.
+
+ You can, of course, also deploy the image you build using the
+ ``devtool build-image`` command to actual hardware. However,
+ ``devtool`` does not provide a specific command that allows you to do
+ this.
+
+#. *Finish Your Work With the Recipe*: The ``devtool finish`` command
+ creates any patches corresponding to commits in the local Git
+ repository, moves the new recipe to a more permanent layer, and then
+ resets the recipe so that the recipe is built normally rather than
+ from the workspace.
+
+ Any work you did in the ``oe-local-files`` directory is preserved in
+ the original files next to the recipe during the ``devtool finish``
+ command.
+
+ If you specify a destination layer that is the same as the original
+ source, then the old version of the recipe and associated files are
+ removed prior to adding the new version::
+
+ $ devtool finish recipe layer
+
+ .. note::
+
+ Any changes you want to turn into patches must be committed to the
+ Git repository in the source tree.
+
+ As a final process of the ``devtool finish`` command, the state of
+ the standard layers and the upstream source is restored so that you
+ can build the recipe from those areas rather than the workspace.
+
+ .. note::
+
+ You can use the ``devtool reset`` command to put things back should you
+ decide you do not want to proceed with your work. If you do use this
+ command, realize that the source tree is preserved.
+
+A Closer Look at ``devtool add``
+================================
+
+The ``devtool add`` command automatically creates a recipe based on the
+source tree you provide with the command. Currently, the command has
+support for the following:
+
+- Autotools (``autoconf`` and ``automake``)
+
+- CMake
+
+- Scons
+
+- ``qmake``
+
+- Plain ``Makefile``
+
+- Out-of-tree kernel module
+
+- Binary package (i.e. "-b" option)
+
+- Node.js module
+
+- Python modules that use ``setuptools`` or ``distutils``
+
+Apart from binary packages, the determination of how a source tree
+should be treated is automatic based on the files present within that
+source tree. For example, if a ``CMakeLists.txt`` file is found, then
+the source tree is assumed to be using CMake and is treated accordingly.
+
+.. note::
+
+ In most cases, you need to edit the automatically generated recipe in
+ order to make it build properly. Typically, you would go through
+ several edit and build cycles until the recipe successfully builds.
+ Once the recipe builds, you could use possible further iterations to
+ test the recipe on the target device.
+
+The remainder of this section covers specifics regarding how parts of
+the recipe are generated.
+
+Name and Version
+----------------
+
+If you do not specify a name and version on the command line,
+``devtool add`` uses various metadata within the source tree in an
+attempt to determine the name and version of the software being built.
+Based on what the tool determines, ``devtool`` sets the name of the
+created recipe file accordingly.
+
+If ``devtool`` cannot determine the name and version, the command prints
+an error. For such cases, you must re-run the command and provide the
+name and version, just the name, or just the version as part of the
+command line.
+
+Sometimes the name or version determined from the source tree might be
+incorrect. For such a case, you must reset the recipe::
+
+ $ devtool reset -n recipename
+
+After running the ``devtool reset`` command, you need to
+run ``devtool add`` again and provide the name or the version.
+
+Dependency Detection and Mapping
+--------------------------------
+
+The ``devtool add`` command attempts to detect build-time dependencies and map
+them to other recipes in the system. During this mapping, the command fills in
+the names of those recipes as part of the :term:`DEPENDS` variable within the
+recipe. If a dependency cannot be mapped, ``devtool`` places a comment
+in the recipe indicating such. The inability to map a dependency can
+result from naming not being recognized or because the dependency simply
+is not available. For cases where the dependency is not available, you
+must use the ``devtool add`` command to add an additional recipe that
+satisfies the dependency. Once you add that recipe, you need to update
+the :term:`DEPENDS` variable in the original recipe to include the new
+recipe.
+
+If you need to add runtime dependencies, you can do so by adding the
+following to your recipe::
+
+ RDEPENDS:${PN} += "dependency1 dependency2 ..."
+
+.. note::
+
+ The ``devtool add`` command often cannot distinguish between mandatory and
+ optional dependencies. Consequently, some of the detected dependencies might
+ in fact be optional. When in doubt, consult the documentation or the
+ configure script for the software the recipe is building for further
+ details. In some cases, you might find you can substitute the
+ dependency with an option that disables the associated functionality
+ passed to the configure script.
+
+License Detection
+-----------------
+
+The ``devtool add`` command attempts to determine if the software you are
+adding is able to be distributed under a common, open-source license. If
+so, the command sets the :term:`LICENSE` value accordingly.
+You should double-check the value added by the command against the
+documentation or source files for the software you are building and, if
+necessary, update that :term:`LICENSE` value.
+
+The ``devtool add`` command also sets the :term:`LIC_FILES_CHKSUM`
+value to point to all files that appear to be license-related. Realize
+that license statements often appear in comments at the top of source
+files or within the documentation. In such cases, the command does not
+recognize those license statements. Consequently, you might need to
+amend the :term:`LIC_FILES_CHKSUM` variable to point to one or more of those
+comments if present. Setting :term:`LIC_FILES_CHKSUM` is particularly
+important for third-party software. The mechanism attempts to ensure
+correct licensing should you upgrade the recipe to a newer upstream
+version in future. Any change in licensing is detected and you receive
+an error prompting you to check the license text again.
+
+If the ``devtool add`` command cannot determine licensing information,
+``devtool`` sets the :term:`LICENSE` value to "CLOSED" and leaves the
+:term:`LIC_FILES_CHKSUM` value unset. This behavior allows you to continue
+with development even though the settings are unlikely to be correct in
+all cases. You should check the documentation or source files for the
+software you are building to determine the actual license.
+
+Adding Makefile-Only Software
+-----------------------------
+
+The use of Make by itself is very common in both proprietary and
+open-source software. Unfortunately, Makefiles are often not written
+with cross-compilation in mind. Thus, ``devtool add`` often cannot do
+very much to ensure that these Makefiles build correctly. It is very
+common, for example, to explicitly call ``gcc`` instead of using the
+:term:`CC` variable. Usually, in a
+cross-compilation environment, ``gcc`` is the compiler for the build
+host and the cross-compiler is named something similar to
+``arm-poky-linux-gnueabi-gcc`` and might require arguments (e.g. to
+point to the associated sysroot for the target machine).
+
+When writing a recipe for Makefile-only software, keep the following in
+mind:
+
+- You probably need to patch the Makefile to use variables instead of
+ hardcoding tools within the toolchain such as ``gcc`` and ``g++``.
+
+- The environment in which Make runs is set up with various standard
+ variables for compilation (e.g. :term:`CC`, :term:`CXX`, and so forth) in a
+ similar manner to the environment set up by the SDK's environment
+ setup script. One easy way to see these variables is to run the
+ ``devtool build`` command on the recipe and then look in
+ ``oe-logs/run.do_compile``. Towards the top of this file, there is
+ a list of environment variables that are set. You can take
+ advantage of these variables within the Makefile.
+
+- If the Makefile sets a default for a variable using "=", that default
+ overrides the value set in the environment, which is usually not
+ desirable. For this case, you can either patch the Makefile so it
+ sets the default using the "?=" operator, or you can alternatively
+ force the value on the ``make`` command line. To force the value on
+ the command line, add the variable setting to
+ :term:`EXTRA_OEMAKE` or
+ :term:`PACKAGECONFIG_CONFARGS`
+ within the recipe. Here is an example using :term:`EXTRA_OEMAKE`::
+
+ EXTRA_OEMAKE += "'CC=${CC}' 'CXX=${CXX}'"
+
+ In the above example,
+ single quotes are used around the variable settings as the values are
+ likely to contain spaces because required default options are passed
+ to the compiler.
+
+- Hardcoding paths inside Makefiles is often problematic in a
+ cross-compilation environment. This is particularly true because
+ those hardcoded paths often point to locations on the build host and
+ thus will either be read-only or will introduce contamination into
+ the cross-compilation because they are specific to the build host
+ rather than the target. Patching the Makefile to use prefix variables
+ or other path variables is usually the way to handle this situation.
+
+- Sometimes a Makefile runs target-specific commands such as
+ ``ldconfig``. For such cases, you might be able to apply patches that
+ remove these commands from the Makefile.
+
+Adding Native Tools
+-------------------
+
+Often, you need to build additional tools that run on the :term:`Build Host`
+as opposed to the target. You should indicate this requirement by using one of
+the following methods when you run ``devtool add``:
+
+- Specify the name of the recipe such that it ends with "-native".
+ Specifying the name like this produces a recipe that only builds for
+ the build host.
+
+- Specify the "--also-native" option with the ``devtool add``
+ command. Specifying this option creates a recipe file that still
+ builds for the target but also creates a variant with a "-native"
+ suffix that builds for the build host.
+
+.. note::
+
+ If you need to add a tool that is shipped as part of a source tree
+ that builds code for the target, you can typically accomplish this by
+ building the native and target parts separately rather than within
+ the same compilation process. Realize though that with the
+ "--also-native" option, you can add the tool using just one
+ recipe file.
+
+Adding Node.js Modules
+----------------------
+
+You can use the ``devtool add`` command two different ways to add
+Node.js modules: through ``npm`` or from a repository or local source.
+
+Use the following form to add Node.js modules through ``npm``::
+
+ $ devtool add "npm://registry.npmjs.org;name=forever;version=0.15.1"
+
+The name and
+version parameters are mandatory. Lockdown and shrinkwrap files are
+generated and pointed to by the recipe in order to freeze the version
+that is fetched for the dependencies according to the first time. This
+also saves checksums that are verified on future fetches. Together,
+these behaviors ensure the reproducibility and integrity of the build.
+
+.. note::
+
+ - You must use quotes around the URL. ``devtool add`` does not
+ require the quotes, but the shell considers ";" as a splitter
+ between multiple commands. Thus, without the quotes,
+ ``devtool add`` does not receive the other parts, which results in
+ several "command not found" errors.
+
+ - In order to support adding Node.js modules, a ``nodejs`` recipe
+ must be part of your SDK.
+
+As mentioned earlier, you can also add Node.js modules directly from a
+repository or local source tree. To add modules this way, use
+``devtool add`` in the following form::
+
+ $ devtool add https://github.com/diversario/node-ssdp
+
+In this example, ``devtool`` fetches the specified Git repository, detects the
+code as Node.js code, fetches dependencies using ``npm``, and sets
+:term:`SRC_URI` accordingly.
+
+Working With Recipes
+====================
+
+When building a recipe using the ``devtool build`` command, the typical
+build progresses as follows:
+
+#. Fetch the source
+
+#. Unpack the source
+
+#. Configure the source
+
+#. Compile the source
+
+#. Install the build output
+
+#. Package the installed output
+
+For recipes in the workspace, fetching and unpacking is disabled as the
+source tree has already been prepared and is persistent. Each of these
+build steps is defined as a function (task), usually with a "do\_" prefix
+(e.g. :ref:`ref-tasks-fetch`,
+:ref:`ref-tasks-unpack`, and so
+forth). These functions are typically shell scripts but can instead be
+written in Python.
+
+If you look at the contents of a recipe, you will see that the recipe
+does not include complete instructions for building the software.
+Instead, common functionality is encapsulated in classes inherited with
+the ``inherit`` directive. This technique leaves the recipe to describe
+just the things that are specific to the software being built. There is
+a :ref:`ref-classes-base` class that is implicitly inherited by all recipes
+and provides the functionality that most recipes typically need.
+
+The remainder of this section presents information useful when working
+with recipes.
+
+Finding Logs and Work Files
+---------------------------
+
+After the first run of the ``devtool build`` command, recipes that were
+previously created using the ``devtool add`` command or whose sources
+were modified using the ``devtool modify`` command contain symbolic
+links created within the source tree:
+
+- ``oe-logs``: This link points to the directory in which log files and
+ run scripts for each build step are created.
+
+- ``oe-workdir``: This link points to the temporary work area for the
+ recipe. The following locations under ``oe-workdir`` are particularly
+ useful:
+
+ - ``image/``: Contains all of the files installed during the
+ :ref:`ref-tasks-install` stage.
+ Within a recipe, this directory is referred to by the expression
+ ``${``\ :term:`D`\ ``}``.
+
+ - ``sysroot-destdir/``: Contains a subset of files installed within
+ :ref:`ref-tasks-install` that have been put into the shared sysroot. For
+ more information, see the
+ ":ref:`dev-manual/new-recipe:sharing files between recipes`" section.
+
+ - ``packages-split/``: Contains subdirectories for each package
+ produced by the recipe. For more information, see the
+ ":ref:`sdk-manual/extensible:packaging`" section.
+
+You can use these links to get more information on what is happening at
+each build step.
+
+Setting Configure Arguments
+---------------------------
+
+If the software your recipe is building uses GNU autoconf, then a fixed
+set of arguments is passed to it to enable cross-compilation plus any
+extras specified by :term:`EXTRA_OECONF` or :term:`PACKAGECONFIG_CONFARGS`
+set within the recipe. If you wish to pass additional options, add them
+to :term:`EXTRA_OECONF` or :term:`PACKAGECONFIG_CONFARGS`. Other supported build
+tools have similar variables (e.g. :term:`EXTRA_OECMAKE` for CMake,
+:term:`EXTRA_OESCONS` for Scons, and so forth). If you need to pass anything on
+the ``make`` command line, you can use :term:`EXTRA_OEMAKE` or the
+:term:`PACKAGECONFIG_CONFARGS` variables to do so.
+
+You can use the ``devtool configure-help`` command to help you set the
+arguments listed in the previous paragraph. The command determines the
+exact options being passed, and shows them to you along with any custom
+arguments specified through :term:`EXTRA_OECONF` or
+:term:`PACKAGECONFIG_CONFARGS`. If applicable, the command also shows you
+the output of the configure script's "--help" option as a
+reference.
+
+Sharing Files Between Recipes
+-----------------------------
+
+Recipes often need to use files provided by other recipes on the
+:term:`Build Host`. For example,
+an application linking to a common library needs access to the library
+itself and its associated headers. The way this access is accomplished
+within the extensible SDK is through the sysroot. There is one sysroot per
+"machine" for which the SDK is being built. In practical terms, this
+means there is a sysroot for the target machine, and a sysroot for
+the build host.
+
+Recipes should never write files directly into the sysroot. Instead,
+files should be installed into standard locations during the
+:ref:`ref-tasks-install` task within the ``${``\ :term:`D`\ ``}`` directory. A
+subset of these files automatically goes into the sysroot. The reason
+for this limitation is that almost all files that go into the sysroot
+are cataloged in manifests in order to ensure they can be removed later
+when a recipe is modified or removed. Thus, the sysroot is able to
+remain free from stale files.
+
+Packaging
+---------
+
+Packaging is not always particularly relevant within the extensible SDK.
+However, if you examine how build output gets into the final image on
+the target device, it is important to understand packaging because the
+contents of the image are expressed in terms of packages and not
+recipes.
+
+During the :ref:`ref-tasks-package` task, files installed during the
+:ref:`ref-tasks-install` task are split into one main package, which is almost
+always named the same as the recipe, and into several other packages. This
+separation exists because not all of those installed files are useful in every
+image. For example, you probably do not need any of the documentation installed
+in a production image. Consequently, for each recipe the documentation
+files are separated into a ``-doc`` package. Recipes that package
+software containing optional modules or plugins might undergo additional
+package splitting as well.
+
+After building a recipe, you can see where files have gone by looking in
+the ``oe-workdir/packages-split`` directory, which contains a
+subdirectory for each package. Apart from some advanced cases, the
+:term:`PACKAGES` and :term:`FILES` variables controls
+splitting. The :term:`PACKAGES` variable lists all of the packages to be
+produced, while the :term:`FILES` variable specifies which files to include
+in each package by using an override to specify the package. For
+example, ``FILES:${PN}`` specifies the files to go into the main package
+(i.e. the main package has the same name as the recipe and
+``${``\ :term:`PN`\ ``}`` evaluates to the
+recipe name). The order of the :term:`PACKAGES` value is significant. For
+each installed file, the first package whose :term:`FILES` value matches the
+file is the package into which the file goes. Both the :term:`PACKAGES` and
+:term:`FILES` variables have default values. Consequently, you might find
+you do not even need to set these variables in your recipe unless the
+software the recipe is building installs files into non-standard
+locations.
+
+Restoring the Target Device to its Original State
+=================================================
+
+If you use the ``devtool deploy-target`` command to write a recipe's
+build output to the target, and you are working on an existing component
+of the system, then you might find yourself in a situation where you
+need to restore the original files that existed prior to running the
+``devtool deploy-target`` command. Because the ``devtool deploy-target``
+command backs up any files it overwrites, you can use the
+``devtool undeploy-target`` command to restore those files and remove
+any other files the recipe deployed. Consider the following example::
+
+ $ devtool undeploy-target lighttpd root@192.168.7.2
+
+If you have deployed
+multiple applications, you can remove them all using the "-a" option
+thus restoring the target device to its original state::
+
+ $ devtool undeploy-target -a root@192.168.7.2
+
+Information about files deployed to
+the target as well as any backed up files are stored on the target
+itself. This storage, of course, requires some additional space on the
+target machine.
+
+.. note::
+
+ The ``devtool deploy-target`` and ``devtool undeploy-target`` commands do
+ not currently interact with any package management system on the target
+ device (e.g. RPM or OPKG). Consequently, you should not intermingle
+ ``devtool deploy-target`` and package manager operations on the target
+ device. Doing so could result in a conflicting set of files.
+
+Installing Additional Items Into the Extensible SDK
+===================================================
+
+Out of the box the extensible SDK typically only comes with a small
+number of tools and libraries. A minimal SDK starts mostly empty and is
+populated on-demand. Sometimes you must explicitly install extra items
+into the SDK. If you need these extra items, you can first search for
+the items using the ``devtool search`` command. For example, suppose you
+need to link to libGL but you are not sure which recipe provides libGL.
+You can use the following command to find out::
+
+ $ devtool search libGL mesa
+ A free implementation of the OpenGL API
+
+Once you know the recipe
+(i.e. ``mesa`` in this example), you can install it.
+
+When using the extensible SDK directly in a Yocto build
+-------------------------------------------------------
+
+In this scenario, the Yocto build tooling, e.g. ``bitbake``
+is directly accessible to build additional items, and it
+can simply be executed directly::
+
+ $ bitbake curl-native
+ # Add newly built native items to native sysroot
+ $ bitbake build-sysroots -c build_native_sysroot
+ $ bitbake mesa
+ # Add newly built target items to target sysroot
+ $ bitbake build-sysroots -c build_target_sysroot
+
+When using a standalone installer for the Extensible SDK
+--------------------------------------------------------
+
+::
+
+ $ devtool sdk-install mesa
+
+By default, the ``devtool sdk-install`` command assumes
+the item is available in pre-built form from your SDK provider. If the
+item is not available and it is acceptable to build the item from
+source, you can add the "-s" option as follows::
+
+ $ devtool sdk-install -s mesa
+
+It is important to remember that building the item from source
+takes significantly longer than installing the pre-built artifact. Also,
+if there is no recipe for the item you want to add to the SDK, you must
+instead add the item using the ``devtool add`` command.
+
+Applying Updates to an Installed Extensible SDK
+===============================================
+
+If you are working with an installed extensible SDK that gets
+occasionally updated (e.g. a third-party SDK), then you will need to
+manually "pull down" the updates into the installed SDK.
+
+To update your installed SDK, use ``devtool`` as follows::
+
+ $ devtool sdk-update
+
+The previous command assumes your SDK provider has set the default update URL
+for you through the :term:`SDK_UPDATE_URL` variable as described in the
+":ref:`sdk-manual/appendix-customizing:Providing Updates to the Extensible SDK After Installation`"
+section. If the SDK provider has not set that default URL, you need to
+specify it yourself in the command as follows::
+
+ $ devtool sdk-update path_to_update_directory
+
+.. note::
+
+ The URL needs to point specifically to a published SDK and not to an
+ SDK installer that you would download and install.
+
+Creating a Derivative SDK With Additional Components
+====================================================
+
+You might need to produce an SDK that contains your own custom
+libraries. A good example would be if you were a vendor with customers
+that use your SDK to build their own platform-specific software and
+those customers need an SDK that has custom libraries. In such a case,
+you can produce a derivative SDK based on the currently installed SDK
+fairly easily by following these steps:
+
+#. If necessary, install an extensible SDK that you want to use as a
+ base for your derivative SDK.
+
+#. Source the environment script for the SDK.
+
+#. Add the extra libraries or other components you want by using the
+ ``devtool add`` command.
+
+#. Run the ``devtool build-sdk`` command.
+
+The previous steps take the recipes added to the workspace and construct
+a new SDK installer that contains those recipes and the resulting binary
+artifacts. The recipes go into their own separate layer in the
+constructed derivative SDK, which leaves the workspace clean and ready
+for users to add their own recipes.