summaryrefslogtreecommitdiffstats
path: root/documentation/overview-manual/overview-manual-concepts.xml
diff options
context:
space:
mode:
Diffstat (limited to 'documentation/overview-manual/overview-manual-concepts.xml')
-rw-r--r--documentation/overview-manual/overview-manual-concepts.xml3235
1 files changed, 0 insertions, 3235 deletions
diff --git a/documentation/overview-manual/overview-manual-concepts.xml b/documentation/overview-manual/overview-manual-concepts.xml
deleted file mode 100644
index 58b64bd269..0000000000
--- a/documentation/overview-manual/overview-manual-concepts.xml
+++ /dev/null
@@ -1,3235 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id=' overview-manual-concepts'>
-<title>Yocto Project Concepts</title>
-
- <para>
- This chapter provides explanations for Yocto Project concepts that
- go beyond the surface of "how-to" information and reference (or
- look-up) material.
- Concepts such as components, the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
- workflow, cross-development toolchains, shared state cache, and so
- forth are explained.
- </para>
-
- <section id='yocto-project-components'>
- <title>Yocto Project Components</title>
-
- <para>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
- task executor together with various types of configuration files
- form the
- <ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OpenEmbedded-Core</ulink>.
- This section overviews these components by describing their use and
- how they interact.
- </para>
-
- <para>
- BitBake handles the parsing and execution of the data files.
- The data itself is of various types:
- <itemizedlist>
- <listitem><para>
- <emphasis>Recipes:</emphasis>
- Provides details about particular pieces of software.
- </para></listitem>
- <listitem><para>
- <emphasis>Class Data:</emphasis>
- Abstracts common build information (e.g. how to build a
- Linux kernel).
- </para></listitem>
- <listitem><para>
- <emphasis>Configuration Data:</emphasis>
- Defines machine-specific settings, policy decisions, and
- so forth.
- Configuration data acts as the glue to bind everything
- together.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- BitBake knows how to combine multiple data sources together and
- refers to each data source as a layer.
- For information on layers, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
- section of the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- Following are some brief details on these core components.
- For additional information on how these components interact during
- a build, see the
- "<link linkend='openembedded-build-system-build-concepts'>OpenEmbedded Build System Concepts</link>"
- section.
- </para>
-
- <section id='usingpoky-components-bitbake'>
- <title>BitBake</title>
-
- <para>
- BitBake is the tool at the heart of the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
- and is responsible for parsing the
- <ulink url='&YOCTO_DOCS_REF_URL;#metadata'>Metadata</ulink>,
- generating a list of tasks from it, and then executing those
- tasks.
- </para>
-
- <para>
- This section briefly introduces BitBake.
- If you want more information on BitBake, see the
- <ulink url='&YOCTO_DOCS_BB_URL;'>BitBake User Manual</ulink>.
- </para>
-
- <para>
- To see a list of the options BitBake supports, use either of
- the following commands:
- <literallayout class='monospaced'>
- $ bitbake -h
- $ bitbake --help
- </literallayout>
- </para>
-
- <para>
- The most common usage for BitBake is
- <filename>bitbake <replaceable>packagename</replaceable></filename>,
- where <filename>packagename</filename> is the name of the
- package you want to build (referred to as the "target").
- The target often equates to the first part of a recipe's
- filename (e.g. "foo" for a recipe named
- <filename>foo_1.3.0-r0.bb</filename>).
- So, to process the
- <filename>matchbox-desktop_1.2.3.bb</filename> recipe file, you
- might type the following:
- <literallayout class='monospaced'>
- $ bitbake matchbox-desktop
- </literallayout>
- Several different versions of
- <filename>matchbox-desktop</filename> might exist.
- BitBake chooses the one selected by the distribution
- configuration.
- You can get more details about how BitBake chooses between
- different target versions and providers in the
- "<ulink url='&YOCTO_DOCS_BB_URL;#bb-bitbake-preferences'>Preferences</ulink>"
- section of the BitBake User Manual.
- </para>
-
- <para>
- BitBake also tries to execute any dependent tasks first.
- So for example, before building
- <filename>matchbox-desktop</filename>, BitBake would build a
- cross compiler and <filename>glibc</filename> if they had not
- already been built.
- </para>
-
- <para>
- A useful BitBake option to consider is the
- <filename>-k</filename> or <filename>--continue</filename>
- option.
- This option instructs BitBake to try and continue processing
- the job as long as possible even after encountering an error.
- When an error occurs, the target that failed and those that
- depend on it cannot be remade.
- However, when you use this option other dependencies can
- still be processed.
- </para>
- </section>
-
- <section id='overview-components-recipes'>
- <title>Recipes</title>
-
- <para>
- Files that have the <filename>.bb</filename> suffix are
- "recipes" files.
- In general, a recipe contains information about a single piece
- of software.
- This information includes the location from which to download
- the unaltered source, any source patches to be applied to that
- source (if needed), which special configuration options to
- apply, how to compile the source files, and how to package the
- compiled output.
- </para>
-
- <para>
- The term "package" is sometimes used to refer to recipes.
- However, since the word "package" is used for the packaged
- output from the OpenEmbedded build system (i.e.
- <filename>.ipk</filename> or <filename>.deb</filename> files),
- this document avoids using the term "package" when referring
- to recipes.
- </para>
- </section>
-
- <section id='overview-components-classes'>
- <title>Classes</title>
-
- <para>
- Class files (<filename>.bbclass</filename>) contain information
- that is useful to share between recipes files.
- An example is the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
- class, which contains common settings for any application that
- Autotools uses.
- The
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>"
- chapter in the Yocto Project Reference Manual provides
- details about classes and how to use them.
- </para>
- </section>
-
- <section id='overview-components-configurations'>
- <title>Configurations</title>
-
- <para>
- The configuration files (<filename>.conf</filename>) define
- various configuration variables that govern the OpenEmbedded
- build process.
- These files fall into several areas that define machine
- configuration options, distribution configuration options,
- compiler tuning options, general common configuration options,
- and user configuration options in
- <filename>conf/local.conf</filename>, which is found in the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
- </para>
- </section>
- </section>
-
- <section id='overview-layers'>
- <title>Layers</title>
-
- <para>
- Layers are repositories that contain related metadata (i.e.
- sets of instructions) that tell the OpenEmbedded build system how
- to build a target.
- Yocto Project's
- <link linkend='the-yocto-project-layer-model'>layer model</link>
- facilitates collaboration, sharing, customization, and reuse
- within the Yocto Project development environment.
- Layers logically separate information for your project.
- For example, you can use a layer to hold all the configurations
- for a particular piece of hardware.
- Isolating hardware-specific configurations allows you to share
- other metadata by using a different layer where that metadata
- might be common across several pieces of hardware.
- </para>
-
- <para>
- Many layers exist that work in the Yocto Project development
- environment.
- The
- <ulink url='https://caffelli-staging.yoctoproject.org/software-overview/layers/'>Yocto Project Curated Layer Index</ulink>
- and
- <ulink url='http://layers.openembedded.org/layerindex/branch/master/layers/'>OpenEmbedded Layer Index</ulink>
- both contain layers from which you can use or leverage.
- </para>
-
- <para>
- By convention, layers in the Yocto Project follow a specific form.
- Conforming to a known structure allows BitBake to make assumptions
- during builds on where to find types of metadata.
- You can find procedures and learn about tools (i.e.
- <filename>bitbake-layers</filename>) for creating layers suitable
- for the Yocto Project in the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#understanding-and-creating-layers'>Understanding and Creating Layers</ulink>"
- section of the Yocto Project Development Tasks Manual.
- </para>
- </section>
-
- <section id="openembedded-build-system-build-concepts">
- <title>OpenEmbedded Build System Concepts</title>
-
- <para>
- This section takes a more detailed look inside the build
- process used by the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>,
- which is the build system specific to the Yocto Project.
- At the heart of the build system is BitBake, the task executor.
- </para>
-
- <para>
- The following diagram represents the high-level workflow of a
- build.
- The remainder of this section expands on the fundamental input,
- output, process, and metadata logical blocks that make up the
- workflow.
- </para>
-
- <para id='general-workflow-figure'>
- <imagedata fileref="figures/YP-flow-diagram.png" format="PNG" align='center' width="8in"/>
- </para>
-
- <para>
- In general, the build's workflow consists of several functional
- areas:
- <itemizedlist>
- <listitem><para>
- <emphasis>User Configuration:</emphasis>
- metadata you can use to control the build process.
- </para></listitem>
- <listitem><para>
- <emphasis>Metadata Layers:</emphasis>
- Various layers that provide software, machine, and
- distro metadata.
- </para></listitem>
- <listitem><para>
- <emphasis>Source Files:</emphasis>
- Upstream releases, local projects, and SCMs.
- </para></listitem>
- <listitem><para>
- <emphasis>Build System:</emphasis>
- Processes under the control of
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>.
- This block expands on how BitBake fetches source, applies
- patches, completes compilation, analyzes output for package
- generation, creates and tests packages, generates images,
- and generates cross-development tools.
- </para></listitem>
- <listitem><para>
- <emphasis>Package Feeds:</emphasis>
- Directories containing output packages (RPM, DEB or IPK),
- which are subsequently used in the construction of an
- image or Software Development Kit (SDK), produced by the
- build system.
- These feeds can also be copied and shared using a web
- server or other means to facilitate extending or updating
- existing images on devices at runtime if runtime package
- management is enabled.
- </para></listitem>
- <listitem><para>
- <emphasis>Images:</emphasis>
- Images produced by the workflow.
- </para></listitem>
- <listitem><para>
- <emphasis>Application Development SDK:</emphasis>
- Cross-development tools that are produced along with
- an image or separately with BitBake.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <section id="user-configuration">
- <title>User Configuration</title>
-
- <para>
- User configuration helps define the build.
- Through user configuration, you can tell BitBake the
- target architecture for which you are building the image,
- where to store downloaded source, and other build properties.
- </para>
-
- <para>
- The following figure shows an expanded representation of the
- "User Configuration" box of the
- <link linkend='general-workflow-figure'>general workflow figure</link>:
- </para>
-
- <para>
- <imagedata fileref="figures/user-configuration.png" align="center" width="8in" depth="4.5in" />
- </para>
-
- <para>
- BitBake needs some basic configuration files in order to
- complete a build.
- These files are <filename>*.conf</filename> files.
- The minimally necessary ones reside as example files in the
- <filename>build/conf</filename> directory of the
- <ulink url='&YOCTO_DOCS_REF_URL;#source-directory'>Source Directory</ulink>.
- For simplicity, this section refers to the Source Directory as
- the "Poky Directory."
- </para>
-
- <para>
- When you clone the
- <ulink url='&YOCTO_DOCS_REF_URL;#poky'>Poky</ulink>
- Git repository or you download and unpack a Yocto Project
- release, you can set up the Source Directory to be named
- anything you want.
- For this discussion, the cloned repository uses the default
- name <filename>poky</filename>.
- <note>
- The Poky repository is primarily an aggregation of existing
- repositories.
- It is not a canonical upstream source.
- </note>
- </para>
-
- <para>
- The <filename>meta-poky</filename> layer inside Poky contains
- a <filename>conf</filename> directory that has example
- configuration files.
- These example files are used as a basis for creating actual
- configuration files when you source
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>,
- which is the build environment script.
- </para>
-
- <para>
- Sourcing the build environment script creates a
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
- if one does not already exist.
- BitBake uses the Build Directory for all its work during
- builds.
- The Build Directory has a <filename>conf</filename> directory
- that contains default versions of your
- <filename>local.conf</filename> and
- <filename>bblayers.conf</filename> configuration files.
- These default configuration files are created only if versions
- do not already exist in the Build Directory at the time you
- source the build environment setup script.
- </para>
-
- <para>
- Because the Poky repository is fundamentally an aggregation of
- existing repositories, some users might be familiar with
- running the <filename>&OE_INIT_FILE;</filename> script
- in the context of separate
- <ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OpenEmbedded-Core</ulink>
- and BitBake repositories rather than a single Poky repository.
- This discussion assumes the script is executed from
- within a cloned or unpacked version of Poky.
- </para>
-
- <para>
- Depending on where the script is sourced, different
- sub-scripts are called to set up the Build Directory
- (Yocto or OpenEmbedded).
- Specifically, the script
- <filename>scripts/oe-setup-builddir</filename> inside the
- poky directory sets up the Build Directory and seeds the
- directory (if necessary) with configuration files appropriate
- for the Yocto Project development environment.
- <note>
- The <filename>scripts/oe-setup-builddir</filename> script
- uses the <filename>$TEMPLATECONF</filename> variable to
- determine which sample configuration files to locate.
- </note>
- </para>
-
- <para>
- The <filename>local.conf</filename> file provides many
- basic variables that define a build environment.
- Here is a list of a few.
- To see the default configurations in a
- <filename>local.conf</filename> file created by the build
- environment script, see the
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta-poky/conf/local.conf.sample'><filename>local.conf.sample</filename></ulink>
- in the <filename>meta-poky</filename> layer:
- <itemizedlist>
- <listitem><para>
- <emphasis>Target Machine Selection:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Download Directory:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Shared State Directory:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Build Output:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Distribution Policy:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DISTRO'><filename>DISTRO</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Packaging Format:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>SDK Target Architecture:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- <emphasis>Extra Image Packages:</emphasis>
- Controlled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>
- variable.
- </para></listitem>
- </itemizedlist>
- <note>
- Configurations set in the
- <filename>conf/local.conf</filename> file can also be set
- in the <filename>conf/site.conf</filename> and
- <filename>conf/auto.conf</filename> configuration files.
- </note>
- </para>
-
- <para>
- The <filename>bblayers.conf</filename> file tells BitBake what
- layers you want considered during the build.
- By default, the layers listed in this file include layers
- minimally needed by the build system.
- However, you must manually add any custom layers you have
- created.
- You can find more information on working with the
- <filename>bblayers.conf</filename> file in the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#enabling-your-layer'>Enabling Your Layer</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
-
- <para>
- The files <filename>site.conf</filename> and
- <filename>auto.conf</filename> are not created by the
- environment initialization script.
- If you want the <filename>site.conf</filename> file, you
- need to create that yourself.
- The <filename>auto.conf</filename> file is typically created by
- an autobuilder:
- <itemizedlist>
- <listitem><para>
- <emphasis><filename>site.conf</filename>:</emphasis>
- You can use the <filename>conf/site.conf</filename>
- configuration file to configure multiple
- build directories.
- For example, suppose you had several build environments
- and they shared some common features.
- You can set these default build properties here.
- A good example is perhaps the packaging format to use
- through the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
- variable.</para>
-
- <para>One useful scenario for using the
- <filename>conf/site.conf</filename> file is to extend
- your
- <ulink url='&YOCTO_DOCS_REF_URL;#var-BBPATH'><filename>BBPATH</filename></ulink>
- variable to include the path to a
- <filename>conf/site.conf</filename>.
- Then, when BitBake looks for Metadata using
- <filename>BBPATH</filename>, it finds the
- <filename>conf/site.conf</filename> file and applies
- your common configurations found in the file.
- To override configurations in a particular build
- directory, alter the similar configurations within
- that build directory's
- <filename>conf/local.conf</filename> file.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>auto.conf</filename>:</emphasis>
- The file is usually created and written to by
- an autobuilder.
- The settings put into the file are typically the
- same as you would find in the
- <filename>conf/local.conf</filename> or the
- <filename>conf/site.conf</filename> files.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- You can edit all configuration files to further define
- any particular build environment.
- This process is represented by the "User Configuration Edits"
- box in the figure.
- </para>
-
- <para>
- When you launch your build with the
- <filename>bitbake <replaceable>target</replaceable></filename>
- command, BitBake sorts out the configurations to ultimately
- define your build environment.
- It is important to understand that the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>
- reads the configuration files in a specific order:
- <filename>site.conf</filename>, <filename>auto.conf</filename>,
- and <filename>local.conf</filename>.
- And, the build system applies the normal assignment statement
- rules as described in the
- "<ulink url='&YOCTO_DOCS_BB_URL;#bitbake-user-manual-metadata'>Syntax and Operators</ulink>"
- chapter of the BitBake User Manual.
- Because the files are parsed in a specific order, variable
- assignments for the same variable could be affected.
- For example, if the <filename>auto.conf</filename> file and
- the <filename>local.conf</filename> set
- <replaceable>variable1</replaceable> to different values,
- because the build system parses <filename>local.conf</filename>
- after <filename>auto.conf</filename>,
- <replaceable>variable1</replaceable> is assigned the value from
- the <filename>local.conf</filename> file.
- </para>
- </section>
-
- <section id="metadata-machine-configuration-and-policy-configuration">
- <title>Metadata, Machine Configuration, and Policy Configuration</title>
-
- <para>
- The previous section described the user configurations that
- define BitBake's global behavior.
- This section takes a closer look at the layers the build system
- uses to further control the build.
- These layers provide Metadata for the software, machine, and
- policies.
- </para>
-
- <para>
- In general, three types of layer input exists.
- You can see them below the "User Configuration" box in the
- <link linkend='general-workflow-figure'>general workflow figure</link>:
- <itemizedlist>
- <listitem><para>
- <emphasis>Metadata (<filename>.bb</filename> + Patches):</emphasis>
- Software layers containing user-supplied recipe files,
- patches, and append files.
- A good example of a software layer might be the
- <ulink url='https://github.com/meta-qt5/meta-qt5'><filename>meta-qt5</filename></ulink>
- layer from the
- <ulink url='http://layers.openembedded.org/layerindex/branch/master/layers/'>OpenEmbedded Layer Index</ulink>.
- This layer is for version 5.0 of the popular
- <ulink url='https://wiki.qt.io/About_Qt'>Qt</ulink>
- cross-platform application development framework for
- desktop, embedded and mobile.
- </para></listitem>
- <listitem><para>
- <emphasis>Machine BSP Configuration:</emphasis>
- Board Support Package (BSP) layers (i.e. "BSP Layer"
- in the following figure) providing machine-specific
- configurations.
- This type of information is specific to a particular
- target architecture.
- A good example of a BSP layer from the
- <link linkend='gs-reference-distribution-poky'>Poky Reference Distribution</link>
- is the
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta-yocto-bsp'><filename>meta-yocto-bsp</filename></ulink>
- layer.
- </para></listitem>
- <listitem><para>
- <emphasis>Policy Configuration:</emphasis>
- Distribution Layers (i.e. "Distro Layer" in the
- following figure) providing top-level or general
- policies for the images or SDKs being built for a
- particular distribution.
- For example, in the Poky Reference Distribution the
- distro layer is the
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta-poky'><filename>meta-poky</filename></ulink>
- layer.
- Within the distro layer is a
- <filename>conf/distro</filename> directory that
- contains distro configuration files (e.g.
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta-poky/conf/distro/poky.conf'><filename>poky.conf</filename></ulink>
- that contain many policy configurations for the
- Poky distribution.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- The following figure shows an expanded representation of
- these three layers from the
- <link linkend='general-workflow-figure'>general workflow figure</link>:
- </para>
-
- <para>
- <imagedata fileref="figures/layer-input.png" align="center" width="8in" depth="8in" />
- </para>
-
- <para>
- In general, all layers have a similar structure.
- They all contain a licensing file
- (e.g. <filename>COPYING.MIT</filename>) if the layer is to be
- distributed, a <filename>README</filename> file as good
- practice and especially if the layer is to be distributed, a
- configuration directory, and recipe directories.
- You can learn about the general structure for layers used with
- the Yocto Project in the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#creating-your-own-layer'>Creating Your Own Layer</ulink>"
- section in the Yocto Project Development Tasks Manual.
- For a general discussion on layers and the many layers from
- which you can draw, see the
- "<link linkend='overview-layers'>Layers</link>" and
- "<link linkend='the-yocto-project-layer-model'>The Yocto Project Layer Model</link>"
- sections both earlier in this manual.
- </para>
-
- <para>
- If you explored the previous links, you discovered some
- areas where many layers that work with the Yocto Project
- exist.
- The
- <ulink url="http://git.yoctoproject.org/">Source Repositories</ulink>
- also shows layers categorized under "Yocto Metadata Layers."
- <note>
- Layers exist in the Yocto Project Source Repositories that
- cannot be found in the OpenEmbedded Layer Index.
- These layers are either deprecated or experimental
- in nature.
- </note>
- </para>
-
- <para>
- BitBake uses the <filename>conf/bblayers.conf</filename> file,
- which is part of the user configuration, to find what layers it
- should be using as part of the build.
- </para>
-
- <section id="distro-layer">
- <title>Distro Layer</title>
-
- <para>
- The distribution layer provides policy configurations for
- your distribution.
- Best practices dictate that you isolate these types of
- configurations into their own layer.
- Settings you provide in
- <filename>conf/distro/<replaceable>distro</replaceable>.conf</filename> override
- similar settings that BitBake finds in your
- <filename>conf/local.conf</filename> file in the Build
- Directory.
- </para>
-
- <para>
- The following list provides some explanation and references
- for what you typically find in the distribution layer:
- <itemizedlist>
- <listitem><para>
- <emphasis>classes:</emphasis>
- Class files (<filename>.bbclass</filename>) hold
- common functionality that can be shared among
- recipes in the distribution.
- When your recipes inherit a class, they take on the
- settings and functions for that class.
- You can read more about class files in the
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-classes'>Classes</ulink>"
- chapter of the Yocto Reference Manual.
- </para></listitem>
- <listitem><para>
- <emphasis>conf:</emphasis>
- This area holds configuration files for the
- layer (<filename>conf/layer.conf</filename>),
- the distribution
- (<filename>conf/distro/<replaceable>distro</replaceable>.conf</filename>),
- and any distribution-wide include files.
- </para></listitem>
- <listitem><para>
- <emphasis>recipes-*:</emphasis>
- Recipes and append files that affect common
- functionality across the distribution.
- This area could include recipes and append files
- to add distribution-specific configuration,
- initialization scripts, custom image recipes,
- and so forth.
- Examples of <filename>recipes-*</filename>
- directories are <filename>recipes-core</filename>
- and <filename>recipes-extra</filename>.
- Hierarchy and contents within a
- <filename>recipes-*</filename> directory can vary.
- Generally, these directories contain recipe files
- (<filename>*.bb</filename>), recipe append files
- (<filename>*.bbappend</filename>), directories
- that are distro-specific for configuration files,
- and so forth.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
-
- <section id="bsp-layer">
- <title>BSP Layer</title>
-
- <para>
- The BSP Layer provides machine configurations that
- target specific hardware.
- Everything in this layer is specific to the machine for
- which you are building the image or the SDK.
- A common structure or form is defined for BSP layers.
- You can learn more about this structure in the
- <ulink url='&YOCTO_DOCS_BSP_URL;'>Yocto Project Board Support Package (BSP) Developer's Guide</ulink>.
- <note>
- In order for a BSP layer to be considered compliant
- with the Yocto Project, it must meet some structural
- requirements.
- </note>
- </para>
-
- <para>
- The BSP Layer's configuration directory contains
- configuration files for the machine
- (<filename>conf/machine/<replaceable>machine</replaceable>.conf</filename>)
- and, of course, the layer
- (<filename>conf/layer.conf</filename>).
- </para>
-
- <para>
- The remainder of the layer is dedicated to specific recipes
- by function: <filename>recipes-bsp</filename>,
- <filename>recipes-core</filename>,
- <filename>recipes-graphics</filename>,
- <filename>recipes-kernel</filename>, and so forth.
- Metadata can exist for multiple formfactors, graphics
- support systems, and so forth.
- <note>
- While the figure shows several
- <filename>recipes-*</filename> directories, not all
- these directories appear in all BSP layers.
- </note>
- </para>
- </section>
-
- <section id="software-layer">
- <title>Software Layer</title>
-
- <para>
- The software layer provides the Metadata for additional
- software packages used during the build.
- This layer does not include Metadata that is specific to
- the distribution or the machine, which are found in their
- respective layers.
- </para>
-
- <para>
- This layer contains any recipes, append files, and
- patches, that your project needs.
- </para>
- </section>
- </section>
-
- <section id="sources-dev-environment">
- <title>Sources</title>
-
- <para>
- In order for the OpenEmbedded build system to create an
- image or any target, it must be able to access source files.
- The
- <link linkend='general-workflow-figure'>general workflow figure</link>
- represents source files using the "Upstream Project Releases",
- "Local Projects", and "SCMs (optional)" boxes.
- The figure represents mirrors, which also play a role in
- locating source files, with the "Source Materials" box.
- </para>
-
- <para>
- The method by which source files are ultimately organized is
- a function of the project.
- For example, for released software, projects tend to use
- tarballs or other archived files that can capture the
- state of a release guaranteeing that it is statically
- represented.
- On the other hand, for a project that is more dynamic or
- experimental in nature, a project might keep source files in a
- repository controlled by a Source Control Manager (SCM) such as
- Git.
- Pulling source from a repository allows you to control
- the point in the repository (the revision) from which you
- want to build software.
- Finally, a combination of the two might exist, which would
- give the consumer a choice when deciding where to get
- source files.
- </para>
-
- <para>
- BitBake uses the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
- variable to point to source files regardless of their location.
- Each recipe must have a <filename>SRC_URI</filename> variable
- that points to the source.
- </para>
-
- <para>
- Another area that plays a significant role in where source
- files come from is pointed to by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
- variable.
- This area is a cache that can hold previously downloaded
- source.
- You can also instruct the OpenEmbedded build system to create
- tarballs from Git repositories, which is not the default
- behavior, and store them in the <filename>DL_DIR</filename>
- by using the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></ulink>
- variable.
- </para>
-
- <para>
- Judicious use of a <filename>DL_DIR</filename> directory can
- save the build system a trip across the Internet when looking
- for files.
- A good method for using a download directory is to have
- <filename>DL_DIR</filename> point to an area outside of your
- Build Directory.
- Doing so allows you to safely delete the Build Directory
- if needed without fear of removing any downloaded source file.
- </para>
-
- <para>
- The remainder of this section provides a deeper look into the
- source files and the mirrors.
- Here is a more detailed look at the source file area of the
- <link linkend='general-workflow-figure'>general workflow figure</link>:
- </para>
-
- <para>
- <imagedata fileref="figures/source-input.png" width="6in" depth="6in" align="center" />
- </para>
-
- <section id='upstream-project-releases'>
- <title>Upstream Project Releases</title>
-
- <para>
- Upstream project releases exist anywhere in the form of an
- archived file (e.g. tarball or zip file).
- These files correspond to individual recipes.
- For example, the figure uses specific releases each for
- BusyBox, Qt, and Dbus.
- An archive file can be for any released product that can be
- built using a recipe.
- </para>
- </section>
-
- <section id='local-projects'>
- <title>Local Projects</title>
-
- <para>
- Local projects are custom bits of software the user
- provides.
- These bits reside somewhere local to a project - perhaps
- a directory into which the user checks in items (e.g.
- a local directory containing a development source tree
- used by the group).
- </para>
-
- <para>
- The canonical method through which to include a local
- project is to use the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-externalsrc'><filename>externalsrc</filename></ulink>
- class to include that local project.
- You use either the <filename>local.conf</filename> or a
- recipe's append file to override or set the
- recipe to point to the local directory on your disk to pull
- in the whole source tree.
- </para>
- </section>
-
- <section id='scms'>
- <title>Source Control Managers (Optional)</title>
-
- <para>
- Another place from which the build system can get source
- files is with
- <ulink url='&YOCTO_DOCS_BB_URL;#bb-fetchers'>fetchers</ulink>
- employing various Source Control Managers (SCMs) such as
- Git or Subversion.
- In such cases, a repository is cloned or checked out.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-fetch'><filename>do_fetch</filename></ulink>
- task inside BitBake uses
- the <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
- variable and the argument's prefix to determine the correct
- fetcher module.
- <note>
- For information on how to have the OpenEmbedded build
- system generate tarballs for Git repositories and place
- them in the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
- directory, see the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-BB_GENERATE_MIRROR_TARBALLS'><filename>BB_GENERATE_MIRROR_TARBALLS</filename></ulink>
- variable in the Yocto Project Reference Manual.
- </note>
- </para>
-
- <para>
- When fetching a repository, BitBake uses the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SRCREV'><filename>SRCREV</filename></ulink>
- variable to determine the specific revision from which to
- build.
- </para>
- </section>
-
- <section id='source-mirrors'>
- <title>Source Mirror(s)</title>
-
- <para>
- Two kinds of mirrors exist: pre-mirrors and regular
- mirrors.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PREMIRRORS'><filename>PREMIRRORS</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MIRRORS'><filename>MIRRORS</filename></ulink>
- variables point to these, respectively.
- BitBake checks pre-mirrors before looking upstream for any
- source files.
- Pre-mirrors are appropriate when you have a shared
- directory that is not a directory defined by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DL_DIR'><filename>DL_DIR</filename></ulink>
- variable.
- A Pre-mirror typically points to a shared directory that is
- local to your organization.
- </para>
-
- <para>
- Regular mirrors can be any site across the Internet
- that is used as an alternative location for source
- code should the primary site not be functioning for
- some reason or another.
- </para>
- </section>
- </section>
-
- <section id="package-feeds-dev-environment">
- <title>Package Feeds</title>
-
- <para>
- When the OpenEmbedded build system generates an image or an
- SDK, it gets the packages from a package feed area located
- in the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
- The
- <link linkend='general-workflow-figure'>general workflow figure</link>
- shows this package feeds area in the upper-right corner.
- </para>
-
- <para>
- This section looks a little closer into the package feeds
- area used by the build system.
- Here is a more detailed look at the area:
- <imagedata fileref="figures/package-feeds.png" align="center" width="7in" depth="6in" />
- </para>
-
- <para>
- Package feeds are an intermediary step in the build process.
- The OpenEmbedded build system provides classes to generate
- different package types, and you specify which classes to
- enable through the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>
- variable.
- Before placing the packages into package feeds,
- the build process validates them with generated output quality
- assurance checks through the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-insane'><filename>insane</filename></ulink>
- class.
- </para>
-
- <para>
- The package feed area resides in the Build Directory.
- The directory the build system uses to temporarily store
- packages is determined by a combination of variables and the
- particular package manager in use.
- See the "Package Feeds" box in the illustration and note the
- information to the right of that area.
- In particular, the following defines where package files are
- kept:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
- Defined as <filename>tmp/deploy</filename> in the Build
- Directory.
- </para></listitem>
- <listitem><para>
- <filename>DEPLOY_DIR_*</filename>:
- Depending on the package manager used, the package type
- sub-folder.
- Given RPM, IPK, or DEB packaging and tarball creation,
- the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_RPM'><filename>DEPLOY_DIR_RPM</filename></ulink>,
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_IPK'><filename>DEPLOY_DIR_IPK</filename></ulink>,
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_DEB'><filename>DEPLOY_DIR_DEB</filename></ulink>,
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_TAR'><filename>DEPLOY_DIR_TAR</filename></ulink>,
- variables are used, respectively.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></ulink>:
- Defines architecture-specific sub-folders.
- For example, packages could exist for the i586 or
- qemux86 architectures.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- BitBake uses the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
- tasks to generate packages and place them into the package
- holding area (e.g. <filename>do_package_write_ipk</filename>
- for IPK packages).
- See the
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_deb</filename></ulink>",
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_ipk'><filename>do_package_write_ipk</filename></ulink>",
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_rpm'><filename>do_package_write_rpm</filename></ulink>",
- and
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_tar'><filename>do_package_write_tar</filename></ulink>"
- sections in the Yocto Project Reference Manual
- for additional information.
- As an example, consider a scenario where an IPK packaging
- manager is being used and package architecture support for
- both i586 and qemux86 exist.
- Packages for the i586 architecture are placed in
- <filename>build/tmp/deploy/ipk/i586</filename>, while packages
- for the qemux86 architecture are placed in
- <filename>build/tmp/deploy/ipk/qemux86</filename>.
- </para>
- </section>
-
- <section id='bitbake-dev-environment'>
- <title>BitBake</title>
-
- <para>
- The OpenEmbedded build system uses
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
- to produce images and Software Development Kits (SDKs).
- You can see from the
- <link linkend='general-workflow-figure'>general workflow figure</link>,
- the BitBake area consists of several functional areas.
- This section takes a closer look at each of those areas.
- <note>
- Separate documentation exists for the BitBake tool.
- See the
- <ulink url='&YOCTO_DOCS_BB_URL;'>BitBake User Manual</ulink>
- for reference material on BitBake.
- </note>
- </para>
-
- <section id='source-fetching-dev-environment'>
- <title>Source Fetching</title>
-
- <para>
- The first stages of building a recipe are to fetch and
- unpack the source code:
- <imagedata fileref="figures/source-fetching.png" align="center" width="6.5in" depth="5in" />
- </para>
-
- <para>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-fetch'><filename>do_fetch</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-unpack'><filename>do_unpack</filename></ulink>
- tasks fetch the source files and unpack them into the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
- <note>
- For every local file (e.g. <filename>file://</filename>)
- that is part of a recipe's
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
- statement, the OpenEmbedded build system takes a
- checksum of the file for the recipe and inserts the
- checksum into the signature for the
- <filename>do_fetch</filename> task.
- If any local file has been modified, the
- <filename>do_fetch</filename> task and all tasks that
- depend on it are re-executed.
- </note>
- By default, everything is accomplished in the Build
- Directory, which has a defined structure.
- For additional general information on the Build Directory,
- see the
- "<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-build'><filename>build/</filename></ulink>"
- section in the Yocto Project Reference Manual.
- </para>
-
- <para>
- Each recipe has an area in the Build Directory where the
- unpacked source code resides.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
- variable points to this area for a recipe's unpacked source
- code.
- The name of that directory for any given recipe is defined
- from several different variables.
- The preceding figure and the following list describe
- the Build Directory's hierarchy:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>:
- The base directory where the OpenEmbedded build
- system performs all its work during the build.
- The default base directory is the
- <filename>tmp</filename> directory.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCH'><filename>PACKAGE_ARCH</filename></ulink>:
- The architecture of the built package or packages.
- Depending on the eventual destination of the
- package or packages (i.e. machine architecture,
- <ulink url='&YOCTO_DOCS_REF_URL;#hardware-build-system-term'>build host</ulink>,
- SDK, or specific machine),
- <filename>PACKAGE_ARCH</filename> varies.
- See the variable's description for details.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TARGET_OS'><filename>TARGET_OS</filename></ulink>:
- The operating system of the target device.
- A typical value would be "linux" (e.g.
- "qemux86-poky-linux").
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PN'><filename>PN</filename></ulink>:
- The name of the recipe used to build the package.
- This variable can have multiple meanings.
- However, when used in the context of input files,
- <filename>PN</filename> represents the the name
- of the recipe.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>:
- The location where the OpenEmbedded build system
- builds a recipe (i.e. does the work to create the
- package).
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>:
- The version of the recipe used to build the
- package.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>:
- The revision of the recipe used to build the
- package.
- </para></listitem>
- </itemizedlist>
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>:
- Contains the unpacked source files for a given
- recipe.
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-BPN'><filename>BPN</filename></ulink>:
- The name of the recipe used to build the
- package.
- The <filename>BPN</filename> variable is
- a version of the <filename>PN</filename>
- variable but with common prefixes and
- suffixes removed.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PV'><filename>PV</filename></ulink>:
- The version of the recipe used to build the
- package.
- </para></listitem>
- </itemizedlist>
- </para></listitem>
- </itemizedlist>
- <note>
- In the previous figure, notice that two sample
- hierarchies exist: one based on package architecture (i.e.
- <filename>PACKAGE_ARCH</filename>) and one based on a
- machine (i.e. <filename>MACHINE</filename>).
- The underlying structures are identical.
- The differentiator being what the OpenEmbedded build
- system is using as a build target (e.g. general
- architecture, a build host, an SDK, or a specific
- machine).
- </note>
- </para>
- </section>
-
- <section id='patching-dev-environment'>
- <title>Patching</title>
-
- <para>
- Once source code is fetched and unpacked, BitBake locates
- patch files and applies them to the source files:
- <imagedata fileref="figures/patching.png" align="center" width="7in" depth="6in" />
- </para>
-
- <para>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>
- task uses a recipe's
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink>
- statements and the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-FILESPATH'><filename>FILESPATH</filename></ulink>
- variable to locate applicable patch files.
- </para>
-
- <para>
- Default processing for patch files assumes the files have
- either <filename>*.patch</filename> or
- <filename>*.diff</filename> file types.
- You can use <filename>SRC_URI</filename> parameters to
- change the way the build system recognizes patch files.
- See the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>
- task for more information.
- </para>
-
- <para>
- BitBake finds and applies multiple patches for a single
- recipe in the order in which it locates the patches.
- The <filename>FILESPATH</filename> variable defines the
- default set of directories that the build system uses to
- search for patch files.
- Once found, patches are applied to the recipe's source
- files, which are located in the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
- directory.
- </para>
-
- <para>
- For more information on how the source directories are
- created, see the
- "<link linkend='source-fetching-dev-environment'>Source Fetching</link>"
- section.
- For more information on how to create patches and how the
- build system processes patches, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#new-recipe-patching-code'>Patching Code</ulink>"
- section in the Yocto Project Development Tasks Manual.
- You can also see the
- "<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-devtool-use-devtool-modify-to-modify-the-source-of-an-existing-component'>Use <filename>devtool modify</filename> to Modify the Source of an Existing Component</ulink>"
- section in the Yocto Project Application Development and
- the Extensible Software Development Kit (SDK) manual and
- the
- "<ulink url='&YOCTO_DOCS_KERNEL_DEV_URL;#using-traditional-kernel-development-to-patch-the-kernel'>Using Traditional Kernel Development to Patch the Kernel</ulink>"
- section in the Yocto Project Linux Kernel Development
- Manual.
- </para>
- </section>
-
- <section id='configuration-compilation-and-staging-dev-environment'>
- <title>Configuration, Compilation, and Staging</title>
-
- <para>
- After source code is patched, BitBake executes tasks that
- configure and compile the source code.
- Once compilation occurs, the files are copied to a holding
- area (staged) in preparation for packaging:
- <imagedata fileref="figures/configuration-compile-autoreconf.png" align="center" width="7in" depth="5in" />
- </para>
-
- <para>
- This step in the build process consists of the following
- tasks:
- <itemizedlist>
- <listitem><para>
- <emphasis><ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-prepare_recipe_sysroot'><filename>do_prepare_recipe_sysroot</filename></ulink></emphasis>:
- This task sets up the two sysroots in
- <filename>${</filename><ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink><filename>}</filename>
- (i.e. <filename>recipe-sysroot</filename> and
- <filename>recipe-sysroot-native</filename>) so that
- during the packaging phase the sysroots can contain
- the contents of the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sysroot'><filename>do_populate_sysroot</filename></ulink>
- tasks of the recipes on which the recipe
- containing the tasks depends.
- A sysroot exists for both the target and for the
- native binaries, which run on the host system.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>do_configure</filename></emphasis>:
- This task configures the source by enabling and
- disabling any build-time and configuration options
- for the software being built.
- Configurations can come from the recipe itself as
- well as from an inherited class.
- Additionally, the software itself might configure
- itself depending on the target for which it is
- being built.</para>
-
- <para>The configurations handled by the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-configure'><filename>do_configure</filename></ulink>
- task are specific to configurations for the source
- code being built by the recipe.</para>
-
- <para>If you are using the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
- class, you can add additional configuration options
- by using the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_OECONF'><filename>EXTRA_OECONF</filename></ulink>
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGECONFIG_CONFARGS'><filename>PACKAGECONFIG_CONFARGS</filename></ulink>
- variables.
- For information on how this variable works within
- that class, see the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-autotools'><filename>autotools</filename></ulink>
- class
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta/classes/autotools.bbclass'>here</ulink>.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>do_compile</filename></emphasis>:
- Once a configuration task has been satisfied,
- BitBake compiles the source using the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-compile'><filename>do_compile</filename></ulink>
- task.
- Compilation occurs in the directory pointed to by
- the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-B'><filename>B</filename></ulink>
- variable.
- Realize that the <filename>B</filename> directory
- is, by default, the same as the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-S'><filename>S</filename></ulink>
- directory.
- </para></listitem>
- <listitem><para>
- <emphasis><filename>do_install</filename></emphasis>:
- After compilation completes, BitBake executes the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
- task.
- This task copies files from the
- <filename>B</filename> directory and places them
- in a holding area pointed to by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-D'><filename>D</filename></ulink>
- variable.
- Packaging occurs later using files from this
- holding directory.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
-
- <section id='package-splitting-dev-environment'>
- <title>Package Splitting</title>
-
- <para>
- After source code is configured, compiled, and staged, the
- build system analyzes the results and splits the output
- into packages:
- <imagedata fileref="figures/analysis-for-package-splitting.png" align="center" width="7in" depth="7in" />
- </para>
-
- <para>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>
- tasks combine to analyze the files found in the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-D'><filename>D</filename></ulink>
- directory and split them into subsets based on available
- packages and files.
- Analysis involves the following as well as other items:
- splitting out debugging symbols, looking at shared library
- dependencies between packages, and looking at package
- relationships.
- </para>
-
- <para>
- The <filename>do_packagedata</filename> task creates
- package metadata based on the analysis such that the
- build system can generate the final packages.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sysroot'><filename>do_populate_sysroot</filename></ulink>
- task stages (copies) a subset of the files installed by
- the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
- task into the appropriate sysroot.
- Working, staged, and intermediate results of the analysis
- and package splitting process use several areas:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKGD'><filename>PKGD</filename></ulink>:
- The destination directory
- (i.e. <filename>package</filename>) for packages
- before they are split into individual packages.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDESTWORK'><filename>PKGDESTWORK</filename></ulink>:
- A temporary work area (i.e.
- <filename>pkgdata</filename>) used by the
- <filename>do_package</filename> task to save
- package metadata.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDEST'><filename>PKGDEST</filename></ulink>:
- The parent directory (i.e.
- <filename>packages-split</filename>) for packages
- after they have been split.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDATA_DIR'><filename>PKGDATA_DIR</filename></ulink>:
- A shared, global-state directory that holds
- packaging metadata generated during the packaging
- process.
- The packaging process copies metadata from
- <filename>PKGDESTWORK</filename> to the
- <filename>PKGDATA_DIR</filename> area where it
- becomes globally available.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STAGING_DIR_HOST'><filename>STAGING_DIR_HOST</filename></ulink>:
- The path for the sysroot for the system on which
- a component is built to run (i.e.
- <filename>recipe-sysroot</filename>).
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STAGING_DIR_NATIVE'><filename>STAGING_DIR_NATIVE</filename></ulink>:
- The path for the sysroot used when building
- components for the build host (i.e.
- <filename>recipe-sysroot-native</filename>).
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STAGING_DIR_TARGET'><filename>STAGING_DIR_TARGET</filename></ulink>:
- The path for the sysroot used when a component that
- is built to execute on a system and it generates
- code for yet another machine (e.g. cross-canadian
- recipes).
- </para></listitem>
- </itemizedlist>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-FILES'><filename>FILES</filename></ulink>
- variable defines the files that go into each package in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGES'><filename>PACKAGES</filename></ulink>.
- If you want details on how this is accomplished, you can
- look at
- <ulink url='&YOCTO_GIT_URL;/cgit/cgit.cgi/poky/tree/meta/classes/package.bbclass'><filename>package.bbclass</filename></ulink>.
- </para>
-
- <para>
- Depending on the type of packages being created (RPM, DEB,
- or IPK), the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
- task creates the actual packages and places them in the
- Package Feed area, which is
- <filename>${TMPDIR}/deploy</filename>.
- You can see the
- "<link linkend='package-feeds-dev-environment'>Package Feeds</link>"
- section for more detail on that part of the build process.
- <note>
- Support for creating feeds directly from the
- <filename>deploy/*</filename> directories does not
- exist.
- Creating such feeds usually requires some kind of feed
- maintenance mechanism that would upload the new
- packages into an official package feed (e.g. the
- Ångström distribution).
- This functionality is highly distribution-specific
- and thus is not provided out of the box.
- </note>
- </para>
- </section>
-
- <section id='image-generation-dev-environment'>
- <title>Image Generation</title>
-
- <para>
- Once packages are split and stored in the Package Feeds
- area, the build system uses BitBake to generate the root
- filesystem image:
- <imagedata fileref="figures/image-generation.png" align="center" width="7.5in" depth="7.5in" />
- </para>
-
- <para>
- The image generation process consists of several stages and
- depends on several tasks and variables.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-rootfs'><filename>do_rootfs</filename></ulink>
- task creates the root filesystem (file and directory
- structure) for an image.
- This task uses several key variables to help create the
- list of packages to actually install:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'><filename>IMAGE_INSTALL</filename></ulink>:
- Lists out the base set of packages from which to
- install from the Package Feeds area.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_EXCLUDE'><filename>PACKAGE_EXCLUDE</filename></ulink>:
- Specifies packages that should not be installed
- into the image.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FEATURES'><filename>IMAGE_FEATURES</filename></ulink>:
- Specifies features to include in the image.
- Most of these features map to additional packages
- for installation.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_CLASSES'><filename>PACKAGE_CLASSES</filename></ulink>:
- Specifies the package backend (e.g. RPM, DEB, or
- IPK) to use and consequently helps determine where
- to locate packages within the Package Feeds area.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_LINGUAS'><filename>IMAGE_LINGUAS</filename></ulink>:
- Determines the language(s) for which additional
- language support packages are installed.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_INSTALL'><filename>PACKAGE_INSTALL</filename></ulink>:
- The final list of packages passed to the package
- manager for installation into the image.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- With
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_ROOTFS'><filename>IMAGE_ROOTFS</filename></ulink>
- pointing to the location of the filesystem under
- construction and the <filename>PACKAGE_INSTALL</filename>
- variable providing the final list of packages to install,
- the root file system is created.
- </para>
-
- <para>
- Package installation is under control of the package
- manager (e.g. dnf/rpm, opkg, or apt/dpkg) regardless of
- whether or not package management is enabled for the
- target.
- At the end of the process, if package management is not
- enabled for the target, the package manager's data files
- are deleted from the root filesystem.
- As part of the final stage of package installation,
- post installation scripts that are part of the packages
- are run.
- Any scripts that fail to run on the build host are run on
- the target when the target system is first booted.
- If you are using a
- <ulink url='&YOCTO_DOCS_DEV_URL;#creating-a-read-only-root-filesystem'>read-only root filesystem</ulink>,
- all the post installation scripts must succeed on the
- build host during the package installation phase since the
- root filesystem on the target is read-only.
- </para>
-
- <para>
- The final stages of the <filename>do_rootfs</filename> task
- handle post processing.
- Post processing includes creation of a manifest file and
- optimizations.
- </para>
-
- <para>
- The manifest file (<filename>.manifest</filename>) resides
- in the same directory as the root filesystem image.
- This file lists out, line-by-line, the installed packages.
- The manifest file is useful for the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-testimage*'><filename>testimage</filename></ulink>
- class, for example, to determine whether or not to run
- specific tests.
- See the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_MANIFEST'><filename>IMAGE_MANIFEST</filename></ulink>
- variable for additional information.
- </para>
-
- <para>
- Optimizing processes that are run across the image include
- <filename>mklibs</filename>, <filename>prelink</filename>,
- and any other post-processing commands as defined by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-ROOTFS_POSTPROCESS_COMMAND'><filename>ROOTFS_POSTPROCESS_COMMAND</filename></ulink>
- variable.
- The <filename>mklibs</filename> process optimizes the size
- of the libraries, while the <filename>prelink</filename>
- process optimizes the dynamic linking of shared libraries
- to reduce start up time of executables.
- </para>
-
- <para>
- After the root filesystem is built, processing begins on
- the image through the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image'><filename>do_image</filename></ulink>
- task.
- The build system runs any pre-processing commands as
- defined by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_PREPROCESS_COMMAND'><filename>IMAGE_PREPROCESS_COMMAND</filename></ulink>
- variable.
- This variable specifies a list of functions to call before
- the build system creates the final image output files.
- </para>
-
- <para>
- The build system dynamically creates
- <filename>do_image_*</filename> tasks as needed, based
- on the image types specified in the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></ulink>
- variable.
- The process turns everything into an image file or a set of
- image files and can compress the root filesystem image to
- reduce the overall size of the image.
- The formats used for the root filesystem depend on the
- <filename>IMAGE_FSTYPES</filename> variable.
- Compression depends on whether the formats support
- compression.
- </para>
-
- <para>
- As an example, a dynamically created task when creating a
- particular image <replaceable>type</replaceable> would
- take the following form:
- <literallayout class='monospaced'>
- do_image_<replaceable>type</replaceable>
- </literallayout>
- So, if the <replaceable>type</replaceable> as specified by
- the <filename>IMAGE_FSTYPES</filename> were
- <filename>ext4</filename>, the dynamically generated task
- would be as follows:
- <literallayout class='monospaced'>
- do_image_ext4
- </literallayout>
- </para>
-
- <para>
- The final task involved in image creation is the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image-complete'><filename>do_image_complete</filename></ulink>
- task.
- This task completes the image by applying any image
- post processing as defined through the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_POSTPROCESS_COMMAND'><filename>IMAGE_POSTPROCESS_COMMAND</filename></ulink>
- variable.
- The variable specifies a list of functions to call once the
- build system has created the final image output files.
- <note>
- The entire image generation process is run under
- <link linkend='fakeroot-and-pseudo'>Pseudo</link>.
- Running under Pseudo ensures that the files in the
- root filesystem have correct ownership.
- </note>
- </para>
- </section>
-
- <section id='sdk-generation-dev-environment'>
- <title>SDK Generation</title>
-
- <para>
- The OpenEmbedded build system uses BitBake to generate the
- Software Development Kit (SDK) installer scripts for both
- the standard SDK and the extensible SDK (eSDK):
- </para>
-
- <para>
- <imagedata fileref="figures/sdk-generation.png" width="9in" align="center" />
- <note>
- For more information on the cross-development toolchain
- generation, see the
- "<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
- section.
- For information on advantages gained when building a
- cross-development toolchain using the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sdk'><filename>do_populate_sdk</filename></ulink>
- task, see the
- "<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-building-an-sdk-installer'>Building an SDK Installer</ulink>"
- section in the Yocto Project Application Development
- and the Extensible Software Development Kit (eSDK)
- manual.
- </note>
- </para>
-
- <para>
- Like image generation, the SDK script process consists of
- several stages and depends on many variables.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sdk'><filename>do_populate_sdk</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sdk_ext'><filename>do_populate_sdk_ext</filename></ulink>
- tasks use these key variables to help create the list of
- packages to actually install.
- For information on the variables listed in the figure,
- see the
- "<link linkend='sdk-dev-environment'>Application Development SDK</link>"
- section.
- </para>
-
- <para>
- The <filename>do_populate_sdk</filename> task helps create
- the standard SDK and handles two parts: a target part and a
- host part.
- The target part is the part built for the target hardware
- and includes libraries and headers.
- The host part is the part of the SDK that runs on the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>.
- </para>
-
- <para>
- The <filename>do_populate_sdk_ext</filename> task helps
- create the extensible SDK and handles host and target parts
- differently than its counter part does for the standard SDK.
- For the extensible SDK, the task encapsulates the build
- system, which includes everything needed (host and target)
- for the SDK.
- </para>
-
- <para>
- Regardless of the type of SDK being constructed, the
- tasks perform some cleanup after which a cross-development
- environment setup script and any needed configuration files
- are created.
- The final output is the Cross-development
- toolchain installation script (<filename>.sh</filename>
- file), which includes the environment setup script.
- </para>
- </section>
-
- <section id='stamp-files-and-the-rerunning-of-tasks'>
- <title>Stamp Files and the Rerunning of Tasks</title>
-
- <para>
- For each task that completes successfully, BitBake writes a
- stamp file into the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STAMPS_DIR'><filename>STAMPS_DIR</filename></ulink>
- directory.
- The beginning of the stamp file's filename is determined
- by the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STAMP'><filename>STAMP</filename></ulink>
- variable, and the end of the name consists of the task's
- name and current
- <link linkend='overview-checksums'>input checksum</link>.
- <note>
- This naming scheme assumes that
- <ulink url='&YOCTO_DOCS_BB_URL;#var-BB_SIGNATURE_HANDLER'><filename>BB_SIGNATURE_HANDLER</filename></ulink>
- is "OEBasicHash", which is almost always the case in
- current OpenEmbedded.
- </note>
- To determine if a task needs to be rerun, BitBake checks
- if a stamp file with a matching input checksum exists
- for the task.
- If such a stamp file exists, the task's output is
- assumed to exist and still be valid.
- If the file does not exist, the task is rerun.
- <note>
- <para>The stamp mechanism is more general than the
- shared state (sstate) cache mechanism described in the
- "<link linkend='setscene-tasks-and-shared-state'>Setscene Tasks and Shared State</link>"
- section.
- BitBake avoids rerunning any task that has a valid
- stamp file, not just tasks that can be accelerated
- through the sstate cache.</para>
-
- <para>However, you should realize that stamp files only
- serve as a marker that some work has been done and that
- these files do not record task output.
- The actual task output would usually be somewhere in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>
- (e.g. in some recipe's
- <ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.)
- What the sstate cache mechanism adds is a way to cache
- task output that can then be shared between build
- machines.</para>
- </note>
- Since <filename>STAMPS_DIR</filename> is usually a
- subdirectory of <filename>TMPDIR</filename>, removing
- <filename>TMPDIR</filename> will also remove
- <filename>STAMPS_DIR</filename>, which means tasks will
- properly be rerun to repopulate
- <filename>TMPDIR</filename>.
- </para>
-
- <para>
- If you want some task to always be considered "out of
- date", you can mark it with the
- <ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'><filename>nostamp</filename></ulink>
- varflag.
- If some other task depends on such a task, then that
- task will also always be considered out of date, which
- might not be what you want.
- </para>
-
- <para>
- For details on how to view information about a task's
- signature, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#dev-viewing-task-variable-dependencies'>Viewing Task Variable Dependencies</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para>
- </section>
-
- <section id='setscene-tasks-and-shared-state'>
- <title>Setscene Tasks and Shared State</title>
-
- <para>
- The description of tasks so far assumes that BitBake needs
- to build everything and no available prebuilt objects
- exist.
- BitBake does support skipping tasks if prebuilt objects are
- available.
- These objects are usually made available in the form of a
- shared state (sstate) cache.
- <note>
- For information on variables affecting sstate, see the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_MIRRORS'><filename>SSTATE_MIRRORS</filename></ulink>
- variables.
- </note>
- </para>
-
- <para>
- The idea of a setscene task (i.e
- <filename>do_</filename><replaceable>taskname</replaceable><filename>_setscene</filename>)
- is a version of the task where
- instead of building something, BitBake can skip to the end
- result and simply place a set of files into specific
- locations as needed.
- In some cases, it makes sense to have a setscene task
- variant (e.g. generating package files in the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write_*</filename></ulink>
- task).
- In other cases, it does not make sense (e.g. a
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-patch'><filename>do_patch</filename></ulink>
- task or a
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-unpack'><filename>do_unpack</filename></ulink>
- task) since the work involved would be equal to or greater
- than the underlying task.
- </para>
-
- <para>
- In the build system, the common tasks that have setscene
- variants are
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>,
- <filename>do_package_write_*</filename>,
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>,
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>,
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-populate_sysroot'><filename>do_populate_sysroot</filename></ulink>.
- Notice that these tasks represent most of the tasks whose
- output is an end result.
- </para>
-
- <para>
- The build system has knowledge of the relationship between
- these tasks and other preceding tasks.
- For example, if BitBake runs
- <filename>do_populate_sysroot_setscene</filename> for
- something, it does not make sense to run any of the
- <filename>do_fetch</filename>,
- <filename>do_unpack</filename>,
- <filename>do_patch</filename>,
- <filename>do_configure</filename>,
- <filename>do_compile</filename>, and
- <filename>do_install</filename> tasks.
- However, if <filename>do_package</filename> needs to be
- run, BitBake needs to run those other tasks.
- </para>
-
- <para>
- It becomes more complicated if everything can come
- from an sstate cache because some objects are simply
- not required at all.
- For example, you do not need a compiler or native tools,
- such as quilt, if nothing exists to compile or patch.
- If the <filename>do_package_write_*</filename> packages
- are available from sstate, BitBake does not need the
- <filename>do_package</filename> task data.
- </para>
-
- <para>
- To handle all these complexities, BitBake runs in two
- phases.
- The first is the "setscene" stage.
- During this stage, BitBake first checks the sstate cache
- for any targets it is planning to build.
- BitBake does a fast check to see if the object exists
- rather than a complete download.
- If nothing exists, the second phase, which is the setscene
- stage, completes and the main build proceeds.
- </para>
-
- <para>
- If objects are found in the sstate cache, the build system
- works backwards from the end targets specified by the user.
- For example, if an image is being built, the build system
- first looks for the packages needed for that image and the
- tools needed to construct an image.
- If those are available, the compiler is not needed.
- Thus, the compiler is not even downloaded.
- If something was found to be unavailable, or the
- download or setscene task fails, the build system then
- tries to install dependencies, such as the compiler, from
- the cache.
- </para>
-
- <para>
- The availability of objects in the sstate cache is
- handled by the function specified by the
- <ulink url='&YOCTO_DOCS_BB_URL;#var-BB_HASHCHECK_FUNCTION'><filename>BB_HASHCHECK_FUNCTION</filename></ulink>
- variable and returns a list of available objects.
- The function specified by the
- <ulink url='&YOCTO_DOCS_BB_URL;#var-BB_SETSCENE_DEPVALID'><filename>BB_SETSCENE_DEPVALID</filename></ulink>
- variable is the function that determines whether a given
- dependency needs to be followed, and whether for any given
- relationship the function needs to be passed.
- The function returns a True or False value.
- </para>
- </section>
- </section>
-
- <section id='images-dev-environment'>
- <title>Images</title>
-
- <para>
- The images produced by the build system are compressed forms
- of the root filesystem and are ready to boot on a target
- device.
- You can see from the
- <link linkend='general-workflow-figure'>general workflow figure</link>
- that BitBake output, in part, consists of images.
- This section takes a closer look at this output:
- <imagedata fileref="figures/images.png" align="center" width="5.5in" depth="5.5in" />
- </para>
-
- <note>
- For a list of example images that the Yocto Project provides,
- see the
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
- chapter in the Yocto Project Reference Manual.
- </note>
-
- <para>
- The build process writes images out to the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
- inside the
- <filename>tmp/deploy/images/<replaceable>machine</replaceable>/</filename>
- folder as shown in the figure.
- This folder contains any files expected to be loaded on the
- target device.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>
- variable points to the <filename>deploy</filename> directory,
- while the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR_IMAGE'><filename>DEPLOY_DIR_IMAGE</filename></ulink>
- variable points to the appropriate directory containing images
- for the current configuration.
- <itemizedlist>
- <listitem><para>
- <replaceable>kernel-image</replaceable>:
- A kernel binary file.
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-KERNEL_IMAGETYPE'><filename>KERNEL_IMAGETYPE</filename></ulink>
- variable determines the naming scheme for the
- kernel image file.
- Depending on this variable, the file could begin with
- a variety of naming strings.
- The
- <filename>deploy/images/</filename><replaceable>machine</replaceable>
- directory can contain multiple image files for the
- machine.
- </para></listitem>
- <listitem><para>
- <replaceable>root-filesystem-image</replaceable>:
- Root filesystems for the target device (e.g.
- <filename>*.ext3</filename> or
- <filename>*.bz2</filename> files).
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_FSTYPES'><filename>IMAGE_FSTYPES</filename></ulink>
- variable determines the root filesystem image type.
- The
- <filename>deploy/images/</filename><replaceable>machine</replaceable>
- directory can contain multiple root filesystems for the
- machine.
- </para></listitem>
- <listitem><para>
- <replaceable>kernel-modules</replaceable>:
- Tarballs that contain all the modules built for the
- kernel.
- Kernel module tarballs exist for legacy purposes and
- can be suppressed by setting the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MODULE_TARBALL_DEPLOY'><filename>MODULE_TARBALL_DEPLOY</filename></ulink>
- variable to "0".
- The
- <filename>deploy/images/</filename><replaceable>machine</replaceable>
- directory can contain multiple kernel module tarballs
- for the machine.
- </para></listitem>
- <listitem><para>
- <replaceable>bootloaders</replaceable>:
- If applicable to the target machine, bootloaders
- supporting the image.
- The <filename>deploy/images/</filename><replaceable>machine</replaceable>
- directory can contain multiple bootloaders for the
- machine.
- </para></listitem>
- <listitem><para>
- <replaceable>symlinks</replaceable>:
- The
- <filename>deploy/images/</filename><replaceable>machine</replaceable>
- folder contains a symbolic link that points to the
- most recently built file for each machine.
- These links might be useful for external scripts that
- need to obtain the latest version of each file.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
-
- <section id='sdk-dev-environment'>
- <title>Application Development SDK</title>
-
- <para>
- In the
- <link linkend='general-workflow-figure'>general workflow figure</link>,
- the output labeled "Application Development SDK" represents an
- SDK.
- The SDK generation process differs depending on whether you
- build an extensible SDK (e.g.
- <filename>bitbake -c populate_sdk_ext</filename> <replaceable>imagename</replaceable>)
- or a standard SDK (e.g.
- <filename>bitbake -c populate_sdk</filename> <replaceable>imagename</replaceable>).
- This section takes a closer look at this output:
- <imagedata fileref="figures/sdk.png" align="center" width="9in" depth="7.25in" />
- </para>
-
- <para>
- The specific form of this output is a set of files that
- includes a self-extracting SDK installer
- (<filename>*.sh</filename>), host and target manifest files,
- and files used for SDK testing.
- When the SDK installer file is run, it installs the SDK.
- The SDK consists of a cross-development toolchain, a set of
- libraries and headers, and an SDK environment setup script.
- Running this installer essentially sets up your
- cross-development environment.
- You can think of the cross-toolchain as the "host"
- part because it runs on the SDK machine.
- You can think of the libraries and headers as the "target"
- part because they are built for the target hardware.
- The environment setup script is added so that you can
- initialize the environment before using the tools.
- </para>
-
- <note><title>Notes</title>
- <itemizedlist>
- <listitem><para>
- The Yocto Project supports several methods by which
- you can set up this cross-development environment.
- These methods include downloading pre-built SDK
- installers or building and installing your own SDK
- installer.
- </para></listitem>
- <listitem><para>
- For background information on cross-development
- toolchains in the Yocto Project development
- environment, see the
- "<link linkend='cross-development-toolchain-generation'>Cross-Development Toolchain Generation</link>"
- section.
- </para></listitem>
- <listitem><para>
- For information on setting up a cross-development
- environment, see the
- <ulink url='&YOCTO_DOCS_SDK_URL;'>Yocto Project Application Development and the Extensible Software Development Kit (eSDK)</ulink>
- manual.
- </para></listitem>
- </itemizedlist>
- </note>
-
- <para>
- All the output files for an SDK are written to the
- <filename>deploy/sdk</filename> folder inside the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>
- as shown in the previous figure.
- Depending on the type of SDK, several variables exist that help
- configure these files.
- The following list shows the variables associated with an
- extensible SDK:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
- Points to the <filename>deploy</filename> directory.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_EXT_TYPE'><filename>SDK_EXT_TYPE</filename></ulink>:
- Controls whether or not shared state artifacts are
- copied into the extensible SDK.
- By default, all required shared state artifacts are
- copied into the SDK.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INCLUDE_PKGDATA'><filename>SDK_INCLUDE_PKGDATA</filename></ulink>:
- Specifies whether or not packagedata is included in the
- extensible SDK for all recipes in the "world" target.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INCLUDE_TOOLCHAIN'><filename>SDK_INCLUDE_TOOLCHAIN</filename></ulink>:
- Specifies whether or not the toolchain is included
- when building the extensible SDK.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_LOCAL_CONF_WHITELIST'><filename>SDK_LOCAL_CONF_WHITELIST</filename></ulink>:
- A list of variables allowed through from the build
- system configuration into the extensible SDK
- configuration.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_LOCAL_CONF_BLACKLIST'><filename>SDK_LOCAL_CONF_BLACKLIST</filename></ulink>:
- A list of variables not allowed through from the build
- system configuration into the extensible SDK
- configuration.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_INHERIT_BLACKLIST'><filename>SDK_INHERIT_BLACKLIST</filename></ulink>:
- A list of classes to remove from the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-INHERIT'><filename>INHERIT</filename></ulink>
- value globally within the extensible SDK configuration.
- </para></listitem>
- </itemizedlist>
- This next list, shows the variables associated with a standard
- SDK:
- <itemizedlist>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPLOY_DIR'><filename>DEPLOY_DIR</filename></ulink>:
- Points to the <filename>deploy</filename> directory.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>:
- Specifies the architecture of the machine on which the
- cross-development tools are run to create packages for
- the target hardware.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKIMAGE_FEATURES'><filename>SDKIMAGE_FEATURES</filename></ulink>:
- Lists the features to include in the "target" part
- of the SDK.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TOOLCHAIN_HOST_TASK'><filename>TOOLCHAIN_HOST_TASK</filename></ulink>:
- Lists packages that make up the host part of the SDK
- (i.e. the part that runs on the
- <filename>SDKMACHINE</filename>).
- When you use
- <filename>bitbake -c populate_sdk <replaceable>imagename</replaceable></filename>
- to create the SDK, a set of default packages apply.
- This variable allows you to add more packages.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TOOLCHAIN_TARGET_TASK'><filename>TOOLCHAIN_TARGET_TASK</filename></ulink>:
- Lists packages that make up the target part of the SDK
- (i.e. the part built for the target hardware).
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKPATH'><filename>SDKPATH</filename></ulink>:
- Defines the default SDK installation path offered by
- the installation script.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_HOST_MANIFEST'><filename>SDK_HOST_MANIFEST</filename></ulink>:
- Lists all the installed packages that make up the host
- part of the SDK.
- This variable also plays a minor role for extensible
- SDK development as well.
- However, it is mainly used for the standard SDK.
- </para></listitem>
- <listitem><para>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_TARGET_MANIFEST'><filename>SDK_TARGET_MANIFEST</filename></ulink>:
- Lists all the installed packages that make up the
- target part of the SDK.
- This variable also plays a minor role for extensible
- SDK development as well.
- However, it is mainly used for the standard SDK.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
- </section>
-
- <section id="cross-development-toolchain-generation">
- <title>Cross-Development Toolchain Generation</title>
-
- <para>
- The Yocto Project does most of the work for you when it comes to
- creating
- <ulink url='&YOCTO_DOCS_REF_URL;#cross-development-toolchain'>cross-development toolchains</ulink>.
- This section provides some technical background on how
- cross-development toolchains are created and used.
- For more information on toolchains, you can also see the
- <ulink url='&YOCTO_DOCS_SDK_URL;'>Yocto Project Application Development and the Extensible Software Development Kit (eSDK)</ulink>
- manual.
- </para>
-
- <para>
- In the Yocto Project development environment, cross-development
- toolchains are used to build images and applications that run
- on the target hardware.
- With just a few commands, the OpenEmbedded build system creates
- these necessary toolchains for you.
- </para>
-
- <para>
- The following figure shows a high-level build environment regarding
- toolchain construction and use.
- </para>
-
- <para>
- <imagedata fileref="figures/cross-development-toolchains.png" width="8in" depth="6in" align="center" />
- </para>
-
- <para>
- Most of the work occurs on the Build Host.
- This is the machine used to build images and generally work within
- the the Yocto Project environment.
- When you run
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
- to create an image, the OpenEmbedded build system
- uses the host <filename>gcc</filename> compiler to bootstrap a
- cross-compiler named <filename>gcc-cross</filename>.
- The <filename>gcc-cross</filename> compiler is what BitBake uses to
- compile source files when creating the target image.
- You can think of <filename>gcc-cross</filename> simply as an
- automatically generated cross-compiler that is used internally
- within BitBake only.
- <note>
- The extensible SDK does not use
- <filename>gcc-cross-canadian</filename> since this SDK
- ships a copy of the OpenEmbedded build system and the sysroot
- within it contains <filename>gcc-cross</filename>.
- </note>
- </para>
-
- <para>
- The chain of events that occurs when <filename>gcc-cross</filename> is
- bootstrapped is as follows:
- <literallayout class='monospaced'>
- gcc -> binutils-cross -> gcc-cross-initial -> linux-libc-headers -> glibc-initial -> glibc -> gcc-cross -> gcc-runtime
- </literallayout>
- <itemizedlist>
- <listitem><para>
- <filename>gcc</filename>:
- The build host's GNU Compiler Collection (GCC).
- </para></listitem>
- <listitem><para>
- <filename>binutils-cross</filename>:
- The bare minimum binary utilities needed in order to run
- the <filename>gcc-cross-initial</filename> phase of the
- bootstrap operation.
- </para></listitem>
- <listitem><para>
- <filename>gcc-cross-initial</filename>:
- An early stage of the bootstrap process for creating
- the cross-compiler.
- This stage builds enough of the <filename>gcc-cross</filename>,
- the C library, and other pieces needed to finish building the
- final cross-compiler in later stages.
- This tool is a "native" package (i.e. it is designed to run on
- the build host).
- </para></listitem>
- <listitem><para>
- <filename>linux-libc-headers</filename>:
- Headers needed for the cross-compiler.
- </para></listitem>
- <listitem><para>
- <filename>glibc-initial</filename>:
- An initial version of the Embedded GNU C Library
- (GLIBC) needed to bootstrap <filename>glibc</filename>.
- </para></listitem>
- <listitem><para>
- <filename>glibc</filename>:
- The GNU C Library.
- </para></listitem>
- <listitem><para>
- <filename>gcc-cross</filename>:
- The final stage of the bootstrap process for the
- cross-compiler.
- This stage results in the actual cross-compiler that
- BitBake uses when it builds an image for a targeted
- device.
- <note>
- If you are replacing this cross compiler toolchain
- with a custom version, you must replace
- <filename>gcc-cross</filename>.
- </note>
- This tool is also a "native" package (i.e. it is
- designed to run on the build host).
- </para></listitem>
- <listitem><para>
- <filename>gcc-runtime</filename>:
- Runtime libraries resulting from the toolchain bootstrapping
- process.
- This tool produces a binary that consists of the
- runtime libraries need for the targeted device.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- You can use the OpenEmbedded build system to build an installer for
- the relocatable SDK used to develop applications.
- When you run the installer, it installs the toolchain, which
- contains the development tools (e.g.,
- <filename>gcc-cross-canadian</filename>,
- <filename>binutils-cross-canadian</filename>, and other
- <filename>nativesdk-*</filename> tools),
- which are tools native to the SDK (i.e. native to
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDK_ARCH'><filename>SDK_ARCH</filename></ulink>),
- you need to cross-compile and test your software.
- The figure shows the commands you use to easily build out this
- toolchain.
- This cross-development toolchain is built to execute on the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
- which might or might not be the same
- machine as the Build Host.
- <note>
- If your target architecture is supported by the Yocto Project,
- you can take advantage of pre-built images that ship with the
- Yocto Project and already contain cross-development toolchain
- installers.
- </note>
- </para>
-
- <para>
- Here is the bootstrap process for the relocatable toolchain:
- <literallayout class='monospaced'>
- gcc -> binutils-crosssdk -> gcc-crosssdk-initial -> linux-libc-headers ->
- glibc-initial -> nativesdk-glibc -> gcc-crosssdk -> gcc-cross-canadian
- </literallayout>
- <itemizedlist>
- <listitem><para>
- <filename>gcc</filename>:
- The build host's GNU Compiler Collection (GCC).
- </para></listitem>
- <listitem><para>
- <filename>binutils-crosssdk</filename>:
- The bare minimum binary utilities needed in order to run
- the <filename>gcc-crosssdk-initial</filename> phase of the
- bootstrap operation.
- </para></listitem>
- <listitem><para>
- <filename>gcc-crosssdk-initial</filename>:
- An early stage of the bootstrap process for creating
- the cross-compiler.
- This stage builds enough of the
- <filename>gcc-crosssdk</filename> and supporting pieces so that
- the final stage of the bootstrap process can produce the
- finished cross-compiler.
- This tool is a "native" binary that runs on the build host.
- </para></listitem>
- <listitem><para>
- <filename>linux-libc-headers</filename>:
- Headers needed for the cross-compiler.
- </para></listitem>
- <listitem><para>
- <filename>glibc-initial</filename>:
- An initial version of the Embedded GLIBC needed to bootstrap
- <filename>nativesdk-glibc</filename>.
- </para></listitem>
- <listitem><para>
- <filename>nativesdk-glibc</filename>:
- The Embedded GLIBC needed to bootstrap the
- <filename>gcc-crosssdk</filename>.
- </para></listitem>
- <listitem><para>
- <filename>gcc-crosssdk</filename>:
- The final stage of the bootstrap process for the
- relocatable cross-compiler.
- The <filename>gcc-crosssdk</filename> is a transitory
- compiler and never leaves the build host.
- Its purpose is to help in the bootstrap process to create
- the eventual <filename>gcc-cross-canadian</filename>
- compiler, which is relocatable.
- This tool is also a "native" package (i.e. it is
- designed to run on the build host).
- </para></listitem>
- <listitem><para>
- <filename>gcc-cross-canadian</filename>:
- The final relocatable cross-compiler.
- When run on the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>,
- this tool
- produces executable code that runs on the target device.
- Only one cross-canadian compiler is produced per architecture
- since they can be targeted at different processor optimizations
- using configurations passed to the compiler through the
- compile commands.
- This circumvents the need for multiple compilers and thus
- reduces the size of the toolchains.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <note>
- For information on advantages gained when building a
- cross-development toolchain installer, see the
- "<ulink url='&YOCTO_DOCS_SDK_URL;#sdk-building-an-sdk-installer'>Building an SDK Installer</ulink>"
- appendix in the Yocto Project Application Development and the
- Extensible Software Development Kit (eSDK) manual.
- </note>
- </section>
-
- <section id="shared-state-cache">
- <title>Shared State Cache</title>
-
- <para>
- By design, the OpenEmbedded build system builds everything from
- scratch unless
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
- can determine that parts do not need to be rebuilt.
- Fundamentally, building from scratch is attractive as it means all
- parts are built fresh and no possibility of stale data exists that
- can cause problems.
- When developers hit problems, they typically default back to
- building from scratch so they have a know state from the
- start.
- </para>
-
- <para>
- Building an image from scratch is both an advantage and a
- disadvantage to the process.
- As mentioned in the previous paragraph, building from scratch
- ensures that everything is current and starts from a known state.
- However, building from scratch also takes much longer as it
- generally means rebuilding things that do not necessarily need
- to be rebuilt.
- </para>
-
- <para>
- The Yocto Project implements shared state code that supports
- incremental builds.
- The implementation of the shared state code answers the following
- questions that were fundamental roadblocks within the OpenEmbedded
- incremental build support system:
- <itemizedlist>
- <listitem><para>
- What pieces of the system have changed and what pieces have
- not changed?
- </para></listitem>
- <listitem><para>
- How are changed pieces of software removed and replaced?
- </para></listitem>
- <listitem><para>
- How are pre-built components that do not need to be rebuilt
- from scratch used when they are available?
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- For the first question, the build system detects changes in the
- "inputs" to a given task by creating a checksum (or signature) of
- the task's inputs.
- If the checksum changes, the system assumes the inputs have changed
- and the task needs to be rerun.
- For the second question, the shared state (sstate) code tracks
- which tasks add which output to the build process.
- This means the output from a given task can be removed, upgraded
- or otherwise manipulated.
- The third question is partly addressed by the solution for the
- second question assuming the build system can fetch the sstate
- objects from remote locations and install them if they are deemed
- to be valid.
- <note><title>Notes</title>
- <itemizedlist>
- <listitem><para>
- The build system does not maintain
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
- information as part of the shared state packages.
- Consequently, considerations exist that affect
- maintaining shared state feeds.
- For information on how the build system works with
- packages and can track incrementing
- <filename>PR</filename> information, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#automatically-incrementing-a-binary-package-revision-number'>Automatically Incrementing a Binary Package Revision Number</ulink>"
- section in the Yocto Project Development Tasks Manual.
- </para></listitem>
- <listitem><para>
- The code in the build system that supports incremental
- builds is not simple code.
- For techniques that help you work around issues related
- to shared state code, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#dev-viewing-metadata-used-to-create-the-input-signature-of-a-shared-state-task'>Viewing Metadata Used to Create the Input Signature of a Shared State Task</ulink>"
- and
- "<ulink url='&YOCTO_DOCS_DEV_URL;#dev-invalidating-shared-state-to-force-a-task-to-run'>Invalidating Shared State to Force a Task to Run</ulink>"
- sections both in the Yocto Project Development Tasks
- Manual.
- </para></listitem>
- </itemizedlist>
- </note>
- </para>
-
- <para>
- The rest of this section goes into detail about the overall
- incremental build architecture, the checksums (signatures), and
- shared state.
- </para>
-
- <section id='concepts-overall-architecture'>
- <title>Overall Architecture</title>
-
- <para>
- When determining what parts of the system need to be built,
- BitBake works on a per-task basis rather than a per-recipe
- basis.
- You might wonder why using a per-task basis is preferred over
- a per-recipe basis.
- To help explain, consider having the IPK packaging backend
- enabled and then switching to DEB.
- In this case, the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
- task outputs are still valid.
- However, with a per-recipe approach, the build would not
- include the <filename>.deb</filename> files.
- Consequently, you would have to invalidate the whole build and
- rerun it.
- Rerunning everything is not the best solution.
- Also, in this case, the core must be "taught" much about
- specific tasks.
- This methodology does not scale well and does not allow users
- to easily add new tasks in layers or as external recipes
- without touching the packaged-staging core.
- </para>
- </section>
-
- <section id='overview-checksums'>
- <title>Checksums (Signatures)</title>
-
- <para>
- The shared state code uses a checksum, which is a unique
- signature of a task's inputs, to determine if a task needs to
- be run again.
- Because it is a change in a task's inputs that triggers a
- rerun, the process needs to detect all the inputs to a given
- task.
- For shell tasks, this turns out to be fairly easy because
- the build process generates a "run" shell script for each task
- and it is possible to create a checksum that gives you a good
- idea of when the task's data changes.
- </para>
-
- <para>
- To complicate the problem, there are things that should not be
- included in the checksum.
- First, there is the actual specific build path of a given
- task - the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.
- It does not matter if the work directory changes because it
- should not affect the output for target packages.
- Also, the build process has the objective of making native
- or cross packages relocatable.
- <note>
- Both native and cross packages run on the
- <ulink url='&YOCTO_DOCS_REF_URL;#hardware-build-system-term'>build host</ulink>.
- However, cross packages generate output for the target
- architecture.
- </note>
- The checksum therefore needs to exclude
- <filename>WORKDIR</filename>.
- The simplistic approach for excluding the work directory is to
- set <filename>WORKDIR</filename> to some fixed value and
- create the checksum for the "run" script.
- </para>
-
- <para>
- Another problem results from the "run" scripts containing
- functions that might or might not get called.
- The incremental build solution contains code that figures out
- dependencies between shell functions.
- This code is used to prune the "run" scripts down to the
- minimum set, thereby alleviating this problem and making the
- "run" scripts much more readable as a bonus.
- </para>
-
- <para>
- So far, solutions for shell scripts exist.
- What about Python tasks?
- The same approach applies even though these tasks are more
- difficult.
- The process needs to figure out what variables a Python
- function accesses and what functions it calls.
- Again, the incremental build solution contains code that first
- figures out the variable and function dependencies, and then
- creates a checksum for the data used as the input to the task.
- </para>
-
- <para>
- Like the <filename>WORKDIR</filename> case, situations exist
- where dependencies should be ignored.
- For these situations, you can instruct the build process to
- ignore a dependency by using a line like the following:
- <literallayout class='monospaced'>
- PACKAGE_ARCHS[vardepsexclude] = "MACHINE"
- </literallayout>
- This example ensures that the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PACKAGE_ARCHS'><filename>PACKAGE_ARCHS</filename></ulink>
- variable does not depend on the value of
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>,
- even if it does reference it.
- </para>
-
- <para>
- Equally, there are cases where you need to add dependencies
- BitBake is not able to find.
- You can accomplish this by using a line like the following:
- <literallayout class='monospaced'>
- PACKAGE_ARCHS[vardeps] = "MACHINE"
- </literallayout>
- This example explicitly adds the <filename>MACHINE</filename>
- variable as a dependency for
- <filename>PACKAGE_ARCHS</filename>.
- </para>
-
- <para>
- As an example, consider a case with in-line Python where
- BitBake is not able to figure out dependencies.
- When running in debug mode (i.e. using
- <filename>-DDD</filename>), BitBake produces output when it
- discovers something for which it cannot figure out dependencies.
- The Yocto Project team has currently not managed to cover
- those dependencies in detail and is aware of the need to fix
- this situation.
- </para>
-
- <para>
- Thus far, this section has limited discussion to the direct
- inputs into a task.
- Information based on direct inputs is referred to as the
- "basehash" in the code.
- However, the question of a task's indirect inputs still
- exits - items already built and present in the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-directory'>Build Directory</ulink>.
- The checksum (or signature) for a particular task needs to add
- the hashes of all the tasks on which the particular task
- depends.
- Choosing which dependencies to add is a policy decision.
- However, the effect is to generate a master checksum that
- combines the basehash and the hashes of the task's
- dependencies.
- </para>
-
- <para>
- At the code level, a variety of ways exist by which both the
- basehash and the dependent task hashes can be influenced.
- Within the BitBake configuration file, you can give BitBake
- some extra information to help it construct the basehash.
- The following statement effectively results in a list of
- global variable dependency excludes (i.e. variables never
- included in any checksum):
- <literallayout class='monospaced'>
- BB_HASHBASE_WHITELIST ?= "TMPDIR FILE PATH PWD BB_TASKHASH BBPATH DL_DIR \
- SSTATE_DIR THISDIR FILESEXTRAPATHS FILE_DIRNAME HOME LOGNAME SHELL TERM \
- USER FILESPATH STAGING_DIR_HOST STAGING_DIR_TARGET COREBASE PRSERV_HOST \
- PRSERV_DUMPDIR PRSERV_DUMPFILE PRSERV_LOCKDOWN PARALLEL_MAKE \
- CCACHE_DIR EXTERNAL_TOOLCHAIN CCACHE CCACHE_DISABLE LICENSE_PATH SDKPKGSUFFIX"
- </literallayout>
- The previous example excludes
- <ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>
- since that variable is actually constructed as a path within
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TMPDIR'><filename>TMPDIR</filename></ulink>,
- which is on the whitelist.
- </para>
-
- <para>
- The rules for deciding which hashes of dependent tasks to
- include through dependency chains are more complex and are
- generally accomplished with a Python function.
- The code in <filename>meta/lib/oe/sstatesig.py</filename> shows
- two examples of this and also illustrates how you can insert
- your own policy into the system if so desired.
- This file defines the two basic signature generators
- <ulink url='&YOCTO_DOCS_REF_URL;#oe-core'>OE-Core</ulink>
- uses: "OEBasic" and "OEBasicHash".
- By default, a dummy "noop" signature handler is enabled
- in BitBake.
- This means that behavior is unchanged from previous versions.
- OE-Core uses the "OEBasicHash" signature handler by default
- through this setting in the <filename>bitbake.conf</filename>
- file:
- <literallayout class='monospaced'>
- BB_SIGNATURE_HANDLER ?= "OEBasicHash"
- </literallayout>
- The "OEBasicHash" <filename>BB_SIGNATURE_HANDLER</filename>
- is the same as the "OEBasic" version but adds the task hash to
- the
- <link linkend='stamp-files-and-the-rerunning-of-tasks'>stamp files</link>.
- This results in any metadata change that changes the task hash,
- automatically causing the task to be run again.
- This removes the need to bump
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PR'><filename>PR</filename></ulink>
- values, and changes to metadata automatically ripple across
- the build.
- </para>
-
- <para>
- It is also worth noting that the end result of these
- signature generators is to make some dependency and hash
- information available to the build.
- This information includes:
- <itemizedlist>
- <listitem><para>
- <filename>BB_BASEHASH_task-</filename><replaceable>taskname</replaceable>:
- The base hashes for each task in the recipe.
- </para></listitem>
- <listitem><para>
- <filename>BB_BASEHASH_</filename><replaceable>filename</replaceable><filename>:</filename><replaceable>taskname</replaceable>:
- The base hashes for each dependent task.
- </para></listitem>
- <listitem><para>
- <filename>BBHASHDEPS_</filename><replaceable>filename</replaceable><filename>:</filename><replaceable>taskname</replaceable>:
- The task dependencies for each task.
- </para></listitem>
- <listitem><para>
- <filename>BB_TASKHASH</filename>:
- The hash of the currently running task.
- </para></listitem>
- </itemizedlist>
- </para>
- </section>
-
- <section id='shared-state'>
- <title>Shared State</title>
-
- <para>
- Checksums and dependencies, as discussed in the previous
- section, solve half the problem of supporting a shared state.
- The other half of the problem is being able to use checksum
- information during the build and being able to reuse or rebuild
- specific components.
- </para>
-
- <para>
- The
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-sstate'><filename>sstate</filename></ulink>
- class is a relatively generic implementation of how to
- "capture" a snapshot of a given task.
- The idea is that the build process does not care about the
- source of a task's output.
- Output could be freshly built or it could be downloaded and
- unpacked from somewhere.
- In other words, the build process does not need to worry about
- its origin.
- </para>
-
- <para>
- Two types of output exist.
- One type is just about creating a directory in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink>.
- A good example is the output of either
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>.
- The other type of output occurs when a set of data is merged
- into a shared directory tree such as the sysroot.
- </para>
-
- <para>
- The Yocto Project team has tried to keep the details of the
- implementation hidden in <filename>sstate</filename> class.
- From a user's perspective, adding shared state wrapping to a
- task is as simple as this
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>
- example taken from the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-deploy'><filename>deploy</filename></ulink>
- class:
- <literallayout class='monospaced'>
- DEPLOYDIR = "${WORKDIR}/deploy-${PN}"
- SSTATETASKS += "do_deploy"
- do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"
- do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"
-
- python do_deploy_setscene () {
- sstate_setscene(d)
- }
- addtask do_deploy_setscene
- do_deploy[dirs] = "${DEPLOYDIR} ${B}"
- do_deploy[stamp-extra-info] = "${MACHINE_ARCH}"
- </literallayout>
- The following list explains the previous example:
- <itemizedlist>
- <listitem><para>
- Adding "do_deploy" to <filename>SSTATETASKS</filename>
- adds some required sstate-related processing, which is
- implemented in the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-classes-sstate'><filename>sstate</filename></ulink>
- class, to before and after the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-deploy'><filename>do_deploy</filename></ulink>
- task.
- </para></listitem>
- <listitem><para>
- The
- <filename>do_deploy[sstate-inputdirs] = "${DEPLOYDIR}"</filename>
- declares that <filename>do_deploy</filename> places its
- output in <filename>${DEPLOYDIR}</filename> when run
- normally (i.e. when not using the sstate cache).
- This output becomes the input to the shared state cache.
- </para></listitem>
- <listitem><para>
- The
- <filename>do_deploy[sstate-outputdirs] = "${DEPLOY_DIR_IMAGE}"</filename>
- line causes the contents of the shared state cache to be
- copied to <filename>${DEPLOY_DIR_IMAGE}</filename>.
- <note>
- If <filename>do_deploy</filename> is not already in
- the shared state cache or if its input checksum
- (signature) has changed from when the output was
- cached, the task runs to populate the shared
- state cache, after which the contents of the shared
- state cache is copied to
- <filename>${DEPLOY_DIR_IMAGE}</filename>.
- If <filename>do_deploy</filename> is in the shared
- state cache and its signature indicates that the
- cached output is still valid (i.e. if no
- relevant task inputs have changed), then the
- contents of the shared state cache copies
- directly to
- <filename>${DEPLOY_DIR_IMAGE}</filename> by the
- <filename>do_deploy_setscene</filename> task
- instead, skipping the
- <filename>do_deploy</filename> task.
- </note>
- </para></listitem>
- <listitem><para>
- The following task definition is glue logic needed to
- make the previous settings effective:
- <literallayout class='monospaced'>
- python do_deploy_setscene () {
- sstate_setscene(d)
- }
- addtask do_deploy_setscene
- </literallayout>
- <filename>sstate_setscene()</filename> takes the flags
- above as input and accelerates the
- <filename>do_deploy</filename> task through the
- shared state cache if possible.
- If the task was accelerated,
- <filename>sstate_setscene()</filename> returns True.
- Otherwise, it returns False, and the normal
- <filename>do_deploy</filename> task runs.
- For more information, see the
- "<ulink url='&YOCTO_DOCS_BB_URL;#setscene'>setscene</ulink>"
- section in the BitBake User Manual.
- </para></listitem>
- <listitem><para>
- The <filename>do_deploy[dirs] = "${DEPLOYDIR} ${B}"</filename>
- line creates <filename>${DEPLOYDIR}</filename> and
- <filename>${B}</filename> before the
- <filename>do_deploy</filename> task runs, and also sets
- the current working directory of
- <filename>do_deploy</filename> to
- <filename>${B}</filename>.
- For more information, see the
- "<ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'>Variable Flags</ulink>"
- section in the BitBake User Manual.
- <note>
- In cases where
- <filename>sstate-inputdirs</filename> and
- <filename>sstate-outputdirs</filename> would be the
- same, you can use
- <filename>sstate-plaindirs</filename>.
- For example, to preserve the
- <filename>${PKGD}</filename> and
- <filename>${PKGDEST}</filename> output from the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
- task, use the following:
- <literallayout class='monospaced'>
- do_package[sstate-plaindirs] = "${PKGD} ${PKGDEST}"
- </literallayout>
- </note>
- </para></listitem>
- <listitem><para>
- The <filename>do_deploy[stamp-extra-info] = "${MACHINE_ARCH}"</filename>
- line appends extra metadata to the
- <link linkend='stamp-files-and-the-rerunning-of-tasks'>stamp file</link>.
- In this case, the metadata makes the task specific
- to a machine's architecture.
- See
- "<ulink url='&YOCTO_DOCS_BB_URL;#ref-bitbake-tasklist'>The Task List</ulink>"
- section in the BitBake User Manual for more
- information on the <filename>stamp-extra-info</filename>
- flag.
- </para></listitem>
- <listitem><para>
- <filename>sstate-inputdirs</filename> and
- <filename>sstate-outputdirs</filename> can also be used
- with multiple directories.
- For example, the following declares
- <filename>PKGDESTWORK</filename> and
- <filename>SHLIBWORK</filename> as shared state
- input directories, which populates the shared state
- cache, and <filename>PKGDATA_DIR</filename> and
- <filename>SHLIBSDIR</filename> as the corresponding
- shared state output directories:
- <literallayout class='monospaced'>
- do_package[sstate-inputdirs] = "${PKGDESTWORK} ${SHLIBSWORKDIR}"
- do_package[sstate-outputdirs] = "${PKGDATA_DIR} ${SHLIBSDIR}"
- </literallayout>
- </para></listitem>
- <listitem><para>
- These methods also include the ability to take a
- lockfile when manipulating shared state directory
- structures, for cases where file additions or removals
- are sensitive:
- <literallayout class='monospaced'>
- do_package[sstate-lockfile] = "${PACKAGELOCK}"
- </literallayout>
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- Behind the scenes, the shared state code works by looking in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_DIR'><filename>SSTATE_DIR</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SSTATE_MIRRORS'><filename>SSTATE_MIRRORS</filename></ulink>
- for shared state files.
- Here is an example:
- <literallayout class='monospaced'>
- SSTATE_MIRRORS ?= "\
- file://.* http://someserver.tld/share/sstate/PATH;downloadfilename=PATH \n \
- file://.* file:///some/local/dir/sstate/PATH"
- </literallayout>
- <note>
- The shared state directory
- (<filename>SSTATE_DIR</filename>) is organized into
- two-character subdirectories, where the subdirectory
- names are based on the first two characters of the hash.
- If the shared state directory structure for a mirror has the
- same structure as <filename>SSTATE_DIR</filename>, you must
- specify "PATH" as part of the URI to enable the build system
- to map to the appropriate subdirectory.
- </note>
- </para>
-
- <para>
- The shared state package validity can be detected just by
- looking at the filename since the filename contains the task
- checksum (or signature) as described earlier in this section.
- If a valid shared state package is found, the build process
- downloads it and uses it to accelerate the task.
- </para>
-
- <para>
- The build processes use the <filename>*_setscene</filename>
- tasks for the task acceleration phase.
- BitBake goes through this phase before the main execution
- code and tries to accelerate any tasks for which it can find
- shared state packages.
- If a shared state package for a task is available, the
- shared state package is used.
- This means the task and any tasks on which it is dependent
- are not executed.
- </para>
-
- <para>
- As a real world example, the aim is when building an IPK-based
- image, only the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_ipk'><filename>do_package_write_ipk</filename></ulink>
- tasks would have their shared state packages fetched and
- extracted.
- Since the sysroot is not used, it would never get extracted.
- This is another reason why a task-based approach is preferred
- over a recipe-based approach, which would have to install the
- output from every task.
- </para>
- </section>
- </section>
-
- <section id='automatically-added-runtime-dependencies'>
- <title>Automatically Added Runtime Dependencies</title>
-
- <para>
- The OpenEmbedded build system automatically adds common types of
- runtime dependencies between packages, which means that you do not
- need to explicitly declare the packages using
- <ulink url='&YOCTO_DOCS_REF_URL;#var-RDEPENDS'><filename>RDEPENDS</filename></ulink>.
- Three automatic mechanisms exist (<filename>shlibdeps</filename>,
- <filename>pcdeps</filename>, and <filename>depchains</filename>)
- that handle shared libraries, package configuration (pkg-config)
- modules, and <filename>-dev</filename> and
- <filename>-dbg</filename> packages, respectively.
- For other types of runtime dependencies, you must manually declare
- the dependencies.
- <itemizedlist>
- <listitem><para>
- <filename>shlibdeps</filename>:
- During the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package'><filename>do_package</filename></ulink>
- task of each recipe, all shared libraries installed by the
- recipe are located.
- For each shared library, the package that contains the
- shared library is registered as providing the shared
- library.
- More specifically, the package is registered as providing
- the
- <ulink url='https://en.wikipedia.org/wiki/Soname'>soname</ulink>
- of the library.
- The resulting shared-library-to-package mapping
- is saved globally in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKGDATA_DIR'><filename>PKGDATA_DIR</filename></ulink>
- by the
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-packagedata'><filename>do_packagedata</filename></ulink>
- task.</para>
-
- <para>Simultaneously, all executables and shared libraries
- installed by the recipe are inspected to see what shared
- libraries they link against.
- For each shared library dependency that is found,
- <filename>PKGDATA_DIR</filename> is queried to
- see if some package (likely from a different recipe)
- contains the shared library.
- If such a package is found, a runtime dependency is added
- from the package that depends on the shared library to the
- package that contains the library.</para>
-
- <para>The automatically added runtime dependency also
- includes a version restriction.
- This version restriction specifies that at least the
- current version of the package that provides the shared
- library must be used, as if
- "<replaceable>package</replaceable> (>= <replaceable>version</replaceable>)"
- had been added to <filename>RDEPENDS</filename>.
- This forces an upgrade of the package containing the shared
- library when installing the package that depends on the
- library, if needed.</para>
-
- <para>If you want to avoid a package being registered as
- providing a particular shared library (e.g. because the library
- is for internal use only), then add the library to
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PRIVATE_LIBS'><filename>PRIVATE_LIBS</filename></ulink>
- inside the package's recipe.
- </para></listitem>
- <listitem><para>
- <filename>pcdeps</filename>:
- During the <filename>do_package</filename> task of each
- recipe, all pkg-config modules
- (<filename>*.pc</filename> files) installed by the recipe
- are located.
- For each module, the package that contains the module is
- registered as providing the module.
- The resulting module-to-package mapping is saved globally in
- <filename>PKGDATA_DIR</filename> by the
- <filename>do_packagedata</filename> task.</para>
-
- <para>Simultaneously, all pkg-config modules installed by
- the recipe are inspected to see what other pkg-config
- modules they depend on.
- A module is seen as depending on another module if it
- contains a "Requires:" line that specifies the other module.
- For each module dependency,
- <filename>PKGDATA_DIR</filename> is queried to see if some
- package contains the module.
- If such a package is found, a runtime dependency is added
- from the package that depends on the module to the package
- that contains the module.
- <note>
- The <filename>pcdeps</filename> mechanism most often
- infers dependencies between <filename>-dev</filename>
- packages.
- </note>
- </para></listitem>
- <listitem><para>
- <filename>depchains</filename>:
- If a package <filename>foo</filename> depends on a package
- <filename>bar</filename>, then <filename>foo-dev</filename>
- and <filename>foo-dbg</filename> are also made to depend on
- <filename>bar-dev</filename> and
- <filename>bar-dbg</filename>, respectively.
- Taking the <filename>-dev</filename> packages as an
- example, the <filename>bar-dev</filename> package might
- provide headers and shared library symlinks needed by
- <filename>foo-dev</filename>, which shows the need
- for a dependency between the packages.</para>
-
- <para>The dependencies added by
- <filename>depchains</filename> are in the form of
- <ulink url='&YOCTO_DOCS_REF_URL;#var-RRECOMMENDS'><filename>RRECOMMENDS</filename></ulink>.
- <note>
- By default, <filename>foo-dev</filename> also has an
- <filename>RDEPENDS</filename>-style dependency on
- <filename>foo</filename>, because the default value of
- <filename>RDEPENDS_${PN}-dev</filename> (set in
- <filename>bitbake.conf</filename>) includes
- "${PN}".
- </note></para>
-
- <para>To ensure that the dependency chain is never broken,
- <filename>-dev</filename> and <filename>-dbg</filename>
- packages are always generated by default, even if the
- packages turn out to be empty.
- See the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-ALLOW_EMPTY'><filename>ALLOW_EMPTY</filename></ulink>
- variable for more information.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- The <filename>do_package</filename> task depends on the
- <filename>do_packagedata</filename> task of each recipe in
- <ulink url='&YOCTO_DOCS_REF_URL;#var-DEPENDS'><filename>DEPENDS</filename></ulink>
- through use of a
- <filename>[</filename><ulink url='&YOCTO_DOCS_BB_URL;#variable-flags'><filename>deptask</filename></ulink><filename>]</filename>
- declaration, which guarantees that the required
- shared-library/module-to-package mapping information will be available
- when needed as long as <filename>DEPENDS</filename> has been
- correctly set.
- </para>
- </section>
-
- <section id='fakeroot-and-pseudo'>
- <title>Fakeroot and Pseudo</title>
-
- <para>
- Some tasks are easier to implement when allowed to perform certain
- operations that are normally reserved for the root user (e.g.
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-install'><filename>do_install</filename></ulink>,
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-package_write_deb'><filename>do_package_write*</filename></ulink>,
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-rootfs'><filename>do_rootfs</filename></ulink>,
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#ref-tasks-image'><filename>do_image*</filename></ulink>).
- For example, the <filename>do_install</filename> task benefits
- from being able to set the UID and GID of installed files to
- arbitrary values.
- </para>
-
- <para>
- One approach to allowing tasks to perform root-only operations
- would be to require
- <ulink url='&YOCTO_DOCS_REF_URL;#bitbake-term'>BitBake</ulink>
- to run as root.
- However, this method is cumbersome and has security issues.
- The approach that is actually used is to run tasks that benefit
- from root privileges in a "fake" root environment.
- Within this environment, the task and its child processes believe
- that they are running as the root user, and see an internally
- consistent view of the filesystem.
- As long as generating the final output (e.g. a package or an image)
- does not require root privileges, the fact that some earlier
- steps ran in a fake root environment does not cause problems.
- </para>
-
- <para>
- The capability to run tasks in a fake root environment is known as
- "<ulink url='http://man.he.net/man1/fakeroot'>fakeroot</ulink>",
- which is derived from the BitBake keyword/variable
- flag that requests a fake root environment for a task.
- </para>
-
- <para>
- In the
- <ulink url='&YOCTO_DOCS_REF_URL;#build-system-term'>OpenEmbedded build system</ulink>,
- the program that implements fakeroot is known as
- <ulink url='https://www.yoctoproject.org/software-item/pseudo/'>Pseudo</ulink>.
- Pseudo overrides system calls by using the environment variable
- <filename>LD_PRELOAD</filename>, which results in the illusion
- of running as root.
- To keep track of "fake" file ownership and permissions resulting
- from operations that require root permissions, Pseudo uses
- an SQLite 3 database.
- This database is stored in
- <filename>${</filename><ulink url='&YOCTO_DOCS_REF_URL;#var-WORKDIR'><filename>WORKDIR</filename></ulink><filename>}/pseudo/files.db</filename>
- for individual recipes.
- Storing the database in a file as opposed to in memory
- gives persistence between tasks and builds, which is not
- accomplished using fakeroot.
- <note><title>Caution</title>
- If you add your own task that manipulates the same files or
- directories as a fakeroot task, then that task also needs to
- run under fakeroot.
- Otherwise, the task cannot run root-only operations, and
- cannot see the fake file ownership and permissions set by the
- other task.
- You need to also add a dependency on
- <filename>virtual/fakeroot-native:do_populate_sysroot</filename>,
- giving the following:
- <literallayout class='monospaced'>
- fakeroot do_mytask () {
- ...
- }
- do_mytask[depends] += "virtual/fakeroot-native:do_populate_sysroot"
- </literallayout>
- </note>
- For more information, see the
- <ulink url='&YOCTO_DOCS_BB_URL;#var-FAKEROOT'><filename>FAKEROOT*</filename></ulink>
- variables in the BitBake User Manual.
- You can also reference the
- "<ulink url='https://github.com/wrpseudo/pseudo/wiki/WhyNotFakeroot'>Why Not Fakeroot?</ulink>"
- article for background information on Fakeroot and Pseudo.
- </para>
- </section>
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->