aboutsummaryrefslogtreecommitdiffstats
path: root/lib/zstd/compress/zstd_compress_sequences.c
blob: 21ddc1b37acf8e49161c31656ac920f9587542eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
/*
 * Copyright (c) Yann Collet, Facebook, Inc.
 * All rights reserved.
 *
 * This source code is licensed under both the BSD-style license (found in the
 * LICENSE file in the root directory of this source tree) and the GPLv2 (found
 * in the COPYING file in the root directory of this source tree).
 * You may select, at your option, one of the above-listed licenses.
 */

 /*-*************************************
 *  Dependencies
 ***************************************/
#include "zstd_compress_sequences.h"

/*
 * -log2(x / 256) lookup table for x in [0, 256).
 * If x == 0: Return 0
 * Else: Return floor(-log2(x / 256) * 256)
 */
static unsigned const kInverseProbabilityLog256[256] = {
    0,    2048, 1792, 1642, 1536, 1453, 1386, 1329, 1280, 1236, 1197, 1162,
    1130, 1100, 1073, 1047, 1024, 1001, 980,  960,  941,  923,  906,  889,
    874,  859,  844,  830,  817,  804,  791,  779,  768,  756,  745,  734,
    724,  714,  704,  694,  685,  676,  667,  658,  650,  642,  633,  626,
    618,  610,  603,  595,  588,  581,  574,  567,  561,  554,  548,  542,
    535,  529,  523,  517,  512,  506,  500,  495,  489,  484,  478,  473,
    468,  463,  458,  453,  448,  443,  438,  434,  429,  424,  420,  415,
    411,  407,  402,  398,  394,  390,  386,  382,  377,  373,  370,  366,
    362,  358,  354,  350,  347,  343,  339,  336,  332,  329,  325,  322,
    318,  315,  311,  308,  305,  302,  298,  295,  292,  289,  286,  282,
    279,  276,  273,  270,  267,  264,  261,  258,  256,  253,  250,  247,
    244,  241,  239,  236,  233,  230,  228,  225,  222,  220,  217,  215,
    212,  209,  207,  204,  202,  199,  197,  194,  192,  190,  187,  185,
    182,  180,  178,  175,  173,  171,  168,  166,  164,  162,  159,  157,
    155,  153,  151,  149,  146,  144,  142,  140,  138,  136,  134,  132,
    130,  128,  126,  123,  121,  119,  117,  115,  114,  112,  110,  108,
    106,  104,  102,  100,  98,   96,   94,   93,   91,   89,   87,   85,
    83,   82,   80,   78,   76,   74,   73,   71,   69,   67,   66,   64,
    62,   61,   59,   57,   55,   54,   52,   50,   49,   47,   46,   44,
    42,   41,   39,   37,   36,   34,   33,   31,   30,   28,   26,   25,
    23,   22,   20,   19,   17,   16,   14,   13,   11,   10,   8,    7,
    5,    4,    2,    1,
};

static unsigned ZSTD_getFSEMaxSymbolValue(FSE_CTable const* ctable) {
  void const* ptr = ctable;
  U16 const* u16ptr = (U16 const*)ptr;
  U32 const maxSymbolValue = MEM_read16(u16ptr + 1);
  return maxSymbolValue;
}

/*
 * Returns true if we should use ncount=-1 else we should
 * use ncount=1 for low probability symbols instead.
 */
static unsigned ZSTD_useLowProbCount(size_t const nbSeq)
{
    /* Heuristic: This should cover most blocks <= 16K and
     * start to fade out after 16K to about 32K depending on
     * comprssibility.
     */
    return nbSeq >= 2048;
}

/*
 * Returns the cost in bytes of encoding the normalized count header.
 * Returns an error if any of the helper functions return an error.
 */
static size_t ZSTD_NCountCost(unsigned const* count, unsigned const max,
                              size_t const nbSeq, unsigned const FSELog)
{
    BYTE wksp[FSE_NCOUNTBOUND];
    S16 norm[MaxSeq + 1];
    const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
    FORWARD_IF_ERROR(FSE_normalizeCount(norm, tableLog, count, nbSeq, max, ZSTD_useLowProbCount(nbSeq)), "");
    return FSE_writeNCount(wksp, sizeof(wksp), norm, max, tableLog);
}

/*
 * Returns the cost in bits of encoding the distribution described by count
 * using the entropy bound.
 */
static size_t ZSTD_entropyCost(unsigned const* count, unsigned const max, size_t const total)
{
    unsigned cost = 0;
    unsigned s;

    assert(total > 0);
    for (s = 0; s <= max; ++s) {
        unsigned norm = (unsigned)((256 * count[s]) / total);
        if (count[s] != 0 && norm == 0)
            norm = 1;
        assert(count[s] < total);
        cost += count[s] * kInverseProbabilityLog256[norm];
    }
    return cost >> 8;
}

/*
 * Returns the cost in bits of encoding the distribution in count using ctable.
 * Returns an error if ctable cannot represent all the symbols in count.
 */
size_t ZSTD_fseBitCost(
    FSE_CTable const* ctable,
    unsigned const* count,
    unsigned const max)
{
    unsigned const kAccuracyLog = 8;
    size_t cost = 0;
    unsigned s;
    FSE_CState_t cstate;
    FSE_initCState(&cstate, ctable);
    if (ZSTD_getFSEMaxSymbolValue(ctable) < max) {
        DEBUGLOG(5, "Repeat FSE_CTable has maxSymbolValue %u < %u",
                    ZSTD_getFSEMaxSymbolValue(ctable), max);
        return ERROR(GENERIC);
    }
    for (s = 0; s <= max; ++s) {
        unsigned const tableLog = cstate.stateLog;
        unsigned const badCost = (tableLog + 1) << kAccuracyLog;
        unsigned const bitCost = FSE_bitCost(cstate.symbolTT, tableLog, s, kAccuracyLog);
        if (count[s] == 0)
            continue;
        if (bitCost >= badCost) {
            DEBUGLOG(5, "Repeat FSE_CTable has Prob[%u] == 0", s);
            return ERROR(GENERIC);
        }
        cost += (size_t)count[s] * bitCost;
    }
    return cost >> kAccuracyLog;
}

/*
 * Returns the cost in bits of encoding the distribution in count using the
 * table described by norm. The max symbol support by norm is assumed >= max.
 * norm must be valid for every symbol with non-zero probability in count.
 */
size_t ZSTD_crossEntropyCost(short const* norm, unsigned accuracyLog,
                             unsigned const* count, unsigned const max)
{
    unsigned const shift = 8 - accuracyLog;
    size_t cost = 0;
    unsigned s;
    assert(accuracyLog <= 8);
    for (s = 0; s <= max; ++s) {
        unsigned const normAcc = (norm[s] != -1) ? (unsigned)norm[s] : 1;
        unsigned const norm256 = normAcc << shift;
        assert(norm256 > 0);
        assert(norm256 < 256);
        cost += count[s] * kInverseProbabilityLog256[norm256];
    }
    return cost >> 8;
}

symbolEncodingType_e
ZSTD_selectEncodingType(
        FSE_repeat* repeatMode, unsigned const* count, unsigned const max,
        size_t const mostFrequent, size_t nbSeq, unsigned const FSELog,
        FSE_CTable const* prevCTable,
        short const* defaultNorm, U32 defaultNormLog,
        ZSTD_defaultPolicy_e const isDefaultAllowed,
        ZSTD_strategy const strategy)
{
    ZSTD_STATIC_ASSERT(ZSTD_defaultDisallowed == 0 && ZSTD_defaultAllowed != 0);
    if (mostFrequent == nbSeq) {
        *repeatMode = FSE_repeat_none;
        if (isDefaultAllowed && nbSeq <= 2) {
            /* Prefer set_basic over set_rle when there are 2 or less symbols,
             * since RLE uses 1 byte, but set_basic uses 5-6 bits per symbol.
             * If basic encoding isn't possible, always choose RLE.
             */
            DEBUGLOG(5, "Selected set_basic");
            return set_basic;
        }
        DEBUGLOG(5, "Selected set_rle");
        return set_rle;
    }
    if (strategy < ZSTD_lazy) {
        if (isDefaultAllowed) {
            size_t const staticFse_nbSeq_max = 1000;
            size_t const mult = 10 - strategy;
            size_t const baseLog = 3;
            size_t const dynamicFse_nbSeq_min = (((size_t)1 << defaultNormLog) * mult) >> baseLog;  /* 28-36 for offset, 56-72 for lengths */
            assert(defaultNormLog >= 5 && defaultNormLog <= 6);  /* xx_DEFAULTNORMLOG */
            assert(mult <= 9 && mult >= 7);
            if ( (*repeatMode == FSE_repeat_valid)
              && (nbSeq < staticFse_nbSeq_max) ) {
                DEBUGLOG(5, "Selected set_repeat");
                return set_repeat;
            }
            if ( (nbSeq < dynamicFse_nbSeq_min)
              || (mostFrequent < (nbSeq >> (defaultNormLog-1))) ) {
                DEBUGLOG(5, "Selected set_basic");
                /* The format allows default tables to be repeated, but it isn't useful.
                 * When using simple heuristics to select encoding type, we don't want
                 * to confuse these tables with dictionaries. When running more careful
                 * analysis, we don't need to waste time checking both repeating tables
                 * and default tables.
                 */
                *repeatMode = FSE_repeat_none;
                return set_basic;
            }
        }
    } else {
        size_t const basicCost = isDefaultAllowed ? ZSTD_crossEntropyCost(defaultNorm, defaultNormLog, count, max) : ERROR(GENERIC);
        size_t const repeatCost = *repeatMode != FSE_repeat_none ? ZSTD_fseBitCost(prevCTable, count, max) : ERROR(GENERIC);
        size_t const NCountCost = ZSTD_NCountCost(count, max, nbSeq, FSELog);
        size_t const compressedCost = (NCountCost << 3) + ZSTD_entropyCost(count, max, nbSeq);

        if (isDefaultAllowed) {
            assert(!ZSTD_isError(basicCost));
            assert(!(*repeatMode == FSE_repeat_valid && ZSTD_isError(repeatCost)));
        }
        assert(!ZSTD_isError(NCountCost));
        assert(compressedCost < ERROR(maxCode));
        DEBUGLOG(5, "Estimated bit costs: basic=%u\trepeat=%u\tcompressed=%u",
                    (unsigned)basicCost, (unsigned)repeatCost, (unsigned)compressedCost);
        if (basicCost <= repeatCost && basicCost <= compressedCost) {
            DEBUGLOG(5, "Selected set_basic");
            assert(isDefaultAllowed);
            *repeatMode = FSE_repeat_none;
            return set_basic;
        }
        if (repeatCost <= compressedCost) {
            DEBUGLOG(5, "Selected set_repeat");
            assert(!ZSTD_isError(repeatCost));
            return set_repeat;
        }
        assert(compressedCost < basicCost && compressedCost < repeatCost);
    }
    DEBUGLOG(5, "Selected set_compressed");
    *repeatMode = FSE_repeat_check;
    return set_compressed;
}

typedef struct {
    S16 norm[MaxSeq + 1];
    U32 wksp[FSE_BUILD_CTABLE_WORKSPACE_SIZE_U32(MaxSeq, MaxFSELog)];
} ZSTD_BuildCTableWksp;

size_t
ZSTD_buildCTable(void* dst, size_t dstCapacity,
                FSE_CTable* nextCTable, U32 FSELog, symbolEncodingType_e type,
                unsigned* count, U32 max,
                const BYTE* codeTable, size_t nbSeq,
                const S16* defaultNorm, U32 defaultNormLog, U32 defaultMax,
                const FSE_CTable* prevCTable, size_t prevCTableSize,
                void* entropyWorkspace, size_t entropyWorkspaceSize)
{
    BYTE* op = (BYTE*)dst;
    const BYTE* const oend = op + dstCapacity;
    DEBUGLOG(6, "ZSTD_buildCTable (dstCapacity=%u)", (unsigned)dstCapacity);

    switch (type) {
    case set_rle:
        FORWARD_IF_ERROR(FSE_buildCTable_rle(nextCTable, (BYTE)max), "");
        RETURN_ERROR_IF(dstCapacity==0, dstSize_tooSmall, "not enough space");
        *op = codeTable[0];
        return 1;
    case set_repeat:
        ZSTD_memcpy(nextCTable, prevCTable, prevCTableSize);
        return 0;
    case set_basic:
        FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, defaultNorm, defaultMax, defaultNormLog, entropyWorkspace, entropyWorkspaceSize), "");  /* note : could be pre-calculated */
        return 0;
    case set_compressed: {
        ZSTD_BuildCTableWksp* wksp = (ZSTD_BuildCTableWksp*)entropyWorkspace;
        size_t nbSeq_1 = nbSeq;
        const U32 tableLog = FSE_optimalTableLog(FSELog, nbSeq, max);
        if (count[codeTable[nbSeq-1]] > 1) {
            count[codeTable[nbSeq-1]]--;
            nbSeq_1--;
        }
        assert(nbSeq_1 > 1);
        assert(entropyWorkspaceSize >= sizeof(ZSTD_BuildCTableWksp));
        (void)entropyWorkspaceSize;
        FORWARD_IF_ERROR(FSE_normalizeCount(wksp->norm, tableLog, count, nbSeq_1, max, ZSTD_useLowProbCount(nbSeq_1)), "FSE_normalizeCount failed");
        assert(oend >= op);
        {   size_t const NCountSize = FSE_writeNCount(op, (size_t)(oend - op), wksp->norm, max, tableLog);   /* overflow protected */
            FORWARD_IF_ERROR(NCountSize, "FSE_writeNCount failed");
            FORWARD_IF_ERROR(FSE_buildCTable_wksp(nextCTable, wksp->norm, max, tableLog, wksp->wksp, sizeof(wksp->wksp)), "FSE_buildCTable_wksp failed");
            return NCountSize;
        }
    }
    default: assert(0); RETURN_ERROR(GENERIC, "impossible to reach");
    }
}

FORCE_INLINE_TEMPLATE size_t
ZSTD_encodeSequences_body(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    BIT_CStream_t blockStream;
    FSE_CState_t  stateMatchLength;
    FSE_CState_t  stateOffsetBits;
    FSE_CState_t  stateLitLength;

    RETURN_ERROR_IF(
        ERR_isError(BIT_initCStream(&blockStream, dst, dstCapacity)),
        dstSize_tooSmall, "not enough space remaining");
    DEBUGLOG(6, "available space for bitstream : %i  (dstCapacity=%u)",
                (int)(blockStream.endPtr - blockStream.startPtr),
                (unsigned)dstCapacity);

    /* first symbols */
    FSE_initCState2(&stateMatchLength, CTable_MatchLength, mlCodeTable[nbSeq-1]);
    FSE_initCState2(&stateOffsetBits,  CTable_OffsetBits,  ofCodeTable[nbSeq-1]);
    FSE_initCState2(&stateLitLength,   CTable_LitLength,   llCodeTable[nbSeq-1]);
    BIT_addBits(&blockStream, sequences[nbSeq-1].litLength, LL_bits[llCodeTable[nbSeq-1]]);
    if (MEM_32bits()) BIT_flushBits(&blockStream);
    BIT_addBits(&blockStream, sequences[nbSeq-1].mlBase, ML_bits[mlCodeTable[nbSeq-1]]);
    if (MEM_32bits()) BIT_flushBits(&blockStream);
    if (longOffsets) {
        U32 const ofBits = ofCodeTable[nbSeq-1];
        unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
        if (extraBits) {
            BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, extraBits);
            BIT_flushBits(&blockStream);
        }
        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase >> extraBits,
                    ofBits - extraBits);
    } else {
        BIT_addBits(&blockStream, sequences[nbSeq-1].offBase, ofCodeTable[nbSeq-1]);
    }
    BIT_flushBits(&blockStream);

    {   size_t n;
        for (n=nbSeq-2 ; n<nbSeq ; n--) {      /* intentional underflow */
            BYTE const llCode = llCodeTable[n];
            BYTE const ofCode = ofCodeTable[n];
            BYTE const mlCode = mlCodeTable[n];
            U32  const llBits = LL_bits[llCode];
            U32  const ofBits = ofCode;
            U32  const mlBits = ML_bits[mlCode];
            DEBUGLOG(6, "encoding: litlen:%2u - matchlen:%2u - offCode:%7u",
                        (unsigned)sequences[n].litLength,
                        (unsigned)sequences[n].mlBase + MINMATCH,
                        (unsigned)sequences[n].offBase);
                                                                            /* 32b*/  /* 64b*/
                                                                            /* (7)*/  /* (7)*/
            FSE_encodeSymbol(&blockStream, &stateOffsetBits, ofCode);       /* 15 */  /* 15 */
            FSE_encodeSymbol(&blockStream, &stateMatchLength, mlCode);      /* 24 */  /* 24 */
            if (MEM_32bits()) BIT_flushBits(&blockStream);                  /* (7)*/
            FSE_encodeSymbol(&blockStream, &stateLitLength, llCode);        /* 16 */  /* 33 */
            if (MEM_32bits() || (ofBits+mlBits+llBits >= 64-7-(LLFSELog+MLFSELog+OffFSELog)))
                BIT_flushBits(&blockStream);                                /* (7)*/
            BIT_addBits(&blockStream, sequences[n].litLength, llBits);
            if (MEM_32bits() && ((llBits+mlBits)>24)) BIT_flushBits(&blockStream);
            BIT_addBits(&blockStream, sequences[n].mlBase, mlBits);
            if (MEM_32bits() || (ofBits+mlBits+llBits > 56)) BIT_flushBits(&blockStream);
            if (longOffsets) {
                unsigned const extraBits = ofBits - MIN(ofBits, STREAM_ACCUMULATOR_MIN-1);
                if (extraBits) {
                    BIT_addBits(&blockStream, sequences[n].offBase, extraBits);
                    BIT_flushBits(&blockStream);                            /* (7)*/
                }
                BIT_addBits(&blockStream, sequences[n].offBase >> extraBits,
                            ofBits - extraBits);                            /* 31 */
            } else {
                BIT_addBits(&blockStream, sequences[n].offBase, ofBits);     /* 31 */
            }
            BIT_flushBits(&blockStream);                                    /* (7)*/
            DEBUGLOG(7, "remaining space : %i", (int)(blockStream.endPtr - blockStream.ptr));
    }   }

    DEBUGLOG(6, "ZSTD_encodeSequences: flushing ML state with %u bits", stateMatchLength.stateLog);
    FSE_flushCState(&blockStream, &stateMatchLength);
    DEBUGLOG(6, "ZSTD_encodeSequences: flushing Off state with %u bits", stateOffsetBits.stateLog);
    FSE_flushCState(&blockStream, &stateOffsetBits);
    DEBUGLOG(6, "ZSTD_encodeSequences: flushing LL state with %u bits", stateLitLength.stateLog);
    FSE_flushCState(&blockStream, &stateLitLength);

    {   size_t const streamSize = BIT_closeCStream(&blockStream);
        RETURN_ERROR_IF(streamSize==0, dstSize_tooSmall, "not enough space");
        return streamSize;
    }
}

static size_t
ZSTD_encodeSequences_default(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    return ZSTD_encodeSequences_body(dst, dstCapacity,
                                    CTable_MatchLength, mlCodeTable,
                                    CTable_OffsetBits, ofCodeTable,
                                    CTable_LitLength, llCodeTable,
                                    sequences, nbSeq, longOffsets);
}


#if DYNAMIC_BMI2

static BMI2_TARGET_ATTRIBUTE size_t
ZSTD_encodeSequences_bmi2(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets)
{
    return ZSTD_encodeSequences_body(dst, dstCapacity,
                                    CTable_MatchLength, mlCodeTable,
                                    CTable_OffsetBits, ofCodeTable,
                                    CTable_LitLength, llCodeTable,
                                    sequences, nbSeq, longOffsets);
}

#endif

size_t ZSTD_encodeSequences(
            void* dst, size_t dstCapacity,
            FSE_CTable const* CTable_MatchLength, BYTE const* mlCodeTable,
            FSE_CTable const* CTable_OffsetBits, BYTE const* ofCodeTable,
            FSE_CTable const* CTable_LitLength, BYTE const* llCodeTable,
            seqDef const* sequences, size_t nbSeq, int longOffsets, int bmi2)
{
    DEBUGLOG(5, "ZSTD_encodeSequences: dstCapacity = %u", (unsigned)dstCapacity);
#if DYNAMIC_BMI2
    if (bmi2) {
        return ZSTD_encodeSequences_bmi2(dst, dstCapacity,
                                         CTable_MatchLength, mlCodeTable,
                                         CTable_OffsetBits, ofCodeTable,
                                         CTable_LitLength, llCodeTable,
                                         sequences, nbSeq, longOffsets);
    }
#endif
    (void)bmi2;
    return ZSTD_encodeSequences_default(dst, dstCapacity,
                                        CTable_MatchLength, mlCodeTable,
                                        CTable_OffsetBits, ofCodeTable,
                                        CTable_LitLength, llCodeTable,
                                        sequences, nbSeq, longOffsets);
}