aboutsummaryrefslogtreecommitdiffstats
path: root/drivers/misc/habanalabs/common/habanalabs.h
blob: 018d9d67e8e6ac2167107c1e2126411ea3caefad (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
/* SPDX-License-Identifier: GPL-2.0
 *
 * Copyright 2016-2019 HabanaLabs, Ltd.
 * All Rights Reserved.
 *
 */

#ifndef HABANALABSP_H_
#define HABANALABSP_H_

#include "../include/common/armcp_if.h"
#include "../include/common/qman_if.h"
#include <uapi/misc/habanalabs.h>

#include <linux/cdev.h>
#include <linux/iopoll.h>
#include <linux/irqreturn.h>
#include <linux/dma-fence.h>
#include <linux/dma-direction.h>
#include <linux/scatterlist.h>
#include <linux/hashtable.h>

#define HL_NAME				"habanalabs"

#define HL_MMAP_CB_MASK			(0x8000000000000000ull >> PAGE_SHIFT)

#define HL_PENDING_RESET_PER_SEC	30

#define HL_HARD_RESET_MAX_TIMEOUT	120

#define HL_DEVICE_TIMEOUT_USEC		1000000 /* 1 s */

#define HL_HEARTBEAT_PER_USEC		5000000 /* 5 s */

#define HL_PLL_LOW_JOB_FREQ_USEC	5000000 /* 5 s */

#define HL_ARMCP_INFO_TIMEOUT_USEC	10000000 /* 10s */
#define HL_ARMCP_EEPROM_TIMEOUT_USEC	10000000 /* 10s */

#define HL_PCI_ELBI_TIMEOUT_MSEC	10 /* 10ms */

#define HL_SIM_MAX_TIMEOUT_US		10000000 /* 10s */

#define HL_IDLE_BUSY_TS_ARR_SIZE	4096

/* Memory */
#define MEM_HASH_TABLE_BITS		7 /* 1 << 7 buckets */

/* MMU */
#define MMU_HASH_TABLE_BITS		7 /* 1 << 7 buckets */

/*
 * HL_RSVD_SOBS 'sync stream' reserved sync objects per QMAN stream
 * HL_RSVD_MONS 'sync stream' reserved monitors per QMAN stream
 */
#define HL_RSVD_SOBS			4
#define HL_RSVD_MONS			2

#define HL_RSVD_SOBS_IN_USE		2
#define HL_RSVD_MONS_IN_USE		1

#define HL_MAX_SOB_VAL			(1 << 15)

#define IS_POWER_OF_2(n)		(n != 0 && ((n & (n - 1)) == 0))
#define IS_MAX_PENDING_CS_VALID(n)	(IS_POWER_OF_2(n) && (n > 1))

#define HL_PCI_NUM_BARS			6

/**
 * struct pgt_info - MMU hop page info.
 * @node: hash linked-list node for the pgts shadow hash of pgts.
 * @phys_addr: physical address of the pgt.
 * @shadow_addr: shadow hop in the host.
 * @ctx: pointer to the owner ctx.
 * @num_of_ptes: indicates how many ptes are used in the pgt.
 *
 * The MMU page tables hierarchy is placed on the DRAM. When a new level (hop)
 * is needed during mapping, a new page is allocated and this structure holds
 * its essential information. During unmapping, if no valid PTEs remained in the
 * page, it is freed with its pgt_info structure.
 */
struct pgt_info {
	struct hlist_node	node;
	u64			phys_addr;
	u64			shadow_addr;
	struct hl_ctx		*ctx;
	int			num_of_ptes;
};

struct hl_device;
struct hl_fpriv;

/**
 * enum hl_pci_match_mode - pci match mode per region
 * @PCI_ADDRESS_MATCH_MODE: address match mode
 * @PCI_BAR_MATCH_MODE: bar match mode
 */
enum hl_pci_match_mode {
	PCI_ADDRESS_MATCH_MODE,
	PCI_BAR_MATCH_MODE
};

/**
 * enum hl_fw_component - F/W components to read version through registers.
 * @FW_COMP_UBOOT: u-boot.
 * @FW_COMP_PREBOOT: preboot.
 */
enum hl_fw_component {
	FW_COMP_UBOOT,
	FW_COMP_PREBOOT
};

/**
 * enum hl_queue_type - Supported QUEUE types.
 * @QUEUE_TYPE_NA: queue is not available.
 * @QUEUE_TYPE_EXT: external queue which is a DMA channel that may access the
 *                  host.
 * @QUEUE_TYPE_INT: internal queue that performs DMA inside the device's
 *			memories and/or operates the compute engines.
 * @QUEUE_TYPE_CPU: S/W queue for communication with the device's CPU.
 * @QUEUE_TYPE_HW: queue of DMA and compute engines jobs, for which completion
 *                 notifications are sent by H/W.
 */
enum hl_queue_type {
	QUEUE_TYPE_NA,
	QUEUE_TYPE_EXT,
	QUEUE_TYPE_INT,
	QUEUE_TYPE_CPU,
	QUEUE_TYPE_HW
};

enum hl_cs_type {
	CS_TYPE_DEFAULT,
	CS_TYPE_SIGNAL,
	CS_TYPE_WAIT
};

/*
 * struct hl_inbound_pci_region - inbound region descriptor
 * @mode: pci match mode for this region
 * @addr: region target address
 * @size: region size in bytes
 * @offset_in_bar: offset within bar (address match mode)
 * @bar: bar id
 */
struct hl_inbound_pci_region {
	enum hl_pci_match_mode	mode;
	u64			addr;
	u64			size;
	u64			offset_in_bar;
	u8			bar;
};

/*
 * struct hl_outbound_pci_region - outbound region descriptor
 * @addr: region target address
 * @size: region size in bytes
 */
struct hl_outbound_pci_region {
	u64	addr;
	u64	size;
};

/*
 * struct hl_hw_sob - H/W SOB info.
 * @hdev: habanalabs device structure.
 * @kref: refcount of this SOB. The SOB will reset once the refcount is zero.
 * @sob_id: id of this SOB.
 * @q_idx: the H/W queue that uses this SOB.
 */
struct hl_hw_sob {
	struct hl_device	*hdev;
	struct kref		kref;
	u32			sob_id;
	u32			q_idx;
};

/**
 * struct hw_queue_properties - queue information.
 * @type: queue type.
 * @driver_only: true if only the driver is allowed to send a job to this queue,
 *               false otherwise.
 * @requires_kernel_cb: true if a CB handle must be provided for jobs on this
 *                      queue, false otherwise (a CB address must be provided).
 * @supports_sync_stream: True if queue supports sync stream
 */
struct hw_queue_properties {
	enum hl_queue_type	type;
	u8			driver_only;
	u8			requires_kernel_cb;
	u8			supports_sync_stream;
};

/**
 * enum vm_type_t - virtual memory mapping request information.
 * @VM_TYPE_USERPTR: mapping of user memory to device virtual address.
 * @VM_TYPE_PHYS_PACK: mapping of DRAM memory to device virtual address.
 */
enum vm_type_t {
	VM_TYPE_USERPTR = 0x1,
	VM_TYPE_PHYS_PACK = 0x2
};

/**
 * enum hl_device_hw_state - H/W device state. use this to understand whether
 *                           to do reset before hw_init or not
 * @HL_DEVICE_HW_STATE_CLEAN: H/W state is clean. i.e. after hard reset
 * @HL_DEVICE_HW_STATE_DIRTY: H/W state is dirty. i.e. we started to execute
 *                            hw_init
 */
enum hl_device_hw_state {
	HL_DEVICE_HW_STATE_CLEAN = 0,
	HL_DEVICE_HW_STATE_DIRTY
};

/**
 * struct hl_mmu_properties - ASIC specific MMU address translation properties.
 * @start_addr: virtual start address of the memory region.
 * @end_addr: virtual end address of the memory region.
 * @hop0_shift: shift of hop 0 mask.
 * @hop1_shift: shift of hop 1 mask.
 * @hop2_shift: shift of hop 2 mask.
 * @hop3_shift: shift of hop 3 mask.
 * @hop4_shift: shift of hop 4 mask.
 * @hop0_mask: mask to get the PTE address in hop 0.
 * @hop1_mask: mask to get the PTE address in hop 1.
 * @hop2_mask: mask to get the PTE address in hop 2.
 * @hop3_mask: mask to get the PTE address in hop 3.
 * @hop4_mask: mask to get the PTE address in hop 4.
 * @page_size: default page size used to allocate memory.
 */
struct hl_mmu_properties {
	u64	start_addr;
	u64	end_addr;
	u64	hop0_shift;
	u64	hop1_shift;
	u64	hop2_shift;
	u64	hop3_shift;
	u64	hop4_shift;
	u64	hop0_mask;
	u64	hop1_mask;
	u64	hop2_mask;
	u64	hop3_mask;
	u64	hop4_mask;
	u32	page_size;
};

/**
 * struct asic_fixed_properties - ASIC specific immutable properties.
 * @hw_queues_props: H/W queues properties.
 * @armcp_info: received various information from ArmCP regarding the H/W, e.g.
 *		available sensors.
 * @uboot_ver: F/W U-boot version.
 * @preboot_ver: F/W Preboot version.
 * @dmmu: DRAM MMU address translation properties.
 * @pmmu: PCI (host) MMU address translation properties.
 * @pmmu_huge: PCI (host) MMU address translation properties for memory
 *              allocated with huge pages.
 * @sram_base_address: SRAM physical start address.
 * @sram_end_address: SRAM physical end address.
 * @sram_user_base_address - SRAM physical start address for user access.
 * @dram_base_address: DRAM physical start address.
 * @dram_end_address: DRAM physical end address.
 * @dram_user_base_address: DRAM physical start address for user access.
 * @dram_size: DRAM total size.
 * @dram_pci_bar_size: size of PCI bar towards DRAM.
 * @max_power_default: max power of the device after reset
 * @dram_size_for_default_page_mapping: DRAM size needed to map to avoid page
 *                                      fault.
 * @pcie_dbi_base_address: Base address of the PCIE_DBI block.
 * @pcie_aux_dbi_reg_addr: Address of the PCIE_AUX DBI register.
 * @mmu_pgt_addr: base physical address in DRAM of MMU page tables.
 * @mmu_dram_default_page_addr: DRAM default page physical address.
 * @mmu_pgt_size: MMU page tables total size.
 * @mmu_pte_size: PTE size in MMU page tables.
 * @mmu_hop_table_size: MMU hop table size.
 * @mmu_hop0_tables_total_size: total size of MMU hop0 tables.
 * @dram_page_size: page size for MMU DRAM allocation.
 * @cfg_size: configuration space size on SRAM.
 * @sram_size: total size of SRAM.
 * @max_asid: maximum number of open contexts (ASIDs).
 * @num_of_events: number of possible internal H/W IRQs.
 * @psoc_pci_pll_nr: PCI PLL NR value.
 * @psoc_pci_pll_nf: PCI PLL NF value.
 * @psoc_pci_pll_od: PCI PLL OD value.
 * @psoc_pci_pll_div_factor: PCI PLL DIV FACTOR 1 value.
 * @psoc_timestamp_frequency: frequency of the psoc timestamp clock.
 * @high_pll: high PLL frequency used by the device.
 * @cb_pool_cb_cnt: number of CBs in the CB pool.
 * @cb_pool_cb_size: size of each CB in the CB pool.
 * @max_pending_cs: maximum of concurrent pending command submissions
 * @max_queues: maximum amount of queues in the system
 * @sync_stream_first_sob: first sync object available for sync stream use
 * @sync_stream_first_mon: first monitor available for sync stream use
 * @tpc_enabled_mask: which TPCs are enabled.
 * @completion_queues_count: number of completion queues.
 */
struct asic_fixed_properties {
	struct hw_queue_properties	*hw_queues_props;
	struct armcp_info		armcp_info;
	char				uboot_ver[VERSION_MAX_LEN];
	char				preboot_ver[VERSION_MAX_LEN];
	struct hl_mmu_properties	dmmu;
	struct hl_mmu_properties	pmmu;
	struct hl_mmu_properties	pmmu_huge;
	u64				sram_base_address;
	u64				sram_end_address;
	u64				sram_user_base_address;
	u64				dram_base_address;
	u64				dram_end_address;
	u64				dram_user_base_address;
	u64				dram_size;
	u64				dram_pci_bar_size;
	u64				max_power_default;
	u64				dram_size_for_default_page_mapping;
	u64				pcie_dbi_base_address;
	u64				pcie_aux_dbi_reg_addr;
	u64				mmu_pgt_addr;
	u64				mmu_dram_default_page_addr;
	u32				mmu_pgt_size;
	u32				mmu_pte_size;
	u32				mmu_hop_table_size;
	u32				mmu_hop0_tables_total_size;
	u32				dram_page_size;
	u32				cfg_size;
	u32				sram_size;
	u32				max_asid;
	u32				num_of_events;
	u32				psoc_pci_pll_nr;
	u32				psoc_pci_pll_nf;
	u32				psoc_pci_pll_od;
	u32				psoc_pci_pll_div_factor;
	u32				psoc_timestamp_frequency;
	u32				high_pll;
	u32				cb_pool_cb_cnt;
	u32				cb_pool_cb_size;
	u32				max_pending_cs;
	u32				max_queues;
	u16				sync_stream_first_sob;
	u16				sync_stream_first_mon;
	u8				tpc_enabled_mask;
	u8				completion_queues_count;
};

/**
 * struct hl_cs_compl - command submission completion object.
 * @base_fence: kernel fence object.
 * @lock: spinlock to protect fence.
 * @hdev: habanalabs device structure.
 * @hw_sob: the H/W SOB used in this signal/wait CS.
 * @cs_seq: command submission sequence number.
 * @type: type of the CS - signal/wait.
 * @sob_val: the SOB value that is used in this signal/wait CS.
 */
struct hl_cs_compl {
	struct dma_fence	base_fence;
	spinlock_t		lock;
	struct hl_device	*hdev;
	struct hl_hw_sob	*hw_sob;
	u64			cs_seq;
	enum hl_cs_type		type;
	u16			sob_val;
};

/*
 * Command Buffers
 */

/**
 * struct hl_cb_mgr - describes a Command Buffer Manager.
 * @cb_lock: protects cb_handles.
 * @cb_handles: an idr to hold all command buffer handles.
 */
struct hl_cb_mgr {
	spinlock_t		cb_lock;
	struct idr		cb_handles; /* protected by cb_lock */
};

/**
 * struct hl_cb - describes a Command Buffer.
 * @refcount: reference counter for usage of the CB.
 * @hdev: pointer to device this CB belongs to.
 * @lock: spinlock to protect mmap/cs flows.
 * @debugfs_list: node in debugfs list of command buffers.
 * @pool_list: node in pool list of command buffers.
 * @kernel_address: Holds the CB's kernel virtual address.
 * @bus_address: Holds the CB's DMA address.
 * @mmap_size: Holds the CB's size that was mmaped.
 * @size: holds the CB's size.
 * @id: the CB's ID.
 * @cs_cnt: holds number of CS that this CB participates in.
 * @ctx_id: holds the ID of the owner's context.
 * @mmap: true if the CB is currently mmaped to user.
 * @is_pool: true if CB was acquired from the pool, false otherwise.
 * @is_internal: internaly allocated
 */
struct hl_cb {
	struct kref		refcount;
	struct hl_device	*hdev;
	spinlock_t		lock;
	struct list_head	debugfs_list;
	struct list_head	pool_list;
	u64			kernel_address;
	dma_addr_t		bus_address;
	u32			mmap_size;
	u32			size;
	u32			id;
	u32			cs_cnt;
	u32			ctx_id;
	u8			mmap;
	u8			is_pool;
	u8			is_internal;
};


/*
 * QUEUES
 */

struct hl_cs_job;

/* Queue length of external and HW queues */
#define HL_QUEUE_LENGTH			4096
#define HL_QUEUE_SIZE_IN_BYTES		(HL_QUEUE_LENGTH * HL_BD_SIZE)

#if (HL_MAX_JOBS_PER_CS > HL_QUEUE_LENGTH)
#error "HL_QUEUE_LENGTH must be greater than HL_MAX_JOBS_PER_CS"
#endif

/* HL_CQ_LENGTH is in units of struct hl_cq_entry */
#define HL_CQ_LENGTH			HL_QUEUE_LENGTH
#define HL_CQ_SIZE_IN_BYTES		(HL_CQ_LENGTH * HL_CQ_ENTRY_SIZE)

/* Must be power of 2 */
#define HL_EQ_LENGTH			64
#define HL_EQ_SIZE_IN_BYTES		(HL_EQ_LENGTH * HL_EQ_ENTRY_SIZE)

/* Host <-> ArmCP shared memory size */
#define HL_CPU_ACCESSIBLE_MEM_SIZE	SZ_2M

/**
 * struct hl_hw_queue - describes a H/W transport queue.
 * @hw_sob: array of the used H/W SOBs by this H/W queue.
 * @shadow_queue: pointer to a shadow queue that holds pointers to jobs.
 * @queue_type: type of queue.
 * @kernel_address: holds the queue's kernel virtual address.
 * @bus_address: holds the queue's DMA address.
 * @pi: holds the queue's pi value.
 * @ci: holds the queue's ci value, AS CALCULATED BY THE DRIVER (not real ci).
 * @hw_queue_id: the id of the H/W queue.
 * @cq_id: the id for the corresponding CQ for this H/W queue.
 * @msi_vec: the IRQ number of the H/W queue.
 * @int_queue_len: length of internal queue (number of entries).
 * @next_sob_val: the next value to use for the currently used SOB.
 * @base_sob_id: the base SOB id of the SOBs used by this queue.
 * @base_mon_id: the base MON id of the MONs used by this queue.
 * @valid: is the queue valid (we have array of 32 queues, not all of them
 *         exist).
 * @curr_sob_offset: the id offset to the currently used SOB from the
 *                   HL_RSVD_SOBS that are being used by this queue.
 * @supports_sync_stream: True if queue supports sync stream
 */
struct hl_hw_queue {
	struct hl_hw_sob	hw_sob[HL_RSVD_SOBS];
	struct hl_cs_job	**shadow_queue;
	enum hl_queue_type	queue_type;
	u64			kernel_address;
	dma_addr_t		bus_address;
	u32			pi;
	atomic_t		ci;
	u32			hw_queue_id;
	u32			cq_id;
	u32			msi_vec;
	u16			int_queue_len;
	u16			next_sob_val;
	u16			base_sob_id;
	u16			base_mon_id;
	u8			valid;
	u8			curr_sob_offset;
	u8			supports_sync_stream;
};

/**
 * struct hl_cq - describes a completion queue
 * @hdev: pointer to the device structure
 * @kernel_address: holds the queue's kernel virtual address
 * @bus_address: holds the queue's DMA address
 * @cq_idx: completion queue index in array
 * @hw_queue_id: the id of the matching H/W queue
 * @ci: ci inside the queue
 * @pi: pi inside the queue
 * @free_slots_cnt: counter of free slots in queue
 */
struct hl_cq {
	struct hl_device	*hdev;
	u64			kernel_address;
	dma_addr_t		bus_address;
	u32			cq_idx;
	u32			hw_queue_id;
	u32			ci;
	u32			pi;
	atomic_t		free_slots_cnt;
};

/**
 * struct hl_eq - describes the event queue (single one per device)
 * @hdev: pointer to the device structure
 * @kernel_address: holds the queue's kernel virtual address
 * @bus_address: holds the queue's DMA address
 * @ci: ci inside the queue
 */
struct hl_eq {
	struct hl_device	*hdev;
	u64			kernel_address;
	dma_addr_t		bus_address;
	u32			ci;
};


/*
 * ASICs
 */

/**
 * enum hl_asic_type - supported ASIC types.
 * @ASIC_INVALID: Invalid ASIC type.
 * @ASIC_GOYA: Goya device.
 * @ASIC_GAUDI: Gaudi device.
 */
enum hl_asic_type {
	ASIC_INVALID,
	ASIC_GOYA,
	ASIC_GAUDI
};

struct hl_cs_parser;

/**
 * enum hl_pm_mng_profile - power management profile.
 * @PM_AUTO: internal clock is set by the Linux driver.
 * @PM_MANUAL: internal clock is set by the user.
 * @PM_LAST: last power management type.
 */
enum hl_pm_mng_profile {
	PM_AUTO = 1,
	PM_MANUAL,
	PM_LAST
};

/**
 * enum hl_pll_frequency - PLL frequency.
 * @PLL_HIGH: high frequency.
 * @PLL_LOW: low frequency.
 * @PLL_LAST: last frequency values that were configured by the user.
 */
enum hl_pll_frequency {
	PLL_HIGH = 1,
	PLL_LOW,
	PLL_LAST
};

#define PLL_REF_CLK 50

enum div_select_defs {
	DIV_SEL_REF_CLK = 0,
	DIV_SEL_PLL_CLK = 1,
	DIV_SEL_DIVIDED_REF = 2,
	DIV_SEL_DIVIDED_PLL = 3,
};

/**
 * struct hl_asic_funcs - ASIC specific functions that are can be called from
 *                        common code.
 * @early_init: sets up early driver state (pre sw_init), doesn't configure H/W.
 * @early_fini: tears down what was done in early_init.
 * @late_init: sets up late driver/hw state (post hw_init) - Optional.
 * @late_fini: tears down what was done in late_init (pre hw_fini) - Optional.
 * @sw_init: sets up driver state, does not configure H/W.
 * @sw_fini: tears down driver state, does not configure H/W.
 * @hw_init: sets up the H/W state.
 * @hw_fini: tears down the H/W state.
 * @halt_engines: halt engines, needed for reset sequence. This also disables
 *                interrupts from the device. Should be called before
 *                hw_fini and before CS rollback.
 * @suspend: handles IP specific H/W or SW changes for suspend.
 * @resume: handles IP specific H/W or SW changes for resume.
 * @cb_mmap: maps a CB.
 * @ring_doorbell: increment PI on a given QMAN.
 * @pqe_write: Write the PQ entry to the PQ. This is ASIC-specific
 *             function because the PQs are located in different memory areas
 *             per ASIC (SRAM, DRAM, Host memory) and therefore, the method of
 *             writing the PQE must match the destination memory area
 *             properties.
 * @asic_dma_alloc_coherent: Allocate coherent DMA memory by calling
 *                           dma_alloc_coherent(). This is ASIC function because
 *                           its implementation is not trivial when the driver
 *                           is loaded in simulation mode (not upstreamed).
 * @asic_dma_free_coherent:  Free coherent DMA memory by calling
 *                           dma_free_coherent(). This is ASIC function because
 *                           its implementation is not trivial when the driver
 *                           is loaded in simulation mode (not upstreamed).
 * @get_int_queue_base: get the internal queue base address.
 * @test_queues: run simple test on all queues for sanity check.
 * @asic_dma_pool_zalloc: small DMA allocation of coherent memory from DMA pool.
 *                        size of allocation is HL_DMA_POOL_BLK_SIZE.
 * @asic_dma_pool_free: free small DMA allocation from pool.
 * @cpu_accessible_dma_pool_alloc: allocate CPU PQ packet from DMA pool.
 * @cpu_accessible_dma_pool_free: free CPU PQ packet from DMA pool.
 * @hl_dma_unmap_sg: DMA unmap scatter-gather list.
 * @cs_parser: parse Command Submission.
 * @asic_dma_map_sg: DMA map scatter-gather list.
 * @get_dma_desc_list_size: get number of LIN_DMA packets required for CB.
 * @add_end_of_cb_packets: Add packets to the end of CB, if device requires it.
 * @update_eq_ci: update event queue CI.
 * @context_switch: called upon ASID context switch.
 * @restore_phase_topology: clear all SOBs amd MONs.
 * @debugfs_read32: debug interface for reading u32 from DRAM/SRAM.
 * @debugfs_write32: debug interface for writing u32 to DRAM/SRAM.
 * @add_device_attr: add ASIC specific device attributes.
 * @handle_eqe: handle event queue entry (IRQ) from ArmCP.
 * @set_pll_profile: change PLL profile (manual/automatic).
 * @get_events_stat: retrieve event queue entries histogram.
 * @read_pte: read MMU page table entry from DRAM.
 * @write_pte: write MMU page table entry to DRAM.
 * @mmu_invalidate_cache: flush MMU STLB host/DRAM cache, either with soft
 *                        (L1 only) or hard (L0 & L1) flush.
 * @mmu_invalidate_cache_range: flush specific MMU STLB cache lines with
 *                              ASID-VA-size mask.
 * @send_heartbeat: send is-alive packet to ArmCP and verify response.
 * @set_clock_gating: enable/disable clock gating per engine according to
 *                    clock gating mask in hdev
 * @disable_clock_gating: disable clock gating completely
 * @debug_coresight: perform certain actions on Coresight for debugging.
 * @is_device_idle: return true if device is idle, false otherwise.
 * @soft_reset_late_init: perform certain actions needed after soft reset.
 * @hw_queues_lock: acquire H/W queues lock.
 * @hw_queues_unlock: release H/W queues lock.
 * @get_pci_id: retrieve PCI ID.
 * @get_eeprom_data: retrieve EEPROM data from F/W.
 * @send_cpu_message: send message to F/W. If the message is timedout, the
 *                    driver will eventually reset the device. The timeout can
 *                    be determined by the calling function or it can be 0 and
 *                    then the timeout is the default timeout for the specific
 *                    ASIC
 * @get_hw_state: retrieve the H/W state
 * @pci_bars_map: Map PCI BARs.
 * @set_dram_bar_base: Set DRAM BAR to map specific device address. Returns
 *                     old address the bar pointed to or U64_MAX for failure
 * @init_iatu: Initialize the iATU unit inside the PCI controller.
 * @rreg: Read a register. Needed for simulator support.
 * @wreg: Write a register. Needed for simulator support.
 * @halt_coresight: stop the ETF and ETR traces.
 * @ctx_init: context dependent initialization.
 * @get_clk_rate: Retrieve the ASIC current and maximum clock rate in MHz
 * @get_queue_id_for_cq: Get the H/W queue id related to the given CQ index.
 * @read_device_fw_version: read the device's firmware versions that are
 *                          contained in registers
 * @load_firmware_to_device: load the firmware to the device's memory
 * @load_boot_fit_to_device: load boot fit to device's memory
 * @get_signal_cb_size: Get signal CB size.
 * @get_wait_cb_size: Get wait CB size.
 * @gen_signal_cb: Generate a signal CB.
 * @gen_wait_cb: Generate a wait CB.
 * @reset_sob: Reset a SOB.
 * @set_dma_mask_from_fw: set the DMA mask in the driver according to the
 *                        firmware configuration
 * @get_device_time: Get the device time.
 */
struct hl_asic_funcs {
	int (*early_init)(struct hl_device *hdev);
	int (*early_fini)(struct hl_device *hdev);
	int (*late_init)(struct hl_device *hdev);
	void (*late_fini)(struct hl_device *hdev);
	int (*sw_init)(struct hl_device *hdev);
	int (*sw_fini)(struct hl_device *hdev);
	int (*hw_init)(struct hl_device *hdev);
	void (*hw_fini)(struct hl_device *hdev, bool hard_reset);
	void (*halt_engines)(struct hl_device *hdev, bool hard_reset);
	int (*suspend)(struct hl_device *hdev);
	int (*resume)(struct hl_device *hdev);
	int (*cb_mmap)(struct hl_device *hdev, struct vm_area_struct *vma,
			u64 kaddress, phys_addr_t paddress, u32 size);
	void (*ring_doorbell)(struct hl_device *hdev, u32 hw_queue_id, u32 pi);
	void (*pqe_write)(struct hl_device *hdev, __le64 *pqe,
			struct hl_bd *bd);
	void* (*asic_dma_alloc_coherent)(struct hl_device *hdev, size_t size,
					dma_addr_t *dma_handle, gfp_t flag);
	void (*asic_dma_free_coherent)(struct hl_device *hdev, size_t size,
					void *cpu_addr, dma_addr_t dma_handle);
	void* (*get_int_queue_base)(struct hl_device *hdev, u32 queue_id,
				dma_addr_t *dma_handle, u16 *queue_len);
	int (*test_queues)(struct hl_device *hdev);
	void* (*asic_dma_pool_zalloc)(struct hl_device *hdev, size_t size,
				gfp_t mem_flags, dma_addr_t *dma_handle);
	void (*asic_dma_pool_free)(struct hl_device *hdev, void *vaddr,
				dma_addr_t dma_addr);
	void* (*cpu_accessible_dma_pool_alloc)(struct hl_device *hdev,
				size_t size, dma_addr_t *dma_handle);
	void (*cpu_accessible_dma_pool_free)(struct hl_device *hdev,
				size_t size, void *vaddr);
	void (*hl_dma_unmap_sg)(struct hl_device *hdev,
				struct scatterlist *sgl, int nents,
				enum dma_data_direction dir);
	int (*cs_parser)(struct hl_device *hdev, struct hl_cs_parser *parser);
	int (*asic_dma_map_sg)(struct hl_device *hdev,
				struct scatterlist *sgl, int nents,
				enum dma_data_direction dir);
	u32 (*get_dma_desc_list_size)(struct hl_device *hdev,
					struct sg_table *sgt);
	void (*add_end_of_cb_packets)(struct hl_device *hdev,
					u64 kernel_address, u32 len,
					u64 cq_addr, u32 cq_val, u32 msix_num,
					bool eb);
	void (*update_eq_ci)(struct hl_device *hdev, u32 val);
	int (*context_switch)(struct hl_device *hdev, u32 asid);
	void (*restore_phase_topology)(struct hl_device *hdev);
	int (*debugfs_read32)(struct hl_device *hdev, u64 addr, u32 *val);
	int (*debugfs_write32)(struct hl_device *hdev, u64 addr, u32 val);
	int (*debugfs_read64)(struct hl_device *hdev, u64 addr, u64 *val);
	int (*debugfs_write64)(struct hl_device *hdev, u64 addr, u64 val);
	void (*add_device_attr)(struct hl_device *hdev,
				struct attribute_group *dev_attr_grp);
	void (*handle_eqe)(struct hl_device *hdev,
				struct hl_eq_entry *eq_entry);
	void (*set_pll_profile)(struct hl_device *hdev,
			enum hl_pll_frequency freq);
	void* (*get_events_stat)(struct hl_device *hdev, bool aggregate,
				u32 *size);
	u64 (*read_pte)(struct hl_device *hdev, u64 addr);
	void (*write_pte)(struct hl_device *hdev, u64 addr, u64 val);
	int (*mmu_invalidate_cache)(struct hl_device *hdev, bool is_hard,
					u32 flags);
	int (*mmu_invalidate_cache_range)(struct hl_device *hdev, bool is_hard,
			u32 asid, u64 va, u64 size);
	int (*send_heartbeat)(struct hl_device *hdev);
	void (*set_clock_gating)(struct hl_device *hdev);
	void (*disable_clock_gating)(struct hl_device *hdev);
	int (*debug_coresight)(struct hl_device *hdev, void *data);
	bool (*is_device_idle)(struct hl_device *hdev, u32 *mask,
				struct seq_file *s);
	int (*soft_reset_late_init)(struct hl_device *hdev);
	void (*hw_queues_lock)(struct hl_device *hdev);
	void (*hw_queues_unlock)(struct hl_device *hdev);
	u32 (*get_pci_id)(struct hl_device *hdev);
	int (*get_eeprom_data)(struct hl_device *hdev, void *data,
				size_t max_size);
	int (*send_cpu_message)(struct hl_device *hdev, u32 *msg,
				u16 len, u32 timeout, long *result);
	enum hl_device_hw_state (*get_hw_state)(struct hl_device *hdev);
	int (*pci_bars_map)(struct hl_device *hdev);
	u64 (*set_dram_bar_base)(struct hl_device *hdev, u64 addr);
	int (*init_iatu)(struct hl_device *hdev);
	u32 (*rreg)(struct hl_device *hdev, u32 reg);
	void (*wreg)(struct hl_device *hdev, u32 reg, u32 val);
	void (*halt_coresight)(struct hl_device *hdev);
	int (*ctx_init)(struct hl_ctx *ctx);
	int (*get_clk_rate)(struct hl_device *hdev, u32 *cur_clk, u32 *max_clk);
	u32 (*get_queue_id_for_cq)(struct hl_device *hdev, u32 cq_idx);
	void (*read_device_fw_version)(struct hl_device *hdev,
					enum hl_fw_component fwc);
	int (*load_firmware_to_device)(struct hl_device *hdev);
	int (*load_boot_fit_to_device)(struct hl_device *hdev);
	u32 (*get_signal_cb_size)(struct hl_device *hdev);
	u32 (*get_wait_cb_size)(struct hl_device *hdev);
	void (*gen_signal_cb)(struct hl_device *hdev, void *data, u16 sob_id);
	void (*gen_wait_cb)(struct hl_device *hdev, void *data, u16 sob_id,
				u16 sob_val, u16 mon_id, u32 q_idx);
	void (*reset_sob)(struct hl_device *hdev, void *data);
	void (*set_dma_mask_from_fw)(struct hl_device *hdev);
	u64 (*get_device_time)(struct hl_device *hdev);
};


/*
 * CONTEXTS
 */

#define HL_KERNEL_ASID_ID	0

/**
 * struct hl_va_range - virtual addresses range.
 * @lock: protects the virtual addresses list.
 * @list: list of virtual addresses blocks available for mappings.
 * @start_addr: range start address.
 * @end_addr: range end address.
 */
struct hl_va_range {
	struct mutex		lock;
	struct list_head	list;
	u64			start_addr;
	u64			end_addr;
};

/**
 * struct hl_ctx - user/kernel context.
 * @mem_hash: holds mapping from virtual address to virtual memory area
 *		descriptor (hl_vm_phys_pg_list or hl_userptr).
 * @mmu_shadow_hash: holds a mapping from shadow address to pgt_info structure.
 * @hpriv: pointer to the private (Kernel Driver) data of the process (fd).
 * @hdev: pointer to the device structure.
 * @refcount: reference counter for the context. Context is released only when
 *		this hits 0l. It is incremented on CS and CS_WAIT.
 * @cs_pending: array of DMA fence objects representing pending CS.
 * @host_va_range: holds available virtual addresses for host mappings.
 * @host_huge_va_range: holds available virtual addresses for host mappings
 *                      with huge pages.
 * @dram_va_range: holds available virtual addresses for DRAM mappings.
 * @mem_hash_lock: protects the mem_hash.
 * @mmu_lock: protects the MMU page tables. Any change to the PGT, modifying the
 *            MMU hash or walking the PGT requires talking this lock.
 * @debugfs_list: node in debugfs list of contexts.
 * @cs_sequence: sequence number for CS. Value is assigned to a CS and passed
 *			to user so user could inquire about CS. It is used as
 *			index to cs_pending array.
 * @dram_default_hops: array that holds all hops addresses needed for default
 *                     DRAM mapping.
 * @cs_lock: spinlock to protect cs_sequence.
 * @dram_phys_mem: amount of used physical DRAM memory by this context.
 * @thread_ctx_switch_token: token to prevent multiple threads of the same
 *				context	from running the context switch phase.
 *				Only a single thread should run it.
 * @thread_ctx_switch_wait_token: token to prevent the threads that didn't run
 *				the context switch phase from moving to their
 *				execution phase before the context switch phase
 *				has finished.
 * @asid: context's unique address space ID in the device's MMU.
 * @handle: context's opaque handle for user
 */
struct hl_ctx {
	DECLARE_HASHTABLE(mem_hash, MEM_HASH_TABLE_BITS);
	DECLARE_HASHTABLE(mmu_shadow_hash, MMU_HASH_TABLE_BITS);
	struct hl_fpriv		*hpriv;
	struct hl_device	*hdev;
	struct kref		refcount;
	struct dma_fence	**cs_pending;
	struct hl_va_range	*host_va_range;
	struct hl_va_range	*host_huge_va_range;
	struct hl_va_range	*dram_va_range;
	struct mutex		mem_hash_lock;
	struct mutex		mmu_lock;
	struct list_head	debugfs_list;
	struct hl_cs_counters	cs_counters;
	u64			cs_sequence;
	u64			*dram_default_hops;
	spinlock_t		cs_lock;
	atomic64_t		dram_phys_mem;
	atomic_t		thread_ctx_switch_token;
	u32			thread_ctx_switch_wait_token;
	u32			asid;
	u32			handle;
};

/**
 * struct hl_ctx_mgr - for handling multiple contexts.
 * @ctx_lock: protects ctx_handles.
 * @ctx_handles: idr to hold all ctx handles.
 */
struct hl_ctx_mgr {
	struct mutex		ctx_lock;
	struct idr		ctx_handles;
};



/*
 * COMMAND SUBMISSIONS
 */

/**
 * struct hl_userptr - memory mapping chunk information
 * @vm_type: type of the VM.
 * @job_node: linked-list node for hanging the object on the Job's list.
 * @vec: pointer to the frame vector.
 * @sgt: pointer to the scatter-gather table that holds the pages.
 * @dir: for DMA unmapping, the direction must be supplied, so save it.
 * @debugfs_list: node in debugfs list of command submissions.
 * @addr: user-space virtual address of the start of the memory area.
 * @size: size of the memory area to pin & map.
 * @dma_mapped: true if the SG was mapped to DMA addresses, false otherwise.
 */
struct hl_userptr {
	enum vm_type_t		vm_type; /* must be first */
	struct list_head	job_node;
	struct frame_vector	*vec;
	struct sg_table		*sgt;
	enum dma_data_direction dir;
	struct list_head	debugfs_list;
	u64			addr;
	u32			size;
	u8			dma_mapped;
};

/**
 * struct hl_cs - command submission.
 * @jobs_in_queue_cnt: per each queue, maintain counter of submitted jobs.
 * @ctx: the context this CS belongs to.
 * @job_list: list of the CS's jobs in the various queues.
 * @job_lock: spinlock for the CS's jobs list. Needed for free_job.
 * @refcount: reference counter for usage of the CS.
 * @fence: pointer to the fence object of this CS.
 * @signal_fence: pointer to the fence object of the signal CS (used by wait
 *                CS only).
 * @finish_work: workqueue object to run when CS is completed by H/W.
 * @work_tdr: delayed work node for TDR.
 * @mirror_node : node in device mirror list of command submissions.
 * @debugfs_list: node in debugfs list of command submissions.
 * @sequence: the sequence number of this CS.
 * @type: CS_TYPE_*.
 * @submitted: true if CS was submitted to H/W.
 * @completed: true if CS was completed by device.
 * @timedout : true if CS was timedout.
 * @tdr_active: true if TDR was activated for this CS (to prevent
 *		double TDR activation).
 * @aborted: true if CS was aborted due to some device error.
 */
struct hl_cs {
	u16			*jobs_in_queue_cnt;
	struct hl_ctx		*ctx;
	struct list_head	job_list;
	spinlock_t		job_lock;
	struct kref		refcount;
	struct dma_fence	*fence;
	struct dma_fence	*signal_fence;
	struct work_struct	finish_work;
	struct delayed_work	work_tdr;
	struct list_head	mirror_node;
	struct list_head	debugfs_list;
	u64			sequence;
	enum hl_cs_type		type;
	u8			submitted;
	u8			completed;
	u8			timedout;
	u8			tdr_active;
	u8			aborted;
};

/**
 * struct hl_cs_job - command submission job.
 * @cs_node: the node to hang on the CS jobs list.
 * @cs: the CS this job belongs to.
 * @user_cb: the CB we got from the user.
 * @patched_cb: in case of patching, this is internal CB which is submitted on
 *		the queue instead of the CB we got from the IOCTL.
 * @finish_work: workqueue object to run when job is completed.
 * @userptr_list: linked-list of userptr mappings that belong to this job and
 *			wait for completion.
 * @debugfs_list: node in debugfs list of command submission jobs.
 * @queue_type: the type of the H/W queue this job is submitted to.
 * @id: the id of this job inside a CS.
 * @hw_queue_id: the id of the H/W queue this job is submitted to.
 * @user_cb_size: the actual size of the CB we got from the user.
 * @job_cb_size: the actual size of the CB that we put on the queue.
 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
 *                          handle to a kernel-allocated CB object, false
 *                          otherwise (SRAM/DRAM/host address).
 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
 *                    info is needed later, when adding the 2xMSG_PROT at the
 *                    end of the JOB, to know which barriers to put in the
 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
 *                    have streams so the engine can't be busy by another
 *                    stream.
 */
struct hl_cs_job {
	struct list_head	cs_node;
	struct hl_cs		*cs;
	struct hl_cb		*user_cb;
	struct hl_cb		*patched_cb;
	struct work_struct	finish_work;
	struct list_head	userptr_list;
	struct list_head	debugfs_list;
	enum hl_queue_type	queue_type;
	u32			id;
	u32			hw_queue_id;
	u32			user_cb_size;
	u32			job_cb_size;
	u8			is_kernel_allocated_cb;
	u8			contains_dma_pkt;
};

/**
 * struct hl_cs_parser - command submission parser properties.
 * @user_cb: the CB we got from the user.
 * @patched_cb: in case of patching, this is internal CB which is submitted on
 *		the queue instead of the CB we got from the IOCTL.
 * @job_userptr_list: linked-list of userptr mappings that belong to the related
 *			job and wait for completion.
 * @cs_sequence: the sequence number of the related CS.
 * @queue_type: the type of the H/W queue this job is submitted to.
 * @ctx_id: the ID of the context the related CS belongs to.
 * @hw_queue_id: the id of the H/W queue this job is submitted to.
 * @user_cb_size: the actual size of the CB we got from the user.
 * @patched_cb_size: the size of the CB after parsing.
 * @job_id: the id of the related job inside the related CS.
 * @is_kernel_allocated_cb: true if the CB handle we got from the user holds a
 *                          handle to a kernel-allocated CB object, false
 *                          otherwise (SRAM/DRAM/host address).
 * @contains_dma_pkt: whether the JOB contains at least one DMA packet. This
 *                    info is needed later, when adding the 2xMSG_PROT at the
 *                    end of the JOB, to know which barriers to put in the
 *                    MSG_PROT packets. Relevant only for GAUDI as GOYA doesn't
 *                    have streams so the engine can't be busy by another
 *                    stream.
 */
struct hl_cs_parser {
	struct hl_cb		*user_cb;
	struct hl_cb		*patched_cb;
	struct list_head	*job_userptr_list;
	u64			cs_sequence;
	enum hl_queue_type	queue_type;
	u32			ctx_id;
	u32			hw_queue_id;
	u32			user_cb_size;
	u32			patched_cb_size;
	u8			job_id;
	u8			is_kernel_allocated_cb;
	u8			contains_dma_pkt;
};


/*
 * MEMORY STRUCTURE
 */

/**
 * struct hl_vm_hash_node - hash element from virtual address to virtual
 *				memory area descriptor (hl_vm_phys_pg_list or
 *				hl_userptr).
 * @node: node to hang on the hash table in context object.
 * @vaddr: key virtual address.
 * @ptr: value pointer (hl_vm_phys_pg_list or hl_userptr).
 */
struct hl_vm_hash_node {
	struct hlist_node	node;
	u64			vaddr;
	void			*ptr;
};

/**
 * struct hl_vm_phys_pg_pack - physical page pack.
 * @vm_type: describes the type of the virtual area descriptor.
 * @pages: the physical page array.
 * @npages: num physical pages in the pack.
 * @total_size: total size of all the pages in this list.
 * @mapping_cnt: number of shared mappings.
 * @asid: the context related to this list.
 * @page_size: size of each page in the pack.
 * @flags: HL_MEM_* flags related to this list.
 * @handle: the provided handle related to this list.
 * @offset: offset from the first page.
 * @contiguous: is contiguous physical memory.
 * @created_from_userptr: is product of host virtual address.
 */
struct hl_vm_phys_pg_pack {
	enum vm_type_t		vm_type; /* must be first */
	u64			*pages;
	u64			npages;
	u64			total_size;
	atomic_t		mapping_cnt;
	u32			asid;
	u32			page_size;
	u32			flags;
	u32			handle;
	u32			offset;
	u8			contiguous;
	u8			created_from_userptr;
};

/**
 * struct hl_vm_va_block - virtual range block information.
 * @node: node to hang on the virtual range list in context object.
 * @start: virtual range start address.
 * @end: virtual range end address.
 * @size: virtual range size.
 */
struct hl_vm_va_block {
	struct list_head	node;
	u64			start;
	u64			end;
	u64			size;
};

/**
 * struct hl_vm - virtual memory manager for MMU.
 * @dram_pg_pool: pool for DRAM physical pages of 2MB.
 * @dram_pg_pool_refcount: reference counter for the pool usage.
 * @idr_lock: protects the phys_pg_list_handles.
 * @phys_pg_pack_handles: idr to hold all device allocations handles.
 * @init_done: whether initialization was done. We need this because VM
 *		initialization might be skipped during device initialization.
 */
struct hl_vm {
	struct gen_pool		*dram_pg_pool;
	struct kref		dram_pg_pool_refcount;
	spinlock_t		idr_lock;
	struct idr		phys_pg_pack_handles;
	u8			init_done;
};


/*
 * DEBUG, PROFILING STRUCTURE
 */

/**
 * struct hl_debug_params - Coresight debug parameters.
 * @input: pointer to component specific input parameters.
 * @output: pointer to component specific output parameters.
 * @output_size: size of output buffer.
 * @reg_idx: relevant register ID.
 * @op: component operation to execute.
 * @enable: true if to enable component debugging, false otherwise.
 */
struct hl_debug_params {
	void *input;
	void *output;
	u32 output_size;
	u32 reg_idx;
	u32 op;
	bool enable;
};

/*
 * FILE PRIVATE STRUCTURE
 */

/**
 * struct hl_fpriv - process information stored in FD private data.
 * @hdev: habanalabs device structure.
 * @filp: pointer to the given file structure.
 * @taskpid: current process ID.
 * @ctx: current executing context. TODO: remove for multiple ctx per process
 * @ctx_mgr: context manager to handle multiple context for this FD.
 * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
 * @debugfs_list: list of relevant ASIC debugfs.
 * @dev_node: node in the device list of file private data
 * @refcount: number of related contexts.
 * @restore_phase_mutex: lock for context switch and restore phase.
 * @is_control: true for control device, false otherwise
 */
struct hl_fpriv {
	struct hl_device	*hdev;
	struct file		*filp;
	struct pid		*taskpid;
	struct hl_ctx		*ctx;
	struct hl_ctx_mgr	ctx_mgr;
	struct hl_cb_mgr	cb_mgr;
	struct list_head	debugfs_list;
	struct list_head	dev_node;
	struct kref		refcount;
	struct mutex		restore_phase_mutex;
	u8			is_control;
};


/*
 * DebugFS
 */

/**
 * struct hl_info_list - debugfs file ops.
 * @name: file name.
 * @show: function to output information.
 * @write: function to write to the file.
 */
struct hl_info_list {
	const char	*name;
	int		(*show)(struct seq_file *s, void *data);
	ssize_t		(*write)(struct file *file, const char __user *buf,
				size_t count, loff_t *f_pos);
};

/**
 * struct hl_debugfs_entry - debugfs dentry wrapper.
 * @dent: base debugfs entry structure.
 * @info_ent: dentry realted ops.
 * @dev_entry: ASIC specific debugfs manager.
 */
struct hl_debugfs_entry {
	struct dentry			*dent;
	const struct hl_info_list	*info_ent;
	struct hl_dbg_device_entry	*dev_entry;
};

/**
 * struct hl_dbg_device_entry - ASIC specific debugfs manager.
 * @root: root dentry.
 * @hdev: habanalabs device structure.
 * @entry_arr: array of available hl_debugfs_entry.
 * @file_list: list of available debugfs files.
 * @file_mutex: protects file_list.
 * @cb_list: list of available CBs.
 * @cb_spinlock: protects cb_list.
 * @cs_list: list of available CSs.
 * @cs_spinlock: protects cs_list.
 * @cs_job_list: list of available CB jobs.
 * @cs_job_spinlock: protects cs_job_list.
 * @userptr_list: list of available userptrs (virtual memory chunk descriptor).
 * @userptr_spinlock: protects userptr_list.
 * @ctx_mem_hash_list: list of available contexts with MMU mappings.
 * @ctx_mem_hash_spinlock: protects cb_list.
 * @addr: next address to read/write from/to in read/write32.
 * @mmu_addr: next virtual address to translate to physical address in mmu_show.
 * @mmu_asid: ASID to use while translating in mmu_show.
 * @i2c_bus: generic u8 debugfs file for bus value to use in i2c_data_read.
 * @i2c_bus: generic u8 debugfs file for address value to use in i2c_data_read.
 * @i2c_bus: generic u8 debugfs file for register value to use in i2c_data_read.
 */
struct hl_dbg_device_entry {
	struct dentry			*root;
	struct hl_device		*hdev;
	struct hl_debugfs_entry		*entry_arr;
	struct list_head		file_list;
	struct mutex			file_mutex;
	struct list_head		cb_list;
	spinlock_t			cb_spinlock;
	struct list_head		cs_list;
	spinlock_t			cs_spinlock;
	struct list_head		cs_job_list;
	spinlock_t			cs_job_spinlock;
	struct list_head		userptr_list;
	spinlock_t			userptr_spinlock;
	struct list_head		ctx_mem_hash_list;
	spinlock_t			ctx_mem_hash_spinlock;
	u64				addr;
	u64				mmu_addr;
	u32				mmu_asid;
	u8				i2c_bus;
	u8				i2c_addr;
	u8				i2c_reg;
};


/*
 * DEVICES
 */

/* Theoretical limit only. A single host can only contain up to 4 or 8 PCIe
 * x16 cards. In extreme cases, there are hosts that can accommodate 16 cards.
 */
#define HL_MAX_MINORS	256

/*
 * Registers read & write functions.
 */

u32 hl_rreg(struct hl_device *hdev, u32 reg);
void hl_wreg(struct hl_device *hdev, u32 reg, u32 val);

#define RREG32(reg) hdev->asic_funcs->rreg(hdev, (reg))
#define WREG32(reg, v) hdev->asic_funcs->wreg(hdev, (reg), (v))
#define DREG32(reg) pr_info("REGISTER: " #reg " : 0x%08X\n",	\
			hdev->asic_funcs->rreg(hdev, (reg)))

#define WREG32_P(reg, val, mask)				\
	do {							\
		u32 tmp_ = RREG32(reg);				\
		tmp_ &= (mask);					\
		tmp_ |= ((val) & ~(mask));			\
		WREG32(reg, tmp_);				\
	} while (0)
#define WREG32_AND(reg, and) WREG32_P(reg, 0, and)
#define WREG32_OR(reg, or) WREG32_P(reg, or, ~(or))

#define RMWREG32(reg, val, mask)				\
	do {							\
		u32 tmp_ = RREG32(reg);				\
		tmp_ &= ~(mask);				\
		tmp_ |= ((val) << __ffs(mask));			\
		WREG32(reg, tmp_);				\
	} while (0)

#define RREG32_MASK(reg, mask) ((RREG32(reg) & mask) >> __ffs(mask))

#define REG_FIELD_SHIFT(reg, field) reg##_##field##_SHIFT
#define REG_FIELD_MASK(reg, field) reg##_##field##_MASK
#define WREG32_FIELD(reg, offset, field, val)	\
	WREG32(mm##reg + offset, (RREG32(mm##reg + offset) & \
				~REG_FIELD_MASK(reg, field)) | \
				(val) << REG_FIELD_SHIFT(reg, field))

/* Timeout should be longer when working with simulator but cap the
 * increased timeout to some maximum
 */
#define hl_poll_timeout(hdev, addr, val, cond, sleep_us, timeout_us) \
({ \
	ktime_t __timeout; \
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min((u64)(timeout_us * 10), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	might_sleep_if(sleep_us); \
	for (;;) { \
		(val) = RREG32(addr); \
		if (cond) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
			(val) = RREG32(addr); \
			break; \
		} \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	(cond) ? 0 : -ETIMEDOUT; \
})

/*
 * address in this macro points always to a memory location in the
 * host's (server's) memory. That location is updated asynchronously
 * either by the direct access of the device or by another core.
 *
 * To work both in LE and BE architectures, we need to distinguish between the
 * two states (device or another core updates the memory location). Therefore,
 * if mem_written_by_device is true, the host memory being polled will be
 * updated directly by the device. If false, the host memory being polled will
 * be updated by host CPU. Required so host knows whether or not the memory
 * might need to be byte-swapped before returning value to caller.
 */
#define hl_poll_timeout_memory(hdev, addr, val, cond, sleep_us, timeout_us, \
				mem_written_by_device) \
({ \
	ktime_t __timeout; \
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min((u64)(timeout_us * 10), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	might_sleep_if(sleep_us); \
	for (;;) { \
		/* Verify we read updates done by other cores or by device */ \
		mb(); \
		(val) = *((u32 *) (uintptr_t) (addr)); \
		if (mem_written_by_device) \
			(val) = le32_to_cpu(*(__le32 *) &(val)); \
		if (cond) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
			(val) = *((u32 *) (uintptr_t) (addr)); \
			if (mem_written_by_device) \
				(val) = le32_to_cpu(*(__le32 *) &(val)); \
			break; \
		} \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	(cond) ? 0 : -ETIMEDOUT; \
})

#define hl_poll_timeout_device_memory(hdev, addr, val, cond, sleep_us, \
					timeout_us) \
({ \
	ktime_t __timeout; \
	if (hdev->pdev) \
		__timeout = ktime_add_us(ktime_get(), timeout_us); \
	else \
		__timeout = ktime_add_us(ktime_get(),\
				min((u64)(timeout_us * 10), \
					(u64) HL_SIM_MAX_TIMEOUT_US)); \
	might_sleep_if(sleep_us); \
	for (;;) { \
		(val) = readl(addr); \
		if (cond) \
			break; \
		if (timeout_us && ktime_compare(ktime_get(), __timeout) > 0) { \
			(val) = readl(addr); \
			break; \
		} \
		if (sleep_us) \
			usleep_range((sleep_us >> 2) + 1, sleep_us); \
	} \
	(cond) ? 0 : -ETIMEDOUT; \
})

struct hwmon_chip_info;

/**
 * struct hl_device_reset_work - reset workqueue task wrapper.
 * @reset_work: reset work to be done.
 * @hdev: habanalabs device structure.
 */
struct hl_device_reset_work {
	struct work_struct		reset_work;
	struct hl_device		*hdev;
};

/**
 * struct hl_device_idle_busy_ts - used for calculating device utilization rate.
 * @idle_to_busy_ts: timestamp where device changed from idle to busy.
 * @busy_to_idle_ts: timestamp where device changed from busy to idle.
 */
struct hl_device_idle_busy_ts {
	ktime_t				idle_to_busy_ts;
	ktime_t				busy_to_idle_ts;
};

/**
 * struct hl_device - habanalabs device structure.
 * @pdev: pointer to PCI device, can be NULL in case of simulator device.
 * @pcie_bar_phys: array of available PCIe bars physical addresses.
 *		   (required only for PCI address match mode)
 * @pcie_bar: array of available PCIe bars virtual addresses.
 * @rmmio: configuration area address on SRAM.
 * @cdev: related char device.
 * @cdev_ctrl: char device for control operations only (INFO IOCTL)
 * @dev: related kernel basic device structure.
 * @dev_ctrl: related kernel device structure for the control device
 * @work_freq: delayed work to lower device frequency if possible.
 * @work_heartbeat: delayed work for ArmCP is-alive check.
 * @asic_name: ASIC specific nmae.
 * @asic_type: ASIC specific type.
 * @completion_queue: array of hl_cq.
 * @cq_wq: work queues of completion queues for executing work in process
 *         context.
 * @eq_wq: work queue of event queue for executing work in process context.
 * @kernel_ctx: Kernel driver context structure.
 * @kernel_queues: array of hl_hw_queue.
 * @hw_queues_mirror_list: CS mirror list for TDR.
 * @hw_queues_mirror_lock: protects hw_queues_mirror_list.
 * @kernel_cb_mgr: command buffer manager for creating/destroying/handling CGs.
 * @event_queue: event queue for IRQ from ArmCP.
 * @dma_pool: DMA pool for small allocations.
 * @cpu_accessible_dma_mem: Host <-> ArmCP shared memory CPU address.
 * @cpu_accessible_dma_address: Host <-> ArmCP shared memory DMA address.
 * @cpu_accessible_dma_pool: Host <-> ArmCP shared memory pool.
 * @asid_bitmap: holds used/available ASIDs.
 * @asid_mutex: protects asid_bitmap.
 * @send_cpu_message_lock: enforces only one message in Host <-> ArmCP queue.
 * @debug_lock: protects critical section of setting debug mode for device
 * @asic_prop: ASIC specific immutable properties.
 * @asic_funcs: ASIC specific functions.
 * @asic_specific: ASIC specific information to use only from ASIC files.
 * @mmu_pgt_pool: pool of available MMU hops.
 * @vm: virtual memory manager for MMU.
 * @mmu_cache_lock: protects MMU cache invalidation as it can serve one context.
 * @mmu_shadow_hop0: shadow mapping of the MMU hop 0 zone.
 * @hwmon_dev: H/W monitor device.
 * @pm_mng_profile: current power management profile.
 * @hl_chip_info: ASIC's sensors information.
 * @hl_debugfs: device's debugfs manager.
 * @cb_pool: list of preallocated CBs.
 * @cb_pool_lock: protects the CB pool.
 * @internal_cb_pool_virt_addr: internal command buffer pool virtual address.
 * @internal_cb_pool_dma_addr: internal command buffer pool dma address.
 * @internal_cb_pool: internal command buffer memory pool.
 * @internal_cb_va_base: internal cb pool mmu virtual address base
 * @fpriv_list: list of file private data structures. Each structure is created
 *              when a user opens the device
 * @fpriv_list_lock: protects the fpriv_list
 * @compute_ctx: current compute context executing.
 * @idle_busy_ts_arr: array to hold time stamps of transitions from idle to busy
 *                    and vice-versa
 * @aggregated_cs_counters: aggregated cs counters among all contexts
 * @dram_used_mem: current DRAM memory consumption.
 * @timeout_jiffies: device CS timeout value.
 * @max_power: the max power of the device, as configured by the sysadmin. This
 *             value is saved so in case of hard-reset, the driver will restore
 *             this value and update the F/W after the re-initialization
 * @clock_gating_mask: is clock gating enabled. bitmask that represents the
 *                     different engines. See debugfs-driver-habanalabs for
 *                     details.
 * @in_reset: is device in reset flow.
 * @curr_pll_profile: current PLL profile.
 * @cs_active_cnt: number of active command submissions on this device (active
 *                 means already in H/W queues)
 * @major: habanalabs kernel driver major.
 * @high_pll: high PLL profile frequency.
 * @soft_reset_cnt: number of soft reset since the driver was loaded.
 * @hard_reset_cnt: number of hard reset since the driver was loaded.
 * @idle_busy_ts_idx: index of current entry in idle_busy_ts_arr
 * @id: device minor.
 * @id_control: minor of the control device
 * @cpu_pci_msb_addr: 50-bit extension bits for the device CPU's 40-bit
 *                    addresses.
 * @disabled: is device disabled.
 * @late_init_done: is late init stage was done during initialization.
 * @hwmon_initialized: is H/W monitor sensors was initialized.
 * @hard_reset_pending: is there a hard reset work pending.
 * @heartbeat: is heartbeat sanity check towards ArmCP enabled.
 * @reset_on_lockup: true if a reset should be done in case of stuck CS, false
 *                   otherwise.
 * @dram_supports_virtual_memory: is MMU enabled towards DRAM.
 * @dram_default_page_mapping: is DRAM default page mapping enabled.
 * @pmmu_huge_range: is a different virtual addresses range used for PMMU with
 *                   huge pages.
 * @init_done: is the initialization of the device done.
 * @mmu_enable: is MMU enabled.
 * @mmu_huge_page_opt: is MMU huge pages optimization enabled.
 * @device_cpu_disabled: is the device CPU disabled (due to timeouts)
 * @dma_mask: the dma mask that was set for this device
 * @in_debug: is device under debug. This, together with fpriv_list, enforces
 *            that only a single user is configuring the debug infrastructure.
 * @power9_64bit_dma_enable: true to enable 64-bit DMA mask support. Relevant
 *                           only to POWER9 machines.
 * @cdev_sysfs_created: were char devices and sysfs nodes created.
 * @stop_on_err: true if engines should stop on error.
 * @supports_sync_stream: is sync stream supported.
 * @sync_stream_queue_idx: helper index for sync stream queues initialization.
 * @supports_coresight: is CoreSight supported.
 * @supports_soft_reset: is soft reset supported.
 */
struct hl_device {
	struct pci_dev			*pdev;
	u64				pcie_bar_phys[HL_PCI_NUM_BARS];
	void __iomem			*pcie_bar[HL_PCI_NUM_BARS];
	void __iomem			*rmmio;
	struct cdev			cdev;
	struct cdev			cdev_ctrl;
	struct device			*dev;
	struct device			*dev_ctrl;
	struct delayed_work		work_freq;
	struct delayed_work		work_heartbeat;
	char				asic_name[16];
	enum hl_asic_type		asic_type;
	struct hl_cq			*completion_queue;
	struct workqueue_struct		**cq_wq;
	struct workqueue_struct		*eq_wq;
	struct hl_ctx			*kernel_ctx;
	struct hl_hw_queue		*kernel_queues;
	struct list_head		hw_queues_mirror_list;
	spinlock_t			hw_queues_mirror_lock;
	struct hl_cb_mgr		kernel_cb_mgr;
	struct hl_eq			event_queue;
	struct dma_pool			*dma_pool;
	void				*cpu_accessible_dma_mem;
	dma_addr_t			cpu_accessible_dma_address;
	struct gen_pool			*cpu_accessible_dma_pool;
	unsigned long			*asid_bitmap;
	struct mutex			asid_mutex;
	struct mutex			send_cpu_message_lock;
	struct mutex			debug_lock;
	struct asic_fixed_properties	asic_prop;
	const struct hl_asic_funcs	*asic_funcs;
	void				*asic_specific;
	struct gen_pool			*mmu_pgt_pool;
	struct hl_vm			vm;
	struct mutex			mmu_cache_lock;
	void				*mmu_shadow_hop0;
	struct device			*hwmon_dev;
	enum hl_pm_mng_profile		pm_mng_profile;
	struct hwmon_chip_info		*hl_chip_info;

	struct hl_dbg_device_entry	hl_debugfs;

	struct list_head		cb_pool;
	spinlock_t			cb_pool_lock;

	void				*internal_cb_pool_virt_addr;
	dma_addr_t			internal_cb_pool_dma_addr;
	struct gen_pool			*internal_cb_pool;
	u64				internal_cb_va_base;

	struct list_head		fpriv_list;
	struct mutex			fpriv_list_lock;

	struct hl_ctx			*compute_ctx;

	struct hl_device_idle_busy_ts	*idle_busy_ts_arr;

	struct hl_cs_counters		aggregated_cs_counters;

	atomic64_t			dram_used_mem;
	u64				timeout_jiffies;
	u64				max_power;
	u64				clock_gating_mask;
	atomic_t			in_reset;
	enum hl_pll_frequency		curr_pll_profile;
	int				cs_active_cnt;
	u32				major;
	u32				high_pll;
	u32				soft_reset_cnt;
	u32				hard_reset_cnt;
	u32				idle_busy_ts_idx;
	u16				id;
	u16				id_control;
	u16				cpu_pci_msb_addr;
	u8				disabled;
	u8				late_init_done;
	u8				hwmon_initialized;
	u8				hard_reset_pending;
	u8				heartbeat;
	u8				reset_on_lockup;
	u8				dram_supports_virtual_memory;
	u8				dram_default_page_mapping;
	u8				pmmu_huge_range;
	u8				init_done;
	u8				device_cpu_disabled;
	u8				dma_mask;
	u8				in_debug;
	u8				power9_64bit_dma_enable;
	u8				cdev_sysfs_created;
	u8				stop_on_err;
	u8				supports_sync_stream;
	u8				sync_stream_queue_idx;
	u8				supports_coresight;
	u8				supports_soft_reset;

	/* Parameters for bring-up */
	u8				mmu_enable;
	u8				mmu_huge_page_opt;
	u8				cpu_enable;
	u8				reset_pcilink;
	u8				cpu_queues_enable;
	u8				fw_loading;
	u8				pldm;
	u8				axi_drain;
	u8				sram_scrambler_enable;
	u8				dram_scrambler_enable;
	u8				hard_reset_on_fw_events;
	u8				bmc_enable;
	u8				rl_enable;
};


/*
 * IOCTLs
 */

/**
 * typedef hl_ioctl_t - typedef for ioctl function in the driver
 * @hpriv: pointer to the FD's private data, which contains state of
 *		user process
 * @data: pointer to the input/output arguments structure of the IOCTL
 *
 * Return: 0 for success, negative value for error
 */
typedef int hl_ioctl_t(struct hl_fpriv *hpriv, void *data);

/**
 * struct hl_ioctl_desc - describes an IOCTL entry of the driver.
 * @cmd: the IOCTL code as created by the kernel macros.
 * @func: pointer to the driver's function that should be called for this IOCTL.
 */
struct hl_ioctl_desc {
	unsigned int cmd;
	hl_ioctl_t *func;
};


/*
 * Kernel module functions that can be accessed by entire module
 */

/**
 * hl_mem_area_inside_range() - Checks whether address+size are inside a range.
 * @address: The start address of the area we want to validate.
 * @size: The size in bytes of the area we want to validate.
 * @range_start_address: The start address of the valid range.
 * @range_end_address: The end address of the valid range.
 *
 * Return: true if the area is inside the valid range, false otherwise.
 */
static inline bool hl_mem_area_inside_range(u64 address, u32 size,
				u64 range_start_address, u64 range_end_address)
{
	u64 end_address = address + size;

	if ((address >= range_start_address) &&
			(end_address <= range_end_address) &&
			(end_address > address))
		return true;

	return false;
}

/**
 * hl_mem_area_crosses_range() - Checks whether address+size crossing a range.
 * @address: The start address of the area we want to validate.
 * @size: The size in bytes of the area we want to validate.
 * @range_start_address: The start address of the valid range.
 * @range_end_address: The end address of the valid range.
 *
 * Return: true if the area overlaps part or all of the valid range,
 *		false otherwise.
 */
static inline bool hl_mem_area_crosses_range(u64 address, u32 size,
				u64 range_start_address, u64 range_end_address)
{
	u64 end_address = address + size;

	if ((address >= range_start_address) &&
			(address < range_end_address))
		return true;

	if ((end_address >= range_start_address) &&
			(end_address < range_end_address))
		return true;

	if ((address < range_start_address) &&
			(end_address >= range_end_address))
		return true;

	return false;
}

int hl_device_open(struct inode *inode, struct file *filp);
int hl_device_open_ctrl(struct inode *inode, struct file *filp);
bool hl_device_disabled_or_in_reset(struct hl_device *hdev);
enum hl_device_status hl_device_status(struct hl_device *hdev);
int hl_device_set_debug_mode(struct hl_device *hdev, bool enable);
int create_hdev(struct hl_device **dev, struct pci_dev *pdev,
		enum hl_asic_type asic_type, int minor);
void destroy_hdev(struct hl_device *hdev);
int hl_hw_queues_create(struct hl_device *hdev);
void hl_hw_queues_destroy(struct hl_device *hdev);
int hl_hw_queue_send_cb_no_cmpl(struct hl_device *hdev, u32 hw_queue_id,
				u32 cb_size, u64 cb_ptr);
int hl_hw_queue_schedule_cs(struct hl_cs *cs);
u32 hl_hw_queue_add_ptr(u32 ptr, u16 val);
void hl_hw_queue_inc_ci_kernel(struct hl_device *hdev, u32 hw_queue_id);
void hl_int_hw_queue_update_ci(struct hl_cs *cs);
void hl_hw_queue_reset(struct hl_device *hdev, bool hard_reset);

#define hl_queue_inc_ptr(p)		hl_hw_queue_add_ptr(p, 1)
#define hl_pi_2_offset(pi)		((pi) & (HL_QUEUE_LENGTH - 1))

int hl_cq_init(struct hl_device *hdev, struct hl_cq *q, u32 hw_queue_id);
void hl_cq_fini(struct hl_device *hdev, struct hl_cq *q);
int hl_eq_init(struct hl_device *hdev, struct hl_eq *q);
void hl_eq_fini(struct hl_device *hdev, struct hl_eq *q);
void hl_cq_reset(struct hl_device *hdev, struct hl_cq *q);
void hl_eq_reset(struct hl_device *hdev, struct hl_eq *q);
irqreturn_t hl_irq_handler_cq(int irq, void *arg);
irqreturn_t hl_irq_handler_eq(int irq, void *arg);
u32 hl_cq_inc_ptr(u32 ptr);

int hl_asid_init(struct hl_device *hdev);
void hl_asid_fini(struct hl_device *hdev);
unsigned long hl_asid_alloc(struct hl_device *hdev);
void hl_asid_free(struct hl_device *hdev, unsigned long asid);

int hl_ctx_create(struct hl_device *hdev, struct hl_fpriv *hpriv);
void hl_ctx_free(struct hl_device *hdev, struct hl_ctx *ctx);
int hl_ctx_init(struct hl_device *hdev, struct hl_ctx *ctx, bool is_kernel_ctx);
void hl_ctx_do_release(struct kref *ref);
void hl_ctx_get(struct hl_device *hdev,	struct hl_ctx *ctx);
int hl_ctx_put(struct hl_ctx *ctx);
struct dma_fence *hl_ctx_get_fence(struct hl_ctx *ctx, u64 seq);
void hl_ctx_mgr_init(struct hl_ctx_mgr *mgr);
void hl_ctx_mgr_fini(struct hl_device *hdev, struct hl_ctx_mgr *mgr);

int hl_device_init(struct hl_device *hdev, struct class *hclass);
void hl_device_fini(struct hl_device *hdev);
int hl_device_suspend(struct hl_device *hdev);
int hl_device_resume(struct hl_device *hdev);
int hl_device_reset(struct hl_device *hdev, bool hard_reset,
			bool from_hard_reset_thread);
void hl_hpriv_get(struct hl_fpriv *hpriv);
void hl_hpriv_put(struct hl_fpriv *hpriv);
int hl_device_set_frequency(struct hl_device *hdev, enum hl_pll_frequency freq);
uint32_t hl_device_utilization(struct hl_device *hdev, uint32_t period_ms);

int hl_build_hwmon_channel_info(struct hl_device *hdev,
		struct armcp_sensor *sensors_arr);

int hl_sysfs_init(struct hl_device *hdev);
void hl_sysfs_fini(struct hl_device *hdev);

int hl_hwmon_init(struct hl_device *hdev);
void hl_hwmon_fini(struct hl_device *hdev);

int hl_cb_create(struct hl_device *hdev, struct hl_cb_mgr *mgr, u32 cb_size,
		u64 *handle, int ctx_id, bool internal_cb);
int hl_cb_destroy(struct hl_device *hdev, struct hl_cb_mgr *mgr, u64 cb_handle);
int hl_cb_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_cb *hl_cb_get(struct hl_device *hdev,	struct hl_cb_mgr *mgr,
			u32 handle);
void hl_cb_put(struct hl_cb *cb);
void hl_cb_mgr_init(struct hl_cb_mgr *mgr);
void hl_cb_mgr_fini(struct hl_device *hdev, struct hl_cb_mgr *mgr);
struct hl_cb *hl_cb_kernel_create(struct hl_device *hdev, u32 cb_size,
					bool internal_cb);
int hl_cb_pool_init(struct hl_device *hdev);
int hl_cb_pool_fini(struct hl_device *hdev);

void hl_cs_rollback_all(struct hl_device *hdev);
struct hl_cs_job *hl_cs_allocate_job(struct hl_device *hdev,
		enum hl_queue_type queue_type, bool is_kernel_allocated_cb);
void hl_sob_reset_error(struct kref *ref);

void goya_set_asic_funcs(struct hl_device *hdev);
void gaudi_set_asic_funcs(struct hl_device *hdev);

int hl_vm_ctx_init(struct hl_ctx *ctx);
void hl_vm_ctx_fini(struct hl_ctx *ctx);

int hl_vm_init(struct hl_device *hdev);
void hl_vm_fini(struct hl_device *hdev);

int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
			struct hl_userptr *userptr);
void hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_userptr_delete_list(struct hl_device *hdev,
				struct list_head *userptr_list);
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr, u32 size,
				struct list_head *userptr_list,
				struct hl_userptr **userptr);

int hl_mmu_init(struct hl_device *hdev);
void hl_mmu_fini(struct hl_device *hdev);
int hl_mmu_ctx_init(struct hl_ctx *ctx);
void hl_mmu_ctx_fini(struct hl_ctx *ctx);
int hl_mmu_map(struct hl_ctx *ctx, u64 virt_addr, u64 phys_addr,
		u32 page_size, bool flush_pte);
int hl_mmu_unmap(struct hl_ctx *ctx, u64 virt_addr, u32 page_size,
		bool flush_pte);
void hl_mmu_swap_out(struct hl_ctx *ctx);
void hl_mmu_swap_in(struct hl_ctx *ctx);

int hl_fw_load_fw_to_device(struct hl_device *hdev, const char *fw_name,
				void __iomem *dst);
int hl_fw_send_pci_access_msg(struct hl_device *hdev, u32 opcode);
int hl_fw_send_cpu_message(struct hl_device *hdev, u32 hw_queue_id, u32 *msg,
				u16 len, u32 timeout, long *result);
int hl_fw_unmask_irq(struct hl_device *hdev, u16 event_type);
int hl_fw_unmask_irq_arr(struct hl_device *hdev, const u32 *irq_arr,
		size_t irq_arr_size);
int hl_fw_test_cpu_queue(struct hl_device *hdev);
void *hl_fw_cpu_accessible_dma_pool_alloc(struct hl_device *hdev, size_t size,
						dma_addr_t *dma_handle);
void hl_fw_cpu_accessible_dma_pool_free(struct hl_device *hdev, size_t size,
					void *vaddr);
int hl_fw_send_heartbeat(struct hl_device *hdev);
int hl_fw_armcp_info_get(struct hl_device *hdev);
int hl_fw_get_eeprom_data(struct hl_device *hdev, void *data, size_t max_size);
int hl_fw_init_cpu(struct hl_device *hdev, u32 cpu_boot_status_reg,
			u32 msg_to_cpu_reg, u32 cpu_msg_status_reg,
			u32 boot_err0_reg, bool skip_bmc,
			u32 cpu_timeout, u32 boot_fit_timeout);

int hl_pci_bars_map(struct hl_device *hdev, const char * const name[3],
			bool is_wc[3]);
int hl_pci_iatu_write(struct hl_device *hdev, u32 addr, u32 data);
int hl_pci_set_dram_bar_base(struct hl_device *hdev, u8 inbound_region, u8 bar,
				u64 addr);
int hl_pci_set_inbound_region(struct hl_device *hdev, u8 region,
		struct hl_inbound_pci_region *pci_region);
int hl_pci_set_outbound_region(struct hl_device *hdev,
		struct hl_outbound_pci_region *pci_region);
int hl_pci_init(struct hl_device *hdev);
void hl_pci_fini(struct hl_device *hdev);

long hl_get_frequency(struct hl_device *hdev, u32 pll_index, bool curr);
void hl_set_frequency(struct hl_device *hdev, u32 pll_index, u64 freq);
int hl_get_temperature(struct hl_device *hdev,
		       int sensor_index, u32 attr, long *value);
int hl_set_temperature(struct hl_device *hdev,
		       int sensor_index, u32 attr, long value);
int hl_get_voltage(struct hl_device *hdev,
		   int sensor_index, u32 attr, long *value);
int hl_get_current(struct hl_device *hdev,
		   int sensor_index, u32 attr, long *value);
int hl_get_fan_speed(struct hl_device *hdev,
		     int sensor_index, u32 attr, long *value);
int hl_get_pwm_info(struct hl_device *hdev,
		    int sensor_index, u32 attr, long *value);
void hl_set_pwm_info(struct hl_device *hdev, int sensor_index, u32 attr,
			long value);
u64 hl_get_max_power(struct hl_device *hdev);
void hl_set_max_power(struct hl_device *hdev, u64 value);
int hl_set_voltage(struct hl_device *hdev,
			int sensor_index, u32 attr, long value);
int hl_set_current(struct hl_device *hdev,
			int sensor_index, u32 attr, long value);

#ifdef CONFIG_DEBUG_FS

void hl_debugfs_init(void);
void hl_debugfs_fini(void);
void hl_debugfs_add_device(struct hl_device *hdev);
void hl_debugfs_remove_device(struct hl_device *hdev);
void hl_debugfs_add_file(struct hl_fpriv *hpriv);
void hl_debugfs_remove_file(struct hl_fpriv *hpriv);
void hl_debugfs_add_cb(struct hl_cb *cb);
void hl_debugfs_remove_cb(struct hl_cb *cb);
void hl_debugfs_add_cs(struct hl_cs *cs);
void hl_debugfs_remove_cs(struct hl_cs *cs);
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job);
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr);
void hl_debugfs_remove_userptr(struct hl_device *hdev,
				struct hl_userptr *userptr);
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx);

#else

static inline void __init hl_debugfs_init(void)
{
}

static inline void hl_debugfs_fini(void)
{
}

static inline void hl_debugfs_add_device(struct hl_device *hdev)
{
}

static inline void hl_debugfs_remove_device(struct hl_device *hdev)
{
}

static inline void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
}

static inline void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
}

static inline void hl_debugfs_add_cb(struct hl_cb *cb)
{
}

static inline void hl_debugfs_remove_cb(struct hl_cb *cb)
{
}

static inline void hl_debugfs_add_cs(struct hl_cs *cs)
{
}

static inline void hl_debugfs_remove_cs(struct hl_cs *cs)
{
}

static inline void hl_debugfs_add_job(struct hl_device *hdev,
					struct hl_cs_job *job)
{
}

static inline void hl_debugfs_remove_job(struct hl_device *hdev,
					struct hl_cs_job *job)
{
}

static inline void hl_debugfs_add_userptr(struct hl_device *hdev,
					struct hl_userptr *userptr)
{
}

static inline void hl_debugfs_remove_userptr(struct hl_device *hdev,
					struct hl_userptr *userptr)
{
}

static inline void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev,
					struct hl_ctx *ctx)
{
}

static inline void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev,
					struct hl_ctx *ctx)
{
}

#endif

/* IOCTLs */
long hl_ioctl(struct file *filep, unsigned int cmd, unsigned long arg);
long hl_ioctl_control(struct file *filep, unsigned int cmd, unsigned long arg);
int hl_cb_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data);
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data);

#endif /* HABANALABSP_H_ */