summaryrefslogtreecommitdiffstats
path: root/documentation/profile-manual
diff options
context:
space:
mode:
Diffstat (limited to 'documentation/profile-manual')
-rw-r--r--documentation/profile-manual/arch.rst29
-rw-r--r--documentation/profile-manual/examples.rst24
-rw-r--r--documentation/profile-manual/index.rst18
-rw-r--r--documentation/profile-manual/intro.rst77
-rw-r--r--documentation/profile-manual/profile-manual-arch.xml45
-rw-r--r--documentation/profile-manual/profile-manual-customization.xsl27
-rw-r--r--documentation/profile-manual/profile-manual-examples.xml39
-rw-r--r--documentation/profile-manual/profile-manual-intro.xml106
-rw-r--r--documentation/profile-manual/profile-manual-style.css984
-rw-r--r--documentation/profile-manual/profile-manual-usage.xml2985
-rw-r--r--documentation/profile-manual/profile-manual.xml178
-rw-r--r--documentation/profile-manual/usage.rst2601
12 files changed, 2749 insertions, 4364 deletions
diff --git a/documentation/profile-manual/arch.rst b/documentation/profile-manual/arch.rst
new file mode 100644
index 0000000000..73cd0c29e5
--- /dev/null
+++ b/documentation/profile-manual/arch.rst
@@ -0,0 +1,29 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+*************************************************************
+Overall Architecture of the Linux Tracing and Profiling Tools
+*************************************************************
+
+Architecture of the Tracing and Profiling Tools
+===============================================
+
+It may seem surprising to see a section covering an 'overall
+architecture' for what seems to be a random collection of tracing tools
+that together make up the Linux tracing and profiling space. The fact
+is, however, that in recent years this seemingly disparate set of tools
+has started to converge on a 'core' set of underlying mechanisms:
+
+- static tracepoints
+- dynamic tracepoints
+
+ - kprobes
+ - uprobes
+
+- the perf_events subsystem
+- debugfs
+
+.. admonition:: Tying it Together
+
+ Rather than enumerating here how each tool makes use of these common
+ mechanisms, textboxes like this will make note of the specific usages
+ in each tool as they come up in the course of the text.
diff --git a/documentation/profile-manual/examples.rst b/documentation/profile-manual/examples.rst
new file mode 100644
index 0000000000..97a9e9e21a
--- /dev/null
+++ b/documentation/profile-manual/examples.rst
@@ -0,0 +1,24 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+*******************
+Real-World Examples
+*******************
+
+|
+
+This chapter contains real-world examples.
+
+Slow Write Speed on Live Images
+===============================
+
+In one of our previous releases (denzil), users noticed that booting off
+of a live image and writing to disk was noticeably slower. This included
+the boot itself, especially the first one, since first boots tend to do
+a significant amount of writing due to certain post-install scripts.
+
+The problem (and solution) was discovered by using the Yocto tracing
+tools, in this case 'perf stat', 'perf script', 'perf record' and 'perf
+report'.
+
+See all the unvarnished details of how this bug was diagnosed and solved
+here: Yocto Bug #3049
diff --git a/documentation/profile-manual/index.rst b/documentation/profile-manual/index.rst
new file mode 100644
index 0000000000..0270932ca0
--- /dev/null
+++ b/documentation/profile-manual/index.rst
@@ -0,0 +1,18 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+==========================================
+Yocto Project Profiling and Tracing Manual
+==========================================
+
+|
+
+.. toctree::
+ :caption: Table of Contents
+ :numbered:
+
+ intro
+ arch
+ usage
+ examples
+
+.. include:: /boilerplate.rst
diff --git a/documentation/profile-manual/intro.rst b/documentation/profile-manual/intro.rst
new file mode 100644
index 0000000000..86310cf318
--- /dev/null
+++ b/documentation/profile-manual/intro.rst
@@ -0,0 +1,77 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+
+******************************************
+Yocto Project Profiling and Tracing Manual
+******************************************
+
+Introduction
+============
+
+Yocto Project bundles a number of tracing and profiling tools --- this manual
+describes their basic usage and shows by example how to make use of them
+to analyze application and system behavior.
+
+The tools presented are, for the most part, completely open-ended and have
+quite good and/or extensive documentation of their own which can be used
+to solve just about any problem you might come across in Linux. Each
+section that describes a particular tool has links to that tool's
+documentation and website.
+
+The purpose of this manual is to present a set of common and generally
+useful tracing and profiling idioms along with their application (as
+appropriate) to each tool, in the context of a general-purpose
+'drill-down' methodology that can be applied to solving a large number
+of problems. For help with more advanced usages and problems,
+refer to the documentation and/or websites provided for each tool.
+
+The final section of this manual is a collection of real-world examples
+which we'll be continually updating as we solve more problems using the
+tools --- feel free to suggest additions to what you read here.
+
+General Setup
+=============
+
+Most of the tools are available only in ``sdk`` images or in images built
+after adding ``tools-profile`` to your ``local.conf`` file. So, in order to be able
+to access all of the tools described here, you can build and boot
+an ``sdk`` image, perhaps one of::
+
+ $ bitbake core-image-sato-sdk
+ $ bitbake core-image-weston-sdk
+ $ bitbake core-image-rt-sdk
+
+Alternatively, you can add ``tools-profile`` to the :term:`EXTRA_IMAGE_FEATURES` line in
+your ``local.conf`` file::
+
+ EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile"
+
+If you use the ``tools-profile`` method, you don't need to build an sdk image ---
+the tracing and profiling tools will be included in non-sdk images as well e.g.::
+
+ $ bitbake core-image-sato
+
+.. note::
+
+ By default, the Yocto build system strips symbols from the binaries
+ it packages, which makes it difficult to use some of the tools.
+
+ You can prevent that by setting the
+ :term:`INHIBIT_PACKAGE_STRIP`
+ variable to "1" in your ``local.conf`` when you build the image::
+
+ INHIBIT_PACKAGE_STRIP = "1"
+
+ The above setting will noticeably increase the size of your image.
+
+If you've already built a stripped image, you can generate debug
+packages (xxx-dbg) which you can manually install as needed.
+
+To generate debug info for packages, you can add ``dbg-pkgs`` to
+:term:`EXTRA_IMAGE_FEATURES` in ``local.conf``. For example::
+
+ EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
+
+Additionally, in order to generate the right type of debug info, we also need to
+set :term:`PACKAGE_DEBUG_SPLIT_STYLE` in the ``local.conf`` file::
+
+ PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
diff --git a/documentation/profile-manual/profile-manual-arch.xml b/documentation/profile-manual/profile-manual-arch.xml
deleted file mode 100644
index 19d1155229..0000000000
--- a/documentation/profile-manual/profile-manual-arch.xml
+++ /dev/null
@@ -1,45 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-
-<chapter id='profile-manual-arch'>
-
-<title>Overall Architecture of the Linux Tracing and Profiling Tools</title>
-
-<section id='architecture-of-the-tracing-and-profiling-tools'>
- <title>Architecture of the Tracing and Profiling Tools</title>
-
- <para>
- It may seem surprising to see a section covering an 'overall architecture'
- for what seems to be a random collection of tracing tools that together
- make up the Linux tracing and profiling space.
- The fact is, however, that in recent years this seemingly disparate
- set of tools has started to converge on a 'core' set of underlying
- mechanisms:
- </para>
-
- <para>
- <itemizedlist>
- <listitem>static tracepoints</listitem>
- <listitem>dynamic tracepoints
- <itemizedlist>
- <listitem>kprobes</listitem>
- <listitem>uprobes</listitem>
- </itemizedlist>
- </listitem>
- <listitem>the perf_events subsystem</listitem>
- <listitem>debugfs</listitem>
- </itemizedlist>
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Rather than enumerating here how each tool makes use of
- these common mechanisms, textboxes like this will make note of the
- specific usages in each tool as they come up in the course
- of the text.
- </informalexample>
-</section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/documentation/profile-manual/profile-manual-customization.xsl b/documentation/profile-manual/profile-manual-customization.xsl
deleted file mode 100644
index caa57ef342..0000000000
--- a/documentation/profile-manual/profile-manual-customization.xsl
+++ /dev/null
@@ -1,27 +0,0 @@
-<?xml version='1.0'?>
-<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns="http://www.w3.org/1999/xhtml" xmlns:fo="http://www.w3.org/1999/XSL/Format" version="1.0">
-
- <xsl:import href="http://downloads.yoctoproject.org/mirror/docbook-mirror/docbook-xsl-1.76.1/xhtml/docbook.xsl" />
-
-<!--
-
- <xsl:import href="../template/1.76.1/docbook-xsl-1.76.1/xhtml/docbook.xsl" />
-
- <xsl:import href="http://docbook.sourceforge.net/release/xsl/1.76.1/xhtml/docbook.xsl" />
-
--->
-
- <xsl:include href="../template/permalinks.xsl"/>
- <xsl:include href="../template/section.title.xsl"/>
- <xsl:include href="../template/component.title.xsl"/>
- <xsl:include href="../template/division.title.xsl"/>
- <xsl:include href="../template/formal.object.heading.xsl"/>
-
- <xsl:param name="html.stylesheet" select="'profile-manual-style.css'" />
- <xsl:param name="chapter.autolabel" select="1" />
- <xsl:param name="appendix.autolabel" select="A" />
- <xsl:param name="section.autolabel" select="1" />
- <xsl:param name="section.label.includes.component.label" select="1" />
- <xsl:param name="generate.id.attributes" select="1" />
-
-</xsl:stylesheet>
diff --git a/documentation/profile-manual/profile-manual-examples.xml b/documentation/profile-manual/profile-manual-examples.xml
deleted file mode 100644
index 9630c6c307..0000000000
--- a/documentation/profile-manual/profile-manual-examples.xml
+++ /dev/null
@@ -1,39 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-
-<chapter id='profile-manual-examples'>
-
-<title>Real-World Examples</title>
-
-<para>
- This chapter contains real-world examples.
-</para>
-
-<section id='slow-write-speed-on-live-images'>
- <title>Slow Write Speed on Live Images</title>
-
- <para>
- In one of our previous releases (denzil), users noticed that booting
- off of a live image and writing to disk was noticeably slower.
- This included the boot itself, especially the first one, since first
- boots tend to do a significant amount of writing due to certain
- post-install scripts.
- </para>
-
- <para>
- The problem (and solution) was discovered by using the Yocto tracing
- tools, in this case 'perf stat', 'perf script', 'perf record'
- and 'perf report'.
- </para>
-
- <para>
- See all the unvarnished details of how this bug was diagnosed and
- solved here: Yocto Bug #3049
- </para>
-</section>
-
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/documentation/profile-manual/profile-manual-intro.xml b/documentation/profile-manual/profile-manual-intro.xml
deleted file mode 100644
index f16db3f0f2..0000000000
--- a/documentation/profile-manual/profile-manual-intro.xml
+++ /dev/null
@@ -1,106 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-
-<chapter id='profile-manual-intro'>
-
-<title>Yocto Project Profiling and Tracing Manual</title>
- <section id='profile-intro'>
- <title>Introduction</title>
-
- <para>
- Yocto bundles a number of tracing and profiling tools - this 'HOWTO'
- describes their basic usage and shows by example how to make use
- of them to examine application and system behavior.
- </para>
-
- <para>
- The tools presented are for the most part completely open-ended and
- have quite good and/or extensive documentation of their own which
- can be used to solve just about any problem you might come across
- in Linux.
- Each section that describes a particular tool has links to that
- tool's documentation and website.
- </para>
-
- <para>
- The purpose of this 'HOWTO' is to present a set of common and
- generally useful tracing and profiling idioms along with their
- application (as appropriate) to each tool, in the context of a
- general-purpose 'drill-down' methodology that can be applied
- to solving a large number (90%?) of problems.
- For help with more advanced usages and problems, please see
- the documentation and/or websites listed for each tool.
- </para>
-
- <para>
- The final section of this 'HOWTO' is a collection of real-world
- examples which we'll be continually adding to as we solve more
- problems using the tools - feel free to add your own examples
- to the list!
- </para>
- </section>
-
- <section id='profile-manual-general-setup'>
- <title>General Setup</title>
-
- <para>
- Most of the tools are available only in 'sdk' images or in images
- built after adding 'tools-profile' to your local.conf.
- So, in order to be able to access all of the tools described here,
- please first build and boot an 'sdk' image e.g.
- <literallayout class='monospaced'>
- $ bitbake core-image-sato-sdk
- </literallayout>
- or alternatively by adding 'tools-profile' to the
- EXTRA_IMAGE_FEATURES line in your local.conf:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile"
- </literallayout>
- If you use the 'tools-profile' method, you don't need to build an
- sdk image - the tracing and profiling tools will be included in
- non-sdk images as well e.g.:
- <literallayout class='monospaced'>
- $ bitbake core-image-sato
- </literallayout>
- <note><para>
- By default, the Yocto build system strips symbols from the
- binaries it packages, which makes it difficult to use some
- of the tools.
- </para><para>You can prevent that by setting the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'><filename>INHIBIT_PACKAGE_STRIP</filename></ulink>
- variable to "1" in your
- <filename>local.conf</filename> when you build the image:
- </para>
- </note>
- <literallayout class='monospaced'>
- INHIBIT_PACKAGE_STRIP = "1"
- </literallayout>
- The above setting will noticeably increase the size of your image.
- </para>
-
- <para>
- If you've already built a stripped image, you can generate
- debug packages (xxx-dbg) which you can manually install as
- needed.
- </para>
-
- <para>
- To generate debug info for packages, you can add dbg-pkgs to
- EXTRA_IMAGE_FEATURES in local.conf. For example:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
- </literallayout>
- Additionally, in order to generate the right type of
- debuginfo, we also need to set
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_DEBUG_SPLIT_STYLE'><filename>PACKAGE_DEBUG_SPLIT_STYLE</filename></ulink>
- in the <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
- </literallayout>
- </para>
- </section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/documentation/profile-manual/profile-manual-style.css b/documentation/profile-manual/profile-manual-style.css
deleted file mode 100644
index f3cca8536d..0000000000
--- a/documentation/profile-manual/profile-manual-style.css
+++ /dev/null
@@ -1,984 +0,0 @@
-/*
- Generic XHTML / DocBook XHTML CSS Stylesheet.
-
- Browser wrangling and typographic design by
- Oyvind Kolas / pippin@gimp.org
-
- Customised for Poky by
- Matthew Allum / mallum@o-hand.com
-
- Thanks to:
- Liam R. E. Quin
- William Skaggs
- Jakub Steiner
-
- Structure
- ---------
-
- The stylesheet is divided into the following sections:
-
- Positioning
- Margins, paddings, width, font-size, clearing.
- Decorations
- Borders, style
- Colors
- Colors
- Graphics
- Graphical backgrounds
- Nasty IE tweaks
- Workarounds needed to make it work in internet explorer,
- currently makes the stylesheet non validating, but up until
- this point it is validating.
- Mozilla extensions
- Transparency for footer
- Rounded corners on boxes
-
-*/
-
-
- /*************** /
- / Positioning /
-/ ***************/
-
-body {
- font-family: Verdana, Sans, sans-serif;
-
- min-width: 640px;
- width: 80%;
- margin: 0em auto;
- padding: 2em 5em 5em 5em;
- color: #333;
-}
-
-h1,h2,h3,h4,h5,h6,h7 {
- font-family: Arial, Sans;
- color: #00557D;
- clear: both;
-}
-
-h1 {
- font-size: 2em;
- text-align: left;
- padding: 0em 0em 0em 0em;
- margin: 2em 0em 0em 0em;
-}
-
-h2.subtitle {
- margin: 0.10em 0em 3.0em 0em;
- padding: 0em 0em 0em 0em;
- font-size: 1.8em;
- padding-left: 20%;
- font-weight: normal;
- font-style: italic;
-}
-
-h2 {
- margin: 2em 0em 0.66em 0em;
- padding: 0.5em 0em 0em 0em;
- font-size: 1.5em;
- font-weight: bold;
-}
-
-h3.subtitle {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
- font-size: 142.14%;
- text-align: right;
-}
-
-h3 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 140%;
- font-weight: bold;
-}
-
-h4 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 120%;
- font-weight: bold;
-}
-
-h5 {
- margin: 1em 0em 0.5em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 110%;
- font-weight: bold;
-}
-
-h6 {
- margin: 1em 0em 0em 0em;
- padding: 1em 0em 0em 0em;
- font-size: 110%;
- font-weight: bold;
-}
-
-.authorgroup {
- background-color: transparent;
- background-repeat: no-repeat;
- padding-top: 256px;
- background-image: url("figures/profile-title.png");
- background-position: left top;
- margin-top: -256px;
- padding-right: 50px;
- margin-left: 0px;
- text-align: right;
- width: 740px;
-}
-
-h3.author {
- margin: 0em 0me 0em 0em;
- padding: 0em 0em 0em 0em;
- font-weight: normal;
- font-size: 100%;
- color: #333;
- clear: both;
-}
-
-.author tt.email {
- font-size: 66%;
-}
-
-.titlepage hr {
- width: 0em;
- clear: both;
-}
-
-.revhistory {
- padding-top: 2em;
- clear: both;
-}
-
-.toc,
-.list-of-tables,
-.list-of-examples,
-.list-of-figures {
- padding: 1.33em 0em 2.5em 0em;
- color: #00557D;
-}
-
-.toc p,
-.list-of-tables p,
-.list-of-figures p,
-.list-of-examples p {
- padding: 0em 0em 0em 0em;
- padding: 0em 0em 0.3em;
- margin: 1.5em 0em 0em 0em;
-}
-
-.toc p b,
-.list-of-tables p b,
-.list-of-figures p b,
-.list-of-examples p b{
- font-size: 100.0%;
- font-weight: bold;
-}
-
-.toc dl,
-.list-of-tables dl,
-.list-of-figures dl,
-.list-of-examples dl {
- margin: 0em 0em 0.5em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.toc dt {
- margin: 0em 0em 0em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.toc dd {
- margin: 0em 0em 0em 2.6em;
- padding: 0em 0em 0em 0em;
-}
-
-div.glossary dl,
-div.variablelist dl {
-}
-
-.glossary dl dt,
-.variablelist dl dt,
-.variablelist dl dt span.term {
- font-weight: normal;
- width: 20em;
- text-align: right;
-}
-
-.variablelist dl dt {
- margin-top: 0.5em;
-}
-
-.glossary dl dd,
-.variablelist dl dd {
- margin-top: -1em;
- margin-left: 25.5em;
-}
-
-.glossary dd p,
-.variablelist dd p {
- margin-top: 0em;
- margin-bottom: 1em;
-}
-
-
-div.calloutlist table td {
- padding: 0em 0em 0em 0em;
- margin: 0em 0em 0em 0em;
-}
-
-div.calloutlist table td p {
- margin-top: 0em;
- margin-bottom: 1em;
-}
-
-div p.copyright {
- text-align: left;
-}
-
-div.legalnotice p.legalnotice-title {
- margin-bottom: 0em;
-}
-
-p {
- line-height: 1.5em;
- margin-top: 0em;
-
-}
-
-dl {
- padding-top: 0em;
-}
-
-hr {
- border: solid 1px;
-}
-
-
-.mediaobject,
-.mediaobjectco {
- text-align: center;
-}
-
-img {
- border: none;
-}
-
-ul {
- padding: 0em 0em 0em 1.5em;
-}
-
-ul li {
- padding: 0em 0em 0em 0em;
-}
-
-ul li p {
- text-align: left;
-}
-
-table {
- width :100%;
-}
-
-th {
- padding: 0.25em;
- text-align: left;
- font-weight: normal;
- vertical-align: top;
-}
-
-td {
- padding: 0.25em;
- vertical-align: top;
-}
-
-p a[id] {
- margin: 0px;
- padding: 0px;
- display: inline;
- background-image: none;
-}
-
-a {
- text-decoration: underline;
- color: #444;
-}
-
-pre {
- overflow: auto;
-}
-
-a:hover {
- text-decoration: underline;
- /*font-weight: bold;*/
-}
-
-/* This style defines how the permalink character
- appears by itself and when hovered over with
- the mouse. */
-
-[alt='Permalink'] { color: #eee; }
-[alt='Permalink']:hover { color: black; }
-
-
-div.informalfigure,
-div.informalexample,
-div.informaltable,
-div.figure,
-div.table,
-div.example {
- margin: 1em 0em;
- padding: 1em;
- page-break-inside: avoid;
-}
-
-
-div.informalfigure p.title b,
-div.informalexample p.title b,
-div.informaltable p.title b,
-div.figure p.title b,
-div.example p.title b,
-div.table p.title b{
- padding-top: 0em;
- margin-top: 0em;
- font-size: 100%;
- font-weight: normal;
-}
-
-.mediaobject .caption,
-.mediaobject .caption p {
- text-align: center;
- font-size: 80%;
- padding-top: 0.5em;
- padding-bottom: 0.5em;
-}
-
-.epigraph {
- padding-left: 55%;
- margin-bottom: 1em;
-}
-
-.epigraph p {
- text-align: left;
-}
-
-.epigraph .quote {
- font-style: italic;
-}
-.epigraph .attribution {
- font-style: normal;
- text-align: right;
-}
-
-span.application {
- font-style: italic;
-}
-
-.programlisting {
- font-family: monospace;
- font-size: 80%;
- white-space: pre;
- margin: 1.33em 0em;
- padding: 1.33em;
-}
-
-.tip,
-.warning,
-.caution,
-.note {
- margin-top: 1em;
- margin-bottom: 1em;
-
-}
-
-/* force full width of table within div */
-.tip table,
-.warning table,
-.caution table,
-.note table {
- border: none;
- width: 100%;
-}
-
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- padding: 0.8em 0.0em 0.0em 0.0em;
- margin : 0em 0em 0em 0em;
-}
-
-.tip p,
-.warning p,
-.caution p,
-.note p {
- margin-top: 0.5em;
- margin-bottom: 0.5em;
- padding-right: 1em;
- text-align: left;
-}
-
-.acronym {
- text-transform: uppercase;
-}
-
-b.keycap,
-.keycap {
- padding: 0.09em 0.3em;
- margin: 0em;
-}
-
-.itemizedlist li {
- clear: none;
-}
-
-.filename {
- font-size: medium;
- font-family: Courier, monospace;
-}
-
-
-div.navheader, div.heading{
- position: absolute;
- left: 0em;
- top: 0em;
- width: 100%;
- background-color: #cdf;
- width: 100%;
-}
-
-div.navfooter, div.footing{
- position: fixed;
- left: 0em;
- bottom: 0em;
- background-color: #eee;
- width: 100%;
-}
-
-
-div.navheader td,
-div.navfooter td {
- font-size: 66%;
-}
-
-div.navheader table th {
- /*font-family: Georgia, Times, serif;*/
- /*font-size: x-large;*/
- font-size: 80%;
-}
-
-div.navheader table {
- border-left: 0em;
- border-right: 0em;
- border-top: 0em;
- width: 100%;
-}
-
-div.navfooter table {
- border-left: 0em;
- border-right: 0em;
- border-bottom: 0em;
- width: 100%;
-}
-
-div.navheader table td a,
-div.navfooter table td a {
- color: #777;
- text-decoration: none;
-}
-
-/* normal text in the footer */
-div.navfooter table td {
- color: black;
-}
-
-div.navheader table td a:visited,
-div.navfooter table td a:visited {
- color: #444;
-}
-
-
-/* links in header and footer */
-div.navheader table td a:hover,
-div.navfooter table td a:hover {
- text-decoration: underline;
- background-color: transparent;
- color: #33a;
-}
-
-div.navheader hr,
-div.navfooter hr {
- display: none;
-}
-
-
-.qandaset tr.question td p {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
-}
-
-.qandaset tr.answer td p {
- margin: 0em 0em 1em 0em;
- padding: 0em 0em 0em 0em;
-}
-.answer td {
- padding-bottom: 1.5em;
-}
-
-.emphasis {
- font-weight: bold;
-}
-
-
- /************* /
- / decorations /
-/ *************/
-
-.titlepage {
-}
-
-.part .title {
-}
-
-.subtitle {
- border: none;
-}
-
-/*
-h1 {
- border: none;
-}
-
-h2 {
- border-top: solid 0.2em;
- border-bottom: solid 0.06em;
-}
-
-h3 {
- border-top: 0em;
- border-bottom: solid 0.06em;
-}
-
-h4 {
- border: 0em;
- border-bottom: solid 0.06em;
-}
-
-h5 {
- border: 0em;
-}
-*/
-
-.programlisting {
- border: solid 1px;
-}
-
-div.figure,
-div.table,
-div.informalfigure,
-div.informaltable,
-div.informalexample,
-div.example {
- border: 1px solid;
-}
-
-
-
-.tip,
-.warning,
-.caution,
-.note {
- border: 1px solid;
-}
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- border-bottom: 1px solid;
-}
-
-.question td {
- border-top: 1px solid black;
-}
-
-.answer {
-}
-
-
-b.keycap,
-.keycap {
- border: 1px solid;
-}
-
-
-div.navheader, div.heading{
- border-bottom: 1px solid;
-}
-
-
-div.navfooter, div.footing{
- border-top: 1px solid;
-}
-
- /********* /
- / colors /
-/ *********/
-
-body {
- color: #333;
- background: white;
-}
-
-a {
- background: transparent;
-}
-
-a:hover {
- background-color: #dedede;
-}
-
-
-h1,
-h2,
-h3,
-h4,
-h5,
-h6,
-h7,
-h8 {
- background-color: transparent;
-}
-
-hr {
- border-color: #aaa;
-}
-
-
-.tip, .warning, .caution, .note {
- border-color: #fff;
-}
-
-
-.tip table th,
-.warning table th,
-.caution table th,
-.note table th {
- border-bottom-color: #fff;
-}
-
-
-.warning {
- background-color: #f0f0f2;
-}
-
-.caution {
- background-color: #f0f0f2;
-}
-
-.tip {
- background-color: #f0f0f2;
-}
-
-.note {
- background-color: #f0f0f2;
-}
-
-.glossary dl dt,
-.variablelist dl dt,
-.variablelist dl dt span.term {
- color: #044;
-}
-
-div.figure,
-div.table,
-div.example,
-div.informalfigure,
-div.informaltable,
-div.informalexample {
- border-color: #aaa;
-}
-
-pre.programlisting {
- color: black;
- background-color: #fff;
- border-color: #aaa;
- border-width: 2px;
-}
-
-.guimenu,
-.guilabel,
-.guimenuitem {
- background-color: #eee;
-}
-
-
-b.keycap,
-.keycap {
- background-color: #eee;
- border-color: #999;
-}
-
-
-div.navheader {
- border-color: black;
-}
-
-
-div.navfooter {
- border-color: black;
-}
-
-
- /*********** /
- / graphics /
-/ ***********/
-
-/*
-body {
- background-image: url("images/body_bg.jpg");
- background-attachment: fixed;
-}
-
-.navheader,
-.note,
-.tip {
- background-image: url("images/note_bg.jpg");
- background-attachment: fixed;
-}
-
-.warning,
-.caution {
- background-image: url("images/warning_bg.jpg");
- background-attachment: fixed;
-}
-
-.figure,
-.informalfigure,
-.example,
-.informalexample,
-.table,
-.informaltable {
- background-image: url("images/figure_bg.jpg");
- background-attachment: fixed;
-}
-
-*/
-h1,
-h2,
-h3,
-h4,
-h5,
-h6,
-h7{
-}
-
-/*
-Example of how to stick an image as part of the title.
-
-div.article .titlepage .title
-{
- background-image: url("figures/white-on-black.png");
- background-position: center;
- background-repeat: repeat-x;
-}
-*/
-
-div.preface .titlepage .title,
-div.colophon .title,
-div.chapter .titlepage .title,
-div.article .titlepage .title
-{
-}
-
-div.section div.section .titlepage .title,
-div.sect2 .titlepage .title {
- background: none;
-}
-
-
-h1.title {
- background-color: transparent;
- background-repeat: no-repeat;
- height: 256px;
- text-indent: -9000px;
- overflow:hidden;
-}
-
-h2.subtitle {
- background-color: transparent;
- text-indent: -9000px;
- overflow:hidden;
- width: 0px;
- display: none;
-}
-
- /*************************************** /
- / pippin.gimp.org specific alterations /
-/ ***************************************/
-
-/*
-div.heading, div.navheader {
- color: #777;
- font-size: 80%;
- padding: 0;
- margin: 0;
- text-align: left;
- position: absolute;
- top: 0px;
- left: 0px;
- width: 100%;
- height: 50px;
- background: url('/gfx/heading_bg.png') transparent;
- background-repeat: repeat-x;
- background-attachment: fixed;
- border: none;
-}
-
-div.heading a {
- color: #444;
-}
-
-div.footing, div.navfooter {
- border: none;
- color: #ddd;
- font-size: 80%;
- text-align:right;
-
- width: 100%;
- padding-top: 10px;
- position: absolute;
- bottom: 0px;
- left: 0px;
-
- background: url('/gfx/footing_bg.png') transparent;
-}
-*/
-
-
-
- /****************** /
- / nasty ie tweaks /
-/ ******************/
-
-/*
-div.heading, div.navheader {
- width:expression(document.body.clientWidth + "px");
-}
-
-div.footing, div.navfooter {
- width:expression(document.body.clientWidth + "px");
- margin-left:expression("-5em");
-}
-body {
- padding:expression("4em 5em 0em 5em");
-}
-*/
-
- /**************************************** /
- / mozilla vendor specific css extensions /
-/ ****************************************/
-/*
-div.navfooter, div.footing{
- -moz-opacity: 0.8em;
-}
-
-div.figure,
-div.table,
-div.informalfigure,
-div.informaltable,
-div.informalexample,
-div.example,
-.tip,
-.warning,
-.caution,
-.note {
- -moz-border-radius: 0.5em;
-}
-
-b.keycap,
-.keycap {
- -moz-border-radius: 0.3em;
-}
-*/
-
-table tr td table tr td {
- display: none;
-}
-
-
-hr {
- display: none;
-}
-
-table {
- border: 0em;
-}
-
- .photo {
- float: right;
- margin-left: 1.5em;
- margin-bottom: 1.5em;
- margin-top: 0em;
- max-width: 17em;
- border: 1px solid gray;
- padding: 3px;
- background: white;
-}
- .seperator {
- padding-top: 2em;
- clear: both;
- }
-
- #validators {
- margin-top: 5em;
- text-align: right;
- color: #777;
- }
- @media print {
- body {
- font-size: 8pt;
- }
- .noprint {
- display: none;
- }
- }
-
-
-.tip,
-.note {
- background: #f0f0f2;
- color: #333;
- padding: 20px;
- margin: 20px;
-}
-
-.tip h3,
-.note h3 {
- padding: 0em;
- margin: 0em;
- font-size: 2em;
- font-weight: bold;
- color: #333;
-}
-
-.tip a,
-.note a {
- color: #333;
- text-decoration: underline;
-}
-
-.footnote {
- font-size: small;
- color: #333;
-}
-
-/* Changes the announcement text */
-.tip h3,
-.warning h3,
-.caution h3,
-.note h3 {
- font-size:large;
- color: #00557D;
-}
diff --git a/documentation/profile-manual/profile-manual-usage.xml b/documentation/profile-manual/profile-manual-usage.xml
deleted file mode 100644
index 5999b29603..0000000000
--- a/documentation/profile-manual/profile-manual-usage.xml
+++ /dev/null
@@ -1,2985 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-
-<chapter id='profile-manual-usage'>
-
-<title>Basic Usage (with examples) for each of the Yocto Tracing Tools</title>
-
-<para>
- This chapter presents basic usage examples for each of the tracing
- tools.
-</para>
-
-<section id='profile-manual-perf'>
- <title>perf</title>
-
- <para>
- The 'perf' tool is the profiling and tracing tool that comes
- bundled with the Linux kernel.
- </para>
-
- <para>
- Don't let the fact that it's part of the kernel fool you into thinking
- that it's only for tracing and profiling the kernel - you can indeed
- use it to trace and profile just the kernel, but you can also use it
- to profile specific applications separately (with or without kernel
- context), and you can also use it to trace and profile the kernel
- and all applications on the system simultaneously to gain a system-wide
- view of what's going on.
- </para>
-
- <para>
- In many ways, perf aims to be a superset of all the tracing and profiling
- tools available in Linux today, including all the other tools covered
- in this HOWTO. The past couple of years have seen perf subsume a lot
- of the functionality of those other tools and, at the same time, those
- other tools have removed large portions of their previous functionality
- and replaced it with calls to the equivalent functionality now
- implemented by the perf subsystem. Extrapolation suggests that at
- some point those other tools will simply become completely redundant
- and go away; until then, we'll cover those other tools in these pages
- and in many cases show how the same things can be accomplished in
- perf and the other tools when it seems useful to do so.
- </para>
-
- <para>
- The coverage below details some of the most common ways you'll likely
- want to apply the tool; full documentation can be found either within
- the tool itself or in the man pages at
- <ulink url='http://linux.die.net/man/1/perf'>perf(1)</ulink>.
- </para>
-
- <section id='perf-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the basic
- setup outlined in the General Setup section.
- </para>
-
- <para>
- In particular, you'll get the most mileage out of perf if you
- profile an image built with the following in your
- <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
- </literallayout>
- </para>
-
- <para>
- perf runs on the target system for the most part. You can archive
- profile data and copy it to the host for analysis, but for the
- rest of this document we assume you've ssh'ed to the host and
- will be running the perf commands on the target.
- </para>
- </section>
-
- <section id='perf-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- The perf tool is pretty much self-documenting. To remind yourself
- of the available commands, simply type 'perf', which will show you
- basic usage along with the available perf subcommands:
- <literallayout class='monospaced'>
- root@crownbay:~# perf
-
- usage: perf [--version] [--help] COMMAND [ARGS]
-
- The most commonly used perf commands are:
- annotate Read perf.data (created by perf record) and display annotated code
- archive Create archive with object files with build-ids found in perf.data file
- bench General framework for benchmark suites
- buildid-cache Manage build-id cache.
- buildid-list List the buildids in a perf.data file
- diff Read two perf.data files and display the differential profile
- evlist List the event names in a perf.data file
- inject Filter to augment the events stream with additional information
- kmem Tool to trace/measure kernel memory(slab) properties
- kvm Tool to trace/measure kvm guest os
- list List all symbolic event types
- lock Analyze lock events
- probe Define new dynamic tracepoints
- record Run a command and record its profile into perf.data
- report Read perf.data (created by perf record) and display the profile
- sched Tool to trace/measure scheduler properties (latencies)
- script Read perf.data (created by perf record) and display trace output
- stat Run a command and gather performance counter statistics
- test Runs sanity tests.
- timechart Tool to visualize total system behavior during a workload
- top System profiling tool.
-
- See 'perf help COMMAND' for more information on a specific command.
- </literallayout>
- </para>
-
- <section id='using-perf-to-do-basic-profiling'>
- <title>Using perf to do Basic Profiling</title>
-
- <para>
- As a simple test case, we'll profile the 'wget' of a fairly large
- file, which is a minimally interesting case because it has both
- file and network I/O aspects, and at least in the case of standard
- Yocto images, it's implemented as part of busybox, so the methods
- we use to analyze it can be used in a very similar way to the whole
- host of supported busybox applets in Yocto.
- <literallayout class='monospaced'>
- root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
- wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- The quickest and easiest way to get some basic overall data about
- what's going on for a particular workload is to profile it using
- 'perf stat'. 'perf stat' basically profiles using a few default
- counters and displays the summed counts at the end of the run:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
-
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 4597.223902 task-clock # 0.077 CPUs utilized
- 23568 context-switches # 0.005 M/sec
- 68 CPU-migrations # 0.015 K/sec
- 241 page-faults # 0.052 K/sec
- 3045817293 cycles # 0.663 GHz
- &lt;not supported&gt; stalled-cycles-frontend
- &lt;not supported&gt; stalled-cycles-backend
- 858909167 instructions # 0.28 insns per cycle
- 165441165 branches # 35.987 M/sec
- 19550329 branch-misses # 11.82% of all branches
-
- 59.836627620 seconds time elapsed
- </literallayout>
- Many times such a simple-minded test doesn't yield much of
- interest, but sometimes it does (see Real-world Yocto bug
- (slow loop-mounted write speed)).
- </para>
-
- <para>
- Also, note that 'perf stat' isn't restricted to a fixed set of
- counters - basically any event listed in the output of 'perf list'
- can be tallied by 'perf stat'. For example, suppose we wanted to
- see a summary of all the events related to kernel memory
- allocation/freeing along with cache hits and misses:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
-
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 5566 kmem:kmalloc
- 125517 kmem:kmem_cache_alloc
- 0 kmem:kmalloc_node
- 0 kmem:kmem_cache_alloc_node
- 34401 kmem:kfree
- 69920 kmem:kmem_cache_free
- 133 kmem:mm_page_free
- 41 kmem:mm_page_free_batched
- 11502 kmem:mm_page_alloc
- 11375 kmem:mm_page_alloc_zone_locked
- 0 kmem:mm_page_pcpu_drain
- 0 kmem:mm_page_alloc_extfrag
- 66848602 cache-references
- 2917740 cache-misses # 4.365 % of all cache refs
-
- 44.831023415 seconds time elapsed
- </literallayout>
- So 'perf stat' gives us a nice easy way to get a quick overview of
- what might be happening for a set of events, but normally we'd
- need a little more detail in order to understand what's going on
- in a way that we can act on in a useful way.
- </para>
-
- <para>
- To dive down into a next level of detail, we can use 'perf
- record'/'perf report' which will collect profiling data and
- present it to use using an interactive text-based UI (or
- simply as text if we specify --stdio to 'perf report').
- </para>
-
- <para>
- As our first attempt at profiling this workload, we'll simply
- run 'perf record', handing it the workload we want to profile
- (everything after 'perf record' and any perf options we hand
- it - here none - will be executed in a new shell). perf collects
- samples until the process exits and records them in a file named
- 'perf.data' in the current working directory.
- <literallayout class='monospaced'>
- root@crownbay:~# perf record wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
-
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
- [ perf record: Woken up 1 times to write data ]
- [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
- </literallayout>
- To see the results in a 'text-based UI' (tui), simply run
- 'perf report', which will read the perf.data file in the current
- working directory and display the results in an interactive UI:
- <literallayout class='monospaced'>
- root@crownbay:~# perf report
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-flat-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The above screenshot displays a 'flat' profile, one entry for
- each 'bucket' corresponding to the functions that were profiled
- during the profiling run, ordered from the most popular to the
- least (perf has options to sort in various orders and keys as
- well as display entries only above a certain threshold and so
- on - see the perf documentation for details). Note that this
- includes both userspace functions (entries containing a [.]) and
- kernel functions accounted to the process (entries containing
- a [k]). (perf has command-line modifiers that can be used to
- restrict the profiling to kernel or userspace, among others).
- </para>
-
- <para>
- Notice also that the above report shows an entry for 'busybox',
- which is the executable that implements 'wget' in Yocto, but that
- instead of a useful function name in that entry, it displays
- a not-so-friendly hex value instead. The steps below will show
- how to fix that problem.
- </para>
-
- <para>
- Before we do that, however, let's try running a different profile,
- one which shows something a little more interesting. The only
- difference between the new profile and the previous one is that
- we'll add the -g option, which will record not just the address
- of a sampled function, but the entire callchain to the sampled
- function as well:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
- [ perf record: Woken up 3 times to write data ]
- [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]
-
-
- root@crownbay:~# perf report
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Using the callgraph view, we can actually see not only which
- functions took the most time, but we can also see a summary of
- how those functions were called and learn something about how the
- program interacts with the kernel in the process.
- </para>
-
- <para>
- Notice that each entry in the above screenshot now contains a '+'
- on the left-hand side. This means that we can expand the entry and
- drill down into the callchains that feed into that entry.
- Pressing 'enter' on any one of them will expand the callchain
- (you can also press 'E' to expand them all at the same time or 'C'
- to collapse them all).
- </para>
-
- <para>
- In the screenshot above, we've toggled the __copy_to_user_ll()
- entry and several subnodes all the way down. This lets us see
- which callchains contributed to the profiled __copy_to_user_ll()
- function which contributed 1.77% to the total profile.
- </para>
-
- <para>
- As a bit of background explanation for these callchains, think
- about what happens at a high level when you run wget to get a file
- out on the network. Basically what happens is that the data comes
- into the kernel via the network connection (socket) and is passed
- to the userspace program 'wget' (which is actually a part of
- busybox, but that's not important for now), which takes the buffers
- the kernel passes to it and writes it to a disk file to save it.
- </para>
-
- <para>
- The part of this process that we're looking at in the above call
- stacks is the part where the kernel passes the data it's read from
- the socket down to wget i.e. a copy-to-user.
- </para>
-
- <para>
- Notice also that here there's also a case where the hex value
- is displayed in the callstack, here in the expanded
- sys_clock_gettime() function. Later we'll see it resolve to a
- userspace function call in busybox.
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-from-user-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The above screenshot shows the other half of the journey for the
- data - from the wget program's userspace buffers to disk. To get
- the buffers to disk, the wget program issues a write(2), which
- does a copy-from-user to the kernel, which then takes care via
- some circuitous path (probably also present somewhere in the
- profile data), to get it safely to disk.
- </para>
-
- <para>
- Now that we've seen the basic layout of the profile data and the
- basics of how to extract useful information out of it, let's get
- back to the task at hand and see if we can get some basic idea
- about where the time is spent in the program we're profiling,
- wget. Remember that wget is actually implemented as an applet
- in busybox, so while the process name is 'wget', the executable
- we're actually interested in is busybox. So let's expand the
- first entry containing busybox:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-expanded-stripped.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Again, before we expanded we saw that the function was labeled
- with a hex value instead of a symbol as with most of the kernel
- entries. Expanding the busybox entry doesn't make it any better.
- </para>
-
- <para>
- The problem is that perf can't find the symbol information for the
- busybox binary, which is actually stripped out by the Yocto build
- system.
- </para>
-
- <para>
- One way around that is to put the following in your
- <filename>local.conf</filename> file when you build the image:
- <literallayout class='monospaced'>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHIBIT_PACKAGE_STRIP'>INHIBIT_PACKAGE_STRIP</ulink> = "1"
- </literallayout>
- However, we already have an image with the binaries stripped,
- so what can we do to get perf to resolve the symbols? Basically
- we need to install the debuginfo for the busybox package.
- </para>
-
- <para>
- To generate the debug info for the packages in the image, we can
- add dbg-pkgs to EXTRA_IMAGE_FEATURES in local.conf. For example:
- <literallayout class='monospaced'>
- EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
- </literallayout>
- Additionally, in order to generate the type of debuginfo that
- perf understands, we also need to set
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_DEBUG_SPLIT_STYLE'><filename>PACKAGE_DEBUG_SPLIT_STYLE</filename></ulink>
- in the <filename>local.conf</filename> file:
- <literallayout class='monospaced'>
- PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
- </literallayout>
- Once we've done that, we can install the debuginfo for busybox.
- The debug packages once built can be found in
- build/tmp/deploy/rpm/* on the host system. Find the
- busybox-dbg-...rpm file and copy it to the target. For example:
- <literallayout class='monospaced'>
- [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
- root@192.168.1.31's password:
- busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
- </literallayout>
- Now install the debug rpm on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
- </literallayout>
- Now that the debuginfo is installed, we see that the busybox
- entries now display their functions symbolically:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- If we expand one of the entries and press 'enter' on a leaf node,
- we're presented with a menu of actions we can take to get more
- information related to that entry:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-dso-zoom-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
- </para>
-
- <para>
- One of these actions allows us to show a view that displays a
- busybox-centric view of the profiled functions (in this case we've
- also expanded all the nodes using the 'E' key):
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-dso-zoom.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Finally, we can see that now that the busybox debuginfo is
- installed, the previously unresolved symbol in the
- sys_clock_gettime() entry mentioned previously is now resolved,
- and shows that the sys_clock_gettime system call that was the
- source of 6.75% of the copy-to-user overhead was initiated by
- the handle_input() busybox function:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-g-copy-to-user-expanded-debuginfo.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- At the lowest level of detail, we can dive down to the assembly
- level and see which instructions caused the most overhead in a
- function. Pressing 'enter' on the 'udhcpc_main' function, we're
- again presented with a menu:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-annotate-menu.png" width="6in" depth="2in" align="center" scalefit="1" />
- </para>
-
- <para>
- Selecting 'Annotate udhcpc_main', we get a detailed listing of
- percentages by instruction for the udhcpc_main function. From the
- display, we can see that over 50% of the time spent in this
- function is taken up by a couple tests and the move of a
- constant (1) to a register:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-wget-busybox-annotate-udhcpc.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- As a segue into tracing, let's try another profile using a
- different counter, something other than the default 'cycles'.
- </para>
-
- <para>
- The tracing and profiling infrastructure in Linux has become
- unified in a way that allows us to use the same tool with a
- completely different set of counters, not just the standard
- hardware counters that traditional tools have had to restrict
- themselves to (of course the traditional tools can also make use
- of the expanded possibilities now available to them, and in some
- cases have, as mentioned previously).
- </para>
-
- <para>
- We can get a list of the available events that can be used to
- profile a workload via 'perf list':
- <literallayout class='monospaced'>
- root@crownbay:~# perf list
-
- List of pre-defined events (to be used in -e):
- cpu-cycles OR cycles [Hardware event]
- stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
- stalled-cycles-backend OR idle-cycles-backend [Hardware event]
- instructions [Hardware event]
- cache-references [Hardware event]
- cache-misses [Hardware event]
- branch-instructions OR branches [Hardware event]
- branch-misses [Hardware event]
- bus-cycles [Hardware event]
- ref-cycles [Hardware event]
-
- cpu-clock [Software event]
- task-clock [Software event]
- page-faults OR faults [Software event]
- minor-faults [Software event]
- major-faults [Software event]
- context-switches OR cs [Software event]
- cpu-migrations OR migrations [Software event]
- alignment-faults [Software event]
- emulation-faults [Software event]
-
- L1-dcache-loads [Hardware cache event]
- L1-dcache-load-misses [Hardware cache event]
- L1-dcache-prefetch-misses [Hardware cache event]
- L1-icache-loads [Hardware cache event]
- L1-icache-load-misses [Hardware cache event]
- .
- .
- .
- rNNN [Raw hardware event descriptor]
- cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
- (see 'perf list --help' on how to encode it)
-
- mem:&lt;addr&gt;[:access] [Hardware breakpoint]
-
- sunrpc:rpc_call_status [Tracepoint event]
- sunrpc:rpc_bind_status [Tracepoint event]
- sunrpc:rpc_connect_status [Tracepoint event]
- sunrpc:rpc_task_begin [Tracepoint event]
- skb:kfree_skb [Tracepoint event]
- skb:consume_skb [Tracepoint event]
- skb:skb_copy_datagram_iovec [Tracepoint event]
- net:net_dev_xmit [Tracepoint event]
- net:net_dev_queue [Tracepoint event]
- net:netif_receive_skb [Tracepoint event]
- net:netif_rx [Tracepoint event]
- napi:napi_poll [Tracepoint event]
- sock:sock_rcvqueue_full [Tracepoint event]
- sock:sock_exceed_buf_limit [Tracepoint event]
- udp:udp_fail_queue_rcv_skb [Tracepoint event]
- hda:hda_send_cmd [Tracepoint event]
- hda:hda_get_response [Tracepoint event]
- hda:hda_bus_reset [Tracepoint event]
- scsi:scsi_dispatch_cmd_start [Tracepoint event]
- scsi:scsi_dispatch_cmd_error [Tracepoint event]
- scsi:scsi_eh_wakeup [Tracepoint event]
- drm:drm_vblank_event [Tracepoint event]
- drm:drm_vblank_event_queued [Tracepoint event]
- drm:drm_vblank_event_delivered [Tracepoint event]
- random:mix_pool_bytes [Tracepoint event]
- random:mix_pool_bytes_nolock [Tracepoint event]
- random:credit_entropy_bits [Tracepoint event]
- gpio:gpio_direction [Tracepoint event]
- gpio:gpio_value [Tracepoint event]
- block:block_rq_abort [Tracepoint event]
- block:block_rq_requeue [Tracepoint event]
- block:block_rq_issue [Tracepoint event]
- block:block_bio_bounce [Tracepoint event]
- block:block_bio_complete [Tracepoint event]
- block:block_bio_backmerge [Tracepoint event]
- .
- .
- writeback:writeback_wake_thread [Tracepoint event]
- writeback:writeback_wake_forker_thread [Tracepoint event]
- writeback:writeback_bdi_register [Tracepoint event]
- .
- .
- writeback:writeback_single_inode_requeue [Tracepoint event]
- writeback:writeback_single_inode [Tracepoint event]
- kmem:kmalloc [Tracepoint event]
- kmem:kmem_cache_alloc [Tracepoint event]
- kmem:mm_page_alloc [Tracepoint event]
- kmem:mm_page_alloc_zone_locked [Tracepoint event]
- kmem:mm_page_pcpu_drain [Tracepoint event]
- kmem:mm_page_alloc_extfrag [Tracepoint event]
- vmscan:mm_vmscan_kswapd_sleep [Tracepoint event]
- vmscan:mm_vmscan_kswapd_wake [Tracepoint event]
- vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event]
- vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event]
- .
- .
- module:module_get [Tracepoint event]
- module:module_put [Tracepoint event]
- module:module_request [Tracepoint event]
- sched:sched_kthread_stop [Tracepoint event]
- sched:sched_wakeup [Tracepoint event]
- sched:sched_wakeup_new [Tracepoint event]
- sched:sched_process_fork [Tracepoint event]
- sched:sched_process_exec [Tracepoint event]
- sched:sched_stat_runtime [Tracepoint event]
- rcu:rcu_utilization [Tracepoint event]
- workqueue:workqueue_queue_work [Tracepoint event]
- workqueue:workqueue_execute_end [Tracepoint event]
- signal:signal_generate [Tracepoint event]
- signal:signal_deliver [Tracepoint event]
- timer:timer_init [Tracepoint event]
- timer:timer_start [Tracepoint event]
- timer:hrtimer_cancel [Tracepoint event]
- timer:itimer_state [Tracepoint event]
- timer:itimer_expire [Tracepoint event]
- irq:irq_handler_entry [Tracepoint event]
- irq:irq_handler_exit [Tracepoint event]
- irq:softirq_entry [Tracepoint event]
- irq:softirq_exit [Tracepoint event]
- irq:softirq_raise [Tracepoint event]
- printk:console [Tracepoint event]
- task:task_newtask [Tracepoint event]
- task:task_rename [Tracepoint event]
- syscalls:sys_enter_socketcall [Tracepoint event]
- syscalls:sys_exit_socketcall [Tracepoint event]
- .
- .
- .
- syscalls:sys_enter_unshare [Tracepoint event]
- syscalls:sys_exit_unshare [Tracepoint event]
- raw_syscalls:sys_enter [Tracepoint event]
- raw_syscalls:sys_exit [Tracepoint event]
- </literallayout>
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These are exactly the same set of events defined
- by the trace event subsystem and exposed by
- ftrace/tracecmd/kernelshark as files in
- /sys/kernel/debug/tracing/events, by SystemTap as
- kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
- </informalexample>
-
- <para>
- Only a subset of these would be of interest to us when looking at
- this workload, so let's choose the most likely subsystems
- (identified by the string before the colon in the Tracepoint events)
- and do a 'perf stat' run using only those wildcarded subsystems:
- <literallayout class='monospaced'>
- root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Performance counter stats for 'wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>':
-
- 23323 skb:kfree_skb
- 0 skb:consume_skb
- 49897 skb:skb_copy_datagram_iovec
- 6217 net:net_dev_xmit
- 6217 net:net_dev_queue
- 7962 net:netif_receive_skb
- 2 net:netif_rx
- 8340 napi:napi_poll
- 0 sched:sched_kthread_stop
- 0 sched:sched_kthread_stop_ret
- 3749 sched:sched_wakeup
- 0 sched:sched_wakeup_new
- 0 sched:sched_switch
- 29 sched:sched_migrate_task
- 0 sched:sched_process_free
- 1 sched:sched_process_exit
- 0 sched:sched_wait_task
- 0 sched:sched_process_wait
- 0 sched:sched_process_fork
- 1 sched:sched_process_exec
- 0 sched:sched_stat_wait
- 2106519415641 sched:sched_stat_sleep
- 0 sched:sched_stat_iowait
- 147453613 sched:sched_stat_blocked
- 12903026955 sched:sched_stat_runtime
- 0 sched:sched_pi_setprio
- 3574 workqueue:workqueue_queue_work
- 3574 workqueue:workqueue_activate_work
- 0 workqueue:workqueue_execute_start
- 0 workqueue:workqueue_execute_end
- 16631 irq:irq_handler_entry
- 16631 irq:irq_handler_exit
- 28521 irq:softirq_entry
- 28521 irq:softirq_exit
- 28728 irq:softirq_raise
- 1 syscalls:sys_enter_sendmmsg
- 1 syscalls:sys_exit_sendmmsg
- 0 syscalls:sys_enter_recvmmsg
- 0 syscalls:sys_exit_recvmmsg
- 14 syscalls:sys_enter_socketcall
- 14 syscalls:sys_exit_socketcall
- .
- .
- .
- 16965 syscalls:sys_enter_read
- 16965 syscalls:sys_exit_read
- 12854 syscalls:sys_enter_write
- 12854 syscalls:sys_exit_write
- .
- .
- .
-
- 58.029710972 seconds time elapsed
- </literallayout>
- Let's pick one of these tracepoints and tell perf to do a profile
- using it as the sampling event:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -e sched:sched_wakeup wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/sched-wakeup-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The screenshot above shows the results of running a profile using
- sched:sched_switch tracepoint, which shows the relative costs of
- various paths to sched_wakeup (note that sched_wakeup is the
- name of the tracepoint - it's actually defined just inside
- ttwu_do_wakeup(), which accounts for the function name actually
- displayed in the profile:
- <literallayout class='monospaced'>
- /*
- * Mark the task runnable and perform wakeup-preemption.
- */
- static void
- ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
- {
- trace_sched_wakeup(p, true);
- .
- .
- .
- }
- </literallayout>
- A couple of the more interesting callchains are expanded and
- displayed above, basically some network receive paths that
- presumably end up waking up wget (busybox) when network data is
- ready.
- </para>
-
- <para>
- Note that because tracepoints are normally used for tracing,
- the default sampling period for tracepoints is 1 i.e. for
- tracepoints perf will sample on every event occurrence (this
- can be changed using the -c option). This is in contrast to
- hardware counters such as for example the default 'cycles'
- hardware counter used for normal profiling, where sampling
- periods are much higher (in the thousands) because profiling should
- have as low an overhead as possible and sampling on every cycle
- would be prohibitively expensive.
- </para>
- </section>
-
- <section id='using-perf-to-do-basic-tracing'>
- <title>Using perf to do Basic Tracing</title>
-
- <para>
- Profiling is a great tool for solving many problems or for
- getting a high-level view of what's going on with a workload or
- across the system. It is however by definition an approximation,
- as suggested by the most prominent word associated with it,
- 'sampling'. On the one hand, it allows a representative picture of
- what's going on in the system to be cheaply taken, but on the other
- hand, that cheapness limits its utility when that data suggests a
- need to 'dive down' more deeply to discover what's really going
- on. In such cases, the only way to see what's really going on is
- to be able to look at (or summarize more intelligently) the
- individual steps that go into the higher-level behavior exposed
- by the coarse-grained profiling data.
- </para>
-
- <para>
- As a concrete example, we can trace all the events we think might
- be applicable to our workload:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
- -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
- wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- </literallayout>
- We can look at the raw trace output using 'perf script' with no
- arguments:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- perf 1262 [000] 11624.857082: sys_exit_read: 0x0
- perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
- wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
- wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
- wget 1262 [001] 11624.858177: sys_exit_read: 0x200
- wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
- wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
- wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
- wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7
- wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859233: sys_exit_read: 0x0
- wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
- wget 1262 [001] 11624.859584: sys_exit_read: 0x200
- wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859888: sys_exit_read: 0x400
- wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
- wget 1262 [001] 11624.859944: sys_exit_read: 0x400
- </literallayout>
- This gives us a detailed timestamped sequence of events that
- occurred within the workload with respect to those events.
- </para>
-
- <para>
- In many ways, profiling can be viewed as a subset of tracing -
- theoretically, if you have a set of trace events that's sufficient
- to capture all the important aspects of a workload, you can derive
- any of the results or views that a profiling run can.
- </para>
-
- <para>
- Another aspect of traditional profiling is that while powerful in
- many ways, it's limited by the granularity of the underlying data.
- Profiling tools offer various ways of sorting and presenting the
- sample data, which make it much more useful and amenable to user
- experimentation, but in the end it can't be used in an open-ended
- way to extract data that just isn't present as a consequence of
- the fact that conceptually, most of it has been thrown away.
- </para>
-
- <para>
- Full-blown detailed tracing data does however offer the opportunity
- to manipulate and present the information collected during a
- tracing run in an infinite variety of ways.
- </para>
-
- <para>
- Another way to look at it is that there are only so many ways that
- the 'primitive' counters can be used on their own to generate
- interesting output; to get anything more complicated than simple
- counts requires some amount of additional logic, which is typically
- very specific to the problem at hand. For example, if we wanted to
- make use of a 'counter' that maps to the value of the time
- difference between when a process was scheduled to run on a
- processor and the time it actually ran, we wouldn't expect such
- a counter to exist on its own, but we could derive one called say
- 'wakeup_latency' and use it to extract a useful view of that metric
- from trace data. Likewise, we really can't figure out from standard
- profiling tools how much data every process on the system reads and
- writes, along with how many of those reads and writes fail
- completely. If we have sufficient trace data, however, we could
- with the right tools easily extract and present that information,
- but we'd need something other than pre-canned profiling tools to
- do that.
- </para>
-
- <para>
- Luckily, there is a general-purpose way to handle such needs,
- called 'programming languages'. Making programming languages
- easily available to apply to such problems given the specific
- format of data is called a 'programming language binding' for
- that data and language. Perf supports two programming language
- bindings, one for Python and one for Perl.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Language bindings for manipulating and
- aggregating trace data are of course not a new
- idea. One of the first projects to do this was IBM's DProbes
- dpcc compiler, an ANSI C compiler which targeted a low-level
- assembly language running on an in-kernel interpreter on the
- target system. This is exactly analogous to what Sun's DTrace
- did, except that DTrace invented its own language for the purpose.
- Systemtap, heavily inspired by DTrace, also created its own
- one-off language, but rather than running the product on an
- in-kernel interpreter, created an elaborate compiler-based
- machinery to translate its language into kernel modules written
- in C.
- </informalexample>
-
- <para>
- Now that we have the trace data in perf.data, we can use
- 'perf script -g' to generate a skeleton script with handlers
- for the read/write entry/exit events we recorded:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script -g python
- generated Python script: perf-script.py
- </literallayout>
- The skeleton script simply creates a python function for each
- event type in the perf.data file. The body of each function simply
- prints the event name along with its parameters. For example:
- <literallayout class='monospaced'>
- def net__netif_rx(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- skbaddr, len, name):
- print_header(event_name, common_cpu, common_secs, common_nsecs,
- common_pid, common_comm)
-
- print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
- </literallayout>
- We can run that script directly to print all of the events
- contained in the perf.data file:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script -s perf-script.py
-
- in trace_begin
- syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0
- sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0
- irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER
- irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER
- irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER
- syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512
- syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512
- skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0
- skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0
- irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER
- irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER
- irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER
- syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471
- syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0
- syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512
- syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512
- syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024
- syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024
- syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024
- </literallayout>
- That in itself isn't very useful; after all, we can accomplish
- pretty much the same thing by simply running 'perf script'
- without arguments in the same directory as the perf.data file.
- </para>
-
- <para>
- We can however replace the print statements in the generated
- function bodies with whatever we want, and thereby make it
- infinitely more useful.
- </para>
-
- <para>
- As a simple example, let's just replace the print statements in
- the function bodies with a simple function that does nothing but
- increment a per-event count. When the program is run against a
- perf.data file, each time a particular event is encountered,
- a tally is incremented for that event. For example:
- <literallayout class='monospaced'>
- def net__netif_rx(event_name, context, common_cpu,
- common_secs, common_nsecs, common_pid, common_comm,
- skbaddr, len, name):
- inc_counts(event_name)
- </literallayout>
- Each event handler function in the generated code is modified
- to do this. For convenience, we define a common function called
- inc_counts() that each handler calls; inc_counts() simply tallies
- a count for each event using the 'counts' hash, which is a
- specialized hash function that does Perl-like autovivification, a
- capability that's extremely useful for kinds of multi-level
- aggregation commonly used in processing traces (see perf's
- documentation on the Python language binding for details):
- <literallayout class='monospaced'>
- counts = autodict()
-
- def inc_counts(event_name):
- try:
- counts[event_name] += 1
- except TypeError:
- counts[event_name] = 1
- </literallayout>
- Finally, at the end of the trace processing run, we want to
- print the result of all the per-event tallies. For that, we
- use the special 'trace_end()' function:
- <literallayout class='monospaced'>
- def trace_end():
- for event_name, count in counts.iteritems():
- print "%-40s %10s\n" % (event_name, count)
- </literallayout>
- The end result is a summary of all the events recorded in the
- trace:
- <literallayout class='monospaced'>
- skb__skb_copy_datagram_iovec 13148
- irq__softirq_entry 4796
- irq__irq_handler_exit 3805
- irq__softirq_exit 4795
- syscalls__sys_enter_write 8990
- net__net_dev_xmit 652
- skb__kfree_skb 4047
- sched__sched_wakeup 1155
- irq__irq_handler_entry 3804
- irq__softirq_raise 4799
- net__net_dev_queue 652
- syscalls__sys_enter_read 17599
- net__netif_receive_skb 1743
- syscalls__sys_exit_read 17598
- net__netif_rx 2
- napi__napi_poll 1877
- syscalls__sys_exit_write 8990
- </literallayout>
- Note that this is pretty much exactly the same information we get
- from 'perf stat', which goes a little way to support the idea
- mentioned previously that given the right kind of trace data,
- higher-level profiling-type summaries can be derived from it.
- </para>
-
- <para>
- Documentation on using the
- <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
- </para>
- </section>
-
- <section id='system-wide-tracing-and-profiling'>
- <title>System-Wide Tracing and Profiling</title>
-
- <para>
- The examples so far have focused on tracing a particular program or
- workload - in other words, every profiling run has specified the
- program to profile in the command-line e.g. 'perf record wget ...'.
- </para>
-
- <para>
- It's also possible, and more interesting in many cases, to run a
- system-wide profile or trace while running the workload in a
- separate shell.
- </para>
-
- <para>
- To do system-wide profiling or tracing, you typically use
- the -a flag to 'perf record'.
- </para>
-
- <para>
- To demonstrate this, open up one window and start the profile
- using the -a flag (press Ctrl-C to stop tracing):
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a
- ^C[ perf record: Woken up 6 times to write data ]
- [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
- </literallayout>
- In another window, run the wget test:
- <literallayout class='monospaced'>
- root@crownbay:~# wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- Here we see entries not only for our wget load, but for other
- processes running on the system as well:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-systemwide.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- In the snapshot above, we can see callchains that originate in
- libc, and a callchain from Xorg that demonstrates that we're
- using a proprietary X driver in userspace (notice the presence
- of 'PVR' and some other unresolvable symbols in the expanded
- Xorg callchain).
- </para>
-
- <para>
- Note also that we have both kernel and userspace entries in the
- above snapshot. We can also tell perf to focus on userspace but
- providing a modifier, in this case 'u', to the 'cycles' hardware
- counter when we record a profile:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a -e cycles:u
- ^C[ perf record: Woken up 2 times to write data ]
- [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
- </literallayout>
- </para>
-
- <para>
- <imagedata fileref="figures/perf-report-cycles-u.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Notice in the screenshot above, we see only userspace entries ([.])
- </para>
-
- <para>
- Finally, we can press 'enter' on a leaf node and select the 'Zoom
- into DSO' menu item to show only entries associated with a
- specific DSO. In the screenshot below, we've zoomed into the
- 'libc' DSO which shows all the entries associated with the
- libc-xxx.so DSO.
- </para>
-
- <para>
- <imagedata fileref="figures/perf-systemwide-libc.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- We can also use the system-wide -a switch to do system-wide
- tracing. Here we'll trace a couple of scheduler events:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
- ^C[ perf record: Woken up 38 times to write data ]
- [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
- </literallayout>
- We can look at the raw output using 'perf script' with no
- arguments:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
- swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
- swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
- perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- </literallayout>
- </para>
-
- <section id='perf-filtering'>
- <title>Filtering</title>
-
- <para>
- Notice that there are a lot of events that don't really have
- anything to do with what we're interested in, namely events
- that schedule 'perf' itself in and out or that wake perf up.
- We can get rid of those by using the '--filter' option -
- for each event we specify using -e, we can add a --filter
- after that to filter out trace events that contain fields
- with specific values:
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf &amp;&amp; prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
- ^C[ perf record: Woken up 38 times to write data ]
- [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]
-
-
- root@crownbay:~# perf script
-
- swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
- swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
- kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
- swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
- swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
- kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
- </literallayout>
- In this case, we've filtered out all events that have 'perf'
- in their 'comm' or 'comm_prev' or 'comm_next' fields. Notice
- that there are still events recorded for perf, but notice
- that those events don't have values of 'perf' for the filtered
- fields. To completely filter out anything from perf will
- require a bit more work, but for the purpose of demonstrating
- how to use filters, it's close enough.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These are exactly the same set of event
- filters defined by the trace event subsystem. See the
- ftrace/tracecmd/kernelshark section for more discussion about
- these event filters.
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These event filters are implemented by a
- special-purpose pseudo-interpreter in the kernel and are an
- integral and indispensable part of the perf design as it
- relates to tracing. kernel-based event filters provide a
- mechanism to precisely throttle the event stream that appears
- in user space, where it makes sense to provide bindings to real
- programming languages for postprocessing the event stream.
- This architecture allows for the intelligent and flexible
- partitioning of processing between the kernel and user space.
- Contrast this with other tools such as SystemTap, which does
- all of its processing in the kernel and as such requires a
- special project-defined language in order to accommodate that
- design, or LTTng, where everything is sent to userspace and
- as such requires a super-efficient kernel-to-userspace
- transport mechanism in order to function properly. While
- perf certainly can benefit from for instance advances in
- the design of the transport, it doesn't fundamentally depend
- on them. Basically, if you find that your perf tracing
- application is causing buffer I/O overruns, it probably
- means that you aren't taking enough advantage of the
- kernel filtering engine.
- </informalexample>
- </section>
- </section>
-
- <section id='using-dynamic-tracepoints'>
- <title>Using Dynamic Tracepoints</title>
-
- <para>
- perf isn't restricted to the fixed set of static tracepoints
- listed by 'perf list'. Users can also add their own 'dynamic'
- tracepoints anywhere in the kernel. For instance, suppose we
- want to define our own tracepoint on do_fork(). We can do that
- using the 'perf probe' perf subcommand:
- <literallayout class='monospaced'>
- root@crownbay:~# perf probe do_fork
- Added new event:
- probe:do_fork (on do_fork)
-
- You can now use it in all perf tools, such as:
-
- perf record -e probe:do_fork -aR sleep 1
- </literallayout>
- Adding a new tracepoint via 'perf probe' results in an event
- with all the expected files and format in
- /sys/kernel/debug/tracing/events, just the same as for static
- tracepoints (as discussed in more detail in the trace events
- subsystem section:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
- drwxr-xr-x 2 root root 0 Oct 28 11:42 .
- drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
- -rw-r--r-- 1 root root 0 Oct 28 11:42 enable
- -rw-r--r-- 1 root root 0 Oct 28 11:42 filter
- -r--r--r-- 1 root root 0 Oct 28 11:42 format
- -r--r--r-- 1 root root 0 Oct 28 11:42 id
-
- root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
- name: do_fork
- ID: 944
- format:
- field:unsigned short common_type; offset:0; size:2; signed:0;
- field:unsigned char common_flags; offset:2; size:1; signed:0;
- field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
- field:int common_pid; offset:4; size:4; signed:1;
- field:int common_padding; offset:8; size:4; signed:1;
-
- field:unsigned long __probe_ip; offset:12; size:4; signed:0;
-
- print fmt: "(%lx)", REC->__probe_ip
- </literallayout>
- We can list all dynamic tracepoints currently in existence:
- <literallayout class='monospaced'>
- root@crownbay:~# perf probe -l
- probe:do_fork (on do_fork)
- probe:schedule (on schedule)
- </literallayout>
- Let's record system-wide ('sleep 30' is a trick for recording
- system-wide but basically do nothing and then wake up after
- 30 seconds):
- <literallayout class='monospaced'>
- root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
- [ perf record: Woken up 1 times to write data ]
- [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
- </literallayout>
- Using 'perf script' we can see each do_fork event that fired:
- <literallayout class='monospaced'>
- root@crownbay:~# perf script
-
- # ========
- # captured on: Sun Oct 28 11:55:18 2012
- # hostname : crownbay
- # os release : 3.4.11-yocto-standard
- # perf version : 3.4.11
- # arch : i686
- # nrcpus online : 2
- # nrcpus avail : 2
- # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
- # cpuid : GenuineIntel,6,38,1
- # total memory : 1017184 kB
- # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
- # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
- = 0, id = { 5, 6 }
- # HEADER_CPU_TOPOLOGY info available, use -I to display
- # ========
- #
- matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460)
- matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460)
- pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460)
- pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460)
- matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460)
- gthumb 1300 [001] 34217.697451: do_fork: (c1028460)
- gthumb 1300 [001] 34219.085734: do_fork: (c1028460)
- gthumb 1300 [000] 34219.121351: do_fork: (c1028460)
- gthumb 1300 [001] 34219.264551: do_fork: (c1028460)
- pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460)
- matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460)
- matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460)
- matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460)
- matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460)
- matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460)
- matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460)
- gaku 1312 [000] 34237.202388: do_fork: (c1028460)
- </literallayout>
- And using 'perf report' on the same file, we can see the
- callgraphs from starting a few programs during those 30 seconds:
- </para>
-
- <para>
- <imagedata fileref="figures/perf-probe-do_fork-profile.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> The trace events subsystem accommodate static
- and dynamic tracepoints in exactly the same way - there's no
- difference as far as the infrastructure is concerned. See the
- ftrace section for more details on the trace event subsystem.
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Dynamic tracepoints are implemented under the
- covers by kprobes and uprobes. kprobes and uprobes are also used
- by and in fact are the main focus of SystemTap.
- </informalexample>
- </section>
- </section>
-
- <section id='perf-documentation'>
- <title>Documentation</title>
-
- <para>
- Online versions of the man pages for the commands discussed in this
- section can be found here:
- <itemizedlist>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-stat'>'perf stat' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-record'>'perf record' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-report'>'perf report' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-probe'>'perf probe' manpage</ulink>.
- </para></listitem>
- <listitem><para>The <ulink url='http://linux.die.net/man/1/perf-script'>'perf script' manpage</ulink>.
- </para></listitem>
- <listitem><para>Documentation on using the
- <ulink url='http://linux.die.net/man/1/perf-script-python'>'perf script' python binding</ulink>.
- </para></listitem>
- <listitem><para>The top-level
- <ulink url='http://linux.die.net/man/1/perf'>perf(1) manpage</ulink>.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- Normally, you should be able to invoke the man pages via perf
- itself e.g. 'perf help' or 'perf help record'.
- </para>
-
- <para>
- However, by default Yocto doesn't install man pages, but perf
- invokes the man pages for most help functionality. This is a bug
- and is being addressed by a Yocto bug:
- <ulink url='https://bugzilla.yoctoproject.org/show_bug.cgi?id=3388'>Bug 3388 - perf: enable man pages for basic 'help' functionality</ulink>.
- </para>
-
- <para>
- The man pages in text form, along with some other files, such as
- a set of examples, can be found in the 'perf' directory of the
- kernel tree:
- <literallayout class='monospaced'>
- tools/perf/Documentation
- </literallayout>
- There's also a nice perf tutorial on the perf wiki that goes
- into more detail than we do here in certain areas:
- <ulink url='https://perf.wiki.kernel.org/index.php/Tutorial'>Perf Tutorial</ulink>
- </para>
- </section>
-</section>
-
-<section id='profile-manual-ftrace'>
- <title>ftrace</title>
-
- <para>
- 'ftrace' literally refers to the 'ftrace function tracer' but in
- reality this encompasses a number of related tracers along with
- the infrastructure that they all make use of.
- </para>
-
- <section id='ftrace-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the basic
- setup outlined in the General Setup section.
- </para>
-
- <para>
- ftrace, trace-cmd, and kernelshark run on the target system,
- and are ready to go out-of-the-box - no additional setup is
- necessary. For the rest of this section we assume you've ssh'ed
- to the host and will be running ftrace on the target. kernelshark
- is a GUI application and if you use the '-X' option to ssh you
- can have the kernelshark GUI run on the target but display
- remotely on the host if you want.
- </para>
- </section>
-
- <section id='basic-ftrace-usage'>
- <title>Basic ftrace usage</title>
-
- <para>
- 'ftrace' essentially refers to everything included in
- the /tracing directory of the mounted debugfs filesystem
- (Yocto follows the standard convention and mounts it
- at /sys/kernel/debug). Here's a listing of all the files
- found in /sys/kernel/debug/tracing on a Yocto system:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# ls
- README kprobe_events trace
- available_events kprobe_profile trace_clock
- available_filter_functions options trace_marker
- available_tracers per_cpu trace_options
- buffer_size_kb printk_formats trace_pipe
- buffer_total_size_kb saved_cmdlines tracing_cpumask
- current_tracer set_event tracing_enabled
- dyn_ftrace_total_info set_ftrace_filter tracing_on
- enabled_functions set_ftrace_notrace tracing_thresh
- events set_ftrace_pid
- free_buffer set_graph_function
- </literallayout>
- The files listed above are used for various purposes -
- some relate directly to the tracers themselves, others are
- used to set tracing options, and yet others actually contain
- the tracing output when a tracer is in effect. Some of the
- functions can be guessed from their names, others need
- explanation; in any case, we'll cover some of the files we
- see here below but for an explanation of the others, please
- see the ftrace documentation.
- </para>
-
- <para>
- We'll start by looking at some of the available built-in
- tracers.
- </para>
-
- <para>
- cat'ing the 'available_tracers' file lists the set of
- available tracers:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
- blk function_graph function nop
- </literallayout>
- The 'current_tracer' file contains the tracer currently in
- effect:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
- nop
- </literallayout>
- The above listing of current_tracer shows that
- the 'nop' tracer is in effect, which is just another
- way of saying that there's actually no tracer
- currently in effect.
- </para>
-
- <para>
- echo'ing one of the available_tracers into current_tracer
- makes the specified tracer the current tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
- function
- </literallayout>
- The above sets the current tracer to be the
- 'function tracer'. This tracer traces every function
- call in the kernel and makes it available as the
- contents of the 'trace' file. Reading the 'trace' file
- lists the currently buffered function calls that have been
- traced by the function tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
-
- # tracer: function
- #
- # entries-in-buffer/entries-written: 310629/766471 #P:8
- #
- # _-----=&gt; irqs-off
- # / _----=&gt; need-resched
- # | / _---=&gt; hardirq/softirq
- # || / _--=&gt; preempt-depth
- # ||| / delay
- # TASK-PID CPU# |||| TIMESTAMP FUNCTION
- # | | | |||| | |
- &lt;idle&gt;-0 [004] d..1 470.867169: ktime_get_real &lt;-intel_idle
- &lt;idle&gt;-0 [004] d..1 470.867170: getnstimeofday &lt;-ktime_get_real
- &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timeval &lt;-intel_idle
- &lt;idle&gt;-0 [004] d..1 470.867171: ns_to_timespec &lt;-ns_to_timeval
- &lt;idle&gt;-0 [004] d..1 470.867172: smp_apic_timer_interrupt &lt;-apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: native_apic_mem_write &lt;-smp_apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: irq_enter &lt;-smp_apic_timer_interrupt
- &lt;idle&gt;-0 [004] d..1 470.867172: rcu_irq_enter &lt;-irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 &lt;-rcu_irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: local_bh_disable &lt;-irq_enter
- &lt;idle&gt;-0 [004] d..1 470.867173: add_preempt_count &lt;-local_bh_disable
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_idle &lt;-irq_enter
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867174: ktime_get &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867174: tick_nohz_stop_idle &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: update_ts_time_stats &lt;-tick_nohz_stop_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: nr_iowait_cpu &lt;-update_ts_time_stats
- &lt;idle&gt;-0 [004] d.s1 470.867175: tick_do_update_jiffies64 &lt;-tick_check_idle
- &lt;idle&gt;-0 [004] d.s1 470.867175: _raw_spin_lock &lt;-tick_do_update_jiffies64
- &lt;idle&gt;-0 [004] d.s1 470.867176: add_preempt_count &lt;-_raw_spin_lock
- &lt;idle&gt;-0 [004] d.s2 470.867176: do_timer &lt;-tick_do_update_jiffies64
- &lt;idle&gt;-0 [004] d.s2 470.867176: _raw_spin_lock &lt;-do_timer
- &lt;idle&gt;-0 [004] d.s2 470.867176: add_preempt_count &lt;-_raw_spin_lock
- &lt;idle&gt;-0 [004] d.s3 470.867177: ntp_tick_length &lt;-do_timer
- &lt;idle&gt;-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave &lt;-ntp_tick_length
- .
- .
- .
- </literallayout>
- Each line in the trace above shows what was happening in
- the kernel on a given cpu, to the level of detail of
- function calls. Each entry shows the function called,
- followed by its caller (after the arrow).
- </para>
-
- <para>
- The function tracer gives you an extremely detailed idea
- of what the kernel was doing at the point in time the trace
- was taken, and is a great way to learn about how the kernel
- code works in a dynamic sense.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> The ftrace function tracer is also
- available from within perf, as the ftrace:function tracepoint.
- </informalexample>
-
- <para>
- It is a little more difficult to follow the call chains than
- it needs to be - luckily there's a variant of the function
- tracer that displays the callchains explicitly, called the
- 'function_graph' tracer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo function_graph &gt; current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
-
- tracer: function_graph
-
- CPU DURATION FUNCTION CALLS
- | | | | | | |
- 7) 0.046 us | pick_next_task_fair();
- 7) 0.043 us | pick_next_task_stop();
- 7) 0.042 us | pick_next_task_rt();
- 7) 0.032 us | pick_next_task_fair();
- 7) 0.030 us | pick_next_task_idle();
- 7) | _raw_spin_unlock_irq() {
- 7) 0.033 us | sub_preempt_count();
- 7) 0.258 us | }
- 7) 0.032 us | sub_preempt_count();
- 7) + 13.341 us | } /* __schedule */
- 7) 0.095 us | } /* sub_preempt_count */
- 7) | schedule() {
- 7) | __schedule() {
- 7) 0.060 us | add_preempt_count();
- 7) 0.044 us | rcu_note_context_switch();
- 7) | _raw_spin_lock_irq() {
- 7) 0.033 us | add_preempt_count();
- 7) 0.247 us | }
- 7) | idle_balance() {
- 7) | _raw_spin_unlock() {
- 7) 0.031 us | sub_preempt_count();
- 7) 0.246 us | }
- 7) | update_shares() {
- 7) 0.030 us | __rcu_read_lock();
- 7) 0.029 us | __rcu_read_unlock();
- 7) 0.484 us | }
- 7) 0.030 us | __rcu_read_lock();
- 7) | load_balance() {
- 7) | find_busiest_group() {
- 7) 0.031 us | idle_cpu();
- 7) 0.029 us | idle_cpu();
- 7) 0.035 us | idle_cpu();
- 7) 0.906 us | }
- 7) 1.141 us | }
- 7) 0.022 us | msecs_to_jiffies();
- 7) | load_balance() {
- 7) | find_busiest_group() {
- 7) 0.031 us | idle_cpu();
- .
- .
- .
- 4) 0.062 us | msecs_to_jiffies();
- 4) 0.062 us | __rcu_read_unlock();
- 4) | _raw_spin_lock() {
- 4) 0.073 us | add_preempt_count();
- 4) 0.562 us | }
- 4) + 17.452 us | }
- 4) 0.108 us | put_prev_task_fair();
- 4) 0.102 us | pick_next_task_fair();
- 4) 0.084 us | pick_next_task_stop();
- 4) 0.075 us | pick_next_task_rt();
- 4) 0.062 us | pick_next_task_fair();
- 4) 0.066 us | pick_next_task_idle();
- ------------------------------------------
- 4) kworker-74 =&gt; &lt;idle&gt;-0
- ------------------------------------------
-
- 4) | finish_task_switch() {
- 4) | _raw_spin_unlock_irq() {
- 4) 0.100 us | sub_preempt_count();
- 4) 0.582 us | }
- 4) 1.105 us | }
- 4) 0.088 us | sub_preempt_count();
- 4) ! 100.066 us | }
- .
- .
- .
- 3) | sys_ioctl() {
- 3) 0.083 us | fget_light();
- 3) | security_file_ioctl() {
- 3) 0.066 us | cap_file_ioctl();
- 3) 0.562 us | }
- 3) | do_vfs_ioctl() {
- 3) | drm_ioctl() {
- 3) 0.075 us | drm_ut_debug_printk();
- 3) | i915_gem_pwrite_ioctl() {
- 3) | i915_mutex_lock_interruptible() {
- 3) 0.070 us | mutex_lock_interruptible();
- 3) 0.570 us | }
- 3) | drm_gem_object_lookup() {
- 3) | _raw_spin_lock() {
- 3) 0.080 us | add_preempt_count();
- 3) 0.620 us | }
- 3) | _raw_spin_unlock() {
- 3) 0.085 us | sub_preempt_count();
- 3) 0.562 us | }
- 3) 2.149 us | }
- 3) 0.133 us | i915_gem_object_pin();
- 3) | i915_gem_object_set_to_gtt_domain() {
- 3) 0.065 us | i915_gem_object_flush_gpu_write_domain();
- 3) 0.065 us | i915_gem_object_wait_rendering();
- 3) 0.062 us | i915_gem_object_flush_cpu_write_domain();
- 3) 1.612 us | }
- 3) | i915_gem_object_put_fence() {
- 3) 0.097 us | i915_gem_object_flush_fence.constprop.36();
- 3) 0.645 us | }
- 3) 0.070 us | add_preempt_count();
- 3) 0.070 us | sub_preempt_count();
- 3) 0.073 us | i915_gem_object_unpin();
- 3) 0.068 us | mutex_unlock();
- 3) 9.924 us | }
- 3) + 11.236 us | }
- 3) + 11.770 us | }
- 3) + 13.784 us | }
- 3) | sys_ioctl() {
- </literallayout>
- As you can see, the function_graph display is much easier to
- follow. Also note that in addition to the function calls and
- associated braces, other events such as scheduler events
- are displayed in context. In fact, you can freely include
- any tracepoint available in the trace events subsystem described
- in the next section by simply enabling those events, and they'll
- appear in context in the function graph display. Quite a
- powerful tool for understanding kernel dynamics.
- </para>
-
- <para>
- Also notice that there are various annotations on the left
- hand side of the display. For example if the total time it
- took for a given function to execute is above a certain
- threshold, an exclamation point or plus sign appears on the
- left hand side. Please see the ftrace documentation for
- details on all these fields.
- </para>
- </section>
-
- <section id='the-trace-events-subsystem'>
- <title>The 'trace events' Subsystem</title>
-
- <para>
- One especially important directory contained within
- the /sys/kernel/debug/tracing directory is the 'events'
- subdirectory, which contains representations of every
- tracepoint in the system. Listing out the contents of
- the 'events' subdirectory, we see mainly another set of
- subdirectories:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cd events
- root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
- drwxr-xr-x 38 root root 0 Nov 14 23:19 .
- drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
- drwxr-xr-x 19 root root 0 Nov 14 23:19 block
- drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
- drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
- drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
- drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
- drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
- -r--r--r-- 1 root root 0 Nov 14 23:19 header_event
- -r--r--r-- 1 root root 0 Nov 14 23:19 header_page
- drwxr-xr-x 25 root root 0 Nov 14 23:19 i915
- drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
- drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
- drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
- drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
- drwxr-xr-x 7 root root 0 Nov 14 23:19 module
- drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
- drwxr-xr-x 6 root root 0 Nov 14 23:19 net
- drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
- drwxr-xr-x 12 root root 0 Nov 14 23:19 power
- drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
- drwxr-xr-x 8 root root 0 Nov 14 23:19 random
- drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
- drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
- drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
- drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
- drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
- drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
- drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
- drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
- drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
- drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
- drwxr-xr-x 4 root root 0 Nov 14 23:19 task
- drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
- drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
- drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
- drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
- drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
- drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback
- </literallayout>
- Each one of these subdirectories corresponds to a
- 'subsystem' and contains yet again more subdirectories,
- each one of those finally corresponding to a tracepoint.
- For example, here are the contents of the 'kmem' subsystem:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
- drwxr-xr-x 14 root root 0 Nov 14 23:19 .
- drwxr-xr-x 38 root root 0 Nov 14 23:19 ..
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node
- drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched
- drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain
- </literallayout>
- Let's see what's inside the subdirectory for a specific
- tracepoint, in this case the one for kmalloc:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
- drwxr-xr-x 2 root root 0 Nov 14 23:19 .
- drwxr-xr-x 14 root root 0 Nov 14 23:19 ..
- -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
- -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
- -r--r--r-- 1 root root 0 Nov 14 23:19 format
- -r--r--r-- 1 root root 0 Nov 14 23:19 id
- </literallayout>
- The 'format' file for the tracepoint describes the event
- in memory, which is used by the various tracing tools
- that now make use of these tracepoint to parse the event
- and make sense of it, along with a 'print fmt' field that
- allows tools like ftrace to display the event as text.
- Here's what the format of the kmalloc event looks like:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
- name: kmalloc
- ID: 313
- format:
- field:unsigned short common_type; offset:0; size:2; signed:0;
- field:unsigned char common_flags; offset:2; size:1; signed:0;
- field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
- field:int common_pid; offset:4; size:4; signed:1;
- field:int common_padding; offset:8; size:4; signed:1;
-
- field:unsigned long call_site; offset:16; size:8; signed:0;
- field:const void * ptr; offset:24; size:8; signed:0;
- field:size_t bytes_req; offset:32; size:8; signed:0;
- field:size_t bytes_alloc; offset:40; size:8; signed:0;
- field:gfp_t gfp_flags; offset:48; size:4; signed:0;
-
- print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
- (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
- gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
- gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
- gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
- {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
- "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
- gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
- gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
- long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
- {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
- "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
- long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
- {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
- </literallayout>
- The 'enable' file in the tracepoint directory is what allows
- the user (or tools such as trace-cmd) to actually turn the
- tracepoint on and off. When enabled, the corresponding
- tracepoint will start appearing in the ftrace 'trace'
- file described previously. For example, this turns on the
- kmalloc tracepoint:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
- </literallayout>
- At the moment, we're not interested in the function tracer or
- some other tracer that might be in effect, so we first turn
- it off, but if we do that, we still need to turn tracing on in
- order to see the events in the output buffer:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
- root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
- </literallayout>
- Now, if we look at the the 'trace' file, we see nothing
- but the kmalloc events we just turned on:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
- # tracer: nop
- #
- # entries-in-buffer/entries-written: 1897/1897 #P:8
- #
- # _-----=&gt; irqs-off
- # / _----=&gt; need-resched
- # | / _---=&gt; hardirq/softirq
- # || / _--=&gt; preempt-depth
- # ||| / delay
- # TASK-PID CPU# |||| TIMESTAMP FUNCTION
- # | | | |||| | |
- dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- &lt;idle&gt;-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
- Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
- Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
- Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
- &lt;idle&gt;-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- &lt;idle&gt;-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
- &lt;idle&gt;-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
- matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
- </literallayout>
- To again disable the kmalloc event, we need to send 0 to the
- enable file:
- <literallayout class='monospaced'>
- root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
- </literallayout>
- You can enable any number of events or complete subsystems
- (by using the 'enable' file in the subsystem directory) and
- get an arbitrarily fine-grained idea of what's going on in the
- system by enabling as many of the appropriate tracepoints
- as applicable.
- </para>
-
- <para>
- A number of the tools described in this HOWTO do just that,
- including trace-cmd and kernelshark in the next section.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> These tracepoints and their representation
- are used not only by ftrace, but by many of the other tools
- covered in this document and they form a central point of
- integration for the various tracers available in Linux.
- They form a central part of the instrumentation for the
- following tools: perf, lttng, ftrace, blktrace and SystemTap
- </informalexample>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> Eventually all the special-purpose tracers
- currently available in /sys/kernel/debug/tracing will be
- removed and replaced with equivalent tracers based on the
- 'trace events' subsystem.
- </informalexample>
- </section>
-
- <section id='trace-cmd-kernelshark'>
- <title>trace-cmd/kernelshark</title>
-
- <para>
- trace-cmd is essentially an extensive command-line 'wrapper'
- interface that hides the details of all the individual files
- in /sys/kernel/debug/tracing, allowing users to specify
- specific particular events within the
- /sys/kernel/debug/tracing/events/ subdirectory and to collect
- traces and avoid having to deal with those details directly.
- </para>
-
- <para>
- As yet another layer on top of that, kernelshark provides a GUI
- that allows users to start and stop traces and specify sets
- of events using an intuitive interface, and view the
- output as both trace events and as a per-CPU graphical
- display. It directly uses 'trace-cmd' as the plumbing
- that accomplishes all that underneath the covers (and
- actually displays the trace-cmd command it uses, as we'll see).
- </para>
-
- <para>
- To start a trace using kernelshark, first start kernelshark:
- <literallayout class='monospaced'>
- root@sugarbay:~# kernelshark
- </literallayout>
- Then bring up the 'Capture' dialog by choosing from the
- kernelshark menu:
- <literallayout class='monospaced'>
- Capture | Record
- </literallayout>
- That will display the following dialog, which allows you to
- choose one or more events (or even one or more complete
- subsystems) to trace:
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-choose-events.png" width="6in" depth="6in" align="center" scalefit="1" />
- </para>
-
- <para>
- Note that these are exactly the same sets of events described
- in the previous trace events subsystem section, and in fact
- is where trace-cmd gets them for kernelshark.
- </para>
-
- <para>
- In the above screenshot, we've decided to explore the
- graphics subsystem a bit and so have chosen to trace all
- the tracepoints contained within the 'i915' and 'drm'
- subsystems.
- </para>
-
- <para>
- After doing that, we can start and stop the trace using
- the 'Run' and 'Stop' button on the lower right corner of
- the dialog (the same button will turn into the 'Stop'
- button after the trace has started):
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-output-display.png" width="6in" depth="6in" align="center" scalefit="1" />
- </para>
-
- <para>
- Notice that the right-hand pane shows the exact trace-cmd
- command-line that's used to run the trace, along with the
- results of the trace-cmd run.
- </para>
-
- <para>
- Once the 'Stop' button is pressed, the graphical view magically
- fills up with a colorful per-cpu display of the trace data,
- along with the detailed event listing below that:
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-i915-display.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- Here's another example, this time a display resulting
- from tracing 'all events':
- </para>
-
- <para>
- <imagedata fileref="figures/kernelshark-all.png" width="6in" depth="7in" align="center" scalefit="1" />
- </para>
-
- <para>
- The tool is pretty self-explanatory, but for more detailed
- information on navigating through the data, see the
- <ulink url='http://rostedt.homelinux.com/kernelshark/'>kernelshark website</ulink>.
- </para>
- </section>
-
- <section id='ftrace-documentation'>
- <title>Documentation</title>
-
- <para>
- The documentation for ftrace can be found in the kernel
- Documentation directory:
- <literallayout class='monospaced'>
- Documentation/trace/ftrace.txt
- </literallayout>
- The documentation for the trace event subsystem can also
- be found in the kernel Documentation directory:
- <literallayout class='monospaced'>
- Documentation/trace/events.txt
- </literallayout>
- There is a nice series of articles on using
- ftrace and trace-cmd at LWN:
- <itemizedlist>
- <listitem><para><ulink url='http://lwn.net/Articles/365835/'>Debugging the kernel using Ftrace - part 1</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://lwn.net/Articles/366796/'>Debugging the kernel using Ftrace - part 2</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://lwn.net/Articles/370423/'>Secrets of the Ftrace function tracer</ulink>
- </para></listitem>
- <listitem><para><ulink url='https://lwn.net/Articles/410200/'>trace-cmd: A front-end for Ftrace</ulink>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- There's more detailed documentation kernelshark usage here:
- <ulink url='http://rostedt.homelinux.com/kernelshark/'>KernelShark</ulink>
- </para>
-
- <para>
- An amusing yet useful README (a tracing mini-HOWTO) can be
- found in /sys/kernel/debug/tracing/README.
- </para>
- </section>
-</section>
-
-<section id='profile-manual-systemtap'>
- <title>systemtap</title>
-
- <para>
- SystemTap is a system-wide script-based tracing and profiling tool.
- </para>
-
- <para>
- SystemTap scripts are C-like programs that are executed in the
- kernel to gather/print/aggregate data extracted from the context
- they end up being invoked under.
- </para>
-
- <para>
- For example, this probe from the
- <ulink url='http://sourceware.org/systemtap/tutorial/'>SystemTap tutorial</ulink>
- simply prints a line every time any process on the system open()s
- a file. For each line, it prints the executable name of the
- program that opened the file, along with its PID, and the name
- of the file it opened (or tried to open), which it extracts
- from the open syscall's argstr.
- <literallayout class='monospaced'>
- probe syscall.open
- {
- printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
- }
-
- probe timer.ms(4000) # after 4 seconds
- {
- exit ()
- }
- </literallayout>
- Normally, to execute this probe, you'd simply install
- systemtap on the system you want to probe, and directly run
- the probe on that system e.g. assuming the name of the file
- containing the above text is trace_open.stp:
- <literallayout class='monospaced'>
- # stap trace_open.stp
- </literallayout>
- What systemtap does under the covers to run this probe is 1)
- parse and convert the probe to an equivalent 'C' form, 2)
- compile the 'C' form into a kernel module, 3) insert the
- module into the kernel, which arms it, and 4) collect the data
- generated by the probe and display it to the user.
- </para>
-
- <para>
- In order to accomplish steps 1 and 2, the 'stap' program needs
- access to the kernel build system that produced the kernel
- that the probed system is running. In the case of a typical
- embedded system (the 'target'), the kernel build system
- unfortunately isn't typically part of the image running on
- the target. It is normally available on the 'host' system
- that produced the target image however; in such cases,
- steps 1 and 2 are executed on the host system, and steps
- 3 and 4 are executed on the target system, using only the
- systemtap 'runtime'.
- </para>
-
- <para>
- The systemtap support in Yocto assumes that only steps
- 3 and 4 are run on the target; it is possible to do
- everything on the target, but this section assumes only
- the typical embedded use-case.
- </para>
-
- <para>
- So basically what you need to do in order to run a systemtap
- script on the target is to 1) on the host system, compile the
- probe into a kernel module that makes sense to the target, 2)
- copy the module onto the target system and 3) insert the
- module into the target kernel, which arms it, and 4) collect
- the data generated by the probe and display it to the user.
- </para>
-
- <section id='systemtap-setup'>
- <title>Setup</title>
-
- <para>
- Those are a lot of steps and a lot of details, but
- fortunately Yocto includes a script called 'crosstap'
- that will take care of those details, allowing you to
- simply execute a systemtap script on the remote target,
- with arguments if necessary.
- </para>
-
- <para>
- In order to do this from a remote host, however, you
- need to have access to the build for the image you
- booted. The 'crosstap' script provides details on how
- to do this if you run the script on the host without having
- done a build:
- <note>
- SystemTap, which uses 'crosstap', assumes you can establish an
- ssh connection to the remote target.
- Please refer to the crosstap wiki page for details on verifying
- ssh connections at
- <ulink url='https://wiki.yoctoproject.org/wiki/Tracing_and_Profiling#systemtap'></ulink>.
- Also, the ability to ssh into the target system is not enabled
- by default in *-minimal images.
- </note>
- <literallayout class='monospaced'>
- $ crosstap root@192.168.1.88 trace_open.stp
-
- Error: No target kernel build found.
- Did you forget to create a local build of your image?
-
- 'crosstap' requires a local sdk build of the target system
- (or a build that includes 'tools-profile') in order to build
- kernel modules that can probe the target system.
-
- Practically speaking, that means you need to do the following:
- - If you're running a pre-built image, download the release
- and/or BSP tarballs used to build the image.
- - If you're working from git sources, just clone the metadata
- and BSP layers needed to build the image you'll be booting.
- - Make sure you're properly set up to build a new image (see
- the BSP README and/or the widely available basic documentation
- that discusses how to build images).
- - Build an -sdk version of the image e.g.:
- $ bitbake core-image-sato-sdk
- OR
- - Build a non-sdk image but include the profiling tools:
- [ edit local.conf and add 'tools-profile' to the end of
- the EXTRA_IMAGE_FEATURES variable ]
- $ bitbake core-image-sato
-
- Once you've build the image on the host system, you're ready to
- boot it (or the equivalent pre-built image) and use 'crosstap'
- to probe it (you need to source the environment as usual first):
-
- $ source oe-init-build-env
- $ cd ~/my/systemtap/scripts
- $ crosstap root@192.168.1.xxx myscript.stp
- </literallayout>
- So essentially what you need to do is build an SDK image or
- image with 'tools-profile' as detailed in the
- "<link linkend='profile-manual-general-setup'>General Setup</link>"
- section of this manual, and boot the resulting target image.
- </para>
-
- <note>
- If you have a build directory containing multiple machines,
- you need to have the MACHINE you're connecting to selected
- in local.conf, and the kernel in that machine's build
- directory must match the kernel on the booted system exactly,
- or you'll get the above 'crosstap' message when you try to
- invoke a script.
- </note>
- </section>
-
- <section id='running-a-script-on-a-target'>
- <title>Running a Script on a Target</title>
-
- <para>
- Once you've done that, you should be able to run a systemtap
- script on the target:
- <literallayout class='monospaced'>
- $ cd /path/to/yocto
- $ source oe-init-build-env
-
- ### Shell environment set up for builds. ###
-
- You can now run 'bitbake &lt;target&gt;'
-
- Common targets are:
- core-image-minimal
- core-image-sato
- meta-toolchain
- meta-ide-support
-
- You can also run generated qemu images with a command like 'runqemu qemux86'
-
- </literallayout>
- Once you've done that, you can cd to whatever directory
- contains your scripts and use 'crosstap' to run the script:
- <literallayout class='monospaced'>
- $ cd /path/to/my/systemap/script
- $ crosstap root@192.168.7.2 trace_open.stp
- </literallayout>
- If you get an error connecting to the target e.g.:
- <literallayout class='monospaced'>
- $ crosstap root@192.168.7.2 trace_open.stp
- error establishing ssh connection on remote 'root@192.168.7.2'
- </literallayout>
- Try ssh'ing to the target and see what happens:
- <literallayout class='monospaced'>
- $ ssh root@192.168.7.2
- </literallayout>
- A lot of the time, connection problems are due specifying a
- wrong IP address or having a 'host key verification error'.
- </para>
-
- <para>
- If everything worked as planned, you should see something
- like this (enter the password when prompted, or press enter
- if it's set up to use no password):
- <literallayout class='monospaced'>
- $ crosstap root@192.168.7.2 trace_open.stp
- root@192.168.7.2's password:
- matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
- matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
- </literallayout>
- </para>
- </section>
-
- <section id='systemtap-documentation'>
- <title>Documentation</title>
-
- <para>
- The SystemTap language reference can be found here:
- <ulink url='http://sourceware.org/systemtap/langref/'>SystemTap Language Reference</ulink>
- </para>
-
- <para>
- Links to other SystemTap documents, tutorials, and examples can be
- found here:
- <ulink url='http://sourceware.org/systemtap/documentation.html'>SystemTap documentation page</ulink>
- </para>
- </section>
-</section>
-
-<section id='profile-manual-sysprof'>
- <title>Sysprof</title>
-
- <para>
- Sysprof is a very easy to use system-wide profiler that consists
- of a single window with three panes and a few buttons which allow
- you to start, stop, and view the profile from one place.
- </para>
-
- <section id='sysprof-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the General Setup section.
- </para>
-
- <para>
- Sysprof is a GUI-based application that runs on the target
- system. For the rest of this document we assume you've
- ssh'ed to the host and will be running Sysprof on the
- target (you can use the '-X' option to ssh and have the
- Sysprof GUI run on the target but display remotely on the
- host if you want).
- </para>
- </section>
-
- <section id='sysprof-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- To start profiling the system, you simply press the 'Start'
- button. To stop profiling and to start viewing the profile data
- in one easy step, press the 'Profile' button.
- </para>
-
- <para>
- Once you've pressed the profile button, the three panes will
- fill up with profiling data:
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-copy-to-user.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- The left pane shows a list of functions and processes.
- Selecting one of those expands that function in the right
- pane, showing all its callees. Note that this caller-oriented
- display is essentially the inverse of perf's default
- callee-oriented callchain display.
- </para>
-
- <para>
- In the screenshot above, we're focusing on __copy_to_user_ll()
- and looking up the callchain we can see that one of the callers
- of __copy_to_user_ll is sys_read() and the complete callpath
- between them. Notice that this is essentially a portion of the
- same information we saw in the perf display shown in the perf
- section of this page.
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-copy-from-user.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- Similarly, the above is a snapshot of the Sysprof display of a
- copy-from-user callchain.
- </para>
-
- <para>
- Finally, looking at the third Sysprof pane in the lower left,
- we can see a list of all the callers of a particular function
- selected in the top left pane. In this case, the lower pane is
- showing all the callers of __mark_inode_dirty:
- </para>
-
- <para>
- <imagedata fileref="figures/sysprof-callers.png" width="6in" depth="4in" align="center" scalefit="1" />
- </para>
-
- <para>
- Double-clicking on one of those functions will in turn change the
- focus to the selected function, and so on.
- </para>
-
- <informalexample>
- <emphasis>Tying it Together:</emphasis> If you like sysprof's 'caller-oriented'
- display, you may be able to approximate it in other tools as
- well. For example, 'perf report' has the -g (--call-graph)
- option that you can experiment with; one of the options is
- 'caller' for an inverted caller-based callgraph display.
- </informalexample>
- </section>
-
- <section id='sysprof-documentation'>
- <title>Documentation</title>
-
- <para>
- There doesn't seem to be any documentation for Sysprof, but
- maybe that's because it's pretty self-explanatory.
- The Sysprof website, however, is here:
- <ulink url='http://sysprof.com/'>Sysprof, System-wide Performance Profiler for Linux</ulink>
- </para>
- </section>
-</section>
-
-<section id='lttng-linux-trace-toolkit-next-generation'>
- <title>LTTng (Linux Trace Toolkit, next generation)</title>
-
- <section id='lttng-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the General Setup section.
- LTTng is run on the target system by ssh'ing to it.
- </para>
- </section>
-
- <section id='collecting-and-viewing-traces'>
- <title>Collecting and Viewing Traces</title>
-
- <para>
- Once you've applied the above commits and built and booted your
- image (you need to build the core-image-sato-sdk image or use one of the
- other methods described in the General Setup section), you're
- ready to start tracing.
- </para>
-
- <section id='collecting-and-viewing-a-trace-on-the-target-inside-a-shell'>
- <title>Collecting and viewing a trace on the target (inside a shell)</title>
-
- <para>
- First, from the host, ssh to the target:
- <literallayout class='monospaced'>
- $ ssh -l root 192.168.1.47
- The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
- RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
- Are you sure you want to continue connecting (yes/no)? yes
- Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
- root@192.168.1.47's password:
- </literallayout>
- Once on the target, use these steps to create a trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng create
- Spawning a session daemon
- Session auto-20121015-232120 created.
- Traces will be written in /home/root/lttng-traces/auto-20121015-232120
- </literallayout>
- Enable the events you want to trace (in this case all
- kernel events):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng enable-event --kernel --all
- All kernel events are enabled in channel channel0
- </literallayout>
- Start the trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng start
- Tracing started for session auto-20121015-232120
- </literallayout>
- And then stop the trace after awhile or after running
- a particular workload that you want to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng stop
- Tracing stopped for session auto-20121015-232120
- </literallayout>
- You can now view the trace in text form on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng view
- [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
- [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
- [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
- [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
- [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
- [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
- [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
- [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
- [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
- [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
- [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
- [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
- [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
- [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
- [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
- [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
- [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
- [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
- [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
- [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
- [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
- [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
- [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
- [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
- [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
- [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
- [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
- [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
- [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
- [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
- [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
- [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
- [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
- [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
- [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
- [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
- [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
- .
- .
- .
- </literallayout>
- You can now safely destroy the trace session (note that
- this doesn't delete the trace - it's still there
- in ~/lttng-traces):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng destroy
- Session auto-20121015-232120 destroyed at /home/root
- </literallayout>
- Note that the trace is saved in a directory of the same
- name as returned by 'lttng create', under the ~/lttng-traces
- directory (note that you can change this by supplying your
- own name to 'lttng create'):
- <literallayout class='monospaced'>
- root@crownbay:~# ls -al ~/lttng-traces
- drwxrwx--- 3 root root 1024 Oct 15 23:21 .
- drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
- drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120
- </literallayout>
- </para>
- </section>
-
- <section id='collecting-and-viewing-a-userspace-trace-on-the-target-inside-a-shell'>
- <title>Collecting and viewing a userspace trace on the target (inside a shell)</title>
-
- <para>
- For LTTng userspace tracing, you need to have a properly
- instrumented userspace program. For this example, we'll use
- the 'hello' test program generated by the lttng-ust build.
- </para>
-
- <para>
- The 'hello' test program isn't installed on the rootfs by
- the lttng-ust build, so we need to copy it over manually.
- First cd into the build directory that contains the hello
- executable:
- <literallayout class='monospaced'>
- $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
- </literallayout>
- Copy that over to the target machine:
- <literallayout class='monospaced'>
- $ scp hello root@192.168.1.20:
- </literallayout>
- You now have the instrumented lttng 'hello world' test
- program on the target, ready to test.
- </para>
-
- <para>
- First, from the host, ssh to the target:
- <literallayout class='monospaced'>
- $ ssh -l root 192.168.1.47
- The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
- RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
- Are you sure you want to continue connecting (yes/no)? yes
- Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
- root@192.168.1.47's password:
- </literallayout>
- Once on the target, use these steps to create a trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng create
- Session auto-20190303-021943 created.
- Traces will be written in /home/root/lttng-traces/auto-20190303-021943
- </literallayout>
- Enable the events you want to trace (in this case all
- userspace events):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng enable-event --userspace --all
- All UST events are enabled in channel channel0
- </literallayout>
- Start the trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng start
- Tracing started for session auto-20190303-021943
- </literallayout>
- Run the instrumented hello world program:
- <literallayout class='monospaced'>
- root@crownbay:~# ./hello
- Hello, World!
- Tracing... done.
- </literallayout>
- And then stop the trace after awhile or after running a
- particular workload that you want to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng stop
- Tracing stopped for session auto-20190303-021943
- </literallayout>
- You can now view the trace in text form on the target:
- <literallayout class='monospaced'>
- root@crownbay:~# lttng view
- [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
- .
- .
- .
- </literallayout>
- You can now safely destroy the trace session (note that
- this doesn't delete the trace - it's still
- there in ~/lttng-traces):
- <literallayout class='monospaced'>
- root@crownbay:~# lttng destroy
- Session auto-20190303-021943 destroyed at /home/root
- </literallayout>
- </para>
- </section>
-
- </section>
-
- <section id='lltng-documentation'>
- <title>Documentation</title>
-
- <para>
- You can find the primary LTTng Documentation on the
- <ulink url='https://lttng.org/docs/'>LTTng Documentation</ulink>
- site.
- The documentation on this site is appropriate for intermediate to
- advanced software developers who are working in a Linux environment
- and are interested in efficient software tracing.
- </para>
-
- <para>
- For information on LTTng in general, visit the
- <ulink url='http://lttng.org/lttng2.0'>LTTng Project</ulink>
- site.
- You can find a "Getting Started" link on this site that takes
- you to an LTTng Quick Start.
- </para>
- </section>
-</section>
-
-<section id='profile-manual-blktrace'>
- <title>blktrace</title>
-
- <para>
- blktrace is a tool for tracing and reporting low-level disk I/O.
- blktrace provides the tracing half of the equation; its output can
- be piped into the blkparse program, which renders the data in a
- human-readable form and does some basic analysis:
- </para>
-
- <section id='blktrace-setup'>
- <title>Setup</title>
-
- <para>
- For this section, we'll assume you've already performed the
- basic setup outlined in the
- "<link linkend='profile-manual-general-setup'>General Setup</link>"
- section.
- </para>
-
- <para>
- blktrace is an application that runs on the target system.
- You can run the entire blktrace and blkparse pipeline on the
- target, or you can run blktrace in 'listen' mode on the target
- and have blktrace and blkparse collect and analyze the data on
- the host (see the
- "<link linkend='using-blktrace-remotely'>Using blktrace Remotely</link>"
- section below).
- For the rest of this section we assume you've ssh'ed to the
- host and will be running blkrace on the target.
- </para>
- </section>
-
- <section id='blktrace-basic-usage'>
- <title>Basic Usage</title>
-
- <para>
- To record a trace, simply run the 'blktrace' command, giving it
- the name of the block device you want to trace activity on:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace /dev/sdc
- </literallayout>
- In another shell, execute a workload you want to trace.
- <literallayout class='monospaced'>
- root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- Press Ctrl-C in the blktrace shell to stop the trace. It will
- display how many events were logged, along with the per-cpu file
- sizes (blktrace records traces in per-cpu kernel buffers and
- simply dumps them to userspace for blkparse to merge and sort
- later).
- <literallayout class='monospaced'>
- ^C=== sdc ===
- CPU 0: 7082 events, 332 KiB data
- CPU 1: 1578 events, 74 KiB data
- Total: 8660 events (dropped 0), 406 KiB data
- </literallayout>
- If you examine the files saved to disk, you see multiple files,
- one per CPU and with the device name as the first part of the
- filename:
- <literallayout class='monospaced'>
- root@crownbay:~# ls -al
- drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
- drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
- -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
- -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1
- </literallayout>
- To view the trace events, simply invoke 'blkparse' in the
- directory containing the trace files, giving it the device name
- that forms the first part of the filenames:
- <literallayout class='monospaced'>
- root@crownbay:~# blkparse sdc
-
- 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]
- 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 0 0.000057270 0 m N cfq1225 insert_request
- 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr
- 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1
- 8,32 1 0 0.000088559 0 m N cfq workload slice:150
- 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1
- 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1
- 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null)
- 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert
- 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request
- 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1
- 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
- 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
- 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
- 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]
- 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
- 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
- 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
- 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]
- 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]
- 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]
- 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]
- 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]
- 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]
- 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]
- 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]
- 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]
- 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]
- 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]
- 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]
- 8,32 1 0 0.000483022 0 m N cfq1225 insert_request
- 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1
- 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1
- 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert
- 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request
- 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2
- .
- .
- .
- 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1
- 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]
- 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1
- 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0
- 8,32 0 0 58.516636933 0 m N cfq schedule dispatch
- 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0
- 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
- 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr
- 8,32 1 0 58.516990819 0 m N cfq3551 put_queue
-
- CPU0 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
- Read Merges: 0, 0KiB Write Merges: 13, 160KiB
- Read depth: 0 Write depth: 2
- IO unplugs: 23 Timer unplugs: 0
- CPU1 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
- Read Merges: 0, 0KiB Write Merges: 40, 276KiB
- Read depth: 0 Write depth: 2
- IO unplugs: 30 Timer unplugs: 1
-
- Total (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
- Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
- Read Merges: 0, 0KiB Write Merges: 53, 436KiB
- IO unplugs: 53 Timer unplugs: 1
-
- Throughput (R/W): 0KiB/s / 719KiB/s
- Events (sdc): 6,592 entries
- Skips: 0 forward (0 - 0.0%)
- Input file sdc.blktrace.0 added
- Input file sdc.blktrace.1 added
- </literallayout>
- The report shows each event that was found in the blktrace data,
- along with a summary of the overall block I/O traffic during
- the run. You can look at the
- <ulink url='http://linux.die.net/man/1/blkparse'>blkparse</ulink>
- manpage to learn the
- meaning of each field displayed in the trace listing.
- </para>
-
- <section id='blktrace-live-mode'>
- <title>Live Mode</title>
-
- <para>
- blktrace and blkparse are designed from the ground up to
- be able to operate together in a 'pipe mode' where the
- stdout of blktrace can be fed directly into the stdin of
- blkparse:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
- </literallayout>
- This enables long-lived tracing sessions to run without
- writing anything to disk, and allows the user to look for
- certain conditions in the trace data in 'real-time' by
- viewing the trace output as it scrolls by on the screen or
- by passing it along to yet another program in the pipeline
- such as grep which can be used to identify and capture
- conditions of interest.
- </para>
-
- <para>
- There's actually another blktrace command that implements
- the above pipeline as a single command, so the user doesn't
- have to bother typing in the above command sequence:
- <literallayout class='monospaced'>
- root@crownbay:~# btrace /dev/sdc
- </literallayout>
- </para>
- </section>
-
- <section id='using-blktrace-remotely'>
- <title>Using blktrace Remotely</title>
-
- <para>
- Because blktrace traces block I/O and at the same time
- normally writes its trace data to a block device, and
- in general because it's not really a great idea to make
- the device being traced the same as the device the tracer
- writes to, blktrace provides a way to trace without
- perturbing the traced device at all by providing native
- support for sending all trace data over the network.
- </para>
-
- <para>
- To have blktrace operate in this mode, start blktrace on
- the target system being traced with the -l option, along with
- the device to trace:
- <literallayout class='monospaced'>
- root@crownbay:~# blktrace -l /dev/sdc
- server: waiting for connections...
- </literallayout>
- On the host system, use the -h option to connect to the
- target system, also passing it the device to trace:
- <literallayout class='monospaced'>
- $ blktrace -d /dev/sdc -h 192.168.1.43
- blktrace: connecting to 192.168.1.43
- blktrace: connected!
- </literallayout>
- On the target system, you should see this:
- <literallayout class='monospaced'>
- server: connection from 192.168.1.43
- </literallayout>
- In another shell, execute a workload you want to trace.
- <literallayout class='monospaced'>
- root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget <ulink url='http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2'>http://downloads.yoctoproject.org/mirror/sources/linux-2.6.19.2.tar.bz2</ulink>; sync
- Connecting to downloads.yoctoproject.org (140.211.169.59:80)
- linux-2.6.19.2.tar.b 100% |*******************************| 41727k 0:00:00 ETA
- </literallayout>
- When it's done, do a Ctrl-C on the host system to
- stop the trace:
- <literallayout class='monospaced'>
- ^C=== sdc ===
- CPU 0: 7691 events, 361 KiB data
- CPU 1: 4109 events, 193 KiB data
- Total: 11800 events (dropped 0), 554 KiB data
- </literallayout>
- On the target system, you should also see a trace
- summary for the trace just ended:
- <literallayout class='monospaced'>
- server: end of run for 192.168.1.43:sdc
- === sdc ===
- CPU 0: 7691 events, 361 KiB data
- CPU 1: 4109 events, 193 KiB data
- Total: 11800 events (dropped 0), 554 KiB data
- </literallayout>
- The blktrace instance on the host will save the target
- output inside a hostname-timestamp directory:
- <literallayout class='monospaced'>
- $ ls -al
- drwxr-xr-x 10 root root 1024 Oct 28 02:40 .
- drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
- drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
- </literallayout>
- cd into that directory to see the output files:
- <literallayout class='monospaced'>
- $ ls -l
- -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
- -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1
- </literallayout>
- And run blkparse on the host system using the device name:
- <literallayout class='monospaced'>
- $ blkparse sdc
-
- 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]
- 8,32 1 0 0.000036038 0 m N cfq1263 alloced
- 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls]
- 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls]
- 8,32 1 0 0.000056152 0 m N cfq1263 insert_request
- 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr
- 8,32 1 0 0.000075498 0 m N cfq workload slice:300
- .
- .
- .
- 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0
- 8,32 0 0 177.266388140 0 m N cfq schedule dispatch
- 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0
- 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
- 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr
- 8,32 1 0 177.266696560 0 m N cfq1267 put_queue
-
- CPU0 (sdc):
- Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
- Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
- Read Merges: 0, 0KiB Write Merges: 9, 344KiB
- Read depth: 2 Write depth: 2
- IO unplugs: 20 Timer unplugs: 1
- CPU1 (sdc):
- Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
- Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB
- Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB
- Read depth: 2 Write depth: 2
- IO unplugs: 52 Timer unplugs: 0
-
- Total (sdc):
- Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB
- Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB
- Reads Requeued: 0 Writes Requeued: 0
- Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB
- Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB
- IO unplugs: 72 Timer unplugs: 1
-
- Throughput (R/W): 15KiB/s / 238KiB/s
- Events (sdc): 9,301 entries
- Skips: 0 forward (0 - 0.0%)
- </literallayout>
- You should see the trace events and summary just as
- you would have if you'd run the same command on the target.
- </para>
- </section>
-
- <section id='tracing-block-io-via-ftrace'>
- <title>Tracing Block I/O via 'ftrace'</title>
-
- <para>
- It's also possible to trace block I/O using only
- <link linkend='the-trace-events-subsystem'>trace events subsystem</link>,
- which can be useful for casual tracing
- if you don't want to bother dealing with the userspace tools.
- </para>
-
- <para>
- To enable tracing for a given device, use
- /sys/block/xxx/trace/enable, where xxx is the device name.
- This for example enables tracing for /dev/sdc:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
- </literallayout>
- Once you've selected the device(s) you want to trace,
- selecting the 'blk' tracer will turn the blk tracer on:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
- blk function_graph function nop
-
- root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
- </literallayout>
- Execute the workload you're interested in:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
- </literallayout>
- And look at the output (note here that we're using
- 'trace_pipe' instead of trace to capture this trace -
- this allows us to wait around on the pipe for data to
- appear):
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
- cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced
- cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276424: 8,32 P N [cat]
- cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat]
- cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request
- cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr
- cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1
- cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150
- cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2
- cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null)
- cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert
- cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
- cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
- cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]
- </literallayout>
- And this turns off tracing for the specified device:
- <literallayout class='monospaced'>
- root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
- </literallayout>
- </para>
- </section>
- </section>
-
- <section id='blktrace-documentation'>
- <title>Documentation</title>
-
- <para>
- Online versions of the man pages for the commands discussed
- in this section can be found here:
- <itemizedlist>
- <listitem><para><ulink url='http://linux.die.net/man/8/blktrace'>http://linux.die.net/man/8/blktrace</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://linux.die.net/man/1/blkparse'>http://linux.die.net/man/1/blkparse</ulink>
- </para></listitem>
- <listitem><para><ulink url='http://linux.die.net/man/8/btrace'>http://linux.die.net/man/8/btrace</ulink>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- The above manpages, along with manpages for the other
- blktrace utilities (btt, blkiomon, etc) can be found in the
- /doc directory of the blktrace tools git repo:
- <literallayout class='monospaced'>
- $ git clone git://git.kernel.dk/blktrace.git
- </literallayout>
- </para>
- </section>
-</section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/documentation/profile-manual/profile-manual.xml b/documentation/profile-manual/profile-manual.xml
deleted file mode 100644
index c1f461f43a..0000000000
--- a/documentation/profile-manual/profile-manual.xml
+++ /dev/null
@@ -1,178 +0,0 @@
-<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-
-<book id='profile-manual' lang='en'
- xmlns:xi="http://www.w3.org/2003/XInclude"
- xmlns="http://docbook.org/ns/docbook"
- >
- <bookinfo>
-
- <mediaobject>
- <imageobject>
- <imagedata fileref='figures/profile-title.png'
- format='SVG'
- align='left' scalefit='1' width='100%'/>
- </imageobject>
- </mediaobject>
-
- <title>
- Yocto Project Profiling and Tracing Manual
- </title>
-
- <authorgroup>
- <author>
- <firstname>Scott</firstname> <surname>Rifenbark</surname>
- <affiliation>
- <orgname>Scotty's Documentation Services, INC</orgname>
- </affiliation>
- <email>srifenbark@gmail.com</email>
- </author>
- </authorgroup>
-
- <revhistory>
- <revision>
- <revnumber>1.4</revnumber>
- <date>April 2013</date>
- <revremark>Released with the Yocto Project 1.4 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.5</revnumber>
- <date>October 2013</date>
- <revremark>Released with the Yocto Project 1.5 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.5.1</revnumber>
- <date>January 2014</date>
- <revremark>Released with the Yocto Project 1.5.1 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.6</revnumber>
- <date>April 2014</date>
- <revremark>Released with the Yocto Project 1.6 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.7</revnumber>
- <date>October 2014</date>
- <revremark>Released with the Yocto Project 1.7 Release.</revremark>
- </revision>
- <revision>
- <revnumber>1.8</revnumber>
- <date>April 2015</date>
- <revremark>Released with the Yocto Project 1.8 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.0</revnumber>
- <date>October 2015</date>
- <revremark>Released with the Yocto Project 2.0 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.1</revnumber>
- <date>April 2016</date>
- <revremark>Released with the Yocto Project 2.1 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.2</revnumber>
- <date>October 2016</date>
- <revremark>Released with the Yocto Project 2.2 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.3</revnumber>
- <date>May 2017</date>
- <revremark>Released with the Yocto Project 2.3 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.4</revnumber>
- <date>October 2017</date>
- <revremark>Released with the Yocto Project 2.4 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.5</revnumber>
- <date>May 2018</date>
- <revremark>Released with the Yocto Project 2.5 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.6</revnumber>
- <date>November 2018</date>
- <revremark>Released with the Yocto Project 2.6 Release.</revremark>
- </revision>
- <revision>
- <revnumber>2.7</revnumber>
- <date>May 2019</date>
- <revremark>Released with the Yocto Project 2.7 Release.</revremark>
- </revision>
- <revision>
- <revnumber>3.0</revnumber>
- <date>&REL_MONTH_YEAR;</date>
- <revremark>Released with the Yocto Project 3.0 Release.</revremark>
- </revision>
- </revhistory>
-
- <copyright>
- <year>&COPYRIGHT_YEAR;</year>
- <holder>Linux Foundation</holder>
- </copyright>
-
- <legalnotice>
- <para>
- Permission is granted to copy, distribute and/or modify this document under
- the terms of the <ulink type="http" url="http://creativecommons.org/licenses/by-sa/2.0/uk/">
- Creative Commons Attribution-Share Alike 2.0 UK: England &amp; Wales</ulink> as published by
- Creative Commons.
- </para>
- <note><title>Manual Notes</title>
- <itemizedlist>
- <listitem><para>
- This version of the
- <emphasis>Yocto Project Profiling and Tracing Manual</emphasis>
- is for the &YOCTO_DOC_VERSION; release of the
- Yocto Project.
- To be sure you have the latest version of the manual
- for this release, go to the
- <ulink url='&YOCTO_HOME_URL;/documentation'>Yocto Project documentation page</ulink>
- and select the manual from that site.
- Manuals from the site are more up-to-date than manuals
- derived from the Yocto Project released TAR files.
- </para></listitem>
- <listitem><para>
- If you located this manual through a web search, the
- version of the manual might not be the one you want
- (e.g. the search might have returned a manual much
- older than the Yocto Project version with which you
- are working).
- You can see all Yocto Project major releases by
- visiting the
- <ulink url='&YOCTO_WIKI_URL;/wiki/Releases'>Releases</ulink>
- page.
- If you need a version of this manual for a different
- Yocto Project release, visit the
- <ulink url='&YOCTO_HOME_URL;/documentation'>Yocto Project documentation page</ulink>
- and select the manual set by using the
- "ACTIVE RELEASES DOCUMENTATION" or "DOCUMENTS ARCHIVE"
- pull-down menus.
- </para></listitem>
- <listitem><para>
- To report any inaccuracies or problems with this
- manual, send an email to the Yocto Project
- discussion group at
- <filename>yocto@yoctoproject.com</filename> or log into
- the freenode <filename>#yocto</filename> channel.
- </para></listitem>
- </itemizedlist>
- </note>
- </legalnotice>
-
- </bookinfo>
-
- <xi:include href="profile-manual-intro.xml"/>
-
- <xi:include href="profile-manual-arch.xml"/>
-
- <xi:include href="profile-manual-usage.xml"/>
-
- <xi:include href="profile-manual-examples.xml"/>
-
-</book>
-<!--
-vim: expandtab tw=80 ts=4
--->
diff --git a/documentation/profile-manual/usage.rst b/documentation/profile-manual/usage.rst
new file mode 100644
index 0000000000..17be149580
--- /dev/null
+++ b/documentation/profile-manual/usage.rst
@@ -0,0 +1,2601 @@
+.. SPDX-License-Identifier: CC-BY-SA-2.0-UK
+.. highlight:: shell
+
+***************************************************************
+Basic Usage (with examples) for each of the Yocto Tracing Tools
+***************************************************************
+
+|
+
+This chapter presents basic usage examples for each of the tracing
+tools.
+
+perf
+====
+
+The perf tool is the profiling and tracing tool that comes bundled
+with the Linux kernel.
+
+Don't let the fact that it's part of the kernel fool you into thinking
+that it's only for tracing and profiling the kernel --- you can indeed use
+it to trace and profile just the kernel, but you can also use it to
+profile specific applications separately (with or without kernel
+context), and you can also use it to trace and profile the kernel and
+all applications on the system simultaneously to gain a system-wide view
+of what's going on.
+
+In many ways, perf aims to be a superset of all the tracing and
+profiling tools available in Linux today, including all the other tools
+covered in this How-to. The past couple of years have seen perf subsume a
+lot of the functionality of those other tools and, at the same time,
+those other tools have removed large portions of their previous
+functionality and replaced it with calls to the equivalent functionality
+now implemented by the perf subsystem. Extrapolation suggests that at
+some point those other tools will become completely redundant and
+go away; until then, we'll cover those other tools in these pages and in
+many cases show how the same things can be accomplished in perf and the
+other tools when it seems useful to do so.
+
+The coverage below details some of the most common ways you'll likely
+want to apply the tool; full documentation can be found either within
+the tool itself or in the manual pages at
+`perf(1) <https://linux.die.net/man/1/perf>`__.
+
+perf Setup
+----------
+
+For this section, we'll assume you've already performed the basic setup
+outlined in the ":ref:`profile-manual/intro:General Setup`" section.
+
+In particular, you'll get the most mileage out of perf if you profile an
+image built with the following in your ``local.conf`` file::
+
+ INHIBIT_PACKAGE_STRIP = "1"
+
+perf runs on the target system for the most part. You can archive
+profile data and copy it to the host for analysis, but for the rest of
+this document we assume you're connected to the host through SSH and will be
+running the perf commands on the target.
+
+Basic perf Usage
+----------------
+
+The perf tool is pretty much self-documenting. To remind yourself of the
+available commands, just type ``perf``, which will show you basic usage
+along with the available perf subcommands::
+
+ root@crownbay:~# perf
+
+ usage: perf [--version] [--help] COMMAND [ARGS]
+
+ The most commonly used perf commands are:
+ annotate Read perf.data (created by perf record) and display annotated code
+ archive Create archive with object files with build-ids found in perf.data file
+ bench General framework for benchmark suites
+ buildid-cache Manage build-id cache.
+ buildid-list List the buildids in a perf.data file
+ diff Read two perf.data files and display the differential profile
+ evlist List the event names in a perf.data file
+ inject Filter to augment the events stream with additional information
+ kmem Tool to trace/measure kernel memory(slab) properties
+ kvm Tool to trace/measure kvm guest os
+ list List all symbolic event types
+ lock Analyze lock events
+ probe Define new dynamic tracepoints
+ record Run a command and record its profile into perf.data
+ report Read perf.data (created by perf record) and display the profile
+ sched Tool to trace/measure scheduler properties (latencies)
+ script Read perf.data (created by perf record) and display trace output
+ stat Run a command and gather performance counter statistics
+ test Runs sanity tests.
+ timechart Tool to visualize total system behavior during a workload
+ top System profiling tool.
+
+ See 'perf help COMMAND' for more information on a specific command.
+
+
+Using perf to do Basic Profiling
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+As a simple test case, we'll profile the ``wget`` of a fairly large file,
+which is a minimally interesting case because it has both file and
+network I/O aspects, and at least in the case of standard Yocto images,
+it's implemented as part of BusyBox, so the methods we use to analyze it
+can be used in a similar way to the whole host of supported BusyBox
+applets in Yocto::
+
+ root@crownbay:~# rm linux-2.6.19.2.tar.bz2; \
+ wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+
+The quickest and easiest way to get some basic overall data about what's
+going on for a particular workload is to profile it using ``perf stat``.
+This command basically profiles using a few default counters and displays
+the summed counts at the end of the run::
+
+ root@crownbay:~# perf stat wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
+
+ Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
+
+ 4597.223902 task-clock # 0.077 CPUs utilized
+ 23568 context-switches # 0.005 M/sec
+ 68 CPU-migrations # 0.015 K/sec
+ 241 page-faults # 0.052 K/sec
+ 3045817293 cycles # 0.663 GHz
+ <not supported> stalled-cycles-frontend
+ <not supported> stalled-cycles-backend
+ 858909167 instructions # 0.28 insns per cycle
+ 165441165 branches # 35.987 M/sec
+ 19550329 branch-misses # 11.82% of all branches
+
+ 59.836627620 seconds time elapsed
+
+Such a simple-minded test doesn't always yield much of interest, but sometimes
+it does (see the :yocto_bugs:`Slow write speed on live images with denzil
+</show_bug.cgi?id=3049>` bug report).
+
+Also, note that ``perf stat`` isn't restricted to a fixed set of counters
+--- basically any event listed in the output of ``perf list`` can be tallied
+by ``perf stat``. For example, suppose we wanted to see a summary of all
+the events related to kernel memory allocation/freeing along with cache
+hits and misses::
+
+ root@crownbay:~# perf stat -e kmem:* -e cache-references -e cache-misses wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |***************************************************| 41727k 0:00:00 ETA
+
+ Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
+
+ 5566 kmem:kmalloc
+ 125517 kmem:kmem_cache_alloc
+ 0 kmem:kmalloc_node
+ 0 kmem:kmem_cache_alloc_node
+ 34401 kmem:kfree
+ 69920 kmem:kmem_cache_free
+ 133 kmem:mm_page_free
+ 41 kmem:mm_page_free_batched
+ 11502 kmem:mm_page_alloc
+ 11375 kmem:mm_page_alloc_zone_locked
+ 0 kmem:mm_page_pcpu_drain
+ 0 kmem:mm_page_alloc_extfrag
+ 66848602 cache-references
+ 2917740 cache-misses # 4.365 % of all cache refs
+
+ 44.831023415 seconds time elapsed
+
+As you can see, ``perf stat`` gives us a nice easy
+way to get a quick overview of what might be happening for a set of
+events, but normally we'd need a little more detail in order to
+understand what's going on in a way that we can act on in a useful way.
+
+To dive down into a next level of detail, we can use ``perf record`` /
+``perf report`` which will collect profiling data and present it to use using an
+interactive text-based UI (or just as text if we specify ``--stdio`` to
+``perf report``).
+
+As our first attempt at profiling this workload, we'll just run ``perf
+record``, handing it the workload we want to profile (everything after
+``perf record`` and any perf options we hand it --- here none, will be
+executed in a new shell). perf collects samples until the process exits
+and records them in a file named ``perf.data`` in the current working
+directory::
+
+ root@crownbay:~# perf record wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.176 MB perf.data (~7700 samples) ]
+
+To see the results in a
+"text-based UI" (tui), just run ``perf report``, which will read the
+perf.data file in the current working directory and display the results
+in an interactive UI::
+
+ root@crownbay:~# perf report
+
+.. image:: figures/perf-wget-flat-stripped.png
+ :align: center
+ :width: 70%
+
+The above screenshot displays a "flat" profile, one entry for each
+"bucket" corresponding to the functions that were profiled during the
+profiling run, ordered from the most popular to the least (perf has
+options to sort in various orders and keys as well as display entries
+only above a certain threshold and so on --- see the perf documentation
+for details). Note that this includes both user space functions (entries
+containing a ``[.]``) and kernel functions accounted to the process (entries
+containing a ``[k]``). perf has command-line modifiers that can be used to
+restrict the profiling to kernel or user space, among others.
+
+Notice also that the above report shows an entry for ``busybox``, which is
+the executable that implements ``wget`` in Yocto, but that instead of a
+useful function name in that entry, it displays a not-so-friendly hex
+value instead. The steps below will show how to fix that problem.
+
+Before we do that, however, let's try running a different profile, one
+which shows something a little more interesting. The only difference
+between the new profile and the previous one is that we'll add the ``-g``
+option, which will record not just the address of a sampled function,
+but the entire call chain to the sampled function as well::
+
+ root@crownbay:~# perf record -g wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% |************************************************| 41727k 0:00:00 ETA
+ [ perf record: Woken up 3 times to write data ]
+ [ perf record: Captured and wrote 0.652 MB perf.data (~28476 samples) ]
+
+
+ root@crownbay:~# perf report
+
+.. image:: figures/perf-wget-g-copy-to-user-expanded-stripped.png
+ :align: center
+ :width: 70%
+
+Using the call graph view, we can actually see not only which functions
+took the most time, but we can also see a summary of how those functions
+were called and learn something about how the program interacts with the
+kernel in the process.
+
+Notice that each entry in the above screenshot now contains a ``+`` on the
+left side. This means that we can expand the entry and drill down
+into the call chains that feed into that entry. Pressing ``Enter`` on any
+one of them will expand the call chain (you can also press ``E`` to expand
+them all at the same time or ``C`` to collapse them all).
+
+In the screenshot above, we've toggled the ``__copy_to_user_ll()`` entry
+and several subnodes all the way down. This lets us see which call chains
+contributed to the profiled ``__copy_to_user_ll()`` function which
+contributed 1.77% to the total profile.
+
+As a bit of background explanation for these call chains, think about
+what happens at a high level when you run ``wget`` to get a file out on the
+network. Basically what happens is that the data comes into the kernel
+via the network connection (socket) and is passed to the user space
+program ``wget`` (which is actually a part of BusyBox, but that's not
+important for now), which takes the buffers the kernel passes to it and
+writes it to a disk file to save it.
+
+The part of this process that we're looking at in the above call stacks
+is the part where the kernel passes the data it has read from the socket
+down to wget i.e. a ``copy-to-user``.
+
+Notice also that here there's also a case where the hex value is
+displayed in the call stack, here in the expanded ``sys_clock_gettime()``
+function. Later we'll see it resolve to a user space function call in
+BusyBox.
+
+.. image:: figures/perf-wget-g-copy-from-user-expanded-stripped.png
+ :align: center
+ :width: 70%
+
+The above screenshot shows the other half of the journey for the data ---
+from the ``wget`` program's user space buffers to disk. To get the buffers to
+disk, the wget program issues a ``write(2)``, which does a ``copy-from-user`` to
+the kernel, which then takes care via some circuitous path (probably
+also present somewhere in the profile data), to get it safely to disk.
+
+Now that we've seen the basic layout of the profile data and the basics
+of how to extract useful information out of it, let's get back to the
+task at hand and see if we can get some basic idea about where the time
+is spent in the program we're profiling, wget. Remember that wget is
+actually implemented as an applet in BusyBox, so while the process name
+is ``wget``, the executable we're actually interested in is ``busybox``.
+Therefore, let's expand the first entry containing BusyBox:
+
+.. image:: figures/perf-wget-busybox-expanded-stripped.png
+ :align: center
+ :width: 70%
+
+Again, before we expanded we saw that the function was labeled with a
+hex value instead of a symbol as with most of the kernel entries.
+Expanding the BusyBox entry doesn't make it any better.
+
+The problem is that perf can't find the symbol information for the
+``busybox`` binary, which is actually stripped out by the Yocto build
+system.
+
+One way around that is to put the following in your ``local.conf`` file
+when you build the image::
+
+ INHIBIT_PACKAGE_STRIP = "1"
+
+However, we already have an image with the binaries stripped, so
+what can we do to get perf to resolve the symbols? Basically we need to
+install the debugging information for the BusyBox package.
+
+To generate the debug info for the packages in the image, we can add
+``dbg-pkgs`` to :term:`EXTRA_IMAGE_FEATURES` in ``local.conf``. For example::
+
+ EXTRA_IMAGE_FEATURES = "debug-tweaks tools-profile dbg-pkgs"
+
+Additionally, in order to generate the type of debugging information that perf
+understands, we also need to set :term:`PACKAGE_DEBUG_SPLIT_STYLE`
+in the ``local.conf`` file::
+
+ PACKAGE_DEBUG_SPLIT_STYLE = 'debug-file-directory'
+
+Once we've done that, we can install the debugging information for BusyBox. The
+debug packages once built can be found in ``build/tmp/deploy/rpm/*``
+on the host system. Find the ``busybox-dbg-...rpm`` file and copy it
+to the target. For example::
+
+ [trz@empanada core2]$ scp /home/trz/yocto/crownbay-tracing-dbg/build/tmp/deploy/rpm/core2_32/busybox-dbg-1.20.2-r2.core2_32.rpm root@192.168.1.31:
+ busybox-dbg-1.20.2-r2.core2_32.rpm 100% 1826KB 1.8MB/s 00:01
+
+Now install the debug RPM on the target::
+
+ root@crownbay:~# rpm -i busybox-dbg-1.20.2-r2.core2_32.rpm
+
+Now that the debugging information is installed, we see that the BusyBox entries now display
+their functions symbolically:
+
+.. image:: figures/perf-wget-busybox-debuginfo.png
+ :align: center
+ :width: 70%
+
+If we expand one of the entries and press ``Enter`` on a leaf node, we're
+presented with a menu of actions we can take to get more information
+related to that entry:
+
+.. image:: figures/perf-wget-busybox-dso-zoom-menu.png
+ :align: center
+ :width: 70%
+
+One of these actions allows us to show a view that displays a
+busybox-centric view of the profiled functions (in this case we've also
+expanded all the nodes using the ``E`` key):
+
+.. image:: figures/perf-wget-busybox-dso-zoom.png
+ :align: center
+ :width: 70%
+
+Finally, we can see that now that the BusyBox debugging information is installed,
+the previously unresolved symbol in the ``sys_clock_gettime()`` entry
+mentioned previously is now resolved, and shows that the
+``sys_clock_gettime`` system call that was the source of 6.75% of the
+``copy-to-user`` overhead was initiated by the ``handle_input()`` BusyBox
+function:
+
+.. image:: figures/perf-wget-g-copy-to-user-expanded-debuginfo.png
+ :align: center
+ :width: 70%
+
+At the lowest level of detail, we can dive down to the assembly level
+and see which instructions caused the most overhead in a function.
+Pressing ``Enter`` on the ``udhcpc_main`` function, we're again presented
+with a menu:
+
+.. image:: figures/perf-wget-busybox-annotate-menu.png
+ :align: center
+ :width: 70%
+
+Selecting ``Annotate udhcpc_main``, we get a detailed listing of
+percentages by instruction for the ``udhcpc_main`` function. From the
+display, we can see that over 50% of the time spent in this function is
+taken up by a couple tests and the move of a constant (1) to a register:
+
+.. image:: figures/perf-wget-busybox-annotate-udhcpc.png
+ :align: center
+ :width: 70%
+
+As a segue into tracing, let's try another profile using a different
+counter, something other than the default ``cycles``.
+
+The tracing and profiling infrastructure in Linux has become unified in
+a way that allows us to use the same tool with a completely different
+set of counters, not just the standard hardware counters that
+traditional tools have had to restrict themselves to (the
+traditional tools can now actually make use of the expanded possibilities now
+available to them, and in some cases have, as mentioned previously).
+
+We can get a list of the available events that can be used to profile a
+workload via ``perf list``::
+
+ root@crownbay:~# perf list
+
+ List of pre-defined events (to be used in -e):
+ cpu-cycles OR cycles [Hardware event]
+ stalled-cycles-frontend OR idle-cycles-frontend [Hardware event]
+ stalled-cycles-backend OR idle-cycles-backend [Hardware event]
+ instructions [Hardware event]
+ cache-references [Hardware event]
+ cache-misses [Hardware event]
+ branch-instructions OR branches [Hardware event]
+ branch-misses [Hardware event]
+ bus-cycles [Hardware event]
+ ref-cycles [Hardware event]
+
+ cpu-clock [Software event]
+ task-clock [Software event]
+ page-faults OR faults [Software event]
+ minor-faults [Software event]
+ major-faults [Software event]
+ context-switches OR cs [Software event]
+ cpu-migrations OR migrations [Software event]
+ alignment-faults [Software event]
+ emulation-faults [Software event]
+
+ L1-dcache-loads [Hardware cache event]
+ L1-dcache-load-misses [Hardware cache event]
+ L1-dcache-prefetch-misses [Hardware cache event]
+ L1-icache-loads [Hardware cache event]
+ L1-icache-load-misses [Hardware cache event]
+ .
+ .
+ .
+ rNNN [Raw hardware event descriptor]
+ cpu/t1=v1[,t2=v2,t3 ...]/modifier [Raw hardware event descriptor]
+ (see 'perf list --help' on how to encode it)
+
+ mem:<addr>[:access] [Hardware breakpoint]
+
+ sunrpc:rpc_call_status [Tracepoint event]
+ sunrpc:rpc_bind_status [Tracepoint event]
+ sunrpc:rpc_connect_status [Tracepoint event]
+ sunrpc:rpc_task_begin [Tracepoint event]
+ skb:kfree_skb [Tracepoint event]
+ skb:consume_skb [Tracepoint event]
+ skb:skb_copy_datagram_iovec [Tracepoint event]
+ net:net_dev_xmit [Tracepoint event]
+ net:net_dev_queue [Tracepoint event]
+ net:netif_receive_skb [Tracepoint event]
+ net:netif_rx [Tracepoint event]
+ napi:napi_poll [Tracepoint event]
+ sock:sock_rcvqueue_full [Tracepoint event]
+ sock:sock_exceed_buf_limit [Tracepoint event]
+ udp:udp_fail_queue_rcv_skb [Tracepoint event]
+ hda:hda_send_cmd [Tracepoint event]
+ hda:hda_get_response [Tracepoint event]
+ hda:hda_bus_reset [Tracepoint event]
+ scsi:scsi_dispatch_cmd_start [Tracepoint event]
+ scsi:scsi_dispatch_cmd_error [Tracepoint event]
+ scsi:scsi_eh_wakeup [Tracepoint event]
+ drm:drm_vblank_event [Tracepoint event]
+ drm:drm_vblank_event_queued [Tracepoint event]
+ drm:drm_vblank_event_delivered [Tracepoint event]
+ random:mix_pool_bytes [Tracepoint event]
+ random:mix_pool_bytes_nolock [Tracepoint event]
+ random:credit_entropy_bits [Tracepoint event]
+ gpio:gpio_direction [Tracepoint event]
+ gpio:gpio_value [Tracepoint event]
+ block:block_rq_abort [Tracepoint event]
+ block:block_rq_requeue [Tracepoint event]
+ block:block_rq_issue [Tracepoint event]
+ block:block_bio_bounce [Tracepoint event]
+ block:block_bio_complete [Tracepoint event]
+ block:block_bio_backmerge [Tracepoint event]
+ .
+ .
+ writeback:writeback_wake_thread [Tracepoint event]
+ writeback:writeback_wake_forker_thread [Tracepoint event]
+ writeback:writeback_bdi_register [Tracepoint event]
+ .
+ .
+ writeback:writeback_single_inode_requeue [Tracepoint event]
+ writeback:writeback_single_inode [Tracepoint event]
+ kmem:kmalloc [Tracepoint event]
+ kmem:kmem_cache_alloc [Tracepoint event]
+ kmem:mm_page_alloc [Tracepoint event]
+ kmem:mm_page_alloc_zone_locked [Tracepoint event]
+ kmem:mm_page_pcpu_drain [Tracepoint event]
+ kmem:mm_page_alloc_extfrag [Tracepoint event]
+ vmscan:mm_vmscan_kswapd_sleep [Tracepoint event]
+ vmscan:mm_vmscan_kswapd_wake [Tracepoint event]
+ vmscan:mm_vmscan_wakeup_kswapd [Tracepoint event]
+ vmscan:mm_vmscan_direct_reclaim_begin [Tracepoint event]
+ .
+ .
+ module:module_get [Tracepoint event]
+ module:module_put [Tracepoint event]
+ module:module_request [Tracepoint event]
+ sched:sched_kthread_stop [Tracepoint event]
+ sched:sched_wakeup [Tracepoint event]
+ sched:sched_wakeup_new [Tracepoint event]
+ sched:sched_process_fork [Tracepoint event]
+ sched:sched_process_exec [Tracepoint event]
+ sched:sched_stat_runtime [Tracepoint event]
+ rcu:rcu_utilization [Tracepoint event]
+ workqueue:workqueue_queue_work [Tracepoint event]
+ workqueue:workqueue_execute_end [Tracepoint event]
+ signal:signal_generate [Tracepoint event]
+ signal:signal_deliver [Tracepoint event]
+ timer:timer_init [Tracepoint event]
+ timer:timer_start [Tracepoint event]
+ timer:hrtimer_cancel [Tracepoint event]
+ timer:itimer_state [Tracepoint event]
+ timer:itimer_expire [Tracepoint event]
+ irq:irq_handler_entry [Tracepoint event]
+ irq:irq_handler_exit [Tracepoint event]
+ irq:softirq_entry [Tracepoint event]
+ irq:softirq_exit [Tracepoint event]
+ irq:softirq_raise [Tracepoint event]
+ printk:console [Tracepoint event]
+ task:task_newtask [Tracepoint event]
+ task:task_rename [Tracepoint event]
+ syscalls:sys_enter_socketcall [Tracepoint event]
+ syscalls:sys_exit_socketcall [Tracepoint event]
+ .
+ .
+ .
+ syscalls:sys_enter_unshare [Tracepoint event]
+ syscalls:sys_exit_unshare [Tracepoint event]
+ raw_syscalls:sys_enter [Tracepoint event]
+ raw_syscalls:sys_exit [Tracepoint event]
+
+.. admonition:: Tying it Together
+
+ These are exactly the same set of events defined by the trace event
+ subsystem and exposed by ftrace / trace-cmd / KernelShark as files in
+ ``/sys/kernel/debug/tracing/events``, by SystemTap as
+ kernel.trace("tracepoint_name") and (partially) accessed by LTTng.
+
+Only a subset of these would be of interest to us when looking at this
+workload, so let's choose the most likely subsystems (identified by the
+string before the colon in the ``Tracepoint`` events) and do a ``perf stat``
+run using only those subsystem wildcards::
+
+ root@crownbay:~# perf stat -e skb:* -e net:* -e napi:* -e sched:* -e workqueue:* -e irq:* -e syscalls:* wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+ Performance counter stats for 'wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2':
+
+ 23323 skb:kfree_skb
+ 0 skb:consume_skb
+ 49897 skb:skb_copy_datagram_iovec
+ 6217 net:net_dev_xmit
+ 6217 net:net_dev_queue
+ 7962 net:netif_receive_skb
+ 2 net:netif_rx
+ 8340 napi:napi_poll
+ 0 sched:sched_kthread_stop
+ 0 sched:sched_kthread_stop_ret
+ 3749 sched:sched_wakeup
+ 0 sched:sched_wakeup_new
+ 0 sched:sched_switch
+ 29 sched:sched_migrate_task
+ 0 sched:sched_process_free
+ 1 sched:sched_process_exit
+ 0 sched:sched_wait_task
+ 0 sched:sched_process_wait
+ 0 sched:sched_process_fork
+ 1 sched:sched_process_exec
+ 0 sched:sched_stat_wait
+ 2106519415641 sched:sched_stat_sleep
+ 0 sched:sched_stat_iowait
+ 147453613 sched:sched_stat_blocked
+ 12903026955 sched:sched_stat_runtime
+ 0 sched:sched_pi_setprio
+ 3574 workqueue:workqueue_queue_work
+ 3574 workqueue:workqueue_activate_work
+ 0 workqueue:workqueue_execute_start
+ 0 workqueue:workqueue_execute_end
+ 16631 irq:irq_handler_entry
+ 16631 irq:irq_handler_exit
+ 28521 irq:softirq_entry
+ 28521 irq:softirq_exit
+ 28728 irq:softirq_raise
+ 1 syscalls:sys_enter_sendmmsg
+ 1 syscalls:sys_exit_sendmmsg
+ 0 syscalls:sys_enter_recvmmsg
+ 0 syscalls:sys_exit_recvmmsg
+ 14 syscalls:sys_enter_socketcall
+ 14 syscalls:sys_exit_socketcall
+ .
+ .
+ .
+ 16965 syscalls:sys_enter_read
+ 16965 syscalls:sys_exit_read
+ 12854 syscalls:sys_enter_write
+ 12854 syscalls:sys_exit_write
+ .
+ .
+ .
+
+ 58.029710972 seconds time elapsed
+
+
+
+Let's pick one of these tracepoints
+and tell perf to do a profile using it as the sampling event::
+
+ root@crownbay:~# perf record -g -e sched:sched_wakeup wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+
+.. image:: figures/sched-wakeup-profile.png
+ :align: center
+ :width: 70%
+
+The screenshot above shows the results of running a profile using
+sched:sched_switch tracepoint, which shows the relative costs of various
+paths to ``sched_wakeup`` (note that ``sched_wakeup`` is the name of the
+tracepoint --- it's actually defined just inside ``ttwu_do_wakeup()``, which
+accounts for the function name actually displayed in the profile:
+
+.. code-block:: c
+
+ /*
+ * Mark the task runnable and perform wakeup-preemption.
+ */
+ static void
+ ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
+ {
+ trace_sched_wakeup(p, true);
+ .
+ .
+ .
+ }
+
+A couple of the more interesting
+call chains are expanded and displayed above, basically some network
+receive paths that presumably end up waking up wget (BusyBox) when
+network data is ready.
+
+Note that because tracepoints are normally used for tracing, the default
+sampling period for tracepoints is ``1`` i.e. for tracepoints perf will
+sample on every event occurrence (this can be changed using the ``-c``
+option). This is in contrast to hardware counters such as for example
+the default ``cycles`` hardware counter used for normal profiling, where
+sampling periods are much higher (in the thousands) because profiling
+should have as low an overhead as possible and sampling on every cycle
+would be prohibitively expensive.
+
+Using perf to do Basic Tracing
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+Profiling is a great tool for solving many problems or for getting a
+high-level view of what's going on with a workload or across the system.
+It is however by definition an approximation, as suggested by the most
+prominent word associated with it, ``sampling``. On the one hand, it
+allows a representative picture of what's going on in the system to be
+cheaply taken, but alternatively, that cheapness limits its utility
+when that data suggests a need to "dive down" more deeply to discover
+what's really going on. In such cases, the only way to see what's really
+going on is to be able to look at (or summarize more intelligently) the
+individual steps that go into the higher-level behavior exposed by the
+coarse-grained profiling data.
+
+As a concrete example, we can trace all the events we think might be
+applicable to our workload::
+
+ root@crownbay:~# perf record -g -e skb:* -e net:* -e napi:* -e sched:sched_switch -e sched:sched_wakeup -e irq:*
+ -e syscalls:sys_enter_read -e syscalls:sys_exit_read -e syscalls:sys_enter_write -e syscalls:sys_exit_write
+ wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+
+We can look at the raw trace output using ``perf script`` with no
+arguments::
+
+ root@crownbay:~# perf script
+
+ perf 1262 [000] 11624.857082: sys_exit_read: 0x0
+ perf 1262 [000] 11624.857193: sched_wakeup: comm=migration/0 pid=6 prio=0 success=1 target_cpu=000
+ wget 1262 [001] 11624.858021: softirq_raise: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858074: softirq_entry: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858081: softirq_exit: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.858166: sys_enter_read: fd: 0x0003, buf: 0xbf82c940, count: 0x0200
+ wget 1262 [001] 11624.858177: sys_exit_read: 0x200
+ wget 1262 [001] 11624.858878: kfree_skb: skbaddr=0xeb248d80 protocol=0 location=0xc15a5308
+ wget 1262 [001] 11624.858945: kfree_skb: skbaddr=0xeb248000 protocol=0 location=0xc15a5308
+ wget 1262 [001] 11624.859020: softirq_raise: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859076: softirq_entry: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859083: softirq_exit: vec=1 [action=TIMER]
+ wget 1262 [001] 11624.859167: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859192: sys_exit_read: 0x1d7
+ wget 1262 [001] 11624.859228: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859233: sys_exit_read: 0x0
+ wget 1262 [001] 11624.859573: sys_enter_read: fd: 0x0003, buf: 0xbf82c580, count: 0x0200
+ wget 1262 [001] 11624.859584: sys_exit_read: 0x200
+ wget 1262 [001] 11624.859864: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859888: sys_exit_read: 0x400
+ wget 1262 [001] 11624.859935: sys_enter_read: fd: 0x0003, buf: 0xb7720000, count: 0x0400
+ wget 1262 [001] 11624.859944: sys_exit_read: 0x400
+
+This gives us a detailed timestamped sequence of events that occurred within the
+workload with respect to those events.
+
+In many ways, profiling can be viewed as a subset of tracing ---
+theoretically, if you have a set of trace events that's sufficient to
+capture all the important aspects of a workload, you can derive any of
+the results or views that a profiling run can.
+
+Another aspect of traditional profiling is that while powerful in many
+ways, it's limited by the granularity of the underlying data. Profiling
+tools offer various ways of sorting and presenting the sample data,
+which make it much more useful and amenable to user experimentation, but
+in the end it can't be used in an open-ended way to extract data that
+just isn't present as a consequence of the fact that conceptually, most
+of it has been thrown away.
+
+Full-blown detailed tracing data does however offer the opportunity to
+manipulate and present the information collected during a tracing run in
+an infinite variety of ways.
+
+Another way to look at it is that there are only so many ways that the
+'primitive' counters can be used on their own to generate interesting
+output; to get anything more complicated than simple counts requires
+some amount of additional logic, which is typically specific to the
+problem at hand. For example, if we wanted to make use of a 'counter'
+that maps to the value of the time difference between when a process was
+scheduled to run on a processor and the time it actually ran, we
+wouldn't expect such a counter to exist on its own, but we could derive
+one called say ``wakeup_latency`` and use it to extract a useful view of
+that metric from trace data. Likewise, we really can't figure out from
+standard profiling tools how much data every process on the system reads
+and writes, along with how many of those reads and writes fail
+completely. If we have sufficient trace data, however, we could with the
+right tools easily extract and present that information, but we'd need
+something other than ready-made profiling tools to do that.
+
+Luckily, there is a general-purpose way to handle such needs, called
+"programming languages". Making programming languages easily available
+to apply to such problems given the specific format of data is called a
+'programming language binding' for that data and language. perf supports
+two programming language bindings, one for Python and one for Perl.
+
+.. admonition:: Tying it Together
+
+ Language bindings for manipulating and aggregating trace data are of
+ course not a new idea. One of the first projects to do this was IBM's
+ DProbes dpcc compiler, an ANSI C compiler which targeted a low-level
+ assembly language running on an in-kernel interpreter on the target
+ system. This is exactly analogous to what Sun's DTrace did, except
+ that DTrace invented its own language for the purpose. SystemTap,
+ heavily inspired by DTrace, also created its own one-off language,
+ but rather than running the product on an in-kernel interpreter,
+ created an elaborate compiler-based machinery to translate its
+ language into kernel modules written in C.
+
+Now that we have the trace data in ``perf.data``, we can use ``perf script
+-g`` to generate a skeleton script with handlers for the read / write
+entry / exit events we recorded::
+
+ root@crownbay:~# perf script -g python
+ generated Python script: perf-script.py
+
+The skeleton script just creates a Python function for each event type in the
+``perf.data`` file. The body of each function just prints the event name along
+with its parameters. For example:
+
+.. code-block:: python
+
+ def net__netif_rx(event_name, context, common_cpu,
+ common_secs, common_nsecs, common_pid, common_comm,
+ skbaddr, len, name):
+ print_header(event_name, common_cpu, common_secs, common_nsecs,
+ common_pid, common_comm)
+
+ print "skbaddr=%u, len=%u, name=%s\n" % (skbaddr, len, name),
+
+We can run that script directly to print all of the events contained in the
+``perf.data`` file::
+
+ root@crownbay:~# perf script -s perf-script.py
+
+ in trace_begin
+ syscalls__sys_exit_read 0 11624.857082795 1262 perf nr=3, ret=0
+ sched__sched_wakeup 0 11624.857193498 1262 perf comm=migration/0, pid=6, prio=0, success=1, target_cpu=0
+ irq__softirq_raise 1 11624.858021635 1262 wget vec=TIMER
+ irq__softirq_entry 1 11624.858074075 1262 wget vec=TIMER
+ irq__softirq_exit 1 11624.858081389 1262 wget vec=TIMER
+ syscalls__sys_enter_read 1 11624.858166434 1262 wget nr=3, fd=3, buf=3213019456, count=512
+ syscalls__sys_exit_read 1 11624.858177924 1262 wget nr=3, ret=512
+ skb__kfree_skb 1 11624.858878188 1262 wget skbaddr=3945041280, location=3243922184, protocol=0
+ skb__kfree_skb 1 11624.858945608 1262 wget skbaddr=3945037824, location=3243922184, protocol=0
+ irq__softirq_raise 1 11624.859020942 1262 wget vec=TIMER
+ irq__softirq_entry 1 11624.859076935 1262 wget vec=TIMER
+ irq__softirq_exit 1 11624.859083469 1262 wget vec=TIMER
+ syscalls__sys_enter_read 1 11624.859167565 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859192533 1262 wget nr=3, ret=471
+ syscalls__sys_enter_read 1 11624.859228072 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859233707 1262 wget nr=3, ret=0
+ syscalls__sys_enter_read 1 11624.859573008 1262 wget nr=3, fd=3, buf=3213018496, count=512
+ syscalls__sys_exit_read 1 11624.859584818 1262 wget nr=3, ret=512
+ syscalls__sys_enter_read 1 11624.859864562 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859888770 1262 wget nr=3, ret=1024
+ syscalls__sys_enter_read 1 11624.859935140 1262 wget nr=3, fd=3, buf=3077701632, count=1024
+ syscalls__sys_exit_read 1 11624.859944032 1262 wget nr=3, ret=1024
+
+That in itself isn't very useful; after all, we can accomplish pretty much the
+same thing by just running ``perf script`` without arguments in the same
+directory as the ``perf.data`` file.
+
+We can however replace the print statements in the generated function
+bodies with whatever we want, and thereby make it infinitely more
+useful.
+
+As a simple example, let's just replace the print statements in the
+function bodies with a simple function that does nothing but increment a
+per-event count. When the program is run against a perf.data file, each
+time a particular event is encountered, a tally is incremented for that
+event. For example:
+
+.. code-block:: python
+
+ def net__netif_rx(event_name, context, common_cpu,
+ common_secs, common_nsecs, common_pid, common_comm,
+ skbaddr, len, name):
+ inc_counts(event_name)
+
+Each event handler function in the generated code
+is modified to do this. For convenience, we define a common function
+called ``inc_counts()`` that each handler calls; ``inc_counts()`` just tallies
+a count for each event using the ``counts`` hash, which is a specialized
+hash function that does Perl-like autovivification, a capability that's
+extremely useful for kinds of multi-level aggregation commonly used in
+processing traces (see perf's documentation on the Python language
+binding for details):
+
+.. code-block:: python
+
+ counts = autodict()
+
+ def inc_counts(event_name):
+ try:
+ counts[event_name] += 1
+ except TypeError:
+ counts[event_name] = 1
+
+Finally, at the end of the trace processing run, we want to print the
+result of all the per-event tallies. For that, we use the special
+``trace_end()`` function:
+
+.. code-block:: python
+
+ def trace_end():
+ for event_name, count in counts.iteritems():
+ print "%-40s %10s\n" % (event_name, count)
+
+The end result is a summary of all the events recorded in the trace::
+
+ skb__skb_copy_datagram_iovec 13148
+ irq__softirq_entry 4796
+ irq__irq_handler_exit 3805
+ irq__softirq_exit 4795
+ syscalls__sys_enter_write 8990
+ net__net_dev_xmit 652
+ skb__kfree_skb 4047
+ sched__sched_wakeup 1155
+ irq__irq_handler_entry 3804
+ irq__softirq_raise 4799
+ net__net_dev_queue 652
+ syscalls__sys_enter_read 17599
+ net__netif_receive_skb 1743
+ syscalls__sys_exit_read 17598
+ net__netif_rx 2
+ napi__napi_poll 1877
+ syscalls__sys_exit_write 8990
+
+Note that this is
+pretty much exactly the same information we get from ``perf stat``, which
+goes a little way to support the idea mentioned previously that given
+the right kind of trace data, higher-level profiling-type summaries can
+be derived from it.
+
+Documentation on using the `'perf script' Python
+binding <https://linux.die.net/man/1/perf-script-python>`__.
+
+System-Wide Tracing and Profiling
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+The examples so far have focused on tracing a particular program or
+workload --- that is, every profiling run has specified the program
+to profile in the command-line e.g. ``perf record wget ...``.
+
+It's also possible, and more interesting in many cases, to run a
+system-wide profile or trace while running the workload in a separate
+shell.
+
+To do system-wide profiling or tracing, you typically use the ``-a`` flag to
+``perf record``.
+
+To demonstrate this, open up one window and start the profile using the
+``-a`` flag (press ``Ctrl-C`` to stop tracing)::
+
+ root@crownbay:~# perf record -g -a
+ ^C[ perf record: Woken up 6 times to write data ]
+ [ perf record: Captured and wrote 1.400 MB perf.data (~61172 samples) ]
+
+In another window, run the ``wget`` test::
+
+ root@crownbay:~# wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
+
+Here we see entries not only for our ``wget`` load, but for
+other processes running on the system as well:
+
+.. image:: figures/perf-systemwide.png
+ :align: center
+ :width: 70%
+
+In the snapshot above, we can see call chains that originate in ``libc``, and
+a call chain from ``Xorg`` that demonstrates that we're using a proprietary X
+driver in user space (notice the presence of ``PVR`` and some other
+unresolvable symbols in the expanded ``Xorg`` call chain).
+
+Note also that we have both kernel and user space entries in the above
+snapshot. We can also tell perf to focus on user space but providing a
+modifier, in this case ``u``, to the ``cycles`` hardware counter when we
+record a profile::
+
+ root@crownbay:~# perf record -g -a -e cycles:u
+ ^C[ perf record: Woken up 2 times to write data ]
+ [ perf record: Captured and wrote 0.376 MB perf.data (~16443 samples) ]
+
+.. image:: figures/perf-report-cycles-u.png
+ :align: center
+ :width: 70%
+
+Notice in the screenshot above, we see only user space entries (``[.]``)
+
+Finally, we can press ``Enter`` on a leaf node and select the ``Zoom into
+DSO`` menu item to show only entries associated with a specific DSO. In
+the screenshot below, we've zoomed into the ``libc`` DSO which shows all
+the entries associated with the ``libc-xxx.so`` DSO.
+
+.. image:: figures/perf-systemwide-libc.png
+ :align: center
+ :width: 70%
+
+We can also use the system-wide ``-a`` switch to do system-wide tracing.
+Here we'll trace a couple of scheduler events::
+
+ root@crownbay:~# perf record -a -e sched:sched_switch -e sched:sched_wakeup
+ ^C[ perf record: Woken up 38 times to write data ]
+ [ perf record: Captured and wrote 9.780 MB perf.data (~427299 samples) ]
+
+We can look at the raw output using ``perf script`` with no arguments::
+
+ root@crownbay:~# perf script
+
+ perf 1383 [001] 6171.460045: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1383 [001] 6171.460066: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 6171.460093: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
+ swapper 0 [000] 6171.468063: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
+ swapper 0 [000] 6171.468107: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 6171.468143: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+ perf 1383 [001] 6171.470039: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1383 [001] 6171.470058: sched_switch: prev_comm=perf prev_pid=1383 prev_prio=120 prev_state=R+ ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 6171.470082: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=perf next_pid=1383 next_prio=120
+ perf 1383 [001] 6171.480035: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+
+Filtering
+^^^^^^^^^
+
+Notice that there are many events that don't really have anything to
+do with what we're interested in, namely events that schedule ``perf``
+itself in and out or that wake perf up. We can get rid of those by using
+the ``--filter`` option --- for each event we specify using ``-e``, we can add a
+``--filter`` after that to filter out trace events that contain fields with
+specific values::
+
+ root@crownbay:~# perf record -a -e sched:sched_switch --filter 'next_comm != perf && prev_comm != perf' -e sched:sched_wakeup --filter 'comm != perf'
+ ^C[ perf record: Woken up 38 times to write data ]
+ [ perf record: Captured and wrote 9.688 MB perf.data (~423279 samples) ]
+
+
+ root@crownbay:~# perf script
+
+ swapper 0 [000] 7932.162180: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 7932.162236: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+ perf 1407 [001] 7932.170048: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.180044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.190038: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.200044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.210044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ perf 1407 [001] 7932.220044: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ swapper 0 [001] 7932.230111: sched_wakeup: comm=kworker/1:1 pid=21 prio=120 success=1 target_cpu=001
+ swapper 0 [001] 7932.230146: sched_switch: prev_comm=swapper/1 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/1:1 next_pid=21 next_prio=120
+ kworker/1:1 21 [001] 7932.230205: sched_switch: prev_comm=kworker/1:1 prev_pid=21 prev_prio=120 prev_state=S ==> next_comm=swapper/1 next_pid=0 next_prio=120
+ swapper 0 [000] 7932.326109: sched_wakeup: comm=kworker/0:3 pid=1209 prio=120 success=1 target_cpu=000
+ swapper 0 [000] 7932.326171: sched_switch: prev_comm=swapper/0 prev_pid=0 prev_prio=120 prev_state=R ==> next_comm=kworker/0:3 next_pid=1209 next_prio=120
+ kworker/0:3 1209 [000] 7932.326214: sched_switch: prev_comm=kworker/0:3 prev_pid=1209 prev_prio=120 prev_state=S ==> next_comm=swapper/0 next_pid=0 next_prio=120
+
+In this case, we've filtered out all events that have
+``perf`` in their ``comm``, ``comm_prev`` or ``comm_next`` fields. Notice that
+there are still events recorded for perf, but notice that those events
+don't have values of ``perf`` for the filtered fields. To completely
+filter out anything from perf will require a bit more work, but for the
+purpose of demonstrating how to use filters, it's close enough.
+
+.. admonition:: Tying it Together
+
+ These are exactly the same set of event filters defined by the trace
+ event subsystem. See the ftrace / trace-cmd / KernelShark section for more
+ discussion about these event filters.
+
+.. admonition:: Tying it Together
+
+ These event filters are implemented by a special-purpose
+ pseudo-interpreter in the kernel and are an integral and
+ indispensable part of the perf design as it relates to tracing.
+ kernel-based event filters provide a mechanism to precisely throttle
+ the event stream that appears in user space, where it makes sense to
+ provide bindings to real programming languages for post-processing the
+ event stream. This architecture allows for the intelligent and
+ flexible partitioning of processing between the kernel and user
+ space. Contrast this with other tools such as SystemTap, which does
+ all of its processing in the kernel and as such requires a special
+ project-defined language in order to accommodate that design, or
+ LTTng, where everything is sent to user space and as such requires a
+ super-efficient kernel-to-user space transport mechanism in order to
+ function properly. While perf certainly can benefit from for instance
+ advances in the design of the transport, it doesn't fundamentally
+ depend on them. Basically, if you find that your perf tracing
+ application is causing buffer I/O overruns, it probably means that
+ you aren't taking enough advantage of the kernel filtering engine.
+
+Using Dynamic Tracepoints
+~~~~~~~~~~~~~~~~~~~~~~~~~
+
+perf isn't restricted to the fixed set of static tracepoints listed by
+``perf list``. Users can also add their own "dynamic" tracepoints anywhere
+in the kernel. For example, suppose we want to define our own
+tracepoint on ``do_fork()``. We can do that using the ``perf probe`` perf
+subcommand::
+
+ root@crownbay:~# perf probe do_fork
+ Added new event:
+ probe:do_fork (on do_fork)
+
+ You can now use it in all perf tools, such as:
+
+ perf record -e probe:do_fork -aR sleep 1
+
+Adding a new tracepoint via
+``perf probe`` results in an event with all the expected files and format
+in ``/sys/kernel/debug/tracing/events``, just the same as for static
+tracepoints (as discussed in more detail in the trace events subsystem
+section::
+
+ root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# ls -al
+ drwxr-xr-x 2 root root 0 Oct 28 11:42 .
+ drwxr-xr-x 3 root root 0 Oct 28 11:42 ..
+ -rw-r--r-- 1 root root 0 Oct 28 11:42 enable
+ -rw-r--r-- 1 root root 0 Oct 28 11:42 filter
+ -r--r--r-- 1 root root 0 Oct 28 11:42 format
+ -r--r--r-- 1 root root 0 Oct 28 11:42 id
+
+ root@crownbay:/sys/kernel/debug/tracing/events/probe/do_fork# cat format
+ name: do_fork
+ ID: 944
+ format:
+ field:unsigned short common_type; offset:0; size:2; signed:0;
+ field:unsigned char common_flags; offset:2; size:1; signed:0;
+ field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
+ field:int common_pid; offset:4; size:4; signed:1;
+ field:int common_padding; offset:8; size:4; signed:1;
+
+ field:unsigned long __probe_ip; offset:12; size:4; signed:0;
+
+ print fmt: "(%lx)", REC->__probe_ip
+
+We can list all dynamic tracepoints currently in
+existence::
+
+ root@crownbay:~# perf probe -l
+ probe:do_fork (on do_fork)
+ probe:schedule (on schedule)
+
+Let's record system-wide (``sleep 30`` is a
+trick for recording system-wide but basically do nothing and then wake
+up after 30 seconds)::
+
+ root@crownbay:~# perf record -g -a -e probe:do_fork sleep 30
+ [ perf record: Woken up 1 times to write data ]
+ [ perf record: Captured and wrote 0.087 MB perf.data (~3812 samples) ]
+
+Using ``perf script`` we can see each ``do_fork`` event that fired::
+
+ root@crownbay:~# perf script
+
+ # ========
+ # captured on: Sun Oct 28 11:55:18 2012
+ # hostname : crownbay
+ # os release : 3.4.11-yocto-standard
+ # perf version : 3.4.11
+ # arch : i686
+ # nrcpus online : 2
+ # nrcpus avail : 2
+ # cpudesc : Intel(R) Atom(TM) CPU E660 @ 1.30GHz
+ # cpuid : GenuineIntel,6,38,1
+ # total memory : 1017184 kB
+ # cmdline : /usr/bin/perf record -g -a -e probe:do_fork sleep 30
+ # event : name = probe:do_fork, type = 2, config = 0x3b0, config1 = 0x0, config2 = 0x0, excl_usr = 0, excl_kern
+ = 0, id = { 5, 6 }
+ # HEADER_CPU_TOPOLOGY info available, use -I to display
+ # ========
+ #
+ matchbox-deskto 1197 [001] 34211.378318: do_fork: (c1028460)
+ matchbox-deskto 1295 [001] 34211.380388: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34211.632350: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34211.639917: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34217.541603: do_fork: (c1028460)
+ matchbox-deskto 1299 [001] 34217.543584: do_fork: (c1028460)
+ gthumb 1300 [001] 34217.697451: do_fork: (c1028460)
+ gthumb 1300 [001] 34219.085734: do_fork: (c1028460)
+ gthumb 1300 [000] 34219.121351: do_fork: (c1028460)
+ gthumb 1300 [001] 34219.264551: do_fork: (c1028460)
+ pcmanfm 1296 [000] 34219.590380: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34224.955965: do_fork: (c1028460)
+ matchbox-deskto 1306 [001] 34224.957972: do_fork: (c1028460)
+ matchbox-termin 1307 [000] 34225.038214: do_fork: (c1028460)
+ matchbox-termin 1307 [001] 34225.044218: do_fork: (c1028460)
+ matchbox-termin 1307 [000] 34225.046442: do_fork: (c1028460)
+ matchbox-deskto 1197 [001] 34237.112138: do_fork: (c1028460)
+ matchbox-deskto 1311 [001] 34237.114106: do_fork: (c1028460)
+ gaku 1312 [000] 34237.202388: do_fork: (c1028460)
+
+And using ``perf report`` on the same file, we can see the
+call graphs from starting a few programs during those 30 seconds:
+
+.. image:: figures/perf-probe-do_fork-profile.png
+ :align: center
+ :width: 70%
+
+.. admonition:: Tying it Together
+
+ The trace events subsystem accommodate static and dynamic tracepoints
+ in exactly the same way --- there's no difference as far as the
+ infrastructure is concerned. See the ftrace section for more details
+ on the trace event subsystem.
+
+.. admonition:: Tying it Together
+
+ Dynamic tracepoints are implemented under the covers by Kprobes and
+ Uprobes. Kprobes and Uprobes are also used by and in fact are the
+ main focus of SystemTap.
+
+perf Documentation
+------------------
+
+Online versions of the manual pages for the commands discussed in this
+section can be found here:
+
+- The `'perf stat' manual page <https://linux.die.net/man/1/perf-stat>`__.
+
+- The `'perf record'
+ manual page <https://linux.die.net/man/1/perf-record>`__.
+
+- The `'perf report'
+ manual page <https://linux.die.net/man/1/perf-report>`__.
+
+- The `'perf probe' manual page <https://linux.die.net/man/1/perf-probe>`__.
+
+- The `'perf script'
+ manual page <https://linux.die.net/man/1/perf-script>`__.
+
+- Documentation on using the `'perf script' Python
+ binding <https://linux.die.net/man/1/perf-script-python>`__.
+
+- The top-level `perf(1) manual page <https://linux.die.net/man/1/perf>`__.
+
+Normally, you should be able to open the manual pages via perf itself
+e.g. ``perf help`` or ``perf help record``.
+
+To have the perf manual pages installed on your target, modify your
+configuration as follows::
+
+ IMAGE_INSTALL:append = " perf perf-doc"
+ DISTRO_FEATURES:append = " api-documentation"
+
+The manual pages in text form, along with some other files, such as a set
+of examples, can also be found in the ``perf`` directory of the kernel tree::
+
+ tools/perf/Documentation
+
+There's also a nice perf tutorial on the perf
+wiki that goes into more detail than we do here in certain areas: `perf
+Tutorial <https://perf.wiki.kernel.org/index.php/Tutorial>`__
+
+ftrace
+======
+
+"ftrace" literally refers to the "ftrace function tracer" but in reality
+this encompasses several related tracers along with the
+infrastructure that they all make use of.
+
+ftrace Setup
+------------
+
+For this section, we'll assume you've already performed the basic setup
+outlined in the ":ref:`profile-manual/intro:General Setup`" section.
+
+ftrace, trace-cmd, and KernelShark run on the target system, and are
+ready to go out-of-the-box --- no additional setup is necessary. For the
+rest of this section we assume you're connected to the host through SSH and
+will be running ftrace on the target. KernelShark is a GUI application and if
+you use the ``-X`` option to ``ssh`` you can have the KernelShark GUI run on
+the target but display remotely on the host if you want.
+
+Basic ftrace usage
+------------------
+
+"ftrace" essentially refers to everything included in the ``/tracing``
+directory of the mounted debugfs filesystem (Yocto follows the standard
+convention and mounts it at ``/sys/kernel/debug``). All the files found in
+``/sys/kernel/debug/tracing`` on a Yocto system are::
+
+ root@sugarbay:/sys/kernel/debug/tracing# ls
+ README kprobe_events trace
+ available_events kprobe_profile trace_clock
+ available_filter_functions options trace_marker
+ available_tracers per_cpu trace_options
+ buffer_size_kb printk_formats trace_pipe
+ buffer_total_size_kb saved_cmdlines tracing_cpumask
+ current_tracer set_event tracing_enabled
+ dyn_ftrace_total_info set_ftrace_filter tracing_on
+ enabled_functions set_ftrace_notrace tracing_thresh
+ events set_ftrace_pid
+ free_buffer set_graph_function
+
+The files listed above are used for various purposes
+--- some relate directly to the tracers themselves, others are used to set
+tracing options, and yet others actually contain the tracing output when
+a tracer is in effect. Some of the functions can be guessed from their
+names, others need explanation; in any case, we'll cover some of the
+files we see here below but for an explanation of the others, please see
+the ftrace documentation.
+
+We'll start by looking at some of the available built-in tracers.
+
+The ``available_tracers`` file lists the set of available tracers::
+
+ root@sugarbay:/sys/kernel/debug/tracing# cat available_tracers
+ blk function_graph function nop
+
+The ``current_tracer`` file contains the tracer currently in effect::
+
+ root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
+ nop
+
+The above listing of ``current_tracer`` shows that the
+``nop`` tracer is in effect, which is just another way of saying that
+there's actually no tracer currently in effect.
+
+Writing one of the available tracers into ``current_tracer`` makes the
+specified tracer the current tracer::
+
+ root@sugarbay:/sys/kernel/debug/tracing# echo function > current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# cat current_tracer
+ function
+
+The above sets the current tracer to be the ``function`` tracer. This tracer
+traces every function call in the kernel and makes it available as the
+contents of the ``trace`` file. Reading the ``trace`` file lists the
+currently buffered function calls that have been traced by the function
+tracer::
+
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+
+ # tracer: function
+ #
+ # entries-in-buffer/entries-written: 310629/766471 #P:8
+ #
+ # _-----=> irqs-off
+ # / _----=> need-resched
+ # | / _---=> hardirq/softirq
+ # || / _--=> preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ <idle>-0 [004] d..1 470.867169: ktime_get_real <-intel_idle
+ <idle>-0 [004] d..1 470.867170: getnstimeofday <-ktime_get_real
+ <idle>-0 [004] d..1 470.867171: ns_to_timeval <-intel_idle
+ <idle>-0 [004] d..1 470.867171: ns_to_timespec <-ns_to_timeval
+ <idle>-0 [004] d..1 470.867172: smp_apic_timer_interrupt <-apic_timer_interrupt
+ <idle>-0 [004] d..1 470.867172: native_apic_mem_write <-smp_apic_timer_interrupt
+ <idle>-0 [004] d..1 470.867172: irq_enter <-smp_apic_timer_interrupt
+ <idle>-0 [004] d..1 470.867172: rcu_irq_enter <-irq_enter
+ <idle>-0 [004] d..1 470.867173: rcu_idle_exit_common.isra.33 <-rcu_irq_enter
+ <idle>-0 [004] d..1 470.867173: local_bh_disable <-irq_enter
+ <idle>-0 [004] d..1 470.867173: add_preempt_count <-local_bh_disable
+ <idle>-0 [004] d.s1 470.867174: tick_check_idle <-irq_enter
+ <idle>-0 [004] d.s1 470.867174: tick_check_oneshot_broadcast <-tick_check_idle
+ <idle>-0 [004] d.s1 470.867174: ktime_get <-tick_check_idle
+ <idle>-0 [004] d.s1 470.867174: tick_nohz_stop_idle <-tick_check_idle
+ <idle>-0 [004] d.s1 470.867175: update_ts_time_stats <-tick_nohz_stop_idle
+ <idle>-0 [004] d.s1 470.867175: nr_iowait_cpu <-update_ts_time_stats
+ <idle>-0 [004] d.s1 470.867175: tick_do_update_jiffies64 <-tick_check_idle
+ <idle>-0 [004] d.s1 470.867175: _raw_spin_lock <-tick_do_update_jiffies64
+ <idle>-0 [004] d.s1 470.867176: add_preempt_count <-_raw_spin_lock
+ <idle>-0 [004] d.s2 470.867176: do_timer <-tick_do_update_jiffies64
+ <idle>-0 [004] d.s2 470.867176: _raw_spin_lock <-do_timer
+ <idle>-0 [004] d.s2 470.867176: add_preempt_count <-_raw_spin_lock
+ <idle>-0 [004] d.s3 470.867177: ntp_tick_length <-do_timer
+ <idle>-0 [004] d.s3 470.867177: _raw_spin_lock_irqsave <-ntp_tick_length
+ .
+ .
+ .
+
+Each line in the trace above shows what was happening in the kernel on a given
+CPU, to the level of detail of function calls. Each entry shows the function
+called, followed by its caller (after the arrow).
+
+The function tracer gives you an extremely detailed idea of what the
+kernel was doing at the point in time the trace was taken, and is a
+great way to learn about how the kernel code works in a dynamic sense.
+
+.. admonition:: Tying it Together
+
+ The ftrace function tracer is also available from within perf, as the
+ ``ftrace:function`` tracepoint.
+
+It is a little more difficult to follow the call chains than it needs to
+be --- luckily there's a variant of the function tracer that displays the
+call chains explicitly, called the ``function_graph`` tracer::
+
+ root@sugarbay:/sys/kernel/debug/tracing# echo function_graph > current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+
+ tracer: function_graph
+
+ CPU DURATION FUNCTION CALLS
+ | | | | | | |
+ 7) 0.046 us | pick_next_task_fair();
+ 7) 0.043 us | pick_next_task_stop();
+ 7) 0.042 us | pick_next_task_rt();
+ 7) 0.032 us | pick_next_task_fair();
+ 7) 0.030 us | pick_next_task_idle();
+ 7) | _raw_spin_unlock_irq() {
+ 7) 0.033 us | sub_preempt_count();
+ 7) 0.258 us | }
+ 7) 0.032 us | sub_preempt_count();
+ 7) + 13.341 us | } /* __schedule */
+ 7) 0.095 us | } /* sub_preempt_count */
+ 7) | schedule() {
+ 7) | __schedule() {
+ 7) 0.060 us | add_preempt_count();
+ 7) 0.044 us | rcu_note_context_switch();
+ 7) | _raw_spin_lock_irq() {
+ 7) 0.033 us | add_preempt_count();
+ 7) 0.247 us | }
+ 7) | idle_balance() {
+ 7) | _raw_spin_unlock() {
+ 7) 0.031 us | sub_preempt_count();
+ 7) 0.246 us | }
+ 7) | update_shares() {
+ 7) 0.030 us | __rcu_read_lock();
+ 7) 0.029 us | __rcu_read_unlock();
+ 7) 0.484 us | }
+ 7) 0.030 us | __rcu_read_lock();
+ 7) | load_balance() {
+ 7) | find_busiest_group() {
+ 7) 0.031 us | idle_cpu();
+ 7) 0.029 us | idle_cpu();
+ 7) 0.035 us | idle_cpu();
+ 7) 0.906 us | }
+ 7) 1.141 us | }
+ 7) 0.022 us | msecs_to_jiffies();
+ 7) | load_balance() {
+ 7) | find_busiest_group() {
+ 7) 0.031 us | idle_cpu();
+ .
+ .
+ .
+ 4) 0.062 us | msecs_to_jiffies();
+ 4) 0.062 us | __rcu_read_unlock();
+ 4) | _raw_spin_lock() {
+ 4) 0.073 us | add_preempt_count();
+ 4) 0.562 us | }
+ 4) + 17.452 us | }
+ 4) 0.108 us | put_prev_task_fair();
+ 4) 0.102 us | pick_next_task_fair();
+ 4) 0.084 us | pick_next_task_stop();
+ 4) 0.075 us | pick_next_task_rt();
+ 4) 0.062 us | pick_next_task_fair();
+ 4) 0.066 us | pick_next_task_idle();
+ ------------------------------------------
+ 4) kworker-74 => <idle>-0
+ ------------------------------------------
+
+ 4) | finish_task_switch() {
+ 4) | _raw_spin_unlock_irq() {
+ 4) 0.100 us | sub_preempt_count();
+ 4) 0.582 us | }
+ 4) 1.105 us | }
+ 4) 0.088 us | sub_preempt_count();
+ 4) ! 100.066 us | }
+ .
+ .
+ .
+ 3) | sys_ioctl() {
+ 3) 0.083 us | fget_light();
+ 3) | security_file_ioctl() {
+ 3) 0.066 us | cap_file_ioctl();
+ 3) 0.562 us | }
+ 3) | do_vfs_ioctl() {
+ 3) | drm_ioctl() {
+ 3) 0.075 us | drm_ut_debug_printk();
+ 3) | i915_gem_pwrite_ioctl() {
+ 3) | i915_mutex_lock_interruptible() {
+ 3) 0.070 us | mutex_lock_interruptible();
+ 3) 0.570 us | }
+ 3) | drm_gem_object_lookup() {
+ 3) | _raw_spin_lock() {
+ 3) 0.080 us | add_preempt_count();
+ 3) 0.620 us | }
+ 3) | _raw_spin_unlock() {
+ 3) 0.085 us | sub_preempt_count();
+ 3) 0.562 us | }
+ 3) 2.149 us | }
+ 3) 0.133 us | i915_gem_object_pin();
+ 3) | i915_gem_object_set_to_gtt_domain() {
+ 3) 0.065 us | i915_gem_object_flush_gpu_write_domain();
+ 3) 0.065 us | i915_gem_object_wait_rendering();
+ 3) 0.062 us | i915_gem_object_flush_cpu_write_domain();
+ 3) 1.612 us | }
+ 3) | i915_gem_object_put_fence() {
+ 3) 0.097 us | i915_gem_object_flush_fence.constprop.36();
+ 3) 0.645 us | }
+ 3) 0.070 us | add_preempt_count();
+ 3) 0.070 us | sub_preempt_count();
+ 3) 0.073 us | i915_gem_object_unpin();
+ 3) 0.068 us | mutex_unlock();
+ 3) 9.924 us | }
+ 3) + 11.236 us | }
+ 3) + 11.770 us | }
+ 3) + 13.784 us | }
+ 3) | sys_ioctl() {
+
+As you can see, the ``function_graph`` display is much easier
+to follow. Also note that in addition to the function calls and
+associated braces, other events such as scheduler events are displayed
+in context. In fact, you can freely include any tracepoint available in
+the trace events subsystem described in the next section by just
+enabling those events, and they'll appear in context in the function
+graph display. Quite a powerful tool for understanding kernel dynamics.
+
+Also notice that there are various annotations on the left hand side of
+the display. For example if the total time it took for a given function
+to execute is above a certain threshold, an exclamation point or plus
+sign appears on the left hand side. Please see the ftrace documentation
+for details on all these fields.
+
+The 'trace events' Subsystem
+----------------------------
+
+One especially important directory contained within the
+``/sys/kernel/debug/tracing`` directory is the ``events`` subdirectory, which
+contains representations of every tracepoint in the system. Listing out
+the contents of the ``events`` subdirectory, we see mainly another set of
+subdirectories::
+
+ root@sugarbay:/sys/kernel/debug/tracing# cd events
+ root@sugarbay:/sys/kernel/debug/tracing/events# ls -al
+ drwxr-xr-x 38 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 ..
+ drwxr-xr-x 19 root root 0 Nov 14 23:19 block
+ drwxr-xr-x 32 root root 0 Nov 14 23:19 btrfs
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 drm
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ drwxr-xr-x 40 root root 0 Nov 14 23:19 ext3
+ drwxr-xr-x 79 root root 0 Nov 14 23:19 ext4
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 ftrace
+ drwxr-xr-x 8 root root 0 Nov 14 23:19 hda
+ -r--r--r-- 1 root root 0 Nov 14 23:19 header_event
+ -r--r--r-- 1 root root 0 Nov 14 23:19 header_page
+ drwxr-xr-x 25 root root 0 Nov 14 23:19 i915
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 irq
+ drwxr-xr-x 12 root root 0 Nov 14 23:19 jbd
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 jbd2
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 kmem
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 module
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 napi
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 net
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 oom
+ drwxr-xr-x 12 root root 0 Nov 14 23:19 power
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 printk
+ drwxr-xr-x 8 root root 0 Nov 14 23:19 random
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 raw_syscalls
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 rcu
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 rpm
+ drwxr-xr-x 20 root root 0 Nov 14 23:19 sched
+ drwxr-xr-x 7 root root 0 Nov 14 23:19 scsi
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 signal
+ drwxr-xr-x 5 root root 0 Nov 14 23:19 skb
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 sock
+ drwxr-xr-x 10 root root 0 Nov 14 23:19 sunrpc
+ drwxr-xr-x 538 root root 0 Nov 14 23:19 syscalls
+ drwxr-xr-x 4 root root 0 Nov 14 23:19 task
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 timer
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 udp
+ drwxr-xr-x 21 root root 0 Nov 14 23:19 vmscan
+ drwxr-xr-x 3 root root 0 Nov 14 23:19 vsyscall
+ drwxr-xr-x 6 root root 0 Nov 14 23:19 workqueue
+ drwxr-xr-x 26 root root 0 Nov 14 23:19 writeback
+
+Each one of these subdirectories
+corresponds to a "subsystem" and contains yet again more subdirectories,
+each one of those finally corresponding to a tracepoint. For example,
+here are the contents of the ``kmem`` subsystem::
+
+ root@sugarbay:/sys/kernel/debug/tracing/events# cd kmem
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem# ls -al
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 38 root root 0 Nov 14 23:19 ..
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kfree
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmalloc_node
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_alloc_node
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 kmem_cache_free
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_extfrag
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_alloc_zone_locked
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_free_batched
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 mm_page_pcpu_drain
+
+Let's see what's inside the subdirectory for a
+specific tracepoint, in this case the one for ``kmalloc``::
+
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem# cd kmalloc
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# ls -al
+ drwxr-xr-x 2 root root 0 Nov 14 23:19 .
+ drwxr-xr-x 14 root root 0 Nov 14 23:19 ..
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 enable
+ -rw-r--r-- 1 root root 0 Nov 14 23:19 filter
+ -r--r--r-- 1 root root 0 Nov 14 23:19 format
+ -r--r--r-- 1 root root 0 Nov 14 23:19 id
+
+The ``format`` file for the
+tracepoint describes the event in memory, which is used by the various
+tracing tools that now make use of these tracepoint to parse the event
+and make sense of it, along with a ``print fmt`` field that allows tools
+like ftrace to display the event as text. The format of the
+``kmalloc`` event looks like::
+
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# cat format
+ name: kmalloc
+ ID: 313
+ format:
+ field:unsigned short common_type; offset:0; size:2; signed:0;
+ field:unsigned char common_flags; offset:2; size:1; signed:0;
+ field:unsigned char common_preempt_count; offset:3; size:1; signed:0;
+ field:int common_pid; offset:4; size:4; signed:1;
+ field:int common_padding; offset:8; size:4; signed:1;
+
+ field:unsigned long call_site; offset:16; size:8; signed:0;
+ field:const void * ptr; offset:24; size:8; signed:0;
+ field:size_t bytes_req; offset:32; size:8; signed:0;
+ field:size_t bytes_alloc; offset:40; size:8; signed:0;
+ field:gfp_t gfp_flags; offset:48; size:4; signed:0;
+
+ print fmt: "call_site=%lx ptr=%p bytes_req=%zu bytes_alloc=%zu gfp_flags=%s", REC->call_site, REC->ptr, REC->bytes_req, REC->bytes_alloc,
+ (REC->gfp_flags) ? __print_flags(REC->gfp_flags, "|", {(unsigned long)(((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u) | (( gfp_t)0x02u) | (( gfp_t)0x08u)) | (( gfp_t)0x4000u) | (( gfp_t)0x10000u) | (( gfp_t)0x1000u) | (( gfp_t)0x200u) | ((
+ gfp_t)0x400000u)), "GFP_TRANSHUGE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x20000u) | ((
+ gfp_t)0x02u) | (( gfp_t)0x08u)), "GFP_HIGHUSER_MOVABLE"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u) | (( gfp_t)0x02u)), "GFP_HIGHUSER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | ((
+ gfp_t)0x20000u)), "GFP_USER"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u) | (( gfp_t)0x80000u)), GFP_TEMPORARY"},
+ {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u) | (( gfp_t)0x80u)), "GFP_KERNEL"}, {(unsigned long)((( gfp_t)0x10u) | (( gfp_t)0x40u)),
+ "GFP_NOFS"}, {(unsigned long)((( gfp_t)0x20u)), "GFP_ATOMIC"}, {(unsigned long)((( gfp_t)0x10u)), "GFP_NOIO"}, {(unsigned long)((
+ gfp_t)0x20u), "GFP_HIGH"}, {(unsigned long)(( gfp_t)0x10u), "GFP_WAIT"}, {(unsigned long)(( gfp_t)0x40u), "GFP_IO"}, {(unsigned long)((
+ gfp_t)0x100u), "GFP_COLD"}, {(unsigned long)(( gfp_t)0x200u), "GFP_NOWARN"}, {(unsigned long)(( gfp_t)0x400u), "GFP_REPEAT"}, {(unsigned
+ long)(( gfp_t)0x800u), "GFP_NOFAIL"}, {(unsigned long)(( gfp_t)0x1000u), "GFP_NORETRY"}, {(unsigned long)(( gfp_t)0x4000u), "GFP_COMP"},
+ {(unsigned long)(( gfp_t)0x8000u), "GFP_ZERO"}, {(unsigned long)(( gfp_t)0x10000u), "GFP_NOMEMALLOC"}, {(unsigned long)(( gfp_t)0x20000u),
+ "GFP_HARDWALL"}, {(unsigned long)(( gfp_t)0x40000u), "GFP_THISNODE"}, {(unsigned long)(( gfp_t)0x80000u), "GFP_RECLAIMABLE"}, {(unsigned
+ long)(( gfp_t)0x08u), "GFP_MOVABLE"}, {(unsigned long)(( gfp_t)0), "GFP_NOTRACK"}, {(unsigned long)(( gfp_t)0x400000u), "GFP_NO_KSWAPD"},
+ {(unsigned long)(( gfp_t)0x800000u), "GFP_OTHER_NODE"} ) : "GFP_NOWAIT"
+
+The ``enable`` file
+in the tracepoint directory is what allows the user (or tools such as
+``trace-cmd``) to actually turn the tracepoint on and off. When enabled, the
+corresponding tracepoint will start appearing in the ftrace ``trace`` file
+described previously. For example, this turns on the ``kmalloc`` tracepoint::
+
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 1 > enable
+
+At the moment, we're not interested in the function tracer or
+some other tracer that might be in effect, so we first turn it off, but
+if we do that, we still need to turn tracing on in order to see the
+events in the output buffer::
+
+ root@sugarbay:/sys/kernel/debug/tracing# echo nop > current_tracer
+ root@sugarbay:/sys/kernel/debug/tracing# echo 1 > tracing_on
+
+Now, if we look at the ``trace`` file, we see nothing
+but the ``kmalloc`` events we just turned on::
+
+ root@sugarbay:/sys/kernel/debug/tracing# cat trace | less
+ # tracer: nop
+ #
+ # entries-in-buffer/entries-written: 1897/1897 #P:8
+ #
+ # _-----=> irqs-off
+ # / _----=> need-resched
+ # | / _---=> hardirq/softirq
+ # || / _--=> preempt-depth
+ # ||| / delay
+ # TASK-PID CPU# |||| TIMESTAMP FUNCTION
+ # | | | |||| | |
+ dropbear-1465 [000] ...1 18154.620753: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18154.621640: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ <idle>-0 [000] ..s3 18154.621656: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18154.755472: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f0e00 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18154.755581: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18154.755583: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18154.755589: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ matchbox-termin-1361 [001] ...1 18155.354594: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db35400 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18155.354703: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18155.354705: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18155.354711: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ <idle>-0 [000] ..s3 18155.673319: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.673525: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18155.674821: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ <idle>-0 [000] ..s3 18155.793014: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.793219: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18155.794147: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ <idle>-0 [000] ..s3 18155.936705: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18155.936910: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18155.937869: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18155.953667: kmalloc: call_site=ffffffff81614050 ptr=ffff88006d5f2000 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_KERNEL|GFP_REPEAT
+ Xorg-1264 [002] ...1 18155.953775: kmalloc: call_site=ffffffff8141abe8 ptr=ffff8800734f4cc0 bytes_req=168 bytes_alloc=192 gfp_flags=GFP_KERNEL|GFP_NOWARN|GFP_NORETRY
+ Xorg-1264 [002] ...1 18155.953777: kmalloc: call_site=ffffffff814192a3 ptr=ffff88001f822520 bytes_req=24 bytes_alloc=32 gfp_flags=GFP_KERNEL|GFP_ZERO
+ Xorg-1264 [002] ...1 18155.953783: kmalloc: call_site=ffffffff81419edb ptr=ffff8800721a2f00 bytes_req=64 bytes_alloc=64 gfp_flags=GFP_KERNEL|GFP_ZERO
+ <idle>-0 [000] ..s3 18156.176053: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18156.176257: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18156.177717: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ <idle>-0 [000] ..s3 18156.399229: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d555800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ dropbear-1465 [000] ...1 18156.399434: kmalloc: call_site=ffffffff816650d4 ptr=ffff8800729c3000 bytes_http://rostedt.homelinux.com/kernelshark/req=2048 bytes_alloc=2048 gfp_flags=GFP_KERNEL
+ <idle>-0 [000] ..s3 18156.400660: kmalloc: call_site=ffffffff81619b36 ptr=ffff88006d554800 bytes_req=512 bytes_alloc=512 gfp_flags=GFP_ATOMIC
+ matchbox-termin-1361 [001] ...1 18156.552800: kmalloc: call_site=ffffffff81614050 ptr=ffff88006db34800 bytes_req=576 bytes_alloc=1024 gfp_flags=GFP_KERNEL|GFP_REPEAT
+
+To again disable the ``kmalloc`` event, we need to send ``0`` to the ``enable`` file::
+
+ root@sugarbay:/sys/kernel/debug/tracing/events/kmem/kmalloc# echo 0 > enable
+
+You can enable any number of events or complete subsystems (by
+using the ``enable`` file in the subsystem directory) and get an
+arbitrarily fine-grained idea of what's going on in the system by
+enabling as many of the appropriate tracepoints as applicable.
+
+Several tools described in this How-to do just that, including
+``trace-cmd`` and KernelShark in the next section.
+
+.. admonition:: Tying it Together
+
+ These tracepoints and their representation are used not only by
+ ftrace, but by many of the other tools covered in this document and
+ they form a central point of integration for the various tracers
+ available in Linux. They form a central part of the instrumentation
+ for the following tools: perf, LTTng, ftrace, blktrace and SystemTap
+
+.. admonition:: Tying it Together
+
+ Eventually all the special-purpose tracers currently available in
+ ``/sys/kernel/debug/tracing`` will be removed and replaced with
+ equivalent tracers based on the "trace events" subsystem.
+
+trace-cmd / KernelShark
+-----------------------
+
+trace-cmd is essentially an extensive command-line "wrapper" interface
+that hides the details of all the individual files in
+``/sys/kernel/debug/tracing``, allowing users to specify specific particular
+events within the ``/sys/kernel/debug/tracing/events/`` subdirectory and to
+collect traces and avoid having to deal with those details directly.
+
+As yet another layer on top of that, KernelShark provides a GUI that
+allows users to start and stop traces and specify sets of events using
+an intuitive interface, and view the output as both trace events and as
+a per-CPU graphical display. It directly uses trace-cmd as the
+plumbing that accomplishes all that underneath the covers (and actually
+displays the trace-cmd command it uses, as we'll see).
+
+To start a trace using KernelShark, first start this tool::
+
+ root@sugarbay:~# kernelshark
+
+Then open up the ``Capture`` dialog by choosing from the KernelShark menu::
+
+ Capture | Record
+
+That will display the following dialog, which allows you to choose one or more
+events (or even entire subsystems) to trace:
+
+.. image:: figures/kernelshark-choose-events.png
+ :align: center
+ :width: 70%
+
+Note that these are exactly the same sets of events described in the
+previous trace events subsystem section, and in fact is where trace-cmd
+gets them for KernelShark.
+
+In the above screenshot, we've decided to explore the graphics subsystem
+a bit and so have chosen to trace all the tracepoints contained within
+the ``i915`` and ``drm`` subsystems.
+
+After doing that, we can start and stop the trace using the ``Run`` and
+``Stop`` button on the lower right corner of the dialog (the same button
+will turn into the 'Stop' button after the trace has started):
+
+.. image:: figures/kernelshark-output-display.png
+ :align: center
+ :width: 70%
+
+Notice that the right pane shows the exact trace-cmd command-line
+that's used to run the trace, along with the results of the trace-cmd
+run.
+
+Once the ``Stop`` button is pressed, the graphical view magically fills up
+with a colorful per-CPU display of the trace data, along with the
+detailed event listing below that:
+
+.. image:: figures/kernelshark-i915-display.png
+ :align: center
+ :width: 70%
+
+Here's another example, this time a display resulting from tracing ``all
+events``:
+
+.. image:: figures/kernelshark-all.png
+ :align: center
+ :width: 70%
+
+The tool is pretty self-explanatory, but for more detailed information
+on navigating through the data, see the `KernelShark
+website <https://kernelshark.org/Documentation.html>`__.
+
+ftrace Documentation
+--------------------
+
+The documentation for ftrace can be found in the kernel Documentation
+directory::
+
+ Documentation/trace/ftrace.txt
+
+The documentation for the trace event subsystem can also be found in the kernel
+Documentation directory::
+
+ Documentation/trace/events.txt
+
+A nice series of articles on using ftrace and trace-cmd are available at LWN:
+
+- `Debugging the kernel using ftrace - part
+ 1 <https://lwn.net/Articles/365835/>`__
+
+- `Debugging the kernel using ftrace - part
+ 2 <https://lwn.net/Articles/366796/>`__
+
+- `Secrets of the ftrace function
+ tracer <https://lwn.net/Articles/370423/>`__
+
+- `trace-cmd: A front-end for
+ ftrace <https://lwn.net/Articles/410200/>`__
+
+See also `KernelShark's documentation <https://kernelshark.org/Documentation.html>`__
+for further usage details.
+
+An amusing yet useful README (a tracing mini-How-to) can be found in
+``/sys/kernel/debug/tracing/README``.
+
+SystemTap
+=========
+
+SystemTap is a system-wide script-based tracing and profiling tool.
+
+SystemTap scripts are C-like programs that are executed in the kernel to
+gather / print / aggregate data extracted from the context they end up being
+called under.
+
+For example, this probe from the `SystemTap
+tutorial <https://sourceware.org/systemtap/tutorial/>`__ just prints a
+line every time any process on the system runs ``open()`` on a file. For each line,
+it prints the executable name of the program that opened the file, along
+with its PID, and the name of the file it opened (or tried to open), which it
+extracts from the argument string (``argstr``) of the ``open`` system call.
+
+.. code-block:: none
+
+ probe syscall.open
+ {
+ printf ("%s(%d) open (%s)\n", execname(), pid(), argstr)
+ }
+
+ probe timer.ms(4000) # after 4 seconds
+ {
+ exit ()
+ }
+
+Normally, to execute this
+probe, you'd just install SystemTap on the system you want to probe,
+and directly run the probe on that system e.g. assuming the name of the
+file containing the above text is ``trace_open.stp``::
+
+ # stap trace_open.stp
+
+What SystemTap does under the covers to run this probe is 1) parse and
+convert the probe to an equivalent "C" form, 2) compile the "C" form
+into a kernel module, 3) insert the module into the kernel, which arms
+it, and 4) collect the data generated by the probe and display it to the
+user.
+
+In order to accomplish steps 1 and 2, the ``stap`` program needs access to
+the kernel build system that produced the kernel that the probed system
+is running. In the case of a typical embedded system (the "target"), the
+kernel build system unfortunately isn't typically part of the image
+running on the target. It is normally available on the "host" system
+that produced the target image however; in such cases, steps 1 and 2 are
+executed on the host system, and steps 3 and 4 are executed on the
+target system, using only the SystemTap "runtime".
+
+The SystemTap support in Yocto assumes that only steps 3 and 4 are run
+on the target; it is possible to do everything on the target, but this
+section assumes only the typical embedded use-case.
+
+Therefore, what you need to do in order to run a SystemTap script on
+the target is to 1) on the host system, compile the probe into a kernel
+module that makes sense to the target, 2) copy the module onto the
+target system and 3) insert the module into the target kernel, which
+arms it, and 4) collect the data generated by the probe and display it
+to the user.
+
+SystemTap Setup
+---------------
+
+Those are many steps and details, but fortunately Yocto
+includes a script called ``crosstap`` that will take care of those
+details, allowing you to just execute a SystemTap script on the remote
+target, with arguments if necessary.
+
+In order to do this from a remote host, however, you need to have access
+to the build for the image you booted. The ``crosstap`` script provides
+details on how to do this if you run the script on the host without
+having done a build::
+
+ $ crosstap root@192.168.1.88 trace_open.stp
+
+ Error: No target kernel build found.
+ Did you forget to create a local build of your image?
+
+'crosstap' requires a local SDK build of the target system
+(or a build that includes 'tools-profile') in order to build
+kernel modules that can probe the target system.
+
+Practically speaking, that means you need to do the following:
+
+- If you're running a pre-built image, download the release
+ and/or BSP tarballs used to build the image.
+
+- If you're working from git sources, just clone the metadata
+ and BSP layers needed to build the image you'll be booting.
+
+- Make sure you're properly set up to build a new image (see
+ the BSP README and/or the widely available basic documentation
+ that discusses how to build images).
+
+- Build an ``-sdk`` version of the image e.g.::
+
+ $ bitbake core-image-sato-sdk
+
+- Or build a non-SDK image but include the profiling tools
+ (edit ``local.conf`` and add ``tools-profile`` to the end of
+ :term:`EXTRA_IMAGE_FEATURES` variable)::
+
+ $ bitbake core-image-sato
+
+ Once you've build the image on the host system, you're ready to
+ boot it (or the equivalent pre-built image) and use ``crosstap``
+ to probe it (you need to source the environment as usual first)::
+
+ $ source oe-init-build-env
+ $ cd ~/my/systemtap/scripts
+ $ crosstap root@192.168.1.xxx myscript.stp
+
+.. note::
+
+ SystemTap, which uses ``crosstap``, assumes you can establish an SSH
+ connection to the remote target. Please refer to the crosstap wiki
+ page for details on verifying SSH connections. Also, the ability to SSH
+ into the target system is not enabled by default in ``*-minimal`` images.
+
+Therefore, what you need to do is build an SDK image or image with
+``tools-profile`` as detailed in the ":ref:`profile-manual/intro:General Setup`"
+section of this manual, and boot the resulting target image.
+
+.. note::
+
+ If you have a :term:`Build Directory` containing multiple machines, you need
+ to have the :term:`MACHINE` you're connecting to selected in ``local.conf``, and
+ the kernel in that machine's :term:`Build Directory` must match the kernel on
+ the booted system exactly, or you'll get the above ``crosstap`` message
+ when you try to call a script.
+
+Running a Script on a Target
+----------------------------
+
+Once you've done that, you should be able to run a SystemTap script on
+the target::
+
+ $ cd /path/to/yocto
+ $ source oe-init-build-env
+
+ ### Shell environment set up for builds. ###
+
+ You can now run 'bitbake <target>'
+
+ Common targets are:
+ core-image-minimal
+ core-image-sato
+ meta-toolchain
+ meta-ide-support
+
+ You can also run generated QEMU images with a command like 'runqemu qemux86-64'
+
+Once you've done that, you can ``cd`` to whatever
+directory contains your scripts and use ``crosstap`` to run the script::
+
+ $ cd /path/to/my/systemap/script
+ $ crosstap root@192.168.7.2 trace_open.stp
+
+If you get an error connecting to the target e.g.::
+
+ $ crosstap root@192.168.7.2 trace_open.stp
+ error establishing ssh connection on remote 'root@192.168.7.2'
+
+Try connecting to the target through SSH and see what happens::
+
+ $ ssh root@192.168.7.2
+
+Connection problems are often due specifying a wrong IP address or having a ``host key
+verification error``.
+
+If everything worked as planned, you should see something like this
+(enter the password when prompted, or press enter if it's set up to use
+no password):
+
+.. code-block:: none
+
+ $ crosstap root@192.168.7.2 trace_open.stp
+ root@192.168.7.2's password:
+ matchbox-termin(1036) open ("/tmp/vte3FS2LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
+ matchbox-termin(1036) open ("/tmp/vteJMC7LW", O_RDWR|O_CREAT|O_EXCL|O_LARGEFILE, 0600)
+
+SystemTap Documentation
+-----------------------
+
+The SystemTap language reference can be found here: `SystemTap Language
+Reference <https://sourceware.org/systemtap/langref/>`__
+
+Links to other SystemTap documents, tutorials, and examples can be found
+here: `SystemTap documentation
+page <https://sourceware.org/systemtap/documentation.html>`__
+
+Sysprof
+=======
+
+Sysprof is an easy to use system-wide profiler that consists of a
+single window with three panes and a few buttons which allow you to
+start, stop, and view the profile from one place.
+
+Sysprof Setup
+-------------
+
+For this section, we'll assume you've already performed the basic setup
+outlined in the ":ref:`profile-manual/intro:General Setup`" section.
+
+Sysprof is a GUI-based application that runs on the target system. For the rest
+of this document we assume you're connected to the host through SSH and will be
+running Sysprof on the target (you can use the ``-X`` option to ``ssh`` and
+have the Sysprof GUI run on the target but display remotely on the host
+if you want).
+
+Basic Sysprof Usage
+-------------------
+
+To start profiling the system, you just press the ``Start`` button. To
+stop profiling and to start viewing the profile data in one easy step,
+press the ``Profile`` button.
+
+Once you've pressed the profile button, the three panes will fill up
+with profiling data:
+
+.. image:: figures/sysprof-copy-to-user.png
+ :align: center
+ :width: 70%
+
+The left pane shows a list of functions and processes. Selecting one of
+those expands that function in the right pane, showing all its callees.
+Note that this caller-oriented display is essentially the inverse of
+perf's default callee-oriented call chain display.
+
+In the screenshot above, we're focusing on ``__copy_to_user_ll()`` and
+looking up the call chain we can see that one of the callers of
+``__copy_to_user_ll`` is ``sys_read()`` and the complete call path between them.
+Notice that this is essentially a portion of the same information we saw
+in the perf display shown in the perf section of this page.
+
+.. image:: figures/sysprof-copy-from-user.png
+ :align: center
+ :width: 70%
+
+Similarly, the above is a snapshot of the Sysprof display of a
+``copy-from-user`` call chain.
+
+Finally, looking at the third Sysprof pane in the lower left, we can see
+a list of all the callers of a particular function selected in the top
+left pane. In this case, the lower pane is showing all the callers of
+``__mark_inode_dirty``:
+
+.. image:: figures/sysprof-callers.png
+ :align: center
+ :width: 70%
+
+Double-clicking on one of those functions will in turn change the focus
+to the selected function, and so on.
+
+.. admonition:: Tying it Together
+
+ If you like Sysprof's ``caller-oriented`` display, you may be able to
+ approximate it in other tools as well. For example, ``perf report`` has
+ the ``-g`` (``--call-graph``) option that you can experiment with; one of the
+ options is ``caller`` for an inverted caller-based call graph display.
+
+Sysprof Documentation
+---------------------
+
+There doesn't seem to be any documentation for Sysprof, but maybe that's
+because it's pretty self-explanatory. The Sysprof website, however, is here:
+`Sysprof, System-wide Performance Profiler for Linux <http://sysprof.com/>`__
+
+LTTng (Linux Trace Toolkit, next generation)
+============================================
+
+LTTng Setup
+-----------
+
+For this section, we'll assume you've already performed the basic setup
+outlined in the ":ref:`profile-manual/intro:General Setup`" section.
+LTTng is run on the target system by connecting to it through SSH.
+
+Collecting and Viewing Traces
+-----------------------------
+
+Once you've applied the above commits and built and booted your image
+(you need to build the ``core-image-sato-sdk`` image or use one of the other
+methods described in the ":ref:`profile-manual/intro:General Setup`" section), you're ready to start
+tracing.
+
+Collecting and viewing a trace on the target (inside a shell)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+First, from the host, connect to the target through SSH::
+
+ $ ssh -l root 192.168.1.47
+ The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
+ RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
+ Are you sure you want to continue connecting (yes/no)? yes
+ Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
+ root@192.168.1.47's password:
+
+Once on the target, use these steps to create a trace::
+
+ root@crownbay:~# lttng create
+ Spawning a session daemon
+ Session auto-20121015-232120 created.
+ Traces will be written in /home/root/lttng-traces/auto-20121015-232120
+
+Enable the events you want to trace (in this case all kernel events)::
+
+ root@crownbay:~# lttng enable-event --kernel --all
+ All kernel events are enabled in channel channel0
+
+Start the trace::
+
+ root@crownbay:~# lttng start
+ Tracing started for session auto-20121015-232120
+
+And then stop the trace after awhile or after running a particular workload that
+you want to trace::
+
+ root@crownbay:~# lttng stop
+ Tracing stopped for session auto-20121015-232120
+
+You can now view the trace in text form on the target::
+
+ root@crownbay:~# lttng view
+ [23:21:56.989270399] (+?.?????????) sys_geteuid: { 1 }, { }
+ [23:21:56.989278081] (+0.000007682) exit_syscall: { 1 }, { ret = 0 }
+ [23:21:56.989286043] (+0.000007962) sys_pipe: { 1 }, { fildes = 0xB77B9E8C }
+ [23:21:56.989321802] (+0.000035759) exit_syscall: { 1 }, { ret = 0 }
+ [23:21:56.989329345] (+0.000007543) sys_mmap_pgoff: { 1 }, { addr = 0x0, len = 10485760, prot = 3, flags = 131362, fd = 4294967295, pgoff = 0 }
+ [23:21:56.989351694] (+0.000022349) exit_syscall: { 1 }, { ret = -1247805440 }
+ [23:21:56.989432989] (+0.000081295) sys_clone: { 1 }, { clone_flags = 0x411, newsp = 0xB5EFFFE4, parent_tid = 0xFFFFFFFF, child_tid = 0x0 }
+ [23:21:56.989477129] (+0.000044140) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 681660, vruntime = 43367983388 }
+ [23:21:56.989486697] (+0.000009568) sched_migrate_task: { 1 }, { comm = "lttng-consumerd", tid = 1193, prio = 20, orig_cpu = 1, dest_cpu = 1 }
+ [23:21:56.989508418] (+0.000021721) hrtimer_init: { 1 }, { hrtimer = 3970832076, clockid = 1, mode = 1 }
+ [23:21:56.989770462] (+0.000262044) hrtimer_cancel: { 1 }, { hrtimer = 3993865440 }
+ [23:21:56.989771580] (+0.000001118) hrtimer_cancel: { 0 }, { hrtimer = 3993812192 }
+ [23:21:56.989776957] (+0.000005377) hrtimer_expire_entry: { 1 }, { hrtimer = 3993865440, now = 79815980007057, function = 3238465232 }
+ [23:21:56.989778145] (+0.000001188) hrtimer_expire_entry: { 0 }, { hrtimer = 3993812192, now = 79815980008174, function = 3238465232 }
+ [23:21:56.989791695] (+0.000013550) softirq_raise: { 1 }, { vec = 1 }
+ [23:21:56.989795396] (+0.000003701) softirq_raise: { 0 }, { vec = 1 }
+ [23:21:56.989800635] (+0.000005239) softirq_raise: { 0 }, { vec = 9 }
+ [23:21:56.989807130] (+0.000006495) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 330710, vruntime = 43368314098 }
+ [23:21:56.989809993] (+0.000002863) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 1015313, vruntime = 36976733240 }
+ [23:21:56.989818514] (+0.000008521) hrtimer_expire_exit: { 0 }, { hrtimer = 3993812192 }
+ [23:21:56.989819631] (+0.000001117) hrtimer_expire_exit: { 1 }, { hrtimer = 3993865440 }
+ [23:21:56.989821866] (+0.000002235) hrtimer_start: { 0 }, { hrtimer = 3993812192, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
+ [23:21:56.989822984] (+0.000001118) hrtimer_start: { 1 }, { hrtimer = 3993865440, function = 3238465232, expires = 79815981000000, softexpires = 79815981000000 }
+ [23:21:56.989832762] (+0.000009778) softirq_entry: { 1 }, { vec = 1 }
+ [23:21:56.989833879] (+0.000001117) softirq_entry: { 0 }, { vec = 1 }
+ [23:21:56.989838069] (+0.000004190) timer_cancel: { 1 }, { timer = 3993871956 }
+ [23:21:56.989839187] (+0.000001118) timer_cancel: { 0 }, { timer = 3993818708 }
+ [23:21:56.989841492] (+0.000002305) timer_expire_entry: { 1 }, { timer = 3993871956, now = 79515980, function = 3238277552 }
+ [23:21:56.989842819] (+0.000001327) timer_expire_entry: { 0 }, { timer = 3993818708, now = 79515980, function = 3238277552 }
+ [23:21:56.989854831] (+0.000012012) sched_stat_runtime: { 1 }, { comm = "lttng-consumerd", tid = 1193, runtime = 49237, vruntime = 43368363335 }
+ [23:21:56.989855949] (+0.000001118) sched_stat_runtime: { 0 }, { comm = "lttng-sessiond", tid = 1181, runtime = 45121, vruntime = 36976778361 }
+ [23:21:56.989861257] (+0.000005308) sched_stat_sleep: { 1 }, { comm = "kworker/1:1", tid = 21, delay = 9451318 }
+ [23:21:56.989862374] (+0.000001117) sched_stat_sleep: { 0 }, { comm = "kworker/0:0", tid = 4, delay = 9958820 }
+ [23:21:56.989868241] (+0.000005867) sched_wakeup: { 0 }, { comm = "kworker/0:0", tid = 4, prio = 120, success = 1, target_cpu = 0 }
+ [23:21:56.989869358] (+0.000001117) sched_wakeup: { 1 }, { comm = "kworker/1:1", tid = 21, prio = 120, success = 1, target_cpu = 1 }
+ [23:21:56.989877460] (+0.000008102) timer_expire_exit: { 1 }, { timer = 3993871956 }
+ [23:21:56.989878577] (+0.000001117) timer_expire_exit: { 0 }, { timer = 3993818708 }
+ .
+ .
+ .
+
+You can now safely destroy the trace
+session (note that this doesn't delete the trace --- it's still there in
+``~/lttng-traces``)::
+
+ root@crownbay:~# lttng destroy
+ Session auto-20121015-232120 destroyed at /home/root
+
+Note that the trace is saved in a directory of the same name as returned by
+``lttng create``, under the ``~/lttng-traces`` directory (note that you can change this by
+supplying your own name to ``lttng create``)::
+
+ root@crownbay:~# ls -al ~/lttng-traces
+ drwxrwx--- 3 root root 1024 Oct 15 23:21 .
+ drwxr-xr-x 5 root root 1024 Oct 15 23:57 ..
+ drwxrwx--- 3 root root 1024 Oct 15 23:21 auto-20121015-232120
+
+Collecting and viewing a user space trace on the target (inside a shell)
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+For LTTng user space tracing, you need to have a properly instrumented
+user space program. For this example, we'll use the ``hello`` test program
+generated by the ``lttng-ust`` build.
+
+The ``hello`` test program isn't installed on the root filesystem by the ``lttng-ust``
+build, so we need to copy it over manually. First ``cd`` into the build
+directory that contains the ``hello`` executable::
+
+ $ cd build/tmp/work/core2_32-poky-linux/lttng-ust/2.0.5-r0/git/tests/hello/.libs
+
+Copy that over to the target machine::
+
+ $ scp hello root@192.168.1.20:
+
+You now have the instrumented LTTng "hello world" test program on the
+target, ready to test.
+
+First, from the host, connect to the target through SSH::
+
+ $ ssh -l root 192.168.1.47
+ The authenticity of host '192.168.1.47 (192.168.1.47)' can't be established.
+ RSA key fingerprint is 23:bd:c8:b1:a8:71:52:00:ee:00:4f:64:9e:10:b9:7e.
+ Are you sure you want to continue connecting (yes/no)? yes
+ Warning: Permanently added '192.168.1.47' (RSA) to the list of known hosts.
+ root@192.168.1.47's password:
+
+Once on the target, use these steps to create a trace::
+
+ root@crownbay:~# lttng create
+ Session auto-20190303-021943 created.
+ Traces will be written in /home/root/lttng-traces/auto-20190303-021943
+
+Enable the events you want to trace (in this case all user space events)::
+
+ root@crownbay:~# lttng enable-event --userspace --all
+ All UST events are enabled in channel channel0
+
+Start the trace::
+
+ root@crownbay:~# lttng start
+ Tracing started for session auto-20190303-021943
+
+Run the instrumented "hello world" program::
+
+ root@crownbay:~# ./hello
+ Hello, World!
+ Tracing... done.
+
+And then stop the trace after awhile or after running a particular workload
+that you want to trace::
+
+ root@crownbay:~# lttng stop
+ Tracing stopped for session auto-20190303-021943
+
+You can now view the trace in text form on the target::
+
+ root@crownbay:~# lttng view
+ [02:31:14.906146544] (+?.?????????) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 0, intfield2 = 0x0, longfield = 0, netintfield = 0, netintfieldhex = 0x0, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906170360] (+0.000023816) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 1, intfield2 = 0x1, longfield = 1, netintfield = 1, netintfieldhex = 0x1, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906183140] (+0.000012780) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 2, intfield2 = 0x2, longfield = 2, netintfield = 2, netintfieldhex = 0x2, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ [02:31:14.906194385] (+0.000011245) hello:1424 ust_tests_hello:tptest: { cpu_id = 1 }, { intfield = 3, intfield2 = 0x3, longfield = 3, netintfield = 3, netintfieldhex = 0x3, arrfield1 = [ [0] = 1, [1] = 2, [2] = 3 ], arrfield2 = "test", _seqfield1_length = 4, seqfield1 = [ [0] = 116, [1] = 101, [2] = 115, [3] = 116 ], _seqfield2_length = 4, seqfield2 = "test", stringfield = "test", floatfield = 2222, doublefield = 2, boolfield = 1 }
+ .
+ .
+ .
+
+You can now safely destroy the trace session (note that this doesn't delete the
+trace --- it's still there in ``~/lttng-traces``)::
+
+ root@crownbay:~# lttng destroy
+ Session auto-20190303-021943 destroyed at /home/root
+
+LTTng Documentation
+-------------------
+
+You can find the primary LTTng Documentation on the `LTTng
+Documentation <https://lttng.org/docs/>`__ site. The documentation on
+this site is appropriate for intermediate to advanced software
+developers who are working in a Linux environment and are interested in
+efficient software tracing.
+
+For information on LTTng in general, visit the `LTTng
+Project <https://lttng.org/lttng2.0>`__ site. You can find a "Getting
+Started" link on this site that takes you to an LTTng Quick Start.
+
+blktrace
+========
+
+blktrace is a tool for tracing and reporting low-level disk I/O.
+blktrace provides the tracing half of the equation; its output can be
+piped into the blkparse program, which renders the data in a
+human-readable form and does some basic analysis:
+
+blktrace Setup
+--------------
+
+For this section, we'll assume you've already performed the basic setup
+outlined in the ":ref:`profile-manual/intro:General Setup`"
+section.
+
+blktrace is an application that runs on the target system. You can run
+the entire blktrace and blkparse pipeline on the target, or you can run
+blktrace in 'listen' mode on the target and have blktrace and blkparse
+collect and analyze the data on the host (see the
+":ref:`profile-manual/usage:Using blktrace Remotely`" section
+below). For the rest of this section we assume you've to the host through SSH
+and will be running blktrace on the target.
+
+Basic blktrace Usage
+--------------------
+
+To record a trace, just run the ``blktrace`` command, giving it the name
+of the block device you want to trace activity on::
+
+ root@crownbay:~# blktrace /dev/sdc
+
+In another shell, execute a workload you want to trace::
+
+ root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2; sync
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
+
+Press ``Ctrl-C`` in the blktrace shell to stop the trace. It
+will display how many events were logged, along with the per-cpu file
+sizes (blktrace records traces in per-cpu kernel buffers and just
+dumps them to user space for blkparse to merge and sort later)::
+
+ ^C=== sdc ===
+ CPU 0: 7082 events, 332 KiB data
+ CPU 1: 1578 events, 74 KiB data
+ Total: 8660 events (dropped 0), 406 KiB data
+
+If you examine the files saved to disk, you see multiple files, one per CPU and
+with the device name as the first part of the filename::
+
+ root@crownbay:~# ls -al
+ drwxr-xr-x 6 root root 1024 Oct 27 22:39 .
+ drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
+ -rw-r--r-- 1 root root 339938 Oct 27 22:40 sdc.blktrace.0
+ -rw-r--r-- 1 root root 75753 Oct 27 22:40 sdc.blktrace.1
+
+To view the trace events, just call ``blkparse`` in the directory
+containing the trace files, giving it the device name that forms the
+first part of the filenames::
+
+ root@crownbay:~# blkparse sdc
+
+ 8,32 1 1 0.000000000 1225 Q WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 2 0.000025213 1225 G WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 3 0.000033384 1225 P N [jbd2/sdc-8]
+ 8,32 1 4 0.000043301 1225 I WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 0 0.000057270 0 m N cfq1225 insert_request
+ 8,32 1 0 0.000064813 0 m N cfq1225 add_to_rr
+ 8,32 1 5 0.000076336 1225 U N [jbd2/sdc-8] 1
+ 8,32 1 0 0.000088559 0 m N cfq workload slice:150
+ 8,32 1 0 0.000097359 0 m N cfq1225 set_active wl_prio:0 wl_type:1
+ 8,32 1 0 0.000104063 0 m N cfq1225 Not idling. st->count:1
+ 8,32 1 0 0.000112584 0 m N cfq1225 fifo= (null)
+ 8,32 1 0 0.000118730 0 m N cfq1225 dispatch_insert
+ 8,32 1 0 0.000127390 0 m N cfq1225 dispatched a request
+ 8,32 1 0 0.000133536 0 m N cfq1225 activate rq, drv=1
+ 8,32 1 6 0.000136889 1225 D WS 3417048 + 8 [jbd2/sdc-8]
+ 8,32 1 7 0.000360381 1225 Q WS 3417056 + 8 [jbd2/sdc-8]
+ 8,32 1 8 0.000377422 1225 G WS 3417056 + 8 [jbd2/sdc-8]
+ 8,32 1 9 0.000388876 1225 P N [jbd2/sdc-8]
+ 8,32 1 10 0.000397886 1225 Q WS 3417064 + 8 [jbd2/sdc-8]
+ 8,32 1 11 0.000404800 1225 M WS 3417064 + 8 [jbd2/sdc-8]
+ 8,32 1 12 0.000412343 1225 Q WS 3417072 + 8 [jbd2/sdc-8]
+ 8,32 1 13 0.000416533 1225 M WS 3417072 + 8 [jbd2/sdc-8]
+ 8,32 1 14 0.000422121 1225 Q WS 3417080 + 8 [jbd2/sdc-8]
+ 8,32 1 15 0.000425194 1225 M WS 3417080 + 8 [jbd2/sdc-8]
+ 8,32 1 16 0.000431968 1225 Q WS 3417088 + 8 [jbd2/sdc-8]
+ 8,32 1 17 0.000435251 1225 M WS 3417088 + 8 [jbd2/sdc-8]
+ 8,32 1 18 0.000440279 1225 Q WS 3417096 + 8 [jbd2/sdc-8]
+ 8,32 1 19 0.000443911 1225 M WS 3417096 + 8 [jbd2/sdc-8]
+ 8,32 1 20 0.000450336 1225 Q WS 3417104 + 8 [jbd2/sdc-8]
+ 8,32 1 21 0.000454038 1225 M WS 3417104 + 8 [jbd2/sdc-8]
+ 8,32 1 22 0.000462070 1225 Q WS 3417112 + 8 [jbd2/sdc-8]
+ 8,32 1 23 0.000465422 1225 M WS 3417112 + 8 [jbd2/sdc-8]
+ 8,32 1 24 0.000474222 1225 I WS 3417056 + 64 [jbd2/sdc-8]
+ 8,32 1 0 0.000483022 0 m N cfq1225 insert_request
+ 8,32 1 25 0.000489727 1225 U N [jbd2/sdc-8] 1
+ 8,32 1 0 0.000498457 0 m N cfq1225 Not idling. st->count:1
+ 8,32 1 0 0.000503765 0 m N cfq1225 dispatch_insert
+ 8,32 1 0 0.000512914 0 m N cfq1225 dispatched a request
+ 8,32 1 0 0.000518851 0 m N cfq1225 activate rq, drv=2
+ .
+ .
+ .
+ 8,32 0 0 58.515006138 0 m N cfq3551 complete rqnoidle 1
+ 8,32 0 2024 58.516603269 3 C WS 3156992 + 16 [0]
+ 8,32 0 0 58.516626736 0 m N cfq3551 complete rqnoidle 1
+ 8,32 0 0 58.516634558 0 m N cfq3551 arm_idle: 8 group_idle: 0
+ 8,32 0 0 58.516636933 0 m N cfq schedule dispatch
+ 8,32 1 0 58.516971613 0 m N cfq3551 slice expired t=0
+ 8,32 1 0 58.516982089 0 m N cfq3551 sl_used=13 disp=6 charge=13 iops=0 sect=80
+ 8,32 1 0 58.516985511 0 m N cfq3551 del_from_rr
+ 8,32 1 0 58.516990819 0 m N cfq3551 put_queue
+
+ CPU0 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 331, 26,284KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 485, 40,484KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 511, 41,000KiB
+ Read Merges: 0, 0KiB Write Merges: 13, 160KiB
+ Read depth: 0 Write depth: 2
+ IO unplugs: 23 Timer unplugs: 0
+ CPU1 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 249, 15,800KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 42, 1,600KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 16, 1,084KiB
+ Read Merges: 0, 0KiB Write Merges: 40, 276KiB
+ Read depth: 0 Write depth: 2
+ IO unplugs: 30 Timer unplugs: 1
+
+ Total (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 580, 42,084KiB
+ Read Dispatches: 0, 0KiB Write Dispatches: 527, 42,084KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 527, 42,084KiB
+ Read Merges: 0, 0KiB Write Merges: 53, 436KiB
+ IO unplugs: 53 Timer unplugs: 1
+
+ Throughput (R/W): 0KiB/s / 719KiB/s
+ Events (sdc): 6,592 entries
+ Skips: 0 forward (0 - 0.0%)
+ Input file sdc.blktrace.0 added
+ Input file sdc.blktrace.1 added
+
+The report shows each event that was
+found in the blktrace data, along with a summary of the overall block
+I/O traffic during the run. You can look at the
+`blkparse <https://linux.die.net/man/1/blkparse>`__ manual page to learn the
+meaning of each field displayed in the trace listing.
+
+Live Mode
+~~~~~~~~~
+
+blktrace and blkparse are designed from the ground up to be able to
+operate together in a "pipe mode" where the standard output of blktrace can be
+fed directly into the standard input of blkparse::
+
+ root@crownbay:~# blktrace /dev/sdc -o - | blkparse -i -
+
+This enables long-lived tracing sessions
+to run without writing anything to disk, and allows the user to look for
+certain conditions in the trace data in 'real-time' by viewing the trace
+output as it scrolls by on the screen or by passing it along to yet
+another program in the pipeline such as grep which can be used to
+identify and capture conditions of interest.
+
+There's actually another blktrace command that implements the above
+pipeline as a single command, so the user doesn't have to bother typing
+in the above command sequence::
+
+ root@crownbay:~# btrace /dev/sdc
+
+Using blktrace Remotely
+~~~~~~~~~~~~~~~~~~~~~~~
+
+Because blktrace traces block I/O and at the same time normally writes
+its trace data to a block device, and in general because it's not really
+a great idea to make the device being traced the same as the device the
+tracer writes to, blktrace provides a way to trace without perturbing
+the traced device at all by providing native support for sending all
+trace data over the network.
+
+To have blktrace operate in this mode, start blktrace in server mode on the
+host system, which is going to store the captured data::
+
+ $ blktrace -l
+ server: waiting for connections...
+
+On the target system that is going to be traced, start blktrace in client
+mode with the -h option to connect to the host system, also passing it the
+device to trace::
+
+ root@crownbay:~# blktrace -d /dev/sdc -h 192.168.1.43
+ blktrace: connecting to 192.168.1.43
+ blktrace: connected!
+
+On the host system, you should see this::
+
+ server: connection from 192.168.1.43
+
+In another shell, execute a workload you want to trace::
+
+ root@crownbay:/media/sdc# rm linux-2.6.19.2.tar.bz2; wget &YOCTO_DL_URL;/mirror/sources/linux-2.6.19.2.tar.bz2; sync
+ Connecting to downloads.yoctoproject.org (140.211.169.59:80)
+ linux-2.6.19.2.tar.b 100% \|*******************************\| 41727k 0:00:00 ETA
+
+When it's done, do a ``Ctrl-C`` on the target system to stop the
+trace::
+
+ ^C=== sdc ===
+ CPU 0: 7691 events, 361 KiB data
+ CPU 1: 4109 events, 193 KiB data
+ Total: 11800 events (dropped 0), 554 KiB data
+
+On the host system, you should also see a trace summary for the trace
+just ended::
+
+ server: end of run for 192.168.1.43:sdc
+ === sdc ===
+ CPU 0: 7691 events, 361 KiB data
+ CPU 1: 4109 events, 193 KiB data
+ Total: 11800 events (dropped 0), 554 KiB data
+
+The blktrace instance on the host will
+save the target output inside a ``<hostname>-<timestamp>`` directory::
+
+ $ ls -al
+ drwxr-xr-x 10 root root 1024 Oct 28 02:40 .
+ drwxr-sr-x 4 root root 1024 Oct 26 18:24 ..
+ drwxr-xr-x 2 root root 1024 Oct 28 02:40 192.168.1.43-2012-10-28-02:40:56
+
+``cd`` into that directory to see the output files::
+
+ $ ls -l
+ -rw-r--r-- 1 root root 369193 Oct 28 02:44 sdc.blktrace.0
+ -rw-r--r-- 1 root root 197278 Oct 28 02:44 sdc.blktrace.1
+
+And run blkparse on the host system using the device name::
+
+ $ blkparse sdc
+
+ 8,32 1 1 0.000000000 1263 Q RM 6016 + 8 [ls]
+ 8,32 1 0 0.000036038 0 m N cfq1263 alloced
+ 8,32 1 2 0.000039390 1263 G RM 6016 + 8 [ls]
+ 8,32 1 3 0.000049168 1263 I RM 6016 + 8 [ls]
+ 8,32 1 0 0.000056152 0 m N cfq1263 insert_request
+ 8,32 1 0 0.000061600 0 m N cfq1263 add_to_rr
+ 8,32 1 0 0.000075498 0 m N cfq workload slice:300
+ .
+ .
+ .
+ 8,32 0 0 177.266385696 0 m N cfq1267 arm_idle: 8 group_idle: 0
+ 8,32 0 0 177.266388140 0 m N cfq schedule dispatch
+ 8,32 1 0 177.266679239 0 m N cfq1267 slice expired t=0
+ 8,32 1 0 177.266689297 0 m N cfq1267 sl_used=9 disp=6 charge=9 iops=0 sect=56
+ 8,32 1 0 177.266692649 0 m N cfq1267 del_from_rr
+ 8,32 1 0 177.266696560 0 m N cfq1267 put_queue
+
+ CPU0 (sdc):
+ Reads Queued: 0, 0KiB Writes Queued: 270, 21,708KiB
+ Read Dispatches: 59, 2,628KiB Write Dispatches: 495, 39,964KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 90, 2,752KiB Writes Completed: 543, 41,596KiB
+ Read Merges: 0, 0KiB Write Merges: 9, 344KiB
+ Read depth: 2 Write depth: 2
+ IO unplugs: 20 Timer unplugs: 1
+ CPU1 (sdc):
+ Reads Queued: 688, 2,752KiB Writes Queued: 381, 20,652KiB
+ Read Dispatches: 31, 124KiB Write Dispatches: 59, 2,396KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 0, 0KiB Writes Completed: 11, 764KiB
+ Read Merges: 598, 2,392KiB Write Merges: 88, 448KiB
+ Read depth: 2 Write depth: 2
+ IO unplugs: 52 Timer unplugs: 0
+
+ Total (sdc):
+ Reads Queued: 688, 2,752KiB Writes Queued: 651, 42,360KiB
+ Read Dispatches: 90, 2,752KiB Write Dispatches: 554, 42,360KiB
+ Reads Requeued: 0 Writes Requeued: 0
+ Reads Completed: 90, 2,752KiB Writes Completed: 554, 42,360KiB
+ Read Merges: 598, 2,392KiB Write Merges: 97, 792KiB
+ IO unplugs: 72 Timer unplugs: 1
+
+ Throughput (R/W): 15KiB/s / 238KiB/s
+ Events (sdc): 9,301 entries
+ Skips: 0 forward (0 - 0.0%)
+
+You should see the trace events and summary just as you would have if you'd run
+the same command on the target.
+
+Tracing Block I/O via 'ftrace'
+~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
+
+It's also possible to trace block I/O using only
+:ref:`profile-manual/usage:The 'trace events' Subsystem`, which
+can be useful for casual tracing if you don't want to bother dealing with the
+user space tools.
+
+To enable tracing for a given device, use ``/sys/block/xxx/trace/enable``,
+where ``xxx`` is the device name. This for example enables tracing for
+``/dev/sdc``::
+
+ root@crownbay:/sys/kernel/debug/tracing# echo 1 > /sys/block/sdc/trace/enable
+
+Once you've selected the device(s) you want
+to trace, selecting the ``blk`` tracer will turn the blk tracer on::
+
+ root@crownbay:/sys/kernel/debug/tracing# cat available_tracers
+ blk function_graph function nop
+
+ root@crownbay:/sys/kernel/debug/tracing# echo blk > current_tracer
+
+Execute the workload you're interested in::
+
+ root@crownbay:/sys/kernel/debug/tracing# cat /media/sdc/testfile.txt
+
+And look at the output (note here that we're using ``trace_pipe`` instead of
+trace to capture this trace --- this allows us to wait around on the pipe
+for data to appear)::
+
+ root@crownbay:/sys/kernel/debug/tracing# cat trace_pipe
+ cat-3587 [001] d..1 3023.276361: 8,32 Q R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276410: 8,32 m N cfq3587 alloced
+ cat-3587 [001] d..1 3023.276415: 8,32 G R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276424: 8,32 P N [cat]
+ cat-3587 [001] d..2 3023.276432: 8,32 I R 1699848 + 8 [cat]
+ cat-3587 [001] d..1 3023.276439: 8,32 m N cfq3587 insert_request
+ cat-3587 [001] d..1 3023.276445: 8,32 m N cfq3587 add_to_rr
+ cat-3587 [001] d..2 3023.276454: 8,32 U N [cat] 1
+ cat-3587 [001] d..1 3023.276464: 8,32 m N cfq workload slice:150
+ cat-3587 [001] d..1 3023.276471: 8,32 m N cfq3587 set_active wl_prio:0 wl_type:2
+ cat-3587 [001] d..1 3023.276478: 8,32 m N cfq3587 fifo= (null)
+ cat-3587 [001] d..1 3023.276483: 8,32 m N cfq3587 dispatch_insert
+ cat-3587 [001] d..1 3023.276490: 8,32 m N cfq3587 dispatched a request
+ cat-3587 [001] d..1 3023.276497: 8,32 m N cfq3587 activate rq, drv=1
+ cat-3587 [001] d..2 3023.276500: 8,32 D R 1699848 + 8 [cat]
+
+And this turns off tracing for the specified device::
+
+ root@crownbay:/sys/kernel/debug/tracing# echo 0 > /sys/block/sdc/trace/enable
+
+blktrace Documentation
+----------------------
+
+Online versions of the manual pages for the commands discussed in this
+section can be found here:
+
+- https://linux.die.net/man/8/blktrace
+
+- https://linux.die.net/man/1/blkparse
+
+- https://linux.die.net/man/8/btrace
+
+The above manual pages, along with manuals for the other blktrace utilities
+(``btt``, ``blkiomon``, etc) can be found in the ``/doc`` directory of the blktrace
+tools git repository::
+
+ $ git clone git://git.kernel.dk/blktrace.git