summaryrefslogtreecommitdiffstats
path: root/documentation/adt-manual/adt-prepare.xml
diff options
context:
space:
mode:
Diffstat (limited to 'documentation/adt-manual/adt-prepare.xml')
-rw-r--r--documentation/adt-manual/adt-prepare.xml1000
1 files changed, 0 insertions, 1000 deletions
diff --git a/documentation/adt-manual/adt-prepare.xml b/documentation/adt-manual/adt-prepare.xml
deleted file mode 100644
index 684eb75c56..0000000000
--- a/documentation/adt-manual/adt-prepare.xml
+++ /dev/null
@@ -1,1000 +0,0 @@
-<!DOCTYPE chapter PUBLIC "-//OASIS//DTD DocBook XML V4.2//EN"
-"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
-[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<!--SPDX-License-Identifier: CC-BY-2.0-UK-->
-
-<chapter id='adt-prepare'>
-
-<title>Preparing for Application Development</title>
-
-<para>
- In order to develop applications, you need set up your host development system.
- Several ways exist that allow you to install cross-development tools, QEMU, the
- Eclipse Yocto Plug-in, and other tools.
- This chapter describes how to prepare for application development.
-</para>
-
-<section id='installing-the-adt'>
- <title>Installing the ADT and Toolchains</title>
-
- <para>
- The following list describes installation methods that set up varying
- degrees of tool availability on your system.
- Regardless of the installation method you choose,
- you must <filename>source</filename> the cross-toolchain
- environment setup script, which establishes several key
- environment variables, before you use a toolchain.
- See the
- "<link linkend='setting-up-the-cross-development-environment'>Setting Up the Cross-Development Environment</link>"
- section for more information.
- </para>
-
- <note>
- <para>
- Avoid mixing installation methods when installing toolchains for
- different architectures.
- For example, avoid using the ADT Installer to install some
- toolchains and then hand-installing cross-development toolchains
- by running the toolchain installer for different architectures.
- Mixing installation methods can result in situations where the
- ADT Installer becomes unreliable and might not install the
- toolchain.
- </para>
-
- <para>
- If you must mix installation methods, you might avoid problems by
- deleting <filename>/var/lib/opkg</filename>, thus purging the
- <filename>opkg</filename> package metadata.
- </para>
- </note>
-
- <para>
- <itemizedlist>
- <listitem><para><emphasis>Use the ADT installer script:</emphasis>
- This method is the recommended way to install the ADT because it
- automates much of the process for you.
- For example, you can configure the installation to install the QEMU emulator
- and the user-space NFS, specify which root filesystem profiles to download,
- and define the target sysroot location.</para></listitem>
- <listitem><para><emphasis>Use an existing toolchain:</emphasis>
- Using this method, you select and download an architecture-specific
- toolchain installer and then run the script to hand-install the toolchain.
- If you use this method, you just get the cross-toolchain and QEMU - you do not
- get any of the other mentioned benefits had you run the ADT Installer script.</para></listitem>
- <listitem><para><emphasis>Use the toolchain from within the Build Directory:</emphasis>
- If you already have a
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>,
- you can build the cross-toolchain within the directory.
- However, like the previous method mentioned, you only get the cross-toolchain and QEMU - you
- do not get any of the other benefits without taking separate steps.</para></listitem>
- </itemizedlist>
- </para>
-
- <section id='using-the-adt-installer'>
- <title>Using the ADT Installer</title>
-
- <para>
- To run the ADT Installer, you need to get the ADT Installer tarball, be sure
- you have the necessary host development packages that support the ADT Installer,
- and then run the ADT Installer Script.
- </para>
-
- <para>
- For a list of the host packages needed to support ADT installation and use, see the
- "ADT Installer Extras" lists in the
- "<ulink url='&YOCTO_DOCS_REF_URL;#required-packages-for-the-host-development-system'>Required Packages for the Host Development System</ulink>" section
- of the Yocto Project Reference Manual.
- </para>
-
- <section id='getting-the-adt-installer-tarball'>
- <title>Getting the ADT Installer Tarball</title>
-
- <para>
- The ADT Installer is contained in the ADT Installer tarball.
- You can get the tarball using either of these methods:
- <itemizedlist>
- <listitem><para><emphasis>Download the Tarball:</emphasis>
- You can download the tarball from
- <ulink url='&YOCTO_ADTINSTALLER_DL_URL;'></ulink> into
- any directory.</para></listitem>
- <listitem><para><emphasis>Build the Tarball:</emphasis>
- You can use
- <ulink url='&YOCTO_DOCS_DEV_URL;#bitbake-term'>BitBake</ulink>
- to generate the tarball inside an existing
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
- </para>
- <para>If you use BitBake to generate the ADT Installer
- tarball, you must <filename>source</filename> the
- environment setup script
- (<ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-memres-core-script'><filename>oe-init-build-env-memres</filename></ulink>)
- located in the Source Directory before running the
- <filename>bitbake</filename> command that creates the
- tarball.</para>
- <para>The following example commands establish
- the
- <ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>Source Directory</ulink>,
- check out the current release branch, set up the
- build environment while also creating the default
- Build Directory, and run the
- <filename>bitbake</filename> command that results in the
- tarball
- <filename>poky/build/tmp/deploy/sdk/adt_installer.tar.bz2</filename>:
- <note>
- Before using BitBake to build the ADT tarball, be
- sure to make sure your
- <filename>local.conf</filename> file is properly
- configured.
- See the
- "<ulink url='&YOCTO_DOCS_REF_URL;#user-configuration'>User Configuration</ulink>"
- section in the Yocto Project Reference Manual for
- general configuration information.
- </note>
- <literallayout class='monospaced'>
- $ cd ~
- $ git clone git://git.yoctoproject.org/poky
- $ cd poky
- $ git checkout -b &DISTRO_NAME; origin/&DISTRO_NAME;
- $ source &OE_INIT_FILE;
- $ bitbake adt-installer
- </literallayout></para></listitem>
- </itemizedlist>
- </para>
- </section>
-
- <section id='configuring-and-running-the-adt-installer-script'>
- <title>Configuring and Running the ADT Installer Script</title>
-
- <para>
- Before running the ADT Installer script, you need to unpack the tarball.
- You can unpack the tarball in any directory you wish.
- For example, this command copies the ADT Installer tarball from where
- it was built into the home directory and then unpacks the tarball into
- a top-level directory named <filename>adt-installer</filename>:
- <literallayout class='monospaced'>
- $ cd ~
- $ cp poky/build/tmp/deploy/sdk/adt_installer.tar.bz2 $HOME
- $ tar -xjf adt_installer.tar.bz2
- </literallayout>
- Unpacking it creates the directory <filename>adt-installer</filename>,
- which contains the ADT Installer script (<filename>adt_installer</filename>)
- and its configuration file (<filename>adt_installer.conf</filename>).
- </para>
-
- <para>
- Before you run the script, however, you should examine the ADT Installer configuration
- file and be sure you are going to get what you want.
- Your configurations determine which kernel and filesystem image are downloaded.
- </para>
-
- <para>
- The following list describes the configurations you can define for the ADT Installer.
- For configuration values and restrictions, see the comments in
- the <filename>adt-installer.conf</filename> file:
-
- <itemizedlist>
- <listitem><para><filename>YOCTOADT_REPO</filename>: This area
- includes the IPKG-based packages and the root filesystem upon which
- the installation is based.
- If you want to set up your own IPKG repository pointed to by
- <filename>YOCTOADT_REPO</filename>, you need to be sure that the
- directory structure follows the same layout as the reference directory
- set up at <ulink url='http://adtrepo.yoctoproject.org'></ulink>.
- Also, your repository needs to be accessible through HTTP.</para></listitem>
- <listitem><para><filename>YOCTOADT_TARGETS</filename>: The machine
- target architectures for which you want to set up cross-development
- environments.</para></listitem>
- <listitem><para><filename>YOCTOADT_QEMU</filename>: Indicates whether
- or not to install the emulator QEMU.</para></listitem>
- <listitem><para><filename>YOCTOADT_NFS_UTIL</filename>: Indicates whether
- or not to install user-mode NFS.
- If you plan to use the Eclipse IDE Yocto plug-in against QEMU,
- you should install NFS.
- <note>To boot QEMU images using our userspace NFS server, you need
- to be running <filename>portmap</filename> or <filename>rpcbind</filename>.
- If you are running <filename>rpcbind</filename>, you will also need to add the
- <filename>-i</filename> option when <filename>rpcbind</filename> starts up.
- Please make sure you understand the security implications of doing this.
- You might also have to modify your firewall settings to allow
- NFS booting to work.</note></para></listitem>
- <listitem><para><filename>YOCTOADT_ROOTFS_</filename><replaceable>arch</replaceable>: The root
- filesystem images you want to download from the
- <filename>YOCTOADT_IPKG_REPO</filename> repository.</para></listitem>
- <listitem><para><filename>YOCTOADT_TARGET_SYSROOT_IMAGE_</filename><replaceable>arch</replaceable>: The
- particular root filesystem used to extract and create the target sysroot.
- The value of this variable must have been specified with
- <filename>YOCTOADT_ROOTFS_</filename><replaceable>arch</replaceable>.
- For example, if you downloaded both <filename>minimal</filename> and
- <filename>sato-sdk</filename> images by setting
- <filename>YOCTOADT_ROOTFS_</filename><replaceable>arch</replaceable>
- to "minimal sato-sdk", then <filename>YOCTOADT_ROOTFS_</filename><replaceable>arch</replaceable>
- must be set to either "minimal" or "sato-sdk".
- </para></listitem>
- <listitem><para><filename>YOCTOADT_TARGET_SYSROOT_LOC_</filename><replaceable>arch</replaceable>: The
- location on the development host where the target sysroot is created.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- After you have configured the <filename>adt_installer.conf</filename> file,
- run the installer using the following command:
- <literallayout class='monospaced'>
- $ cd adt-installer
- $ ./adt_installer
- </literallayout>
- Once the installer begins to run, you are asked to enter the
- location for cross-toolchain installation.
- The default location is
- <filename>/opt/poky/</filename><replaceable>release</replaceable>.
- After either accepting the default location or selecting your
- own location, you are prompted to run the installation script
- interactively or in silent mode.
- If you want to closely monitor the installation,
- choose “I” for interactive mode rather than “S” for silent mode.
- Follow the prompts from the script to complete the installation.
- </para>
-
- <para>
- Once the installation completes, the ADT, which includes the
- cross-toolchain, is installed in the selected installation
- directory.
- You will notice environment setup files for the cross-toolchain
- in the installation directory, and image tarballs in the
- <filename>adt-installer</filename> directory according to your
- installer configurations, and the target sysroot located
- according to the
- <filename>YOCTOADT_TARGET_SYSROOT_LOC_</filename><replaceable>arch</replaceable>
- variable also in your configuration file.
- </para>
- </section>
- </section>
-
- <section id='using-an-existing-toolchain-tarball'>
- <title>Using a Cross-Toolchain Tarball</title>
-
- <para>
- If you want to simply install a cross-toolchain by hand, you can
- do so by running the toolchain installer.
- The installer includes the pre-built cross-toolchain, the
- <filename>runqemu</filename> script, and support files.
- If you use this method to install the cross-toolchain, you
- might still need to install the target sysroot by installing and
- extracting it separately.
- For information on how to install the sysroot, see the
- "<link linkend='extracting-the-root-filesystem'>Extracting the Root Filesystem</link>" section.
- </para>
-
- <para>
- Follow these steps:
- <orderedlist>
- <listitem><para><emphasis>Get your toolchain installer using one of the following methods:</emphasis>
- <itemizedlist>
- <listitem><para>Go to
- <ulink url='&YOCTO_TOOLCHAIN_DL_URL;'></ulink>
- and find the folder that matches your host
- development system (i.e. <filename>i686</filename>
- for 32-bit machines or <filename>x86_64</filename>
- for 64-bit machines).</para>
- <para>Go into that folder and download the toolchain
- installer whose name includes the appropriate target
- architecture.
- The toolchains provided by the Yocto Project
- are based off of the
- <filename>core-image-sato</filename> image and
- contain libraries appropriate for developing
- against that image.
- For example, if your host development system is a
- 64-bit x86 system and you are going to use
- your cross-toolchain for a 32-bit x86
- target, go into the <filename>x86_64</filename>
- folder and download the following installer:
- <literallayout class='monospaced'>
- poky-glibc-x86_64-core-image-sato-i586-toolchain-&DISTRO;.sh
- </literallayout></para></listitem>
- <listitem><para>Build your own toolchain installer.
- For cases where you cannot use an installer
- from the download area, you can build your own as
- described in the
- "<link linkend='optionally-building-a-toolchain-installer'>Optionally Building a Toolchain Installer</link>"
- section.</para></listitem>
- </itemizedlist></para></listitem>
- <listitem><para><emphasis>Once you have the installer, run it to install the toolchain:</emphasis>
- <note>
- You must change the permissions on the toolchain
- installer script so that it is executable.
- </note></para>
- <para>The following command shows how to run the installer
- given a toolchain tarball for a 64-bit x86 development host
- system and a 32-bit x86 target architecture.
- The example assumes the toolchain installer is located
- in <filename>~/Downloads/</filename>.
- <literallayout class='monospaced'>
- $ ~/Downloads/poky-glibc-x86_64-core-image-sato-i586-toolchain-&DISTRO;.sh
- </literallayout>
- The first thing the installer prompts you for is the
- directory into which you want to install the toolchain.
- The default directory used is
- <filename>/opt/poky/&DISTRO;</filename>.
- If you do not have write permissions for the directory
- into which you are installing the toolchain, the
- toolchain installer notifies you and exits.
- Be sure you have write permissions in the directory and
- run the installer again.</para>
- <para>When the script finishes, the cross-toolchain is
- installed.
- You will notice environment setup files for the
- cross-toolchain in the installation directory.
- </para></listitem>
- </orderedlist>
- </para>
- </section>
-
- <section id='using-the-toolchain-from-within-the-build-tree'>
- <title>Using BitBake and the Build Directory</title>
-
- <para>
- A final way of making the cross-toolchain available is to use BitBake
- to generate the toolchain within an existing
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
- This method does not install the toolchain into the default
- <filename>/opt</filename> directory.
- As with the previous method, if you need to install the target sysroot, you must
- do that separately as well.
- </para>
-
- <para>
- Follow these steps to generate the toolchain into the Build Directory:
- <orderedlist>
- <listitem><para><emphasis>Set up the Build Environment:</emphasis>
- Source the OpenEmbedded build environment setup
- script (i.e.
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-memres-core-script'><filename>oe-init-build-env-memres</filename></ulink>)
- located in the
- <ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>Source Directory</ulink>.
- </para></listitem>
- <listitem><para><emphasis>Check your Local Configuration File:</emphasis>
- At this point, you should be sure that the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink> variable
- in the <filename>local.conf</filename> file found in the
- <filename>conf</filename> directory of the Build Directory
- is set for the target architecture.
- Comments within the <filename>local.conf</filename> file
- list the values you can use for the
- <filename>MACHINE</filename> variable.
- If you do not change the <filename>MACHINE</filename>
- variable, the OpenEmbedded build system uses
- <filename>qemux86</filename> as the default target
- machine when building the cross-toolchain.
- <note>
- You can populate the Build Directory with the
- cross-toolchains for more than a single architecture.
- You just need to edit the <filename>MACHINE</filename>
- variable in the <filename>local.conf</filename> file and
- re-run the <filename>bitbake</filename> command.
- </note></para></listitem>
- <listitem><para><emphasis>Make Sure Your Layers are Enabled:</emphasis>
- Examine the <filename>conf/bblayers.conf</filename> file
- and make sure that you have enabled all the compatible
- layers for your target machine.
- The OpenEmbedded build system needs to be aware of each
- layer you want included when building images and
- cross-toolchains.
- For information on how to enable a layer, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#enabling-your-layer'>Enabling Your Layer</ulink>"
- section in the Yocto Project Development Manual.
- </para></listitem>
- <listitem><para><emphasis>Generate the Cross-Toolchain:</emphasis>
- Run <filename>bitbake meta-ide-support</filename> to
- complete the cross-toolchain generation.
- Once the <filename>bitbake</filename> command finishes,
- the cross-toolchain is
- generated and populated within the Build Directory.
- You will notice environment setup files for the
- cross-toolchain that contain the string
- "<filename>environment-setup</filename>" in the
- Build Directory's <filename>tmp</filename> folder.</para>
- <para>Be aware that when you use this method to install the
- toolchain, you still need to separately extract and install
- the sysroot filesystem.
- For information on how to do this, see the
- "<link linkend='extracting-the-root-filesystem'>Extracting the Root Filesystem</link>" section.
- </para></listitem>
- </orderedlist>
- </para>
- </section>
-</section>
-
-<section id='setting-up-the-cross-development-environment'>
- <title>Setting Up the Cross-Development Environment</title>
-
- <para>
- Before you can develop using the cross-toolchain, you need to set up the
- cross-development environment by sourcing the toolchain's environment setup script.
- If you used the ADT Installer or hand-installed cross-toolchain,
- then you can find this script in the directory you chose for installation.
- For this release, the default installation directory is
- <filename>&YOCTO_ADTPATH_DIR;</filename>.
- If you installed the toolchain in the
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>,
- you can find the environment setup
- script for the toolchain in the Build Directory's <filename>tmp</filename> directory.
- </para>
-
- <para>
- Be sure to run the environment setup script that matches the
- architecture for which you are developing.
- Environment setup scripts begin with the string
- "<filename>environment-setup</filename>" and include as part of their
- name the architecture.
- For example, the toolchain environment setup script for a 64-bit
- IA-based architecture installed in the default installation directory
- would be the following:
- <literallayout class='monospaced'>
- &YOCTO_ADTPATH_DIR;/environment-setup-x86_64-poky-linux
- </literallayout>
- When you run the setup script, many environment variables are
- defined:
- <literallayout class='monospaced'>
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKTARGETSYSROOT'><filename>SDKTARGETSYSROOT</filename></ulink> - The path to the sysroot used for cross-compilation
- <ulink url='&YOCTO_DOCS_REF_URL;#var-PKG_CONFIG_PATH'><filename>PKG_CONFIG_PATH</filename></ulink> - The path to the target pkg-config files
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CONFIG_SITE'><filename>CONFIG_SITE</filename></ulink> - A GNU autoconf site file preconfigured for the target
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CC'><filename>CC</filename></ulink> - The minimal command and arguments to run the C compiler
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CXX'><filename>CXX</filename></ulink> - The minimal command and arguments to run the C++ compiler
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CPP'><filename>CPP</filename></ulink> - The minimal command and arguments to run the C preprocessor
- <ulink url='&YOCTO_DOCS_REF_URL;#var-AS'><filename>AS</filename></ulink> - The minimal command and arguments to run the assembler
- <ulink url='&YOCTO_DOCS_REF_URL;#var-LD'><filename>LD</filename></ulink> - The minimal command and arguments to run the linker
- <ulink url='&YOCTO_DOCS_REF_URL;#var-GDB'><filename>GDB</filename></ulink> - The minimal command and arguments to run the GNU Debugger
- <ulink url='&YOCTO_DOCS_REF_URL;#var-STRIP'><filename>STRIP</filename></ulink> - The minimal command and arguments to run 'strip', which strips symbols
- <ulink url='&YOCTO_DOCS_REF_URL;#var-RANLIB'><filename>RANLIB</filename></ulink> - The minimal command and arguments to run 'ranlib'
- <ulink url='&YOCTO_DOCS_REF_URL;#var-OBJCOPY'><filename>OBJCOPY</filename></ulink> - The minimal command and arguments to run 'objcopy'
- <ulink url='&YOCTO_DOCS_REF_URL;#var-OBJDUMP'><filename>OBJDUMP</filename></ulink> - The minimal command and arguments to run 'objdump'
- <ulink url='&YOCTO_DOCS_REF_URL;#var-AR'><filename>AR</filename></ulink> - The minimal command and arguments to run 'ar'
- <ulink url='&YOCTO_DOCS_REF_URL;#var-NM'><filename>NM</filename></ulink> - The minimal command and arguments to run 'nm'
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TARGET_PREFIX'><filename>TARGET_PREFIX</filename></ulink> - The toolchain binary prefix for the target tools
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CROSS_COMPILE'><filename>CROSS_COMPILE</filename></ulink> - The toolchain binary prefix for the target tools
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CONFIGURE_FLAGS'><filename>CONFIGURE_FLAGS</filename></ulink> - The minimal arguments for GNU configure
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CFLAGS'><filename>CFLAGS</filename></ulink> - Suggested C flags
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CXXFLAGS'><filename>CXXFLAGS</filename></ulink> - Suggested C++ flags
- <ulink url='&YOCTO_DOCS_REF_URL;#var-LDFLAGS'><filename>LDFLAGS</filename></ulink> - Suggested linker flags when you use CC to link
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CPPFLAGS'><filename>CPPFLAGS</filename></ulink> - Suggested preprocessor flags
- </literallayout>
- </para>
-</section>
-
-<section id='securing-kernel-and-filesystem-images'>
- <title>Securing Kernel and Filesystem Images</title>
-
- <para>
- You will need to have a kernel and filesystem image to boot using your
- hardware or the QEMU emulator.
- Furthermore, if you plan on booting your image using NFS or you want to use the root filesystem
- as the target sysroot, you need to extract the root filesystem.
- </para>
-
- <section id='getting-the-images'>
- <title>Getting the Images</title>
-
- <para>
- To get the kernel and filesystem images, you either have to build them or download
- pre-built versions.
- For an example of how to build these images, see the
- "<ulink url='&YOCTO_DOCS_QS_URL;#qs-buiding-images'>Buiding Images</ulink>"
- section of the Yocto Project Quick Start.
- For an example of downloading pre-build versions, see the
- "<link linkend='using-pre-built'>Example Using Pre-Built Binaries and QEMU</link>"
- section.
- </para>
-
- <para>
- The Yocto Project ships basic kernel and filesystem images for several
- architectures (<filename>x86</filename>, <filename>x86-64</filename>,
- <filename>mips</filename>, <filename>powerpc</filename>, and <filename>arm</filename>)
- that you can use unaltered in the QEMU emulator.
- These kernel images reside in the release
- area - <ulink url='&YOCTO_MACHINES_DL_URL;'></ulink>
- and are ideal for experimentation using Yocto Project.
- For information on the image types you can build using the OpenEmbedded build system,
- see the
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
- chapter in the Yocto Project Reference Manual.
- </para>
-
- <para>
- If you are planning on developing against your image and you are not
- building or using one of the Yocto Project development images
- (e.g. <filename>core-image-*-dev</filename>), you must be sure to
- include the development packages as part of your image recipe.
- </para>
-
- <para>
- If you plan on remotely deploying and debugging your
- application from within the Eclipse IDE, you must have an image
- that contains the Yocto Target Communication Framework (TCF) agent
- (<filename>tcf-agent</filename>).
- You can do this by including the <filename>eclipse-debug</filename>
- image feature.
- <note>
- See the
- "<ulink url='&YOCTO_DOCS_REF_URL;#ref-features-image'>Image Features</ulink>"
- section in the Yocto Project Reference Manual for information on
- image features.
- </note>
- To include the <filename>eclipse-debug</filename> image feature,
- modify your <filename>local.conf</filename> file in the
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>
- so that the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTRA_IMAGE_FEATURES'><filename>EXTRA_IMAGE_FEATURES</filename></ulink>
- variable includes the "eclipse-debug" feature.
- After modifying the configuration file, you can rebuild the image.
- Once the image is rebuilt, the <filename>tcf-agent</filename>
- will be included in the image and is launched automatically after
- the boot.
- </para>
- </section>
-
- <section id='extracting-the-root-filesystem'>
- <title>Extracting the Root Filesystem</title>
-
- <para>
- If you install your toolchain by hand or build it using BitBake and
- you need a root filesystem, you need to extract it separately.
- If you use the ADT Installer to install the ADT, the root
- filesystem is automatically extracted and installed.
- </para>
-
- <para>
- Here are some cases where you need to extract the root filesystem:
- <itemizedlist>
- <listitem><para>You want to boot the image using NFS.
- </para></listitem>
- <listitem><para>You want to use the root filesystem as the
- target sysroot.
- For example, the Eclipse IDE environment with the Eclipse
- Yocto Plug-in installed allows you to use QEMU to boot
- under NFS.</para></listitem>
- <listitem><para>You want to develop your target application
- using the root filesystem as the target sysroot.
- </para></listitem>
- </itemizedlist>
- </para>
-
- <para>
- To extract the root filesystem, first <filename>source</filename>
- the cross-development environment setup script to establish
- necessary environment variables.
- If you built the toolchain in the Build Directory, you will find
- the toolchain environment script in the
- <filename>tmp</filename> directory.
- If you installed the toolchain by hand, the environment setup
- script is located in <filename>/opt/poky/&DISTRO;</filename>.
- </para>
-
- <para>
- After sourcing the environment script, use the
- <filename>runqemu-extract-sdk</filename> command and provide the
- filesystem image.
- </para>
-
- <para>
- Following is an example.
- The second command sets up the environment.
- In this case, the setup script is located in the
- <filename>/opt/poky/&DISTRO;</filename> directory.
- The third command extracts the root filesystem from a previously
- built filesystem that is located in the
- <filename>~/Downloads</filename> directory.
- Furthermore, this command extracts the root filesystem into the
- <filename>qemux86-sato</filename> directory:
- <literallayout class='monospaced'>
- $ cd ~
- $ source /opt/poky/&DISTRO;/environment-setup-i586-poky-linux
- $ runqemu-extract-sdk \
- ~/Downloads/core-image-sato-sdk-qemux86-2011091411831.rootfs.tar.bz2 \
- $HOME/qemux86-sato
- </literallayout>
- You could now point to the target sysroot at
- <filename>qemux86-sato</filename>.
- </para>
- </section>
-</section>
-
-<section id='optionally-building-a-toolchain-installer'>
- <title>Optionally Building a Toolchain Installer</title>
-
- <para>
- As an alternative to locating and downloading a toolchain installer,
- you can build the toolchain installer if you have a
- <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>Build Directory</ulink>.
- <note>
- Although not the preferred method, it is also possible to use
- <filename>bitbake meta-toolchain</filename> to build the toolchain
- installer.
- If you do use this method, you must separately install and extract
- the target sysroot.
- For information on how to install the sysroot, see the
- "<link linkend='extracting-the-root-filesystem'>Extracting the Root Filesystem</link>"
- section.
- </note>
- </para>
-
- <para>
- To build the toolchain installer and populate the SDK image, use the
- following command:
- <literallayout class='monospaced'>
- $ bitbake <replaceable>image</replaceable> -c populate_sdk
- </literallayout>
- The command results in a toolchain installer that contains the sysroot
- that matches your target root filesystem.
- </para>
-
- <para>
- Another powerful feature is that the toolchain is completely
- self-contained.
- The binaries are linked against their own copy of
- <filename>libc</filename>, which results in no dependencies
- on the target system.
- To achieve this, the pointer to the dynamic loader is
- configured at install time since that path cannot be dynamically
- altered.
- This is the reason for a wrapper around the
- <filename>populate_sdk</filename> archive.
- </para>
-
- <para>
- Another feature is that only one set of cross-canadian toolchain
- binaries are produced per architecture.
- This feature takes advantage of the fact that the target hardware can
- be passed to <filename>gcc</filename> as a set of compiler options.
- Those options are set up by the environment script and contained in
- variables such as
- <ulink url='&YOCTO_DOCS_REF_URL;#var-CC'><filename>CC</filename></ulink>
- and
- <ulink url='&YOCTO_DOCS_REF_URL;#var-LD'><filename>LD</filename></ulink>.
- This reduces the space needed for the tools.
- Understand, however, that a sysroot is still needed for every target
- since those binaries are target-specific.
- </para>
-
- <para>
- Remember, before using any BitBake command, you
- must source the build environment setup script
- (i.e.
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-core-script'><filename>&OE_INIT_FILE;</filename></ulink>
- or
- <ulink url='&YOCTO_DOCS_REF_URL;#structure-memres-core-script'><filename>oe-init-build-env-memres</filename></ulink>)
- located in the Source Directory and you must make sure your
- <filename>conf/local.conf</filename> variables are correct.
- In particular, you need to be sure the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-MACHINE'><filename>MACHINE</filename></ulink>
- variable matches the architecture for which you are building and that
- the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SDKMACHINE'><filename>SDKMACHINE</filename></ulink>
- variable is correctly set if you are building a toolchain designed to
- run on an architecture that differs from your current development host
- machine (i.e. the build machine).
- </para>
-
- <para>
- When the <filename>bitbake</filename> command completes, the toolchain
- installer will be in
- <filename>tmp/deploy/sdk</filename> in the Build Directory.
- <note>
- By default, this toolchain does not build static binaries.
- If you want to use the toolchain to build these types of libraries,
- you need to be sure your image has the appropriate static
- development libraries.
- Use the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-IMAGE_INSTALL'><filename>IMAGE_INSTALL</filename></ulink>
- variable inside your <filename>local.conf</filename> file to
- install the appropriate library packages.
- Following is an example using <filename>glibc</filename> static
- development libraries:
- <literallayout class='monospaced'>
- IMAGE_INSTALL_append = " glibc-staticdev"
- </literallayout>
- </note>
- </para>
-</section>
-
-<section id='optionally-using-an-external-toolchain'>
- <title>Optionally Using an External Toolchain</title>
-
- <para>
- You might want to use an external toolchain as part of your
- development.
- If this is the case, the fundamental steps you need to accomplish
- are as follows:
- <itemizedlist>
- <listitem><para>
- Understand where the installed toolchain resides.
- For cases where you need to build the external toolchain, you
- would need to take separate steps to build and install the
- toolchain.
- </para></listitem>
- <listitem><para>
- Make sure you add the layer that contains the toolchain to
- your <filename>bblayers.conf</filename> file through the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-BBLAYERS'><filename>BBLAYERS</filename></ulink>
- variable.
- </para></listitem>
- <listitem><para>
- Set the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-EXTERNAL_TOOLCHAIN'><filename>EXTERNAL_TOOLCHAIN</filename></ulink>
- variable in your <filename>local.conf</filename> file
- to the location in which you installed the toolchain.
- </para></listitem>
- </itemizedlist>
- A good example of an external toolchain used with the Yocto Project
- is <trademark class='registered'>Mentor Graphics</trademark>
- Sourcery G++ Toolchain.
- You can see information on how to use that particular layer in the
- <filename>README</filename> file at
- <ulink url='http://github.com/MentorEmbedded/meta-sourcery/'></ulink>.
- You can find further information by reading about the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-TCMODE'><filename>TCMODE</filename></ulink>
- variable in the Yocto Project Reference Manual's variable glossary.
- </para>
-</section>
-
- <section id='using-pre-built'>
- <title>Example Using Pre-Built Binaries and QEMU</title>
-
- <para>
- If hardware, libraries and services are stable, you can get started by using a pre-built binary
- of the filesystem image, kernel, and toolchain and run it using the QEMU emulator.
- This scenario is useful for developing application software.
- </para>
-
- <mediaobject>
- <imageobject>
- <imagedata fileref="figures/using-a-pre-built-image.png" format="PNG" align='center' scalefit='1'/>
- </imageobject>
- <caption>
- <para>Using a Pre-Built Image</para>
- </caption>
- </mediaobject>
-
- <para>
- For this scenario, you need to do several things:
- </para>
-
- <itemizedlist>
- <listitem><para>Install the appropriate stand-alone toolchain tarball.</para></listitem>
- <listitem><para>Download the pre-built image that will boot with QEMU.
- You need to be sure to get the QEMU image that matches your target machine’s
- architecture (e.g. x86, ARM, etc.).</para></listitem>
- <listitem><para>Download the filesystem image for your target machine's architecture.
- </para></listitem>
- <listitem><para>Set up the environment to emulate the hardware and then start the QEMU emulator.
- </para></listitem>
- </itemizedlist>
-
- <section id='installing-the-toolchain'>
- <title>Installing the Toolchain</title>
-
- <para>
- You can download a tarball installer, which includes the
- pre-built toolchain, the <filename>runqemu</filename>
- script, and support files from the appropriate directory under
- <ulink url='&YOCTO_TOOLCHAIN_DL_URL;'></ulink>.
- Toolchains are available for 32-bit and 64-bit x86 development
- systems from the <filename>i686</filename> and
- <filename>x86_64</filename> directories, respectively.
- The toolchains the Yocto Project provides are based off the
- <filename>core-image-sato</filename> image and contain
- libraries appropriate for developing against that image.
- Each type of development system supports five or more target
- architectures.
- </para>
-
- <para>
- The names of the tarball installer scripts are such that a
- string representing the host system appears first in the
- filename and then is immediately followed by a string
- representing the target architecture.
- </para>
-
- <literallayout class='monospaced'>
- poky-glibc-<replaceable>host_system</replaceable>-<replaceable>image_type</replaceable>-<replaceable>arch</replaceable>-toolchain-<replaceable>release_version</replaceable>.sh
-
- Where:
- <replaceable>host_system</replaceable> is a string representing your development system:
-
- i686 or x86_64.
-
- <replaceable>image_type</replaceable> is a string representing the image you wish to
- develop a Software Development Toolkit (SDK) for use against.
- The Yocto Project builds toolchain installers using the
- following BitBake command:
-
- bitbake core-image-sato -c populate_sdk
-
- <replaceable>arch</replaceable> is a string representing the tuned target architecture:
-
- i586, x86_64, powerpc, mips, armv7a or armv5te
-
- <replaceable>release_version</replaceable> is a string representing the release number of the
- Yocto Project:
-
- &DISTRO;, &DISTRO;+snapshot
- </literallayout>
-
- <para>
- For example, the following toolchain installer is for a 64-bit
- development host system and a i586-tuned target architecture
- based off the SDK for <filename>core-image-sato</filename>:
- <literallayout class='monospaced'>
- poky-glibc-x86_64-core-image-sato-i586-toolchain-&DISTRO;.sh
- </literallayout>
- </para>
-
- <para>
- Toolchains are self-contained and by default are installed into
- <filename>/opt/poky</filename>.
- However, when you run the toolchain installer, you can choose an
- installation directory.
- </para>
-
- <para>
- The following command shows how to run the installer given a toolchain tarball
- for a 64-bit x86 development host system and a 32-bit x86 target architecture.
- You must change the permissions on the toolchain
- installer script so that it is executable.
- </para>
-
- <para>
- The example assumes the toolchain installer is located in <filename>~/Downloads/</filename>.
- <note>
- If you do not have write permissions for the directory into which you are installing
- the toolchain, the toolchain installer notifies you and exits.
- Be sure you have write permissions in the directory and run the installer again.
- </note>
- </para>
-
- <para>
- <literallayout class='monospaced'>
- $ ~/Downloads/poky-glibc-x86_64-core-image-sato-i586-toolchain-&DISTRO;.sh
- </literallayout>
- </para>
-
- <para>
- For more information on how to install tarballs, see the
- "<ulink url='&YOCTO_DOCS_ADT_URL;#using-an-existing-toolchain-tarball'>Using a Cross-Toolchain Tarball</ulink>" and
- "<ulink url='&YOCTO_DOCS_ADT_URL;#using-the-toolchain-from-within-the-build-tree'>Using BitBake and the Build Directory</ulink>" sections in the Yocto Project Application Developer's Guide.
- </para>
- </section>
-
- <section id='downloading-the-pre-built-linux-kernel'>
- <title>Downloading the Pre-Built Linux Kernel</title>
-
- <para>
- You can download the pre-built Linux kernel suitable for running in the QEMU emulator from
- <ulink url='&YOCTO_QEMU_DL_URL;'></ulink>.
- Be sure to use the kernel that matches the architecture you want to simulate.
- Download areas exist for the five supported machine architectures:
- <filename>qemuarm</filename>, <filename>qemumips</filename>, <filename>qemuppc</filename>,
- <filename>qemux86</filename>, and <filename>qemux86-64</filename>.
- </para>
-
- <para>
- Most kernel files have one of the following forms:
- <literallayout class='monospaced'>
- *zImage-qemu<replaceable>arch</replaceable>.bin
- vmlinux-qemu<replaceable>arch</replaceable>.bin
-
- Where:
- <replaceable>arch</replaceable> is a string representing the target architecture:
- x86, x86-64, ppc, mips, or arm.
- </literallayout>
- </para>
-
- <para>
- You can learn more about downloading a Yocto Project kernel in the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#local-kernel-files'>Yocto Project Kernel</ulink>"
- bulleted item in the Yocto Project Development Manual.
- </para>
- </section>
-
- <section id='downloading-the-filesystem'>
- <title>Downloading the Filesystem</title>
-
- <para>
- You can also download the filesystem image suitable for your target architecture from
- <ulink url='&YOCTO_QEMU_DL_URL;'></ulink>.
- Again, be sure to use the filesystem that matches the architecture you want
- to simulate.
- </para>
-
- <para>
- The filesystem image has two tarball forms: <filename>ext3</filename> and
- <filename>tar</filename>.
- You must use the <filename>ext3</filename> form when booting an image using the
- QEMU emulator.
- The <filename>tar</filename> form can be flattened out in your host development system
- and used for build purposes with the Yocto Project.
- <literallayout class='monospaced'>
- core-image-<replaceable>profile</replaceable>-qemu<replaceable>arch</replaceable>.ext3
- core-image-<replaceable>profile</replaceable>-qemu<replaceable>arch</replaceable>.tar.bz2
-
- Where:
- <replaceable>profile</replaceable> is the filesystem image's profile:
- lsb, lsb-dev, lsb-sdk, lsb-qt3, minimal, minimal-dev, sato,
- sato-dev, or sato-sdk. For information on these types of image
- profiles, see the "<ulink url='&YOCTO_DOCS_REF_URL;#ref-images'>Images</ulink>"
- chapter in the Yocto Project Reference Manual.
-
- <replaceable>arch</replaceable> is a string representing the target architecture:
- x86, x86-64, ppc, mips, or arm.
- </literallayout>
- </para>
- </section>
-
- <section id='setting-up-the-environment-and-starting-the-qemu-emulator'>
- <title>Setting Up the Environment and Starting the QEMU Emulator</title>
-
- <para>
- Before you start the QEMU emulator, you need to set up the emulation environment.
- The following command form sets up the emulation environment.
- <literallayout class='monospaced'>
- $ source &YOCTO_ADTPATH_DIR;/environment-setup-<replaceable>arch</replaceable>-poky-linux-<replaceable>if</replaceable>
-
- Where:
- <replaceable>arch</replaceable> is a string representing the target architecture:
- i586, x86_64, ppc603e, mips, or armv5te.
-
- <replaceable>if</replaceable> is a string representing an embedded application binary interface.
- Not all setup scripts include this string.
- </literallayout>
- </para>
-
- <para>
- Finally, this command form invokes the QEMU emulator
- <literallayout class='monospaced'>
- $ runqemu <replaceable>qemuarch</replaceable> <replaceable>kernel-image</replaceable> <replaceable>filesystem-image</replaceable>
-
- Where:
- <replaceable>qemuarch</replaceable> is a string representing the target architecture: qemux86, qemux86-64,
- qemuppc, qemumips, or qemuarm.
-
- <replaceable>kernel-image</replaceable> is the architecture-specific kernel image.
-
- <replaceable>filesystem-image</replaceable> is the .ext3 filesystem image.
-
- </literallayout>
- </para>
-
- <para>
- Continuing with the example, the following two commands setup the emulation
- environment and launch QEMU.
- This example assumes the root filesystem (<filename>.ext3</filename> file) and
- the pre-built kernel image file both reside in your home directory.
- The kernel and filesystem are for a 32-bit target architecture.
- <literallayout class='monospaced'>
- $ cd $HOME
- $ source &YOCTO_ADTPATH_DIR;/environment-setup-i586-poky-linux
- $ runqemu qemux86 bzImage-qemux86.bin \
- core-image-sato-qemux86.ext3
- </literallayout>
- </para>
-
- <para>
- The environment in which QEMU launches varies depending on the filesystem image and on the
- target architecture.
- For example, if you source the environment for the ARM target
- architecture and then boot the minimal QEMU image, the emulator comes up in a new
- shell in command-line mode.
- However, if you boot the SDK image, QEMU comes up with a GUI.
- <note>Booting the PPC image results in QEMU launching in the same shell in
- command-line mode.</note>
- </para>
- </section>
-</section>
-
-</chapter>
-<!--
-vim: expandtab tw=80 ts=4
--->