aboutsummaryrefslogtreecommitdiffstats
path: root/mm/mm_init.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/mm_init.c')
-rw-r--r--mm/mm_init.c2618
1 files changed, 2603 insertions, 15 deletions
diff --git a/mm/mm_init.c b/mm/mm_init.c
index b06a30fbedff..2c19f5515e36 100644
--- a/mm/mm_init.c
+++ b/mm/mm_init.c
@@ -14,15 +14,28 @@
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/mman.h>
+#include <linux/memblock.h>
+#include <linux/page-isolation.h>
+#include <linux/padata.h>
+#include <linux/nmi.h>
+#include <linux/buffer_head.h>
+#include <linux/kmemleak.h>
+#include <linux/kfence.h>
+#include <linux/page_ext.h>
+#include <linux/pti.h>
+#include <linux/pgtable.h>
+#include <linux/swap.h>
+#include <linux/cma.h>
+#include <linux/crash_dump.h>
#include "internal.h"
+#include "slab.h"
+#include "shuffle.h"
+
+#include <asm/setup.h>
#ifdef CONFIG_DEBUG_MEMORY_INIT
int __meminitdata mminit_loglevel;
-#ifndef SECTIONS_SHIFT
-#define SECTIONS_SHIFT 0
-#endif
-
/* The zonelists are simply reported, validation is manual. */
void __init mminit_verify_zonelist(void)
{
@@ -67,16 +80,18 @@ void __init mminit_verify_pageflags_layout(void)
int shift, width;
unsigned long or_mask, add_mask;
- shift = 8 * sizeof(unsigned long);
+ shift = BITS_PER_LONG;
width = shift - SECTIONS_WIDTH - NODES_WIDTH - ZONES_WIDTH
- - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH;
+ - LAST_CPUPID_SHIFT - KASAN_TAG_WIDTH - LRU_GEN_WIDTH - LRU_REFS_WIDTH;
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_widths",
- "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Flags %d\n",
+ "Section %d Node %d Zone %d Lastcpupid %d Kasantag %d Gen %d Tier %d Flags %d\n",
SECTIONS_WIDTH,
NODES_WIDTH,
ZONES_WIDTH,
LAST_CPUPID_WIDTH,
KASAN_TAG_WIDTH,
+ LRU_GEN_WIDTH,
+ LRU_REFS_WIDTH,
NR_PAGEFLAGS);
mminit_dprintk(MMINIT_TRACE, "pageflags_layout_shifts",
"Section %d Node %d Zone %d Lastcpupid %d Kasantag %d\n",
@@ -140,7 +155,6 @@ early_param("mminit_loglevel", set_mminit_loglevel);
#endif /* CONFIG_DEBUG_MEMORY_INIT */
struct kobject *mm_kobj;
-EXPORT_SYMBOL_GPL(mm_kobj);
#ifdef CONFIG_SMP
s32 vm_committed_as_batch = 32;
@@ -173,22 +187,17 @@ static int __meminit mm_compute_batch_notifier(struct notifier_block *self,
case MEM_ONLINE:
case MEM_OFFLINE:
mm_compute_batch(sysctl_overcommit_memory);
+ break;
default:
break;
}
return NOTIFY_OK;
}
-static struct notifier_block compute_batch_nb __meminitdata = {
- .notifier_call = mm_compute_batch_notifier,
- .priority = IPC_CALLBACK_PRI, /* use lowest priority */
-};
-
static int __init mm_compute_batch_init(void)
{
mm_compute_batch(sysctl_overcommit_memory);
- register_hotmemory_notifier(&compute_batch_nb);
-
+ hotplug_memory_notifier(mm_compute_batch_notifier, MM_COMPUTE_BATCH_PRI);
return 0;
}
@@ -205,3 +214,2582 @@ static int __init mm_sysfs_init(void)
return 0;
}
postcore_initcall(mm_sysfs_init);
+
+static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
+static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
+static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
+
+static unsigned long required_kernelcore __initdata;
+static unsigned long required_kernelcore_percent __initdata;
+static unsigned long required_movablecore __initdata;
+static unsigned long required_movablecore_percent __initdata;
+
+static unsigned long nr_kernel_pages __initdata;
+static unsigned long nr_all_pages __initdata;
+static unsigned long dma_reserve __initdata;
+
+static bool deferred_struct_pages __meminitdata;
+
+static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
+
+static int __init cmdline_parse_core(char *p, unsigned long *core,
+ unsigned long *percent)
+{
+ unsigned long long coremem;
+ char *endptr;
+
+ if (!p)
+ return -EINVAL;
+
+ /* Value may be a percentage of total memory, otherwise bytes */
+ coremem = simple_strtoull(p, &endptr, 0);
+ if (*endptr == '%') {
+ /* Paranoid check for percent values greater than 100 */
+ WARN_ON(coremem > 100);
+
+ *percent = coremem;
+ } else {
+ coremem = memparse(p, &p);
+ /* Paranoid check that UL is enough for the coremem value */
+ WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
+
+ *core = coremem >> PAGE_SHIFT;
+ *percent = 0UL;
+ }
+ return 0;
+}
+
+bool mirrored_kernelcore __initdata_memblock;
+
+/*
+ * kernelcore=size sets the amount of memory for use for allocations that
+ * cannot be reclaimed or migrated.
+ */
+static int __init cmdline_parse_kernelcore(char *p)
+{
+ /* parse kernelcore=mirror */
+ if (parse_option_str(p, "mirror")) {
+ mirrored_kernelcore = true;
+ return 0;
+ }
+
+ return cmdline_parse_core(p, &required_kernelcore,
+ &required_kernelcore_percent);
+}
+early_param("kernelcore", cmdline_parse_kernelcore);
+
+/*
+ * movablecore=size sets the amount of memory for use for allocations that
+ * can be reclaimed or migrated.
+ */
+static int __init cmdline_parse_movablecore(char *p)
+{
+ return cmdline_parse_core(p, &required_movablecore,
+ &required_movablecore_percent);
+}
+early_param("movablecore", cmdline_parse_movablecore);
+
+/*
+ * early_calculate_totalpages()
+ * Sum pages in active regions for movable zone.
+ * Populate N_MEMORY for calculating usable_nodes.
+ */
+static unsigned long __init early_calculate_totalpages(void)
+{
+ unsigned long totalpages = 0;
+ unsigned long start_pfn, end_pfn;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ unsigned long pages = end_pfn - start_pfn;
+
+ totalpages += pages;
+ if (pages)
+ node_set_state(nid, N_MEMORY);
+ }
+ return totalpages;
+}
+
+/*
+ * This finds a zone that can be used for ZONE_MOVABLE pages. The
+ * assumption is made that zones within a node are ordered in monotonic
+ * increasing memory addresses so that the "highest" populated zone is used
+ */
+static void __init find_usable_zone_for_movable(void)
+{
+ int zone_index;
+ for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
+ if (zone_index == ZONE_MOVABLE)
+ continue;
+
+ if (arch_zone_highest_possible_pfn[zone_index] >
+ arch_zone_lowest_possible_pfn[zone_index])
+ break;
+ }
+
+ VM_BUG_ON(zone_index == -1);
+ movable_zone = zone_index;
+}
+
+/*
+ * Find the PFN the Movable zone begins in each node. Kernel memory
+ * is spread evenly between nodes as long as the nodes have enough
+ * memory. When they don't, some nodes will have more kernelcore than
+ * others
+ */
+static void __init find_zone_movable_pfns_for_nodes(void)
+{
+ int i, nid;
+ unsigned long usable_startpfn;
+ unsigned long kernelcore_node, kernelcore_remaining;
+ /* save the state before borrow the nodemask */
+ nodemask_t saved_node_state = node_states[N_MEMORY];
+ unsigned long totalpages = early_calculate_totalpages();
+ int usable_nodes = nodes_weight(node_states[N_MEMORY]);
+ struct memblock_region *r;
+
+ /* Need to find movable_zone earlier when movable_node is specified. */
+ find_usable_zone_for_movable();
+
+ /*
+ * If movable_node is specified, ignore kernelcore and movablecore
+ * options.
+ */
+ if (movable_node_is_enabled()) {
+ for_each_mem_region(r) {
+ if (!memblock_is_hotpluggable(r))
+ continue;
+
+ nid = memblock_get_region_node(r);
+
+ usable_startpfn = PFN_DOWN(r->base);
+ zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
+ min(usable_startpfn, zone_movable_pfn[nid]) :
+ usable_startpfn;
+ }
+
+ goto out2;
+ }
+
+ /*
+ * If kernelcore=mirror is specified, ignore movablecore option
+ */
+ if (mirrored_kernelcore) {
+ bool mem_below_4gb_not_mirrored = false;
+
+ if (!memblock_has_mirror()) {
+ pr_warn("The system has no mirror memory, ignore kernelcore=mirror.\n");
+ goto out;
+ }
+
+ if (is_kdump_kernel()) {
+ pr_warn("The system is under kdump, ignore kernelcore=mirror.\n");
+ goto out;
+ }
+
+ for_each_mem_region(r) {
+ if (memblock_is_mirror(r))
+ continue;
+
+ nid = memblock_get_region_node(r);
+
+ usable_startpfn = memblock_region_memory_base_pfn(r);
+
+ if (usable_startpfn < PHYS_PFN(SZ_4G)) {
+ mem_below_4gb_not_mirrored = true;
+ continue;
+ }
+
+ zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
+ min(usable_startpfn, zone_movable_pfn[nid]) :
+ usable_startpfn;
+ }
+
+ if (mem_below_4gb_not_mirrored)
+ pr_warn("This configuration results in unmirrored kernel memory.\n");
+
+ goto out2;
+ }
+
+ /*
+ * If kernelcore=nn% or movablecore=nn% was specified, calculate the
+ * amount of necessary memory.
+ */
+ if (required_kernelcore_percent)
+ required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
+ 10000UL;
+ if (required_movablecore_percent)
+ required_movablecore = (totalpages * 100 * required_movablecore_percent) /
+ 10000UL;
+
+ /*
+ * If movablecore= was specified, calculate what size of
+ * kernelcore that corresponds so that memory usable for
+ * any allocation type is evenly spread. If both kernelcore
+ * and movablecore are specified, then the value of kernelcore
+ * will be used for required_kernelcore if it's greater than
+ * what movablecore would have allowed.
+ */
+ if (required_movablecore) {
+ unsigned long corepages;
+
+ /*
+ * Round-up so that ZONE_MOVABLE is at least as large as what
+ * was requested by the user
+ */
+ required_movablecore =
+ roundup(required_movablecore, MAX_ORDER_NR_PAGES);
+ required_movablecore = min(totalpages, required_movablecore);
+ corepages = totalpages - required_movablecore;
+
+ required_kernelcore = max(required_kernelcore, corepages);
+ }
+
+ /*
+ * If kernelcore was not specified or kernelcore size is larger
+ * than totalpages, there is no ZONE_MOVABLE.
+ */
+ if (!required_kernelcore || required_kernelcore >= totalpages)
+ goto out;
+
+ /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
+ usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
+
+restart:
+ /* Spread kernelcore memory as evenly as possible throughout nodes */
+ kernelcore_node = required_kernelcore / usable_nodes;
+ for_each_node_state(nid, N_MEMORY) {
+ unsigned long start_pfn, end_pfn;
+
+ /*
+ * Recalculate kernelcore_node if the division per node
+ * now exceeds what is necessary to satisfy the requested
+ * amount of memory for the kernel
+ */
+ if (required_kernelcore < kernelcore_node)
+ kernelcore_node = required_kernelcore / usable_nodes;
+
+ /*
+ * As the map is walked, we track how much memory is usable
+ * by the kernel using kernelcore_remaining. When it is
+ * 0, the rest of the node is usable by ZONE_MOVABLE
+ */
+ kernelcore_remaining = kernelcore_node;
+
+ /* Go through each range of PFNs within this node */
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
+ unsigned long size_pages;
+
+ start_pfn = max(start_pfn, zone_movable_pfn[nid]);
+ if (start_pfn >= end_pfn)
+ continue;
+
+ /* Account for what is only usable for kernelcore */
+ if (start_pfn < usable_startpfn) {
+ unsigned long kernel_pages;
+ kernel_pages = min(end_pfn, usable_startpfn)
+ - start_pfn;
+
+ kernelcore_remaining -= min(kernel_pages,
+ kernelcore_remaining);
+ required_kernelcore -= min(kernel_pages,
+ required_kernelcore);
+
+ /* Continue if range is now fully accounted */
+ if (end_pfn <= usable_startpfn) {
+
+ /*
+ * Push zone_movable_pfn to the end so
+ * that if we have to rebalance
+ * kernelcore across nodes, we will
+ * not double account here
+ */
+ zone_movable_pfn[nid] = end_pfn;
+ continue;
+ }
+ start_pfn = usable_startpfn;
+ }
+
+ /*
+ * The usable PFN range for ZONE_MOVABLE is from
+ * start_pfn->end_pfn. Calculate size_pages as the
+ * number of pages used as kernelcore
+ */
+ size_pages = end_pfn - start_pfn;
+ if (size_pages > kernelcore_remaining)
+ size_pages = kernelcore_remaining;
+ zone_movable_pfn[nid] = start_pfn + size_pages;
+
+ /*
+ * Some kernelcore has been met, update counts and
+ * break if the kernelcore for this node has been
+ * satisfied
+ */
+ required_kernelcore -= min(required_kernelcore,
+ size_pages);
+ kernelcore_remaining -= size_pages;
+ if (!kernelcore_remaining)
+ break;
+ }
+ }
+
+ /*
+ * If there is still required_kernelcore, we do another pass with one
+ * less node in the count. This will push zone_movable_pfn[nid] further
+ * along on the nodes that still have memory until kernelcore is
+ * satisfied
+ */
+ usable_nodes--;
+ if (usable_nodes && required_kernelcore > usable_nodes)
+ goto restart;
+
+out2:
+ /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
+ for (nid = 0; nid < MAX_NUMNODES; nid++) {
+ unsigned long start_pfn, end_pfn;
+
+ zone_movable_pfn[nid] =
+ roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
+
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+ if (zone_movable_pfn[nid] >= end_pfn)
+ zone_movable_pfn[nid] = 0;
+ }
+
+out:
+ /* restore the node_state */
+ node_states[N_MEMORY] = saved_node_state;
+}
+
+void __meminit __init_single_page(struct page *page, unsigned long pfn,
+ unsigned long zone, int nid)
+{
+ mm_zero_struct_page(page);
+ set_page_links(page, zone, nid, pfn);
+ init_page_count(page);
+ page_mapcount_reset(page);
+ page_cpupid_reset_last(page);
+ page_kasan_tag_reset(page);
+
+ INIT_LIST_HEAD(&page->lru);
+#ifdef WANT_PAGE_VIRTUAL
+ /* The shift won't overflow because ZONE_NORMAL is below 4G. */
+ if (!is_highmem_idx(zone))
+ set_page_address(page, __va(pfn << PAGE_SHIFT));
+#endif
+}
+
+#ifdef CONFIG_NUMA
+/*
+ * During memory init memblocks map pfns to nids. The search is expensive and
+ * this caches recent lookups. The implementation of __early_pfn_to_nid
+ * treats start/end as pfns.
+ */
+struct mminit_pfnnid_cache {
+ unsigned long last_start;
+ unsigned long last_end;
+ int last_nid;
+};
+
+static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
+
+/*
+ * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
+ */
+static int __meminit __early_pfn_to_nid(unsigned long pfn,
+ struct mminit_pfnnid_cache *state)
+{
+ unsigned long start_pfn, end_pfn;
+ int nid;
+
+ if (state->last_start <= pfn && pfn < state->last_end)
+ return state->last_nid;
+
+ nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
+ if (nid != NUMA_NO_NODE) {
+ state->last_start = start_pfn;
+ state->last_end = end_pfn;
+ state->last_nid = nid;
+ }
+
+ return nid;
+}
+
+int __meminit early_pfn_to_nid(unsigned long pfn)
+{
+ static DEFINE_SPINLOCK(early_pfn_lock);
+ int nid;
+
+ spin_lock(&early_pfn_lock);
+ nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
+ if (nid < 0)
+ nid = first_online_node;
+ spin_unlock(&early_pfn_lock);
+
+ return nid;
+}
+
+int hashdist = HASHDIST_DEFAULT;
+
+static int __init set_hashdist(char *str)
+{
+ if (!str)
+ return 0;
+ hashdist = simple_strtoul(str, &str, 0);
+ return 1;
+}
+__setup("hashdist=", set_hashdist);
+
+static inline void fixup_hashdist(void)
+{
+ if (num_node_state(N_MEMORY) == 1)
+ hashdist = 0;
+}
+#else
+static inline void fixup_hashdist(void) {}
+#endif /* CONFIG_NUMA */
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
+{
+ pgdat->first_deferred_pfn = ULONG_MAX;
+}
+
+/* Returns true if the struct page for the pfn is initialised */
+static inline bool __meminit early_page_initialised(unsigned long pfn, int nid)
+{
+ if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
+ return false;
+
+ return true;
+}
+
+/*
+ * Returns true when the remaining initialisation should be deferred until
+ * later in the boot cycle when it can be parallelised.
+ */
+static bool __meminit
+defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
+{
+ static unsigned long prev_end_pfn, nr_initialised;
+
+ if (early_page_ext_enabled())
+ return false;
+ /*
+ * prev_end_pfn static that contains the end of previous zone
+ * No need to protect because called very early in boot before smp_init.
+ */
+ if (prev_end_pfn != end_pfn) {
+ prev_end_pfn = end_pfn;
+ nr_initialised = 0;
+ }
+
+ /* Always populate low zones for address-constrained allocations */
+ if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
+ return false;
+
+ if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
+ return true;
+ /*
+ * We start only with one section of pages, more pages are added as
+ * needed until the rest of deferred pages are initialized.
+ */
+ nr_initialised++;
+ if ((nr_initialised > PAGES_PER_SECTION) &&
+ (pfn & (PAGES_PER_SECTION - 1)) == 0) {
+ NODE_DATA(nid)->first_deferred_pfn = pfn;
+ return true;
+ }
+ return false;
+}
+
+static void __meminit init_reserved_page(unsigned long pfn, int nid)
+{
+ pg_data_t *pgdat;
+ int zid;
+
+ if (early_page_initialised(pfn, nid))
+ return;
+
+ pgdat = NODE_DATA(nid);
+
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ struct zone *zone = &pgdat->node_zones[zid];
+
+ if (zone_spans_pfn(zone, pfn))
+ break;
+ }
+ __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
+}
+#else
+static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
+
+static inline bool early_page_initialised(unsigned long pfn, int nid)
+{
+ return true;
+}
+
+static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
+{
+ return false;
+}
+
+static inline void init_reserved_page(unsigned long pfn, int nid)
+{
+}
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+/*
+ * Initialised pages do not have PageReserved set. This function is
+ * called for each range allocated by the bootmem allocator and
+ * marks the pages PageReserved. The remaining valid pages are later
+ * sent to the buddy page allocator.
+ */
+void __meminit reserve_bootmem_region(phys_addr_t start,
+ phys_addr_t end, int nid)
+{
+ unsigned long start_pfn = PFN_DOWN(start);
+ unsigned long end_pfn = PFN_UP(end);
+
+ for (; start_pfn < end_pfn; start_pfn++) {
+ if (pfn_valid(start_pfn)) {
+ struct page *page = pfn_to_page(start_pfn);
+
+ init_reserved_page(start_pfn, nid);
+
+ /* Avoid false-positive PageTail() */
+ INIT_LIST_HEAD(&page->lru);
+
+ /*
+ * no need for atomic set_bit because the struct
+ * page is not visible yet so nobody should
+ * access it yet.
+ */
+ __SetPageReserved(page);
+ }
+ }
+}
+
+/* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
+static bool __meminit
+overlap_memmap_init(unsigned long zone, unsigned long *pfn)
+{
+ static struct memblock_region *r;
+
+ if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
+ if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
+ for_each_mem_region(r) {
+ if (*pfn < memblock_region_memory_end_pfn(r))
+ break;
+ }
+ }
+ if (*pfn >= memblock_region_memory_base_pfn(r) &&
+ memblock_is_mirror(r)) {
+ *pfn = memblock_region_memory_end_pfn(r);
+ return true;
+ }
+ }
+ return false;
+}
+
+/*
+ * Only struct pages that correspond to ranges defined by memblock.memory
+ * are zeroed and initialized by going through __init_single_page() during
+ * memmap_init_zone_range().
+ *
+ * But, there could be struct pages that correspond to holes in
+ * memblock.memory. This can happen because of the following reasons:
+ * - physical memory bank size is not necessarily the exact multiple of the
+ * arbitrary section size
+ * - early reserved memory may not be listed in memblock.memory
+ * - non-memory regions covered by the contigious flatmem mapping
+ * - memory layouts defined with memmap= kernel parameter may not align
+ * nicely with memmap sections
+ *
+ * Explicitly initialize those struct pages so that:
+ * - PG_Reserved is set
+ * - zone and node links point to zone and node that span the page if the
+ * hole is in the middle of a zone
+ * - zone and node links point to adjacent zone/node if the hole falls on
+ * the zone boundary; the pages in such holes will be prepended to the
+ * zone/node above the hole except for the trailing pages in the last
+ * section that will be appended to the zone/node below.
+ */
+static void __init init_unavailable_range(unsigned long spfn,
+ unsigned long epfn,
+ int zone, int node)
+{
+ unsigned long pfn;
+ u64 pgcnt = 0;
+
+ for (pfn = spfn; pfn < epfn; pfn++) {
+ if (!pfn_valid(pageblock_start_pfn(pfn))) {
+ pfn = pageblock_end_pfn(pfn) - 1;
+ continue;
+ }
+ __init_single_page(pfn_to_page(pfn), pfn, zone, node);
+ __SetPageReserved(pfn_to_page(pfn));
+ pgcnt++;
+ }
+
+ if (pgcnt)
+ pr_info("On node %d, zone %s: %lld pages in unavailable ranges\n",
+ node, zone_names[zone], pgcnt);
+}
+
+/*
+ * Initially all pages are reserved - free ones are freed
+ * up by memblock_free_all() once the early boot process is
+ * done. Non-atomic initialization, single-pass.
+ *
+ * All aligned pageblocks are initialized to the specified migratetype
+ * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
+ * zone stats (e.g., nr_isolate_pageblock) are touched.
+ */
+void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
+ unsigned long start_pfn, unsigned long zone_end_pfn,
+ enum meminit_context context,
+ struct vmem_altmap *altmap, int migratetype)
+{
+ unsigned long pfn, end_pfn = start_pfn + size;
+ struct page *page;
+
+ if (highest_memmap_pfn < end_pfn - 1)
+ highest_memmap_pfn = end_pfn - 1;
+
+#ifdef CONFIG_ZONE_DEVICE
+ /*
+ * Honor reservation requested by the driver for this ZONE_DEVICE
+ * memory. We limit the total number of pages to initialize to just
+ * those that might contain the memory mapping. We will defer the
+ * ZONE_DEVICE page initialization until after we have released
+ * the hotplug lock.
+ */
+ if (zone == ZONE_DEVICE) {
+ if (!altmap)
+ return;
+
+ if (start_pfn == altmap->base_pfn)
+ start_pfn += altmap->reserve;
+ end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
+ }
+#endif
+
+ for (pfn = start_pfn; pfn < end_pfn; ) {
+ /*
+ * There can be holes in boot-time mem_map[]s handed to this
+ * function. They do not exist on hotplugged memory.
+ */
+ if (context == MEMINIT_EARLY) {
+ if (overlap_memmap_init(zone, &pfn))
+ continue;
+ if (defer_init(nid, pfn, zone_end_pfn)) {
+ deferred_struct_pages = true;
+ break;
+ }
+ }
+
+ page = pfn_to_page(pfn);
+ __init_single_page(page, pfn, zone, nid);
+ if (context == MEMINIT_HOTPLUG)
+ __SetPageReserved(page);
+
+ /*
+ * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
+ * such that unmovable allocations won't be scattered all
+ * over the place during system boot.
+ */
+ if (pageblock_aligned(pfn)) {
+ set_pageblock_migratetype(page, migratetype);
+ cond_resched();
+ }
+ pfn++;
+ }
+}
+
+static void __init memmap_init_zone_range(struct zone *zone,
+ unsigned long start_pfn,
+ unsigned long end_pfn,
+ unsigned long *hole_pfn)
+{
+ unsigned long zone_start_pfn = zone->zone_start_pfn;
+ unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
+ int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
+
+ start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
+ end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
+
+ if (start_pfn >= end_pfn)
+ return;
+
+ memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
+ zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
+
+ if (*hole_pfn < start_pfn)
+ init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
+
+ *hole_pfn = end_pfn;
+}
+
+static void __init memmap_init(void)
+{
+ unsigned long start_pfn, end_pfn;
+ unsigned long hole_pfn = 0;
+ int i, j, zone_id = 0, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ struct pglist_data *node = NODE_DATA(nid);
+
+ for (j = 0; j < MAX_NR_ZONES; j++) {
+ struct zone *zone = node->node_zones + j;
+
+ if (!populated_zone(zone))
+ continue;
+
+ memmap_init_zone_range(zone, start_pfn, end_pfn,
+ &hole_pfn);
+ zone_id = j;
+ }
+ }
+
+#ifdef CONFIG_SPARSEMEM
+ /*
+ * Initialize the memory map for hole in the range [memory_end,
+ * section_end].
+ * Append the pages in this hole to the highest zone in the last
+ * node.
+ * The call to init_unavailable_range() is outside the ifdef to
+ * silence the compiler warining about zone_id set but not used;
+ * for FLATMEM it is a nop anyway
+ */
+ end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
+ if (hole_pfn < end_pfn)
+#endif
+ init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
+}
+
+#ifdef CONFIG_ZONE_DEVICE
+static void __ref __init_zone_device_page(struct page *page, unsigned long pfn,
+ unsigned long zone_idx, int nid,
+ struct dev_pagemap *pgmap)
+{
+
+ __init_single_page(page, pfn, zone_idx, nid);
+
+ /*
+ * Mark page reserved as it will need to wait for onlining
+ * phase for it to be fully associated with a zone.
+ *
+ * We can use the non-atomic __set_bit operation for setting
+ * the flag as we are still initializing the pages.
+ */
+ __SetPageReserved(page);
+
+ /*
+ * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
+ * and zone_device_data. It is a bug if a ZONE_DEVICE page is
+ * ever freed or placed on a driver-private list.
+ */
+ page->pgmap = pgmap;
+ page->zone_device_data = NULL;
+
+ /*
+ * Mark the block movable so that blocks are reserved for
+ * movable at startup. This will force kernel allocations
+ * to reserve their blocks rather than leaking throughout
+ * the address space during boot when many long-lived
+ * kernel allocations are made.
+ *
+ * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
+ * because this is done early in section_activate()
+ */
+ if (pageblock_aligned(pfn)) {
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ cond_resched();
+ }
+
+ /*
+ * ZONE_DEVICE pages are released directly to the driver page allocator
+ * which will set the page count to 1 when allocating the page.
+ */
+ if (pgmap->type == MEMORY_DEVICE_PRIVATE ||
+ pgmap->type == MEMORY_DEVICE_COHERENT)
+ set_page_count(page, 0);
+}
+
+/*
+ * With compound page geometry and when struct pages are stored in ram most
+ * tail pages are reused. Consequently, the amount of unique struct pages to
+ * initialize is a lot smaller that the total amount of struct pages being
+ * mapped. This is a paired / mild layering violation with explicit knowledge
+ * of how the sparse_vmemmap internals handle compound pages in the lack
+ * of an altmap. See vmemmap_populate_compound_pages().
+ */
+static inline unsigned long compound_nr_pages(struct vmem_altmap *altmap,
+ struct dev_pagemap *pgmap)
+{
+ if (!vmemmap_can_optimize(altmap, pgmap))
+ return pgmap_vmemmap_nr(pgmap);
+
+ return VMEMMAP_RESERVE_NR * (PAGE_SIZE / sizeof(struct page));
+}
+
+static void __ref memmap_init_compound(struct page *head,
+ unsigned long head_pfn,
+ unsigned long zone_idx, int nid,
+ struct dev_pagemap *pgmap,
+ unsigned long nr_pages)
+{
+ unsigned long pfn, end_pfn = head_pfn + nr_pages;
+ unsigned int order = pgmap->vmemmap_shift;
+
+ __SetPageHead(head);
+ for (pfn = head_pfn + 1; pfn < end_pfn; pfn++) {
+ struct page *page = pfn_to_page(pfn);
+
+ __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
+ prep_compound_tail(head, pfn - head_pfn);
+ set_page_count(page, 0);
+
+ /*
+ * The first tail page stores important compound page info.
+ * Call prep_compound_head() after the first tail page has
+ * been initialized, to not have the data overwritten.
+ */
+ if (pfn == head_pfn + 1)
+ prep_compound_head(head, order);
+ }
+}
+
+void __ref memmap_init_zone_device(struct zone *zone,
+ unsigned long start_pfn,
+ unsigned long nr_pages,
+ struct dev_pagemap *pgmap)
+{
+ unsigned long pfn, end_pfn = start_pfn + nr_pages;
+ struct pglist_data *pgdat = zone->zone_pgdat;
+ struct vmem_altmap *altmap = pgmap_altmap(pgmap);
+ unsigned int pfns_per_compound = pgmap_vmemmap_nr(pgmap);
+ unsigned long zone_idx = zone_idx(zone);
+ unsigned long start = jiffies;
+ int nid = pgdat->node_id;
+
+ if (WARN_ON_ONCE(!pgmap || zone_idx != ZONE_DEVICE))
+ return;
+
+ /*
+ * The call to memmap_init should have already taken care
+ * of the pages reserved for the memmap, so we can just jump to
+ * the end of that region and start processing the device pages.
+ */
+ if (altmap) {
+ start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
+ nr_pages = end_pfn - start_pfn;
+ }
+
+ for (pfn = start_pfn; pfn < end_pfn; pfn += pfns_per_compound) {
+ struct page *page = pfn_to_page(pfn);
+
+ __init_zone_device_page(page, pfn, zone_idx, nid, pgmap);
+
+ if (pfns_per_compound == 1)
+ continue;
+
+ memmap_init_compound(page, pfn, zone_idx, nid, pgmap,
+ compound_nr_pages(altmap, pgmap));
+ }
+
+ pr_debug("%s initialised %lu pages in %ums\n", __func__,
+ nr_pages, jiffies_to_msecs(jiffies - start));
+}
+#endif
+
+/*
+ * The zone ranges provided by the architecture do not include ZONE_MOVABLE
+ * because it is sized independent of architecture. Unlike the other zones,
+ * the starting point for ZONE_MOVABLE is not fixed. It may be different
+ * in each node depending on the size of each node and how evenly kernelcore
+ * is distributed. This helper function adjusts the zone ranges
+ * provided by the architecture for a given node by using the end of the
+ * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
+ * zones within a node are in order of monotonic increases memory addresses
+ */
+static void __init adjust_zone_range_for_zone_movable(int nid,
+ unsigned long zone_type,
+ unsigned long node_end_pfn,
+ unsigned long *zone_start_pfn,
+ unsigned long *zone_end_pfn)
+{
+ /* Only adjust if ZONE_MOVABLE is on this node */
+ if (zone_movable_pfn[nid]) {
+ /* Size ZONE_MOVABLE */
+ if (zone_type == ZONE_MOVABLE) {
+ *zone_start_pfn = zone_movable_pfn[nid];
+ *zone_end_pfn = min(node_end_pfn,
+ arch_zone_highest_possible_pfn[movable_zone]);
+
+ /* Adjust for ZONE_MOVABLE starting within this range */
+ } else if (!mirrored_kernelcore &&
+ *zone_start_pfn < zone_movable_pfn[nid] &&
+ *zone_end_pfn > zone_movable_pfn[nid]) {
+ *zone_end_pfn = zone_movable_pfn[nid];
+
+ /* Check if this whole range is within ZONE_MOVABLE */
+ } else if (*zone_start_pfn >= zone_movable_pfn[nid])
+ *zone_start_pfn = *zone_end_pfn;
+ }
+}
+
+/*
+ * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
+ * then all holes in the requested range will be accounted for.
+ */
+unsigned long __init __absent_pages_in_range(int nid,
+ unsigned long range_start_pfn,
+ unsigned long range_end_pfn)
+{
+ unsigned long nr_absent = range_end_pfn - range_start_pfn;
+ unsigned long start_pfn, end_pfn;
+ int i;
+
+ for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
+ start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
+ end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
+ nr_absent -= end_pfn - start_pfn;
+ }
+ return nr_absent;
+}
+
+/**
+ * absent_pages_in_range - Return number of page frames in holes within a range
+ * @start_pfn: The start PFN to start searching for holes
+ * @end_pfn: The end PFN to stop searching for holes
+ *
+ * Return: the number of pages frames in memory holes within a range.
+ */
+unsigned long __init absent_pages_in_range(unsigned long start_pfn,
+ unsigned long end_pfn)
+{
+ return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
+}
+
+/* Return the number of page frames in holes in a zone on a node */
+static unsigned long __init zone_absent_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long zone_start_pfn,
+ unsigned long zone_end_pfn)
+{
+ unsigned long nr_absent;
+
+ /* zone is empty, we don't have any absent pages */
+ if (zone_start_pfn == zone_end_pfn)
+ return 0;
+
+ nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
+
+ /*
+ * ZONE_MOVABLE handling.
+ * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
+ * and vice versa.
+ */
+ if (mirrored_kernelcore && zone_movable_pfn[nid]) {
+ unsigned long start_pfn, end_pfn;
+ struct memblock_region *r;
+
+ for_each_mem_region(r) {
+ start_pfn = clamp(memblock_region_memory_base_pfn(r),
+ zone_start_pfn, zone_end_pfn);
+ end_pfn = clamp(memblock_region_memory_end_pfn(r),
+ zone_start_pfn, zone_end_pfn);
+
+ if (zone_type == ZONE_MOVABLE &&
+ memblock_is_mirror(r))
+ nr_absent += end_pfn - start_pfn;
+
+ if (zone_type == ZONE_NORMAL &&
+ !memblock_is_mirror(r))
+ nr_absent += end_pfn - start_pfn;
+ }
+ }
+
+ return nr_absent;
+}
+
+/*
+ * Return the number of pages a zone spans in a node, including holes
+ * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
+ */
+static unsigned long __init zone_spanned_pages_in_node(int nid,
+ unsigned long zone_type,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn,
+ unsigned long *zone_start_pfn,
+ unsigned long *zone_end_pfn)
+{
+ unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
+ unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
+
+ /* Get the start and end of the zone */
+ *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
+ *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
+ adjust_zone_range_for_zone_movable(nid, zone_type, node_end_pfn,
+ zone_start_pfn, zone_end_pfn);
+
+ /* Check that this node has pages within the zone's required range */
+ if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
+ return 0;
+
+ /* Move the zone boundaries inside the node if necessary */
+ *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
+ *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
+
+ /* Return the spanned pages */
+ return *zone_end_pfn - *zone_start_pfn;
+}
+
+static void __init reset_memoryless_node_totalpages(struct pglist_data *pgdat)
+{
+ struct zone *z;
+
+ for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++) {
+ z->zone_start_pfn = 0;
+ z->spanned_pages = 0;
+ z->present_pages = 0;
+#if defined(CONFIG_MEMORY_HOTPLUG)
+ z->present_early_pages = 0;
+#endif
+ }
+
+ pgdat->node_spanned_pages = 0;
+ pgdat->node_present_pages = 0;
+ pr_debug("On node %d totalpages: 0\n", pgdat->node_id);
+}
+
+static void __init calculate_node_totalpages(struct pglist_data *pgdat,
+ unsigned long node_start_pfn,
+ unsigned long node_end_pfn)
+{
+ unsigned long realtotalpages = 0, totalpages = 0;
+ enum zone_type i;
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ struct zone *zone = pgdat->node_zones + i;
+ unsigned long zone_start_pfn, zone_end_pfn;
+ unsigned long spanned, absent;
+ unsigned long real_size;
+
+ spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
+ node_start_pfn,
+ node_end_pfn,
+ &zone_start_pfn,
+ &zone_end_pfn);
+ absent = zone_absent_pages_in_node(pgdat->node_id, i,
+ zone_start_pfn,
+ zone_end_pfn);
+
+ real_size = spanned - absent;
+
+ if (spanned)
+ zone->zone_start_pfn = zone_start_pfn;
+ else
+ zone->zone_start_pfn = 0;
+ zone->spanned_pages = spanned;
+ zone->present_pages = real_size;
+#if defined(CONFIG_MEMORY_HOTPLUG)
+ zone->present_early_pages = real_size;
+#endif
+
+ totalpages += spanned;
+ realtotalpages += real_size;
+ }
+
+ pgdat->node_spanned_pages = totalpages;
+ pgdat->node_present_pages = realtotalpages;
+ pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
+}
+
+static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
+ unsigned long present_pages)
+{
+ unsigned long pages = spanned_pages;
+
+ /*
+ * Provide a more accurate estimation if there are holes within
+ * the zone and SPARSEMEM is in use. If there are holes within the
+ * zone, each populated memory region may cost us one or two extra
+ * memmap pages due to alignment because memmap pages for each
+ * populated regions may not be naturally aligned on page boundary.
+ * So the (present_pages >> 4) heuristic is a tradeoff for that.
+ */
+ if (spanned_pages > present_pages + (present_pages >> 4) &&
+ IS_ENABLED(CONFIG_SPARSEMEM))
+ pages = present_pages;
+
+ return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
+}
+
+#ifdef CONFIG_TRANSPARENT_HUGEPAGE
+static void pgdat_init_split_queue(struct pglist_data *pgdat)
+{
+ struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
+
+ spin_lock_init(&ds_queue->split_queue_lock);
+ INIT_LIST_HEAD(&ds_queue->split_queue);
+ ds_queue->split_queue_len = 0;
+}
+#else
+static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
+#endif
+
+#ifdef CONFIG_COMPACTION
+static void pgdat_init_kcompactd(struct pglist_data *pgdat)
+{
+ init_waitqueue_head(&pgdat->kcompactd_wait);
+}
+#else
+static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
+#endif
+
+static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
+{
+ int i;
+
+ pgdat_resize_init(pgdat);
+ pgdat_kswapd_lock_init(pgdat);
+
+ pgdat_init_split_queue(pgdat);
+ pgdat_init_kcompactd(pgdat);
+
+ init_waitqueue_head(&pgdat->kswapd_wait);
+ init_waitqueue_head(&pgdat->pfmemalloc_wait);
+
+ for (i = 0; i < NR_VMSCAN_THROTTLE; i++)
+ init_waitqueue_head(&pgdat->reclaim_wait[i]);
+
+ pgdat_page_ext_init(pgdat);
+ lruvec_init(&pgdat->__lruvec);
+}
+
+static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
+ unsigned long remaining_pages)
+{
+ atomic_long_set(&zone->managed_pages, remaining_pages);
+ zone_set_nid(zone, nid);
+ zone->name = zone_names[idx];
+ zone->zone_pgdat = NODE_DATA(nid);
+ spin_lock_init(&zone->lock);
+ zone_seqlock_init(zone);
+ zone_pcp_init(zone);
+}
+
+static void __meminit zone_init_free_lists(struct zone *zone)
+{
+ unsigned int order, t;
+ for_each_migratetype_order(order, t) {
+ INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
+ zone->free_area[order].nr_free = 0;
+ }
+
+#ifdef CONFIG_UNACCEPTED_MEMORY
+ INIT_LIST_HEAD(&zone->unaccepted_pages);
+#endif
+}
+
+void __meminit init_currently_empty_zone(struct zone *zone,
+ unsigned long zone_start_pfn,
+ unsigned long size)
+{
+ struct pglist_data *pgdat = zone->zone_pgdat;
+ int zone_idx = zone_idx(zone) + 1;
+
+ if (zone_idx > pgdat->nr_zones)
+ pgdat->nr_zones = zone_idx;
+
+ zone->zone_start_pfn = zone_start_pfn;
+
+ mminit_dprintk(MMINIT_TRACE, "memmap_init",
+ "Initialising map node %d zone %lu pfns %lu -> %lu\n",
+ pgdat->node_id,
+ (unsigned long)zone_idx(zone),
+ zone_start_pfn, (zone_start_pfn + size));
+
+ zone_init_free_lists(zone);
+ zone->initialized = 1;
+}
+
+#ifndef CONFIG_SPARSEMEM
+/*
+ * Calculate the size of the zone->blockflags rounded to an unsigned long
+ * Start by making sure zonesize is a multiple of pageblock_order by rounding
+ * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
+ * round what is now in bits to nearest long in bits, then return it in
+ * bytes.
+ */
+static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
+{
+ unsigned long usemapsize;
+
+ zonesize += zone_start_pfn & (pageblock_nr_pages-1);
+ usemapsize = roundup(zonesize, pageblock_nr_pages);
+ usemapsize = usemapsize >> pageblock_order;
+ usemapsize *= NR_PAGEBLOCK_BITS;
+ usemapsize = roundup(usemapsize, BITS_PER_LONG);
+
+ return usemapsize / BITS_PER_BYTE;
+}
+
+static void __ref setup_usemap(struct zone *zone)
+{
+ unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
+ zone->spanned_pages);
+ zone->pageblock_flags = NULL;
+ if (usemapsize) {
+ zone->pageblock_flags =
+ memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
+ zone_to_nid(zone));
+ if (!zone->pageblock_flags)
+ panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
+ usemapsize, zone->name, zone_to_nid(zone));
+ }
+}
+#else
+static inline void setup_usemap(struct zone *zone) {}
+#endif /* CONFIG_SPARSEMEM */
+
+#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
+
+/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
+void __init set_pageblock_order(void)
+{
+ unsigned int order = MAX_PAGE_ORDER;
+
+ /* Check that pageblock_nr_pages has not already been setup */
+ if (pageblock_order)
+ return;
+
+ /* Don't let pageblocks exceed the maximum allocation granularity. */
+ if (HPAGE_SHIFT > PAGE_SHIFT && HUGETLB_PAGE_ORDER < order)
+ order = HUGETLB_PAGE_ORDER;
+
+ /*
+ * Assume the largest contiguous order of interest is a huge page.
+ * This value may be variable depending on boot parameters on powerpc.
+ */
+ pageblock_order = order;
+}
+#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
+/*
+ * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
+ * is unused as pageblock_order is set at compile-time. See
+ * include/linux/pageblock-flags.h for the values of pageblock_order based on
+ * the kernel config
+ */
+void __init set_pageblock_order(void)
+{
+}
+
+#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
+
+/*
+ * Set up the zone data structures
+ * - init pgdat internals
+ * - init all zones belonging to this node
+ *
+ * NOTE: this function is only called during memory hotplug
+ */
+#ifdef CONFIG_MEMORY_HOTPLUG
+void __ref free_area_init_core_hotplug(struct pglist_data *pgdat)
+{
+ int nid = pgdat->node_id;
+ enum zone_type z;
+ int cpu;
+
+ pgdat_init_internals(pgdat);
+
+ if (pgdat->per_cpu_nodestats == &boot_nodestats)
+ pgdat->per_cpu_nodestats = alloc_percpu(struct per_cpu_nodestat);
+
+ /*
+ * Reset the nr_zones, order and highest_zoneidx before reuse.
+ * Note that kswapd will init kswapd_highest_zoneidx properly
+ * when it starts in the near future.
+ */
+ pgdat->nr_zones = 0;
+ pgdat->kswapd_order = 0;
+ pgdat->kswapd_highest_zoneidx = 0;
+ pgdat->node_start_pfn = 0;
+ pgdat->node_present_pages = 0;
+
+ for_each_online_cpu(cpu) {
+ struct per_cpu_nodestat *p;
+
+ p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
+ memset(p, 0, sizeof(*p));
+ }
+
+ /*
+ * When memory is hot-added, all the memory is in offline state. So
+ * clear all zones' present_pages and managed_pages because they will
+ * be updated in online_pages() and offline_pages().
+ */
+ for (z = 0; z < MAX_NR_ZONES; z++) {
+ struct zone *zone = pgdat->node_zones + z;
+
+ zone->present_pages = 0;
+ zone_init_internals(zone, z, nid, 0);
+ }
+}
+#endif
+
+/*
+ * Set up the zone data structures:
+ * - mark all pages reserved
+ * - mark all memory queues empty
+ * - clear the memory bitmaps
+ *
+ * NOTE: pgdat should get zeroed by caller.
+ * NOTE: this function is only called during early init.
+ */
+static void __init free_area_init_core(struct pglist_data *pgdat)
+{
+ enum zone_type j;
+ int nid = pgdat->node_id;
+
+ pgdat_init_internals(pgdat);
+ pgdat->per_cpu_nodestats = &boot_nodestats;
+
+ for (j = 0; j < MAX_NR_ZONES; j++) {
+ struct zone *zone = pgdat->node_zones + j;
+ unsigned long size, freesize, memmap_pages;
+
+ size = zone->spanned_pages;
+ freesize = zone->present_pages;
+
+ /*
+ * Adjust freesize so that it accounts for how much memory
+ * is used by this zone for memmap. This affects the watermark
+ * and per-cpu initialisations
+ */
+ memmap_pages = calc_memmap_size(size, freesize);
+ if (!is_highmem_idx(j)) {
+ if (freesize >= memmap_pages) {
+ freesize -= memmap_pages;
+ if (memmap_pages)
+ pr_debug(" %s zone: %lu pages used for memmap\n",
+ zone_names[j], memmap_pages);
+ } else
+ pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n",
+ zone_names[j], memmap_pages, freesize);
+ }
+
+ /* Account for reserved pages */
+ if (j == 0 && freesize > dma_reserve) {
+ freesize -= dma_reserve;
+ pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
+ }
+
+ if (!is_highmem_idx(j))
+ nr_kernel_pages += freesize;
+ /* Charge for highmem memmap if there are enough kernel pages */
+ else if (nr_kernel_pages > memmap_pages * 2)
+ nr_kernel_pages -= memmap_pages;
+ nr_all_pages += freesize;
+
+ /*
+ * Set an approximate value for lowmem here, it will be adjusted
+ * when the bootmem allocator frees pages into the buddy system.
+ * And all highmem pages will be managed by the buddy system.
+ */
+ zone_init_internals(zone, j, nid, freesize);
+
+ if (!size)
+ continue;
+
+ setup_usemap(zone);
+ init_currently_empty_zone(zone, zone->zone_start_pfn, size);
+ }
+}
+
+void __init *memmap_alloc(phys_addr_t size, phys_addr_t align,
+ phys_addr_t min_addr, int nid, bool exact_nid)
+{
+ void *ptr;
+
+ if (exact_nid)
+ ptr = memblock_alloc_exact_nid_raw(size, align, min_addr,
+ MEMBLOCK_ALLOC_ACCESSIBLE,
+ nid);
+ else
+ ptr = memblock_alloc_try_nid_raw(size, align, min_addr,
+ MEMBLOCK_ALLOC_ACCESSIBLE,
+ nid);
+
+ if (ptr && size > 0)
+ page_init_poison(ptr, size);
+
+ return ptr;
+}
+
+#ifdef CONFIG_FLATMEM
+static void __init alloc_node_mem_map(struct pglist_data *pgdat)
+{
+ unsigned long start, offset, size, end;
+ struct page *map;
+
+ /* Skip empty nodes */
+ if (!pgdat->node_spanned_pages)
+ return;
+
+ start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
+ offset = pgdat->node_start_pfn - start;
+ /*
+ * The zone's endpoints aren't required to be MAX_PAGE_ORDER
+ * aligned but the node_mem_map endpoints must be in order
+ * for the buddy allocator to function correctly.
+ */
+ end = ALIGN(pgdat_end_pfn(pgdat), MAX_ORDER_NR_PAGES);
+ size = (end - start) * sizeof(struct page);
+ map = memmap_alloc(size, SMP_CACHE_BYTES, MEMBLOCK_LOW_LIMIT,
+ pgdat->node_id, false);
+ if (!map)
+ panic("Failed to allocate %ld bytes for node %d memory map\n",
+ size, pgdat->node_id);
+ pgdat->node_mem_map = map + offset;
+ pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
+ __func__, pgdat->node_id, (unsigned long)pgdat,
+ (unsigned long)pgdat->node_mem_map);
+#ifndef CONFIG_NUMA
+ /* the global mem_map is just set as node 0's */
+ if (pgdat == NODE_DATA(0)) {
+ mem_map = NODE_DATA(0)->node_mem_map;
+ if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
+ mem_map -= offset;
+ }
+#endif
+}
+#else
+static inline void alloc_node_mem_map(struct pglist_data *pgdat) { }
+#endif /* CONFIG_FLATMEM */
+
+/**
+ * get_pfn_range_for_nid - Return the start and end page frames for a node
+ * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
+ * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
+ * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
+ *
+ * It returns the start and end page frame of a node based on information
+ * provided by memblock_set_node(). If called for a node
+ * with no available memory, the start and end PFNs will be 0.
+ */
+void __init get_pfn_range_for_nid(unsigned int nid,
+ unsigned long *start_pfn, unsigned long *end_pfn)
+{
+ unsigned long this_start_pfn, this_end_pfn;
+ int i;
+
+ *start_pfn = -1UL;
+ *end_pfn = 0;
+
+ for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
+ *start_pfn = min(*start_pfn, this_start_pfn);
+ *end_pfn = max(*end_pfn, this_end_pfn);
+ }
+
+ if (*start_pfn == -1UL)
+ *start_pfn = 0;
+}
+
+static void __init free_area_init_node(int nid)
+{
+ pg_data_t *pgdat = NODE_DATA(nid);
+ unsigned long start_pfn = 0;
+ unsigned long end_pfn = 0;
+
+ /* pg_data_t should be reset to zero when it's allocated */
+ WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
+
+ get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
+
+ pgdat->node_id = nid;
+ pgdat->node_start_pfn = start_pfn;
+ pgdat->per_cpu_nodestats = NULL;
+
+ if (start_pfn != end_pfn) {
+ pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
+ (u64)start_pfn << PAGE_SHIFT,
+ end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
+
+ calculate_node_totalpages(pgdat, start_pfn, end_pfn);
+ } else {
+ pr_info("Initmem setup node %d as memoryless\n", nid);
+
+ reset_memoryless_node_totalpages(pgdat);
+ }
+
+ alloc_node_mem_map(pgdat);
+ pgdat_set_deferred_range(pgdat);
+
+ free_area_init_core(pgdat);
+ lru_gen_init_pgdat(pgdat);
+}
+
+/* Any regular or high memory on that node ? */
+static void __init check_for_memory(pg_data_t *pgdat)
+{
+ enum zone_type zone_type;
+
+ for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
+ struct zone *zone = &pgdat->node_zones[zone_type];
+ if (populated_zone(zone)) {
+ if (IS_ENABLED(CONFIG_HIGHMEM))
+ node_set_state(pgdat->node_id, N_HIGH_MEMORY);
+ if (zone_type <= ZONE_NORMAL)
+ node_set_state(pgdat->node_id, N_NORMAL_MEMORY);
+ break;
+ }
+ }
+}
+
+#if MAX_NUMNODES > 1
+/*
+ * Figure out the number of possible node ids.
+ */
+void __init setup_nr_node_ids(void)
+{
+ unsigned int highest;
+
+ highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
+ nr_node_ids = highest + 1;
+}
+#endif
+
+/*
+ * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
+ * such cases we allow max_zone_pfn sorted in the descending order
+ */
+static bool arch_has_descending_max_zone_pfns(void)
+{
+ return IS_ENABLED(CONFIG_ARC) && !IS_ENABLED(CONFIG_ARC_HAS_PAE40);
+}
+
+/**
+ * free_area_init - Initialise all pg_data_t and zone data
+ * @max_zone_pfn: an array of max PFNs for each zone
+ *
+ * This will call free_area_init_node() for each active node in the system.
+ * Using the page ranges provided by memblock_set_node(), the size of each
+ * zone in each node and their holes is calculated. If the maximum PFN
+ * between two adjacent zones match, it is assumed that the zone is empty.
+ * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
+ * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
+ * starts where the previous one ended. For example, ZONE_DMA32 starts
+ * at arch_max_dma_pfn.
+ */
+void __init free_area_init(unsigned long *max_zone_pfn)
+{
+ unsigned long start_pfn, end_pfn;
+ int i, nid, zone;
+ bool descending;
+
+ /* Record where the zone boundaries are */
+ memset(arch_zone_lowest_possible_pfn, 0,
+ sizeof(arch_zone_lowest_possible_pfn));
+ memset(arch_zone_highest_possible_pfn, 0,
+ sizeof(arch_zone_highest_possible_pfn));
+
+ start_pfn = PHYS_PFN(memblock_start_of_DRAM());
+ descending = arch_has_descending_max_zone_pfns();
+
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ if (descending)
+ zone = MAX_NR_ZONES - i - 1;
+ else
+ zone = i;
+
+ if (zone == ZONE_MOVABLE)
+ continue;
+
+ end_pfn = max(max_zone_pfn[zone], start_pfn);
+ arch_zone_lowest_possible_pfn[zone] = start_pfn;
+ arch_zone_highest_possible_pfn[zone] = end_pfn;
+
+ start_pfn = end_pfn;
+ }
+
+ /* Find the PFNs that ZONE_MOVABLE begins at in each node */
+ memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
+ find_zone_movable_pfns_for_nodes();
+
+ /* Print out the zone ranges */
+ pr_info("Zone ranges:\n");
+ for (i = 0; i < MAX_NR_ZONES; i++) {
+ if (i == ZONE_MOVABLE)
+ continue;
+ pr_info(" %-8s ", zone_names[i]);
+ if (arch_zone_lowest_possible_pfn[i] ==
+ arch_zone_highest_possible_pfn[i])
+ pr_cont("empty\n");
+ else
+ pr_cont("[mem %#018Lx-%#018Lx]\n",
+ (u64)arch_zone_lowest_possible_pfn[i]
+ << PAGE_SHIFT,
+ ((u64)arch_zone_highest_possible_pfn[i]
+ << PAGE_SHIFT) - 1);
+ }
+
+ /* Print out the PFNs ZONE_MOVABLE begins at in each node */
+ pr_info("Movable zone start for each node\n");
+ for (i = 0; i < MAX_NUMNODES; i++) {
+ if (zone_movable_pfn[i])
+ pr_info(" Node %d: %#018Lx\n", i,
+ (u64)zone_movable_pfn[i] << PAGE_SHIFT);
+ }
+
+ /*
+ * Print out the early node map, and initialize the
+ * subsection-map relative to active online memory ranges to
+ * enable future "sub-section" extensions of the memory map.
+ */
+ pr_info("Early memory node ranges\n");
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
+ pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
+ (u64)start_pfn << PAGE_SHIFT,
+ ((u64)end_pfn << PAGE_SHIFT) - 1);
+ subsection_map_init(start_pfn, end_pfn - start_pfn);
+ }
+
+ /* Initialise every node */
+ mminit_verify_pageflags_layout();
+ setup_nr_node_ids();
+ set_pageblock_order();
+
+ for_each_node(nid) {
+ pg_data_t *pgdat;
+
+ if (!node_online(nid)) {
+ /* Allocator not initialized yet */
+ pgdat = arch_alloc_nodedata(nid);
+ if (!pgdat)
+ panic("Cannot allocate %zuB for node %d.\n",
+ sizeof(*pgdat), nid);
+ arch_refresh_nodedata(nid, pgdat);
+ free_area_init_node(nid);
+
+ /*
+ * We do not want to confuse userspace by sysfs
+ * files/directories for node without any memory
+ * attached to it, so this node is not marked as
+ * N_MEMORY and not marked online so that no sysfs
+ * hierarchy will be created via register_one_node for
+ * it. The pgdat will get fully initialized by
+ * hotadd_init_pgdat() when memory is hotplugged into
+ * this node.
+ */
+ continue;
+ }
+
+ pgdat = NODE_DATA(nid);
+ free_area_init_node(nid);
+
+ /* Any memory on that node */
+ if (pgdat->node_present_pages)
+ node_set_state(nid, N_MEMORY);
+ check_for_memory(pgdat);
+ }
+
+ memmap_init();
+
+ /* disable hash distribution for systems with a single node */
+ fixup_hashdist();
+}
+
+/**
+ * node_map_pfn_alignment - determine the maximum internode alignment
+ *
+ * This function should be called after node map is populated and sorted.
+ * It calculates the maximum power of two alignment which can distinguish
+ * all the nodes.
+ *
+ * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
+ * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
+ * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
+ * shifted, 1GiB is enough and this function will indicate so.
+ *
+ * This is used to test whether pfn -> nid mapping of the chosen memory
+ * model has fine enough granularity to avoid incorrect mapping for the
+ * populated node map.
+ *
+ * Return: the determined alignment in pfn's. 0 if there is no alignment
+ * requirement (single node).
+ */
+unsigned long __init node_map_pfn_alignment(void)
+{
+ unsigned long accl_mask = 0, last_end = 0;
+ unsigned long start, end, mask;
+ int last_nid = NUMA_NO_NODE;
+ int i, nid;
+
+ for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
+ if (!start || last_nid < 0 || last_nid == nid) {
+ last_nid = nid;
+ last_end = end;
+ continue;
+ }
+
+ /*
+ * Start with a mask granular enough to pin-point to the
+ * start pfn and tick off bits one-by-one until it becomes
+ * too coarse to separate the current node from the last.
+ */
+ mask = ~((1 << __ffs(start)) - 1);
+ while (mask && last_end <= (start & (mask << 1)))
+ mask <<= 1;
+
+ /* accumulate all internode masks */
+ accl_mask |= mask;
+ }
+
+ /* convert mask to number of pages */
+ return ~accl_mask + 1;
+}
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+static void __init deferred_free_range(unsigned long pfn,
+ unsigned long nr_pages)
+{
+ struct page *page;
+ unsigned long i;
+
+ if (!nr_pages)
+ return;
+
+ page = pfn_to_page(pfn);
+
+ /* Free a large naturally-aligned chunk if possible */
+ if (nr_pages == MAX_ORDER_NR_PAGES && IS_MAX_ORDER_ALIGNED(pfn)) {
+ for (i = 0; i < nr_pages; i += pageblock_nr_pages)
+ set_pageblock_migratetype(page + i, MIGRATE_MOVABLE);
+ __free_pages_core(page, MAX_PAGE_ORDER);
+ return;
+ }
+
+ /* Accept chunks smaller than MAX_PAGE_ORDER upfront */
+ accept_memory(PFN_PHYS(pfn), PFN_PHYS(pfn + nr_pages));
+
+ for (i = 0; i < nr_pages; i++, page++, pfn++) {
+ if (pageblock_aligned(pfn))
+ set_pageblock_migratetype(page, MIGRATE_MOVABLE);
+ __free_pages_core(page, 0);
+ }
+}
+
+/* Completion tracking for deferred_init_memmap() threads */
+static atomic_t pgdat_init_n_undone __initdata;
+static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
+
+static inline void __init pgdat_init_report_one_done(void)
+{
+ if (atomic_dec_and_test(&pgdat_init_n_undone))
+ complete(&pgdat_init_all_done_comp);
+}
+
+/*
+ * Returns true if page needs to be initialized or freed to buddy allocator.
+ *
+ * We check if a current MAX_PAGE_ORDER block is valid by only checking the
+ * validity of the head pfn.
+ */
+static inline bool __init deferred_pfn_valid(unsigned long pfn)
+{
+ if (IS_MAX_ORDER_ALIGNED(pfn) && !pfn_valid(pfn))
+ return false;
+ return true;
+}
+
+/*
+ * Free pages to buddy allocator. Try to free aligned pages in
+ * MAX_ORDER_NR_PAGES sizes.
+ */
+static void __init deferred_free_pages(unsigned long pfn,
+ unsigned long end_pfn)
+{
+ unsigned long nr_free = 0;
+
+ for (; pfn < end_pfn; pfn++) {
+ if (!deferred_pfn_valid(pfn)) {
+ deferred_free_range(pfn - nr_free, nr_free);
+ nr_free = 0;
+ } else if (IS_MAX_ORDER_ALIGNED(pfn)) {
+ deferred_free_range(pfn - nr_free, nr_free);
+ nr_free = 1;
+ } else {
+ nr_free++;
+ }
+ }
+ /* Free the last block of pages to allocator */
+ deferred_free_range(pfn - nr_free, nr_free);
+}
+
+/*
+ * Initialize struct pages. We minimize pfn page lookups and scheduler checks
+ * by performing it only once every MAX_ORDER_NR_PAGES.
+ * Return number of pages initialized.
+ */
+static unsigned long __init deferred_init_pages(struct zone *zone,
+ unsigned long pfn,
+ unsigned long end_pfn)
+{
+ int nid = zone_to_nid(zone);
+ unsigned long nr_pages = 0;
+ int zid = zone_idx(zone);
+ struct page *page = NULL;
+
+ for (; pfn < end_pfn; pfn++) {
+ if (!deferred_pfn_valid(pfn)) {
+ page = NULL;
+ continue;
+ } else if (!page || IS_MAX_ORDER_ALIGNED(pfn)) {
+ page = pfn_to_page(pfn);
+ } else {
+ page++;
+ }
+ __init_single_page(page, pfn, zid, nid);
+ nr_pages++;
+ }
+ return (nr_pages);
+}
+
+/*
+ * This function is meant to pre-load the iterator for the zone init.
+ * Specifically it walks through the ranges until we are caught up to the
+ * first_init_pfn value and exits there. If we never encounter the value we
+ * return false indicating there are no valid ranges left.
+ */
+static bool __init
+deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
+ unsigned long *spfn, unsigned long *epfn,
+ unsigned long first_init_pfn)
+{
+ u64 j;
+
+ /*
+ * Start out by walking through the ranges in this zone that have
+ * already been initialized. We don't need to do anything with them
+ * so we just need to flush them out of the system.
+ */
+ for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
+ if (*epfn <= first_init_pfn)
+ continue;
+ if (*spfn < first_init_pfn)
+ *spfn = first_init_pfn;
+ *i = j;
+ return true;
+ }
+
+ return false;
+}
+
+/*
+ * Initialize and free pages. We do it in two loops: first we initialize
+ * struct page, then free to buddy allocator, because while we are
+ * freeing pages we can access pages that are ahead (computing buddy
+ * page in __free_one_page()).
+ *
+ * In order to try and keep some memory in the cache we have the loop
+ * broken along max page order boundaries. This way we will not cause
+ * any issues with the buddy page computation.
+ */
+static unsigned long __init
+deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
+ unsigned long *end_pfn)
+{
+ unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
+ unsigned long spfn = *start_pfn, epfn = *end_pfn;
+ unsigned long nr_pages = 0;
+ u64 j = *i;
+
+ /* First we loop through and initialize the page values */
+ for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
+ unsigned long t;
+
+ if (mo_pfn <= *start_pfn)
+ break;
+
+ t = min(mo_pfn, *end_pfn);
+ nr_pages += deferred_init_pages(zone, *start_pfn, t);
+
+ if (mo_pfn < *end_pfn) {
+ *start_pfn = mo_pfn;
+ break;
+ }
+ }
+
+ /* Reset values and now loop through freeing pages as needed */
+ swap(j, *i);
+
+ for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
+ unsigned long t;
+
+ if (mo_pfn <= spfn)
+ break;
+
+ t = min(mo_pfn, epfn);
+ deferred_free_pages(spfn, t);
+
+ if (mo_pfn <= epfn)
+ break;
+ }
+
+ return nr_pages;
+}
+
+static void __init
+deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
+ void *arg)
+{
+ unsigned long spfn, epfn;
+ struct zone *zone = arg;
+ u64 i;
+
+ deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
+
+ /*
+ * Initialize and free pages in MAX_PAGE_ORDER sized increments so that
+ * we can avoid introducing any issues with the buddy allocator.
+ */
+ while (spfn < end_pfn) {
+ deferred_init_maxorder(&i, zone, &spfn, &epfn);
+ cond_resched();
+ }
+}
+
+/* An arch may override for more concurrency. */
+__weak int __init
+deferred_page_init_max_threads(const struct cpumask *node_cpumask)
+{
+ return 1;
+}
+
+/* Initialise remaining memory on a node */
+static int __init deferred_init_memmap(void *data)
+{
+ pg_data_t *pgdat = data;
+ const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
+ unsigned long spfn = 0, epfn = 0;
+ unsigned long first_init_pfn, flags;
+ unsigned long start = jiffies;
+ struct zone *zone;
+ int zid, max_threads;
+ u64 i;
+
+ /* Bind memory initialisation thread to a local node if possible */
+ if (!cpumask_empty(cpumask))
+ set_cpus_allowed_ptr(current, cpumask);
+
+ pgdat_resize_lock(pgdat, &flags);
+ first_init_pfn = pgdat->first_deferred_pfn;
+ if (first_init_pfn == ULONG_MAX) {
+ pgdat_resize_unlock(pgdat, &flags);
+ pgdat_init_report_one_done();
+ return 0;
+ }
+
+ /* Sanity check boundaries */
+ BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
+ BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
+ pgdat->first_deferred_pfn = ULONG_MAX;
+
+ /*
+ * Once we unlock here, the zone cannot be grown anymore, thus if an
+ * interrupt thread must allocate this early in boot, zone must be
+ * pre-grown prior to start of deferred page initialization.
+ */
+ pgdat_resize_unlock(pgdat, &flags);
+
+ /* Only the highest zone is deferred so find it */
+ for (zid = 0; zid < MAX_NR_ZONES; zid++) {
+ zone = pgdat->node_zones + zid;
+ if (first_init_pfn < zone_end_pfn(zone))
+ break;
+ }
+
+ /* If the zone is empty somebody else may have cleared out the zone */
+ if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
+ first_init_pfn))
+ goto zone_empty;
+
+ max_threads = deferred_page_init_max_threads(cpumask);
+
+ while (spfn < epfn) {
+ unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
+ struct padata_mt_job job = {
+ .thread_fn = deferred_init_memmap_chunk,
+ .fn_arg = zone,
+ .start = spfn,
+ .size = epfn_align - spfn,
+ .align = PAGES_PER_SECTION,
+ .min_chunk = PAGES_PER_SECTION,
+ .max_threads = max_threads,
+ };
+
+ padata_do_multithreaded(&job);
+ deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
+ epfn_align);
+ }
+zone_empty:
+ /* Sanity check that the next zone really is unpopulated */
+ WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
+
+ pr_info("node %d deferred pages initialised in %ums\n",
+ pgdat->node_id, jiffies_to_msecs(jiffies - start));
+
+ pgdat_init_report_one_done();
+ return 0;
+}
+
+/*
+ * If this zone has deferred pages, try to grow it by initializing enough
+ * deferred pages to satisfy the allocation specified by order, rounded up to
+ * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments
+ * of SECTION_SIZE bytes by initializing struct pages in increments of
+ * PAGES_PER_SECTION * sizeof(struct page) bytes.
+ *
+ * Return true when zone was grown, otherwise return false. We return true even
+ * when we grow less than requested, to let the caller decide if there are
+ * enough pages to satisfy the allocation.
+ *
+ * Note: We use noinline because this function is needed only during boot, and
+ * it is called from a __ref function _deferred_grow_zone. This way we are
+ * making sure that it is not inlined into permanent text section.
+ */
+bool __init deferred_grow_zone(struct zone *zone, unsigned int order)
+{
+ unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
+ pg_data_t *pgdat = zone->zone_pgdat;
+ unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
+ unsigned long spfn, epfn, flags;
+ unsigned long nr_pages = 0;
+ u64 i;
+
+ /* Only the last zone may have deferred pages */
+ if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
+ return false;
+
+ pgdat_resize_lock(pgdat, &flags);
+
+ /*
+ * If someone grew this zone while we were waiting for spinlock, return
+ * true, as there might be enough pages already.
+ */
+ if (first_deferred_pfn != pgdat->first_deferred_pfn) {
+ pgdat_resize_unlock(pgdat, &flags);
+ return true;
+ }
+
+ /* If the zone is empty somebody else may have cleared out the zone */
+ if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
+ first_deferred_pfn)) {
+ pgdat->first_deferred_pfn = ULONG_MAX;
+ pgdat_resize_unlock(pgdat, &flags);
+ /* Retry only once. */
+ return first_deferred_pfn != ULONG_MAX;
+ }
+
+ /*
+ * Initialize and free pages in MAX_PAGE_ORDER sized increments so
+ * that we can avoid introducing any issues with the buddy
+ * allocator.
+ */
+ while (spfn < epfn) {
+ /* update our first deferred PFN for this section */
+ first_deferred_pfn = spfn;
+
+ nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
+ touch_nmi_watchdog();
+
+ /* We should only stop along section boundaries */
+ if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
+ continue;
+
+ /* If our quota has been met we can stop here */
+ if (nr_pages >= nr_pages_needed)
+ break;
+ }
+
+ pgdat->first_deferred_pfn = spfn;
+ pgdat_resize_unlock(pgdat, &flags);
+
+ return nr_pages > 0;
+}
+
+#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
+
+#ifdef CONFIG_CMA
+void __init init_cma_reserved_pageblock(struct page *page)
+{
+ unsigned i = pageblock_nr_pages;
+ struct page *p = page;
+
+ do {
+ __ClearPageReserved(p);
+ set_page_count(p, 0);
+ } while (++p, --i);
+
+ set_pageblock_migratetype(page, MIGRATE_CMA);
+ set_page_refcounted(page);
+ __free_pages(page, pageblock_order);
+
+ adjust_managed_page_count(page, pageblock_nr_pages);
+ page_zone(page)->cma_pages += pageblock_nr_pages;
+}
+#endif
+
+void set_zone_contiguous(struct zone *zone)
+{
+ unsigned long block_start_pfn = zone->zone_start_pfn;
+ unsigned long block_end_pfn;
+
+ block_end_pfn = pageblock_end_pfn(block_start_pfn);
+ for (; block_start_pfn < zone_end_pfn(zone);
+ block_start_pfn = block_end_pfn,
+ block_end_pfn += pageblock_nr_pages) {
+
+ block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
+
+ if (!__pageblock_pfn_to_page(block_start_pfn,
+ block_end_pfn, zone))
+ return;
+ cond_resched();
+ }
+
+ /* We confirm that there is no hole */
+ zone->contiguous = true;
+}
+
+void __init page_alloc_init_late(void)
+{
+ struct zone *zone;
+ int nid;
+
+#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
+
+ /* There will be num_node_state(N_MEMORY) threads */
+ atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
+ for_each_node_state(nid, N_MEMORY) {
+ kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
+ }
+
+ /* Block until all are initialised */
+ wait_for_completion(&pgdat_init_all_done_comp);
+
+ /*
+ * We initialized the rest of the deferred pages. Permanently disable
+ * on-demand struct page initialization.
+ */
+ static_branch_disable(&deferred_pages);
+
+ /* Reinit limits that are based on free pages after the kernel is up */
+ files_maxfiles_init();
+#endif
+
+ buffer_init();
+
+ /* Discard memblock private memory */
+ memblock_discard();
+
+ for_each_node_state(nid, N_MEMORY)
+ shuffle_free_memory(NODE_DATA(nid));
+
+ for_each_populated_zone(zone)
+ set_zone_contiguous(zone);
+
+ /* Initialize page ext after all struct pages are initialized. */
+ if (deferred_struct_pages)
+ page_ext_init();
+
+ page_alloc_sysctl_init();
+}
+
+#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
+/*
+ * Returns the number of pages that arch has reserved but
+ * is not known to alloc_large_system_hash().
+ */
+static unsigned long __init arch_reserved_kernel_pages(void)
+{
+ return 0;
+}
+#endif
+
+/*
+ * Adaptive scale is meant to reduce sizes of hash tables on large memory
+ * machines. As memory size is increased the scale is also increased but at
+ * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
+ * quadruples the scale is increased by one, which means the size of hash table
+ * only doubles, instead of quadrupling as well.
+ * Because 32-bit systems cannot have large physical memory, where this scaling
+ * makes sense, it is disabled on such platforms.
+ */
+#if __BITS_PER_LONG > 32
+#define ADAPT_SCALE_BASE (64ul << 30)
+#define ADAPT_SCALE_SHIFT 2
+#define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
+#endif
+
+/*
+ * allocate a large system hash table from bootmem
+ * - it is assumed that the hash table must contain an exact power-of-2
+ * quantity of entries
+ * - limit is the number of hash buckets, not the total allocation size
+ */
+void *__init alloc_large_system_hash(const char *tablename,
+ unsigned long bucketsize,
+ unsigned long numentries,
+ int scale,
+ int flags,
+ unsigned int *_hash_shift,
+ unsigned int *_hash_mask,
+ unsigned long low_limit,
+ unsigned long high_limit)
+{
+ unsigned long long max = high_limit;
+ unsigned long log2qty, size;
+ void *table;
+ gfp_t gfp_flags;
+ bool virt;
+ bool huge;
+
+ /* allow the kernel cmdline to have a say */
+ if (!numentries) {
+ /* round applicable memory size up to nearest megabyte */
+ numentries = nr_kernel_pages;
+ numentries -= arch_reserved_kernel_pages();
+
+ /* It isn't necessary when PAGE_SIZE >= 1MB */
+ if (PAGE_SIZE < SZ_1M)
+ numentries = round_up(numentries, SZ_1M / PAGE_SIZE);
+
+#if __BITS_PER_LONG > 32
+ if (!high_limit) {
+ unsigned long adapt;
+
+ for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
+ adapt <<= ADAPT_SCALE_SHIFT)
+ scale++;
+ }
+#endif
+
+ /* limit to 1 bucket per 2^scale bytes of low memory */
+ if (scale > PAGE_SHIFT)
+ numentries >>= (scale - PAGE_SHIFT);
+ else
+ numentries <<= (PAGE_SHIFT - scale);
+
+ if (unlikely((numentries * bucketsize) < PAGE_SIZE))
+ numentries = PAGE_SIZE / bucketsize;
+ }
+ numentries = roundup_pow_of_two(numentries);
+
+ /* limit allocation size to 1/16 total memory by default */
+ if (max == 0) {
+ max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
+ do_div(max, bucketsize);
+ }
+ max = min(max, 0x80000000ULL);
+
+ if (numentries < low_limit)
+ numentries = low_limit;
+ if (numentries > max)
+ numentries = max;
+
+ log2qty = ilog2(numentries);
+
+ gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
+ do {
+ virt = false;
+ size = bucketsize << log2qty;
+ if (flags & HASH_EARLY) {
+ if (flags & HASH_ZERO)
+ table = memblock_alloc(size, SMP_CACHE_BYTES);
+ else
+ table = memblock_alloc_raw(size,
+ SMP_CACHE_BYTES);
+ } else if (get_order(size) > MAX_PAGE_ORDER || hashdist) {
+ table = vmalloc_huge(size, gfp_flags);
+ virt = true;
+ if (table)
+ huge = is_vm_area_hugepages(table);
+ } else {
+ /*
+ * If bucketsize is not a power-of-two, we may free
+ * some pages at the end of hash table which
+ * alloc_pages_exact() automatically does
+ */
+ table = alloc_pages_exact(size, gfp_flags);
+ kmemleak_alloc(table, size, 1, gfp_flags);
+ }
+ } while (!table && size > PAGE_SIZE && --log2qty);
+
+ if (!table)
+ panic("Failed to allocate %s hash table\n", tablename);
+
+ pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
+ tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
+ virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
+
+ if (_hash_shift)
+ *_hash_shift = log2qty;
+ if (_hash_mask)
+ *_hash_mask = (1 << log2qty) - 1;
+
+ return table;
+}
+
+/**
+ * set_dma_reserve - set the specified number of pages reserved in the first zone
+ * @new_dma_reserve: The number of pages to mark reserved
+ *
+ * The per-cpu batchsize and zone watermarks are determined by managed_pages.
+ * In the DMA zone, a significant percentage may be consumed by kernel image
+ * and other unfreeable allocations which can skew the watermarks badly. This
+ * function may optionally be used to account for unfreeable pages in the
+ * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
+ * smaller per-cpu batchsize.
+ */
+void __init set_dma_reserve(unsigned long new_dma_reserve)
+{
+ dma_reserve = new_dma_reserve;
+}
+
+void __init memblock_free_pages(struct page *page, unsigned long pfn,
+ unsigned int order)
+{
+
+ if (IS_ENABLED(CONFIG_DEFERRED_STRUCT_PAGE_INIT)) {
+ int nid = early_pfn_to_nid(pfn);
+
+ if (!early_page_initialised(pfn, nid))
+ return;
+ }
+
+ if (!kmsan_memblock_free_pages(page, order)) {
+ /* KMSAN will take care of these pages. */
+ return;
+ }
+ __free_pages_core(page, order);
+}
+
+DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
+EXPORT_SYMBOL(init_on_alloc);
+
+DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
+EXPORT_SYMBOL(init_on_free);
+
+static bool _init_on_alloc_enabled_early __read_mostly
+ = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
+static int __init early_init_on_alloc(char *buf)
+{
+
+ return kstrtobool(buf, &_init_on_alloc_enabled_early);
+}
+early_param("init_on_alloc", early_init_on_alloc);
+
+static bool _init_on_free_enabled_early __read_mostly
+ = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
+static int __init early_init_on_free(char *buf)
+{
+ return kstrtobool(buf, &_init_on_free_enabled_early);
+}
+early_param("init_on_free", early_init_on_free);
+
+DEFINE_STATIC_KEY_MAYBE(CONFIG_DEBUG_VM, check_pages_enabled);
+
+/*
+ * Enable static keys related to various memory debugging and hardening options.
+ * Some override others, and depend on early params that are evaluated in the
+ * order of appearance. So we need to first gather the full picture of what was
+ * enabled, and then make decisions.
+ */
+static void __init mem_debugging_and_hardening_init(void)
+{
+ bool page_poisoning_requested = false;
+ bool want_check_pages = false;
+
+#ifdef CONFIG_PAGE_POISONING
+ /*
+ * Page poisoning is debug page alloc for some arches. If
+ * either of those options are enabled, enable poisoning.
+ */
+ if (page_poisoning_enabled() ||
+ (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
+ debug_pagealloc_enabled())) {
+ static_branch_enable(&_page_poisoning_enabled);
+ page_poisoning_requested = true;
+ want_check_pages = true;
+ }
+#endif
+
+ if ((_init_on_alloc_enabled_early || _init_on_free_enabled_early) &&
+ page_poisoning_requested) {
+ pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
+ "will take precedence over init_on_alloc and init_on_free\n");
+ _init_on_alloc_enabled_early = false;
+ _init_on_free_enabled_early = false;
+ }
+
+ if (_init_on_alloc_enabled_early) {
+ want_check_pages = true;
+ static_branch_enable(&init_on_alloc);
+ } else {
+ static_branch_disable(&init_on_alloc);
+ }
+
+ if (_init_on_free_enabled_early) {
+ want_check_pages = true;
+ static_branch_enable(&init_on_free);
+ } else {
+ static_branch_disable(&init_on_free);
+ }
+
+ if (IS_ENABLED(CONFIG_KMSAN) &&
+ (_init_on_alloc_enabled_early || _init_on_free_enabled_early))
+ pr_info("mem auto-init: please make sure init_on_alloc and init_on_free are disabled when running KMSAN\n");
+
+#ifdef CONFIG_DEBUG_PAGEALLOC
+ if (debug_pagealloc_enabled()) {
+ want_check_pages = true;
+ static_branch_enable(&_debug_pagealloc_enabled);
+
+ if (debug_guardpage_minorder())
+ static_branch_enable(&_debug_guardpage_enabled);
+ }
+#endif
+
+ /*
+ * Any page debugging or hardening option also enables sanity checking
+ * of struct pages being allocated or freed. With CONFIG_DEBUG_VM it's
+ * enabled already.
+ */
+ if (!IS_ENABLED(CONFIG_DEBUG_VM) && want_check_pages)
+ static_branch_enable(&check_pages_enabled);
+}
+
+/* Report memory auto-initialization states for this boot. */
+static void __init report_meminit(void)
+{
+ const char *stack;
+
+ if (IS_ENABLED(CONFIG_INIT_STACK_ALL_PATTERN))
+ stack = "all(pattern)";
+ else if (IS_ENABLED(CONFIG_INIT_STACK_ALL_ZERO))
+ stack = "all(zero)";
+ else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF_ALL))
+ stack = "byref_all(zero)";
+ else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_BYREF))
+ stack = "byref(zero)";
+ else if (IS_ENABLED(CONFIG_GCC_PLUGIN_STRUCTLEAK_USER))
+ stack = "__user(zero)";
+ else
+ stack = "off";
+
+ pr_info("mem auto-init: stack:%s, heap alloc:%s, heap free:%s\n",
+ stack, want_init_on_alloc(GFP_KERNEL) ? "on" : "off",
+ want_init_on_free() ? "on" : "off");
+ if (want_init_on_free())
+ pr_info("mem auto-init: clearing system memory may take some time...\n");
+}
+
+static void __init mem_init_print_info(void)
+{
+ unsigned long physpages, codesize, datasize, rosize, bss_size;
+ unsigned long init_code_size, init_data_size;
+
+ physpages = get_num_physpages();
+ codesize = _etext - _stext;
+ datasize = _edata - _sdata;
+ rosize = __end_rodata - __start_rodata;
+ bss_size = __bss_stop - __bss_start;
+ init_data_size = __init_end - __init_begin;
+ init_code_size = _einittext - _sinittext;
+
+ /*
+ * Detect special cases and adjust section sizes accordingly:
+ * 1) .init.* may be embedded into .data sections
+ * 2) .init.text.* may be out of [__init_begin, __init_end],
+ * please refer to arch/tile/kernel/vmlinux.lds.S.
+ * 3) .rodata.* may be embedded into .text or .data sections.
+ */
+#define adj_init_size(start, end, size, pos, adj) \
+ do { \
+ if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
+ size -= adj; \
+ } while (0)
+
+ adj_init_size(__init_begin, __init_end, init_data_size,
+ _sinittext, init_code_size);
+ adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
+ adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
+ adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
+ adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
+
+#undef adj_init_size
+
+ pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
+#ifdef CONFIG_HIGHMEM
+ ", %luK highmem"
+#endif
+ ")\n",
+ K(nr_free_pages()), K(physpages),
+ codesize / SZ_1K, datasize / SZ_1K, rosize / SZ_1K,
+ (init_data_size + init_code_size) / SZ_1K, bss_size / SZ_1K,
+ K(physpages - totalram_pages() - totalcma_pages),
+ K(totalcma_pages)
+#ifdef CONFIG_HIGHMEM
+ , K(totalhigh_pages())
+#endif
+ );
+}
+
+/*
+ * Set up kernel memory allocators
+ */
+void __init mm_core_init(void)
+{
+ /* Initializations relying on SMP setup */
+ build_all_zonelists(NULL);
+ page_alloc_init_cpuhp();
+
+ /*
+ * page_ext requires contiguous pages,
+ * bigger than MAX_PAGE_ORDER unless SPARSEMEM.
+ */
+ page_ext_init_flatmem();
+ mem_debugging_and_hardening_init();
+ kfence_alloc_pool_and_metadata();
+ report_meminit();
+ kmsan_init_shadow();
+ stack_depot_early_init();
+ mem_init();
+ mem_init_print_info();
+ kmem_cache_init();
+ /*
+ * page_owner must be initialized after buddy is ready, and also after
+ * slab is ready so that stack_depot_init() works properly
+ */
+ page_ext_init_flatmem_late();
+ kmemleak_init();
+ ptlock_cache_init();
+ pgtable_cache_init();
+ debug_objects_mem_init();
+ vmalloc_init();
+ /* If no deferred init page_ext now, as vmap is fully initialized */
+ if (!deferred_struct_pages)
+ page_ext_init();
+ /* Should be run before the first non-init thread is created */
+ init_espfix_bsp();
+ /* Should be run after espfix64 is set up. */
+ pti_init();
+ kmsan_init_runtime();
+ mm_cache_init();
+}