aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/reset/reset-intel-gw.c
blob: a5a01388ae7fae28654736e8219ff4e80c9508a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (c) 2019 Intel Corporation.
 * Lei Chuanhua <Chuanhua.lei@intel.com>
 */

#include <linux/bitfield.h>
#include <linux/init.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/reboot.h>
#include <linux/regmap.h>
#include <linux/reset-controller.h>

#define RCU_RST_STAT	0x0024
#define RCU_RST_REQ	0x0048

#define REG_OFFSET_MASK	GENMASK(31, 16)
#define BIT_OFFSET_MASK	GENMASK(15, 8)
#define STAT_BIT_OFFSET_MASK	GENMASK(7, 0)

#define to_reset_data(x)	container_of(x, struct intel_reset_data, rcdev)

struct intel_reset_soc {
	bool legacy;
	u32 reset_cell_count;
};

struct intel_reset_data {
	struct reset_controller_dev rcdev;
	struct notifier_block restart_nb;
	const struct intel_reset_soc *soc_data;
	struct regmap *regmap;
	struct device *dev;
	u32 reboot_id;
};

static const struct regmap_config intel_rcu_regmap_config = {
	.name =		"intel-reset",
	.reg_bits =	32,
	.reg_stride =	4,
	.val_bits =	32,
	.fast_io =	true,
};

/*
 * Reset status register offset relative to
 * the reset control register(X) is X + 4
 */
static u32 id_to_reg_and_bit_offsets(struct intel_reset_data *data,
				     unsigned long id, u32 *rst_req,
				     u32 *req_bit, u32 *stat_bit)
{
	*rst_req = FIELD_GET(REG_OFFSET_MASK, id);
	*req_bit = FIELD_GET(BIT_OFFSET_MASK, id);

	if (data->soc_data->legacy)
		*stat_bit = FIELD_GET(STAT_BIT_OFFSET_MASK, id);
	else
		*stat_bit = *req_bit;

	if (data->soc_data->legacy && *rst_req == RCU_RST_REQ)
		return RCU_RST_STAT;
	else
		return *rst_req + 0x4;
}

static int intel_set_clr_bits(struct intel_reset_data *data, unsigned long id,
			      bool set)
{
	u32 rst_req, req_bit, rst_stat, stat_bit, val;
	int ret;

	rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req,
					     &req_bit, &stat_bit);

	val = set ? BIT(req_bit) : 0;
	ret = regmap_update_bits(data->regmap, rst_req,  BIT(req_bit), val);
	if (ret)
		return ret;

	return regmap_read_poll_timeout(data->regmap, rst_stat, val,
					set == !!(val & BIT(stat_bit)), 20,
					200);
}

static int intel_assert_device(struct reset_controller_dev *rcdev,
			       unsigned long id)
{
	struct intel_reset_data *data = to_reset_data(rcdev);
	int ret;

	ret = intel_set_clr_bits(data, id, true);
	if (ret)
		dev_err(data->dev, "Reset assert failed %d\n", ret);

	return ret;
}

static int intel_deassert_device(struct reset_controller_dev *rcdev,
				 unsigned long id)
{
	struct intel_reset_data *data = to_reset_data(rcdev);
	int ret;

	ret = intel_set_clr_bits(data, id, false);
	if (ret)
		dev_err(data->dev, "Reset deassert failed %d\n", ret);

	return ret;
}

static int intel_reset_status(struct reset_controller_dev *rcdev,
			      unsigned long id)
{
	struct intel_reset_data *data = to_reset_data(rcdev);
	u32 rst_req, req_bit, rst_stat, stat_bit, val;
	int ret;

	rst_stat = id_to_reg_and_bit_offsets(data, id, &rst_req,
					     &req_bit, &stat_bit);
	ret = regmap_read(data->regmap, rst_stat, &val);
	if (ret)
		return ret;

	return !!(val & BIT(stat_bit));
}

static const struct reset_control_ops intel_reset_ops = {
	.assert =	intel_assert_device,
	.deassert =	intel_deassert_device,
	.status	=	intel_reset_status,
};

static int intel_reset_xlate(struct reset_controller_dev *rcdev,
			     const struct of_phandle_args *spec)
{
	struct intel_reset_data *data = to_reset_data(rcdev);
	u32 id;

	if (spec->args[1] > 31)
		return -EINVAL;

	id = FIELD_PREP(REG_OFFSET_MASK, spec->args[0]);
	id |= FIELD_PREP(BIT_OFFSET_MASK, spec->args[1]);

	if (data->soc_data->legacy) {
		if (spec->args[2] > 31)
			return -EINVAL;

		id |= FIELD_PREP(STAT_BIT_OFFSET_MASK, spec->args[2]);
	}

	return id;
}

static int intel_reset_restart_handler(struct notifier_block *nb,
				       unsigned long action, void *data)
{
	struct intel_reset_data *reset_data;

	reset_data = container_of(nb, struct intel_reset_data, restart_nb);
	intel_assert_device(&reset_data->rcdev, reset_data->reboot_id);

	return NOTIFY_DONE;
}

static int intel_reset_probe(struct platform_device *pdev)
{
	struct device_node *np = pdev->dev.of_node;
	struct device *dev = &pdev->dev;
	struct intel_reset_data *data;
	void __iomem *base;
	u32 rb_id[3];
	int ret;

	data = devm_kzalloc(dev, sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->soc_data = of_device_get_match_data(dev);
	if (!data->soc_data)
		return -ENODEV;

	base = devm_platform_ioremap_resource(pdev, 0);
	if (IS_ERR(base))
		return PTR_ERR(base);

	data->regmap = devm_regmap_init_mmio(dev, base,
					     &intel_rcu_regmap_config);
	if (IS_ERR(data->regmap)) {
		dev_err(dev, "regmap initialization failed\n");
		return PTR_ERR(data->regmap);
	}

	ret = device_property_read_u32_array(dev, "intel,global-reset", rb_id,
					     data->soc_data->reset_cell_count);
	if (ret) {
		dev_err(dev, "Failed to get global reset offset!\n");
		return ret;
	}

	data->dev =			dev;
	data->rcdev.of_node =		np;
	data->rcdev.owner =		dev->driver->owner;
	data->rcdev.ops	=		&intel_reset_ops;
	data->rcdev.of_xlate =		intel_reset_xlate;
	data->rcdev.of_reset_n_cells =	data->soc_data->reset_cell_count;
	ret = devm_reset_controller_register(&pdev->dev, &data->rcdev);
	if (ret)
		return ret;

	data->reboot_id = FIELD_PREP(REG_OFFSET_MASK, rb_id[0]);
	data->reboot_id |= FIELD_PREP(BIT_OFFSET_MASK, rb_id[1]);

	if (data->soc_data->legacy)
		data->reboot_id |= FIELD_PREP(STAT_BIT_OFFSET_MASK, rb_id[2]);

	data->restart_nb.notifier_call =	intel_reset_restart_handler;
	data->restart_nb.priority =		128;
	register_restart_handler(&data->restart_nb);

	return 0;
}

static const struct intel_reset_soc xrx200_data = {
	.legacy =		true,
	.reset_cell_count =	3,
};

static const struct intel_reset_soc lgm_data = {
	.legacy =		false,
	.reset_cell_count =	2,
};

static const struct of_device_id intel_reset_match[] = {
	{ .compatible = "intel,rcu-lgm", .data = &lgm_data },
	{ .compatible = "intel,rcu-xrx200", .data = &xrx200_data },
	{}
};

static struct platform_driver intel_reset_driver = {
	.probe = intel_reset_probe,
	.driver = {
		.name = "intel-reset",
		.of_match_table = intel_reset_match,
	},
};

static int __init intel_reset_init(void)
{
	return platform_driver_register(&intel_reset_driver);
}

/*
 * RCU is system core entity which is in Always On Domain whose clocks
 * or resource initialization happens in system core initialization.
 * Also, it is required for most of the platform or architecture
 * specific devices to perform reset operation as part of initialization.
 * So perform RCU as post core initialization.
 */
postcore_initcall(intel_reset_init);