summaryrefslogtreecommitdiffstats
path: root/documentation/overview-manual/overview-manual-development-environment.xml
diff options
context:
space:
mode:
Diffstat (limited to 'documentation/overview-manual/overview-manual-development-environment.xml')
-rw-r--r--documentation/overview-manual/overview-manual-development-environment.xml954
1 files changed, 0 insertions, 954 deletions
diff --git a/documentation/overview-manual/overview-manual-development-environment.xml b/documentation/overview-manual/overview-manual-development-environment.xml
deleted file mode 100644
index 8415d1dd70..0000000000
--- a/documentation/overview-manual/overview-manual-development-environment.xml
+++ /dev/null
@@ -1,954 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='overview-development-environment'>
-<title>The Yocto Project Development Environment</title>
-
-<para>
- This chapter takes a look at the Yocto Project development
- environment.
- The chapter provides Yocto Project Development environment concepts that
- help you understand how work is accomplished in an open source environment,
- which is very different as compared to work accomplished in a closed,
- proprietary environment.
-</para>
-
-<para>
- Specifically, this chapter addresses open source philosophy, source
- repositories, workflows, Git, and licensing.
-</para>
-
-<section id='open-source-philosophy'>
- <title>Open Source Philosophy</title>
-
- <para>
- Open source philosophy is characterized by software development
- directed by peer production and collaboration through an active
- community of developers.
- Contrast this to the more standard centralized development models
- used by commercial software companies where a finite set of developers
- produces a product for sale using a defined set of procedures that
- ultimately result in an end product whose architecture and source
- material are closed to the public.
- </para>
-
- <para>
- Open source projects conceptually have differing concurrent agendas,
- approaches, and production.
- These facets of the development process can come from anyone in the
- public (community) who has a stake in the software project.
- The open source environment contains new copyright, licensing, domain,
- and consumer issues that differ from the more traditional development
- environment.
- In an open source environment, the end product, source material,
- and documentation are all available to the public at no cost.
- </para>
-
- <para>
- A benchmark example of an open source project is the Linux kernel,
- which was initially conceived and created by Finnish computer science
- student Linus Torvalds in 1991.
- Conversely, a good example of a non-open source project is the
- <trademark class='registered'>Windows</trademark> family of operating
- systems developed by
- <trademark class='registered'>Microsoft</trademark> Corporation.
- </para>
-
- <para>
- Wikipedia has a good historical description of the Open Source
- Philosophy
- <ulink url='http://en.wikipedia.org/wiki/Open_source'>here</ulink>.
- You can also find helpful information on how to participate in the
- Linux Community
- <ulink url='http://ldn.linuxfoundation.org/book/how-participate-linux-community'>here</ulink>.
- </para>
-</section>
-
-<section id='gs-the-development-host'>
- <title>The Development Host</title>
-
- <para>
- A development host or
- <ulink url='&YOCTO_DOCS_REF_URL;#hardware-build-system-term'>build host</ulink>
- is key to using the Yocto Project.
- Because the goal of the Yocto Project is to develop images or
- applications that run on embedded hardware, development of those
- images and applications generally takes place on a system not
- intended to run the software - the development host.
- </para>
-
- <para>
- You need to set up a development host in order to use it with the
- Yocto Project.
- Most find that it is best to have a native Linux machine function as
- the development host.
- However, it is possible to use a system that does not run Linux
- as its operating system as your development host.
- When you have a Mac or Windows-based system, you can set it up
- as the development host by using
- <ulink url='https://github.com/crops/poky-container'>CROPS</ulink>,
- which leverages
- <ulink url='https://www.docker.com/'>Docker Containers</ulink>.
- Once you take the steps to set up a CROPS machine, you effectively
- have access to a shell environment that is similar to what you see
- when using a Linux-based development host.
- For the steps needed to set up a system using CROPS, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#setting-up-to-use-crops'>Setting Up to Use CROss PlatformS (CROPS)</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- If your development host is going to be a system that runs a Linux
- distribution, steps still exist that you must take to prepare the
- system for use with the Yocto Project.
- You need to be sure that the Linux distribution on the system is
- one that supports the Yocto Project.
- You also need to be sure that the correct set of host packages are
- installed that allow development using the Yocto Project.
- For the steps needed to set up a development host that runs Linux,
- see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#setting-up-a-native-linux-host'>Setting Up a Native Linux Host</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- Once your development host is set up to use the Yocto Project,
- several methods exist for you to do work in the Yocto Project
- environment:
- <itemizedlist>
- <listitem><para>
- <emphasis>Command Lines, BitBake, and Shells:</emphasis>
- Traditional development in the Yocto Project involves using the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>,
- which uses BitBake, in a command-line environment from a shell
- on your development host.
- You can accomplish this from a host that is a native Linux
- machine or from a host that has been set up with CROPS.
- Either way, you create, modify, and build images and
- applications all within a shell-based environment using
- components and tools available through your Linux distribution
- and the Yocto Project.</para>
-
- <para>For a general flow of the build procedures, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#dev-building-a-simple-image'>Building a Simple Image</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- <listitem><para>
- <emphasis>Board Support Package (BSP) Development:</emphasis>
- Development of BSPs involves using the Yocto Project to
- create and test layers that allow easy development of
- images and applications targeted for specific hardware.
- To development BSPs, you need to take some additional steps
- beyond what was described in setting up a development host.
- </para>
-
- <para>The
- <ulink url='&YOCTO_DOCS_BSP_URL;'>Yocto Project Board Support Package (BSP) Developer's Guide</ulink>
- provides BSP-related development information.
- For specifics on development host preparation, see the
- "<ulink url='&YOCTO_DOCS_BSP_URL;#preparing-your-build-host-to-work-with-bsp-layers'>Preparing Your Build Host to Work With BSP Layers</ulink>"
- section in the Yocto Project Board Support Package (BSP)
- Developer's Guide.
- </para></listitem>
- <listitem><para>
- <emphasis>Kernel Development:</emphasis>
- If you are going to be developing kernels using the Yocto
- Project you likely will be using <filename>devtool</filename>.
- A workflow using <filename>devtool</filename> makes kernel
- development quicker by reducing iteration cycle times.</para>
-
- <para>The
- <ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;'>Yocto Project Linux Kernel Development Manual</ulink>
- provides kernel-related development information.
- For specifics on development host preparation, see the
- "<ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;#preparing-the-build-host-to-work-on-the-kernel'>Preparing the Build Host to Work on the Kernel</ulink>"
- section in the Yocto Project Linux Kernel Development Manual.
- </para></listitem>
- <listitem><para>
- <emphasis>Using Toaster:</emphasis>
- The other Yocto Project development method that involves an
- interface that effectively puts the Yocto Project into the
- background is Toaster.
- Toaster provides an interface to the OpenEmbedded build system.
- The interface enables you to configure and run your builds.
- Information about builds is collected and stored in a database.
- You can use Toaster to configure and start builds on multiple
- remote build servers.</para>
-
- <para>For steps that show you how to set up your development
- host to use Toaster and on how to use Toaster in general,
- see the
- <ulink url='&YOCTO_DOCS_TOAST_URL;'>Toaster User Manual</ulink>.
- </para></listitem>
- </itemizedlist>
- </para>
-</section>
-
-<section id='yocto-project-repositories'>
- <title>Yocto Project Source Repositories</title>
-
- <para>
- The Yocto Project team maintains complete source repositories for all
- Yocto Project files at
- <ulink url='&YOCTO_GIT_URL;'></ulink>.
- This web-based source code browser is organized into categories by
- function such as IDE Plugins, Matchbox, Poky, Yocto Linux Kernel, and
- so forth.
- From the interface, you can click on any particular item in the "Name"
- column and see the URL at the bottom of the page that you need to clone
- a Git repository for that particular item.
- Having a local Git repository of the
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>,
- which is usually named "poky", allows
- you to make changes, contribute to the history, and ultimately enhance
- the Yocto Project's tools, Board Support Packages, and so forth.
- </para>
-
- <para>
- For any supported release of Yocto Project, you can also go to the
- <ulink url='&YOCTO_HOME_URL;'>Yocto Project Website</ulink> and
- select the "DOWNLOADS" item from the "SOFTWARE" menu and get a
- released tarball of the <filename>poky</filename> repository, any
- supported BSP tarball, or Yocto Project tools.
- Unpacking these tarballs gives you a snapshot of the released
- files.
- <note><title>Notes</title>
- <itemizedlist>
- <listitem><para>
- The recommended method for setting up the Yocto Project
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>
- and the files for supported BSPs
- (e.g., <filename>meta-intel</filename>) is to use
- <link linkend='git'>Git</link> to create a local copy of
- the upstream repositories.
- </para></listitem>
- <listitem><para>
- Be sure to always work in matching branches for both
- the selected BSP repository and the Source Directory
- (i.e. <filename>poky</filename>) repository.
- For example, if you have checked out the "master" branch
- of <filename>poky</filename> and you are going to use
- <filename>meta-intel</filename>, be sure to checkout the
- "master" branch of <filename>meta-intel</filename>.
- </para></listitem>
- </itemizedlist>
- </note>
- </para>
-
- <para>
- In summary, here is where you can get the project files needed for
- development:
- <itemizedlist>
- <listitem><para id='source-repositories'>
- <emphasis>
- <ulink url='&YOCTO_GIT_URL;'>Source Repositories:</ulink>
- </emphasis>
- This area contains IDE Plugins, Matchbox, Poky, Poky Support,
- Tools, Yocto Linux Kernel, and Yocto Metadata Layers.
- You can create local copies of Git repositories for each of
- these areas.</para>
-
- <para>
- <imagedata fileref="figures/source-repos.png" align="center" width="6in" depth="4in" />
- For steps on how to view and access these upstream Git
- repositories, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#accessing-source-repositories'>Accessing Source Repositories</ulink>"
- Section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- <listitem><para><anchor id='index-downloads' />
- <emphasis>
- <ulink url='&YOCTO_DL_URL;/releases/'>Index of /releases:</ulink>
- </emphasis>
- This is an index of releases such as Poky, Pseudo, installers
- for cross-development toolchains, miscellaneous support
- and all released versions of Yocto Project in the form of
- images or tarballs.
- Downloading and extracting these files does not produce a local
- copy of the Git repository but rather a snapshot of a
- particular release or image.</para>
-
- <para>
- <imagedata fileref="figures/index-downloads.png" align="center" width="6in" depth="3.5in" />
- For steps on how to view and access these files, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#accessing-index-of-releases'>Accessing Index of Releases</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- <listitem><para id='downloads-page'>
- <emphasis>"DOWNLOADS" page for the
- <ulink url='&YOCTO_HOME_URL;'>Yocto Project Website</ulink>:
- </emphasis></para>
-
- <para>The Yocto Project website includes a "DOWNLOADS" page
- accessible through the "SOFTWARE" menu that allows you to
- download any Yocto Project release, tool, and Board Support
- Package (BSP) in tarball form.
- The tarballs are similar to those found in the
- <ulink url='&YOCTO_DL_URL;/releases/'>Index of /releases:</ulink>
- area.</para>
-
- <para>
- <imagedata fileref="figures/yp-download.png" align="center" width="6in" depth="4in" />
- For steps on how to use the "DOWNLOADS" page, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#using-the-downloads-page'>Using the Downloads Page</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- </itemizedlist>
- </para>
-</section>
-
-<section id='gs-git-workflows-and-the-yocto-project'>
- <title>Git Workflows and the Yocto Project</title>
-
- <para>
- Developing using the Yocto Project likely requires the use of
- <link linkend='git'>Git</link>.
- Git is a free, open source distributed version control system
- used as part of many collaborative design environments.
- This section provides workflow concepts using the Yocto Project and
- Git.
- In particular, the information covers basic practices that describe
- roles and actions in a collaborative development environment.
- <note>
- If you are familiar with this type of development environment, you
- might not want to read this section.
- </note>
- </para>
-
- <para>
- The Yocto Project files are maintained using Git in "branches"
- whose Git histories track every change and whose structures
- provide branches for all diverging functionality.
- Although there is no need to use Git, many open source projects do so.
- <para>
-
- </para>
- For the Yocto Project, a key individual called the "maintainer" is
- responsible for the integrity of the "master" branch of a given Git
- repository.
- The "master" branch is the “upstream” repository from which final or
- most recent builds of a project occur.
- The maintainer is responsible for accepting changes from other
- developers and for organizing the underlying branch structure to
- reflect release strategies and so forth.
- <note>
- For information on finding out who is responsible for (maintains)
- a particular area of code in the Yocto Project, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#how-to-submit-a-change'>Submitting a Change to the Yocto Project</ulink>"
- section of the Yocto Project Development Tasks Manual.
- </note>
- </para>
-
- <para>
- The Yocto Project <filename>poky</filename> Git repository also has an
- upstream contribution Git repository named
- <filename>poky-contrib</filename>.
- You can see all the branches in this repository using the web interface
- of the
- <ulink url='&YOCTO_GIT_URL;'>Source Repositories</ulink> organized
- within the "Poky Support" area.
- These branches hold changes (commits) to the project that have been
- submitted or committed by the Yocto Project development team and by
- community members who contribute to the project.
- The maintainer determines if the changes are qualified to be moved
- from the "contrib" branches into the "master" branch of the Git
- repository.
- </para>
-
- <para>
- Developers (including contributing community members) create and
- maintain cloned repositories of upstream branches.
- The cloned repositories are local to their development platforms and
- are used to develop changes.
- When a developer is satisfied with a particular feature or change,
- they "push" the change to the appropriate "contrib" repository.
- </para>
-
- <para>
- Developers are responsible for keeping their local repository
- up-to-date with whatever upstream branch they are working against.
- They are also responsible for straightening out any conflicts that
- might arise within files that are being worked on simultaneously by
- more than one person.
- All this work is done locally on the development host before
- anything is pushed to a "contrib" area and examined at the maintainer’s
- level.
- </para>
-
- <para>
- A somewhat formal method exists by which developers commit changes
- and push them into the "contrib" area and subsequently request that
- the maintainer include them into an upstream branch.
- This process is called “submitting a patch” or "submitting a change."
- For information on submitting patches and changes, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#how-to-submit-a-change'>Submitting a Change to the Yocto Project</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- In summary, a single point of entry
- exists for changes into a "master" or development branch of the
- Git repository, which is controlled by the project’s maintainer.
- And, a set of developers exist who independently develop, test, and
- submit changes to "contrib" areas for the maintainer to examine.
- The maintainer then chooses which changes are going to become a
- permanent part of the project.
- </para>
-
- <para>
- <imagedata fileref="figures/git-workflow.png" width="6in" depth="3in" align="left" scalefit="1" />
- </para>
-
- <para>
- While each development environment is unique, there are some best
- practices or methods that help development run smoothly.
- The following list describes some of these practices.
- For more information about Git workflows, see the workflow topics in
- the
- <ulink url='http://book.git-scm.com'>Git Community Book</ulink>.
- <itemizedlist>
- <listitem><para>
- <emphasis>Make Small Changes:</emphasis>
- It is best to keep the changes you commit small as compared to
- bundling many disparate changes into a single commit.
- This practice not only keeps things manageable but also allows
- the maintainer to more easily include or refuse changes.
- </para></listitem>
- <listitem><para>
- <emphasis>Make Complete Changes:</emphasis>
- It is also good practice to leave the repository in a
- state that allows you to still successfully build your project.
- In other words, do not commit half of a feature,
- then add the other half as a separate, later commit.
- Each commit should take you from one buildable project state
- to another buildable state.
- </para></listitem>
- <listitem><para>
- <emphasis>Use Branches Liberally:</emphasis>
- It is very easy to create, use, and delete local branches in
- your working Git repository on the development host.
- You can name these branches anything you like.
- It is helpful to give them names associated with the particular
- feature or change on which you are working.
- Once you are done with a feature or change and have merged it
- into your local master branch, simply discard the temporary
- branch.
- </para></listitem>
- <listitem><para>
- <emphasis>Merge Changes:</emphasis>
- The <filename>git merge</filename> command allows you to take
- the changes from one branch and fold them into another branch.
- This process is especially helpful when more than a single
- developer might be working on different parts of the same
- feature.
- Merging changes also automatically identifies any collisions
- or "conflicts" that might happen as a result of the same lines
- of code being altered by two different developers.
- </para></listitem>
- <listitem><para>
- <emphasis>Manage Branches:</emphasis>
- Because branches are easy to use, you should use a system
- where branches indicate varying levels of code readiness.
- For example, you can have a "work" branch to develop in, a
- "test" branch where the code or change is tested, a "stage"
- branch where changes are ready to be committed, and so forth.
- As your project develops, you can merge code across the
- branches to reflect ever-increasing stable states of the
- development.
- </para></listitem>
- <listitem><para>
- <emphasis>Use Push and Pull:</emphasis>
- The push-pull workflow is based on the concept of developers
- "pushing" local commits to a remote repository, which is
- usually a contribution repository.
- This workflow is also based on developers "pulling" known
- states of the project down into their local development
- repositories.
- The workflow easily allows you to pull changes submitted by
- other developers from the upstream repository into your
- work area ensuring that you have the most recent software
- on which to develop.
- The Yocto Project has two scripts named
- <filename>create-pull-request</filename> and
- <filename>send-pull-request</filename> that ship with the
- release to facilitate this workflow.
- You can find these scripts in the <filename>scripts</filename>
- folder of the
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
- For information on how to use these scripts, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#pushing-a-change-upstream'>Using Scripts to Push a Change Upstream and Request a Pull</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- <listitem><para>
- <emphasis>Patch Workflow:</emphasis>
- This workflow allows you to notify the maintainer through an
- email that you have a change (or patch) you would like
- considered for the "master" branch of the Git repository.
- To send this type of change, you format the patch and then
- send the email using the Git commands
- <filename>git format-patch</filename> and
- <filename>git send-email</filename>.
- For information on how to use these scripts, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#how-to-submit-a-change'>Submitting a Change to the Yocto Project</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- </itemizedlist>
- </para>
-</section>
-
-<section id='git'>
- <title>Git</title>
-
- <para>
- The Yocto Project makes extensive use of Git, which is a
- free, open source distributed version control system.
- Git supports distributed development, non-linear development,
- and can handle large projects.
- It is best that you have some fundamental understanding
- of how Git tracks projects and how to work with Git if
- you are going to use the Yocto Project for development.
- This section provides a quick overview of how Git works and
- provides you with a summary of some essential Git commands.
- <note><title>Notes</title>
- <itemizedlist>
- <listitem><para>
- For more information on Git, see
- <ulink url='http://git-scm.com/documentation'></ulink>.
- </para></listitem>
- <listitem><para>
- If you need to download Git, it is recommended that you add
- Git to your system through your distribution's "software
- store" (e.g. for Ubuntu, use the Ubuntu Software feature).
- For the Git download page, see
- <ulink url='http://git-scm.com/download'></ulink>.
- </para></listitem>
- <listitem><para>
- For information beyond the introductory nature in this
- section, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#locating-yocto-project-source-files'>Locating Yocto Project Source Files</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- </itemizedlist>
- </note>
- </para>
-
- <section id='repositories-tags-and-branches'>
- <title>Repositories, Tags, and Branches</title>
-
- <para>
- As mentioned briefly in the previous section and also in the
- "<link linkend='gs-git-workflows-and-the-yocto-project'>Git Workflows and the Yocto Project</link>"
- section, the Yocto Project maintains source repositories at
- <ulink url='&YOCTO_GIT_URL;'></ulink>.
- If you look at this web-interface of the repositories, each item
- is a separate Git repository.
- </para>
-
- <para>
- Git repositories use branching techniques that track content
- change (not files) within a project (e.g. a new feature or updated
- documentation).
- Creating a tree-like structure based on project divergence allows
- for excellent historical information over the life of a project.
- This methodology also allows for an environment from which you can
- do lots of local experimentation on projects as you develop
- changes or new features.
- </para>
-
- <para>
- A Git repository represents all development efforts for a given
- project.
- For example, the Git repository <filename>poky</filename> contains
- all changes and developments for that repository over the course
- of its entire life.
- That means that all changes that make up all releases are captured.
- The repository maintains a complete history of changes.
- </para>
-
- <para>
- You can create a local copy of any repository by "cloning" it
- with the <filename>git clone</filename> command.
- When you clone a Git repository, you end up with an identical
- copy of the repository on your development system.
- Once you have a local copy of a repository, you can take steps to
- develop locally.
- For examples on how to clone Git repositories, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#locating-yocto-project-source-files'>Locating Yocto Project Source Files</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- It is important to understand that Git tracks content change and
- not files.
- Git uses "branches" to organize different development efforts.
- For example, the <filename>poky</filename> repository has
- several branches that include the current "&DISTRO_NAME_NO_CAP;"
- branch, the "master" branch, and many branches for past
- Yocto Project releases.
- You can see all the branches by going to
- <ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/'></ulink> and
- clicking on the
- <filename><ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/refs/heads'>[...]</ulink></filename>
- link beneath the "Branch" heading.
- </para>
-
- <para>
- Each of these branches represents a specific area of development.
- The "master" branch represents the current or most recent
- development.
- All other branches represent offshoots of the "master" branch.
- </para>
-
- <para>
- When you create a local copy of a Git repository, the copy has
- the same set of branches as the original.
- This means you can use Git to create a local working area
- (also called a branch) that tracks a specific development branch
- from the upstream source Git repository.
- in other words, you can define your local Git environment to
- work on any development branch in the repository.
- To help illustrate, consider the following example Git commands:
- <literallayout class='monospaced'>
- $ cd ~
- $ git clone git://git.yoctoproject.org/poky
- $ cd poky
- $ git checkout -b &DISTRO_NAME_NO_CAP; origin/&DISTRO_NAME_NO_CAP;
- </literallayout>
- In the previous example after moving to the home directory, the
- <filename>git clone</filename> command creates a
- local copy of the upstream <filename>poky</filename> Git repository.
- By default, Git checks out the "master" branch for your work.
- After changing the working directory to the new local repository
- (i.e. <filename>poky</filename>), the
- <filename>git checkout</filename> command creates
- and checks out a local branch named "&DISTRO_NAME_NO_CAP;", which
- tracks the upstream "origin/&DISTRO_NAME_NO_CAP;" branch.
- Changes you make while in this branch would ultimately affect
- the upstream "&DISTRO_NAME_NO_CAP;" branch of the
- <filename>poky</filename> repository.
- </para>
-
- <para>
- It is important to understand that when you create and checkout a
- local working branch based on a branch name,
- your local environment matches the "tip" of that particular
- development branch at the time you created your local branch,
- which could be different from the files in the "master" branch
- of the upstream repository.
- In other words, creating and checking out a local branch based on
- the "&DISTRO_NAME_NO_CAP;" branch name is not the same as
- checking out the "master" branch in the repository.
- Keep reading to see how you create a local snapshot of a Yocto
- Project Release.
- </para>
-
- <para>
- Git uses "tags" to mark specific changes in a repository branch
- structure.
- Typically, a tag is used to mark a special point such as the final
- change (or commit) before a project is released.
- You can see the tags used with the <filename>poky</filename> Git
- repository by going to
- <ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/'></ulink> and
- clicking on the
- <filename><ulink url='&YOCTO_GIT_URL;/cgit.cgi/poky/refs/tags'>[...]</ulink></filename>
- link beneath the "Tag" heading.
- </para>
-
- <para>
- Some key tags for the <filename>poky</filename> repository are
- <filename>jethro-14.0.3</filename>,
- <filename>morty-16.0.1</filename>,
- <filename>pyro-17.0.0</filename>, and
- <filename>&DISTRO_NAME_NO_CAP;-&POKYVERSION;</filename>.
- These tags represent Yocto Project releases.
- </para>
-
- <para>
- When you create a local copy of the Git repository, you also
- have access to all the tags in the upstream repository.
- Similar to branches, you can create and checkout a local working
- Git branch based on a tag name.
- When you do this, you get a snapshot of the Git repository that
- reflects the state of the files when the change was made associated
- with that tag.
- The most common use is to checkout a working branch that matches
- a specific Yocto Project release.
- Here is an example:
- <literallayout class='monospaced'>
- $ cd ~
- $ git clone git://git.yoctoproject.org/poky
- $ cd poky
- $ git fetch --tags
- $ git checkout tags/rocko-18.0.0 -b my_rocko-18.0.0
- </literallayout>
- In this example, the name of the top-level directory of your
- local Yocto Project repository is <filename>poky</filename>.
- After moving to the <filename>poky</filename> directory, the
- <filename>git fetch</filename> command makes all the upstream
- tags available locally in your repository.
- Finally, the <filename>git checkout</filename> command
- creates and checks out a branch named "my-rocko-18.0.0" that is
- based on the upstream branch whose "HEAD" matches the
- commit in the repository associated with the "rocko-18.0.0" tag.
- The files in your repository now exactly match that particular
- Yocto Project release as it is tagged in the upstream Git
- repository.
- It is important to understand that when you create and
- checkout a local working branch based on a tag, your environment
- matches a specific point in time and not the entire development
- branch (i.e. from the "tip" of the branch backwards).
- </para>
- </section>
-
- <section id='basic-commands'>
- <title>Basic Commands</title>
-
- <para>
- Git has an extensive set of commands that lets you manage changes
- and perform collaboration over the life of a project.
- Conveniently though, you can manage with a small set of basic
- operations and workflows once you understand the basic
- philosophy behind Git.
- You do not have to be an expert in Git to be functional.
- A good place to look for instruction on a minimal set of Git
- commands is
- <ulink url='http://git-scm.com/documentation'>here</ulink>.
- </para>
-
- <para>
- The following list of Git commands briefly describes some basic
- Git operations as a way to get started.
- As with any set of commands, this list (in most cases) simply shows
- the base command and omits the many arguments it supports.
- See the Git documentation for complete descriptions and strategies
- on how to use these commands:
- <itemizedlist>
- <listitem><para>
- <emphasis><filename>git init</filename>:</emphasis>
- Initializes an empty Git repository.
- You cannot use Git commands unless you have a
- <filename>.git</filename> repository.
- </para></listitem>
- <listitem><para id='git-commands-clone'>
- <emphasis><filename>git clone</filename>:</emphasis>
- Creates a local clone of a Git repository that is on
- equal footing with a fellow developer’s Git repository
- or an upstream repository.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git add</filename>:</emphasis>
- Locally stages updated file contents to the index that
- Git uses to track changes.
- You must stage all files that have changed before you
- can commit them.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git commit</filename>:</emphasis>
- Creates a local "commit" that documents the changes you
- made.
- Only changes that have been staged can be committed.
- Commits are used for historical purposes, for determining
- if a maintainer of a project will allow the change,
- and for ultimately pushing the change from your local
- Git repository into the project’s upstream repository.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git status</filename>:</emphasis>
- Reports any modified files that possibly need to be
- staged and gives you a status of where you stand regarding
- local commits as compared to the upstream repository.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git checkout</filename> <replaceable>branch-name</replaceable>:</emphasis>
- Changes your local working branch and in this form
- assumes the local branch already exists.
- This command is analogous to "cd".
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git checkout –b</filename> <replaceable>working-branch</replaceable> <replaceable>upstream-branch</replaceable>:</emphasis>
- Creates and checks out a working branch on your local
- machine.
- The local branch tracks the upstream branch.
- You can use your local branch to isolate your work.
- It is a good idea to use local branches when adding
- specific features or changes.
- Using isolated branches facilitates easy removal of
- changes if they do not work out.
- </para></listitem>
- <listitem><para><emphasis><filename>git branch</filename>:</emphasis>
- Displays the existing local branches associated with your
- local repository.
- The branch that you have currently checked out is noted
- with an asterisk character.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git branch -D</filename> <replaceable>branch-name</replaceable>:</emphasis>
- Deletes an existing local branch.
- You need to be in a local branch other than the one you
- are deleting in order to delete
- <replaceable>branch-name</replaceable>.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git pull --rebase</filename>:</emphasis>
- Retrieves information from an upstream Git repository
- and places it in your local Git repository.
- You use this command to make sure you are synchronized with
- the repository from which you are basing changes
- (.e.g. the "master" branch).
- The "--rebase" option ensures that any local commits you
- have in your branch are preserved at the top of your
- local branch.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git push</filename> <replaceable>repo-name</replaceable> <replaceable>local-branch</replaceable><filename>:</filename><replaceable>upstream-branch</replaceable>:</emphasis>
- Sends all your committed local changes to the upstream Git
- repository that your local repository is tracking
- (e.g. a contribution repository).
- The maintainer of the project draws from these repositories
- to merge changes (commits) into the appropriate branch
- of project's upstream repository.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git merge</filename>:</emphasis>
- Combines or adds changes from one
- local branch of your repository with another branch.
- When you create a local Git repository, the default branch
- is named "master".
- A typical workflow is to create a temporary branch that is
- based off "master" that you would use for isolated work.
- You would make your changes in that isolated branch,
- stage and commit them locally, switch to the "master"
- branch, and then use the <filename>git merge</filename>
- command to apply the changes from your isolated branch
- into the currently checked out branch (e.g. "master").
- After the merge is complete and if you are done with
- working in that isolated branch, you can safely delete
- the isolated branch.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git cherry-pick</filename> <replaceable>commits</replaceable>:</emphasis>
- Choose and apply specific commits from one branch
- into another branch.
- There are times when you might not be able to merge
- all the changes in one branch with
- another but need to pick out certain ones.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>gitk</filename>:</emphasis>
- Provides a GUI view of the branches and changes in your
- local Git repository.
- This command is a good way to graphically see where things
- have diverged in your local repository.
- <note>
- You need to install the <filename>gitk</filename>
- package on your development system to use this
- command.
- </note>
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git log</filename>:</emphasis>
- Reports a history of your commits to the repository.
- This report lists all commits regardless of whether you
- have pushed them upstream or not.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>git diff</filename>:</emphasis>
- Displays line-by-line differences between a local
- working file and the same file as understood by Git.
- This command is useful to see what you have changed
- in any given file.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
-</section>
-
-<section id='licensing'>
- <title>Licensing</title>
-
- <para>
- Because open source projects are open to the public, they have
- different licensing structures in place.
- License evolution for both Open Source and Free Software has an
- interesting history.
- If you are interested in this history, you can find basic information
- here:
- <itemizedlist>
- <listitem><para>
- <ulink url='http://en.wikipedia.org/wiki/Open-source_license'>Open source license history</ulink>
- </para></listitem>
- <listitem><para>
- <ulink url='http://en.wikipedia.org/wiki/Free_software_license'>Free software license history</ulink>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- In general, the Yocto Project is broadly licensed under the
- Massachusetts Institute of Technology (MIT) License.
- MIT licensing permits the reuse of software within proprietary
- software as long as the license is distributed with that software.
- MIT is also compatible with the GNU General Public License (GPL).
- Patches to the Yocto Project follow the upstream licensing scheme.
- You can find information on the MIT license
- <ulink url='http://www.opensource.org/licenses/mit-license.php'>here</ulink>.
- You can find information on the GNU GPL
- <ulink url='http://www.opensource.org/licenses/LGPL-3.0'>here</ulink>.
- </para>
-
- <para>
- When you build an image using the Yocto Project, the build process
- uses a known list of licenses to ensure compliance.
- You can find this list in the
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>
- at <filename>meta/files/common-licenses</filename>.
- Once the build completes, the list of all licenses found and used
- during that build are kept in the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
- at <filename>tmp/deploy/licenses</filename>.
- </para>
-
- <para>
- If a module requires a license that is not in the base list, the
- build process generates a warning during the build.
- These tools make it easier for a developer to be certain of the
- licenses with which their shipped products must comply.
- However, even with these tools it is still up to the developer to
- resolve potential licensing issues.
- </para>
-
- <para>
- The base list of licenses used by the build process is a combination
- of the Software Package Data Exchange (SPDX) list and the Open
- Source Initiative (OSI) projects.
- <ulink url='http://spdx.org'>SPDX Group</ulink> is a working group of
- the Linux Foundation that maintains a specification for a standard
- format for communicating the components, licenses, and copyrights
- associated with a software package.
- <ulink url='http://opensource.org'>OSI</ulink> is a corporation
- dedicated to the Open Source Definition and the effort for reviewing
- and approving licenses that conform to the Open Source Definition
- (OSD).
- </para>
-
- <para>
- You can find a list of the combined SPDX and OSI licenses that the
- Yocto Project uses in the
- <filename>meta/files/common-licenses</filename> directory in your
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
- </para>
-
- <para>
- For information that can help you maintain compliance with various
- open source licensing during the lifecycle of a product created using
- the Yocto Project, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#maintaining-open-source-license-compliance-during-your-products-lifecycle'>Maintaining Open Source License Compliance During Your Product's Lifecycle</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-</section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->