aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/staging/tee.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/staging/tee.rst')
-rw-r--r--Documentation/staging/tee.rst281
1 files changed, 0 insertions, 281 deletions
diff --git a/Documentation/staging/tee.rst b/Documentation/staging/tee.rst
deleted file mode 100644
index 4d4b5f889603..000000000000
--- a/Documentation/staging/tee.rst
+++ /dev/null
@@ -1,281 +0,0 @@
-=============
-TEE subsystem
-=============
-
-This document describes the TEE subsystem in Linux.
-
-A TEE (Trusted Execution Environment) is a trusted OS running in some
-secure environment, for example, TrustZone on ARM CPUs, or a separate
-secure co-processor etc. A TEE driver handles the details needed to
-communicate with the TEE.
-
-This subsystem deals with:
-
-- Registration of TEE drivers
-
-- Managing shared memory between Linux and the TEE
-
-- Providing a generic API to the TEE
-
-The TEE interface
-=================
-
-include/uapi/linux/tee.h defines the generic interface to a TEE.
-
-User space (the client) connects to the driver by opening /dev/tee[0-9]* or
-/dev/teepriv[0-9]*.
-
-- TEE_IOC_SHM_ALLOC allocates shared memory and returns a file descriptor
- which user space can mmap. When user space doesn't need the file
- descriptor any more, it should be closed. When shared memory isn't needed
- any longer it should be unmapped with munmap() to allow the reuse of
- memory.
-
-- TEE_IOC_VERSION lets user space know which TEE this driver handles and
- its capabilities.
-
-- TEE_IOC_OPEN_SESSION opens a new session to a Trusted Application.
-
-- TEE_IOC_INVOKE invokes a function in a Trusted Application.
-
-- TEE_IOC_CANCEL may cancel an ongoing TEE_IOC_OPEN_SESSION or TEE_IOC_INVOKE.
-
-- TEE_IOC_CLOSE_SESSION closes a session to a Trusted Application.
-
-There are two classes of clients, normal clients and supplicants. The latter is
-a helper process for the TEE to access resources in Linux, for example file
-system access. A normal client opens /dev/tee[0-9]* and a supplicant opens
-/dev/teepriv[0-9].
-
-Much of the communication between clients and the TEE is opaque to the
-driver. The main job for the driver is to receive requests from the
-clients, forward them to the TEE and send back the results. In the case of
-supplicants the communication goes in the other direction, the TEE sends
-requests to the supplicant which then sends back the result.
-
-The TEE kernel interface
-========================
-
-Kernel provides a TEE bus infrastructure where a Trusted Application is
-represented as a device identified via Universally Unique Identifier (UUID) and
-client drivers register a table of supported device UUIDs.
-
-TEE bus infrastructure registers following APIs:
-
-match():
- iterates over the client driver UUID table to find a corresponding
- match for device UUID. If a match is found, then this particular device is
- probed via corresponding probe API registered by the client driver. This
- process happens whenever a device or a client driver is registered with TEE
- bus.
-
-uevent():
- notifies user-space (udev) whenever a new device is registered on
- TEE bus for auto-loading of modularized client drivers.
-
-TEE bus device enumeration is specific to underlying TEE implementation, so it
-is left open for TEE drivers to provide corresponding implementation.
-
-Then TEE client driver can talk to a matched Trusted Application using APIs
-listed in include/linux/tee_drv.h.
-
-TEE client driver example
--------------------------
-
-Suppose a TEE client driver needs to communicate with a Trusted Application
-having UUID: ``ac6a4085-0e82-4c33-bf98-8eb8e118b6c2``, so driver registration
-snippet would look like::
-
- static const struct tee_client_device_id client_id_table[] = {
- {UUID_INIT(0xac6a4085, 0x0e82, 0x4c33,
- 0xbf, 0x98, 0x8e, 0xb8, 0xe1, 0x18, 0xb6, 0xc2)},
- {}
- };
-
- MODULE_DEVICE_TABLE(tee, client_id_table);
-
- static struct tee_client_driver client_driver = {
- .id_table = client_id_table,
- .driver = {
- .name = DRIVER_NAME,
- .bus = &tee_bus_type,
- .probe = client_probe,
- .remove = client_remove,
- },
- };
-
- static int __init client_init(void)
- {
- return driver_register(&client_driver.driver);
- }
-
- static void __exit client_exit(void)
- {
- driver_unregister(&client_driver.driver);
- }
-
- module_init(client_init);
- module_exit(client_exit);
-
-OP-TEE driver
-=============
-
-The OP-TEE driver handles OP-TEE [1] based TEEs. Currently it is only the ARM
-TrustZone based OP-TEE solution that is supported.
-
-Lowest level of communication with OP-TEE builds on ARM SMC Calling
-Convention (SMCCC) [2], which is the foundation for OP-TEE's SMC interface
-[3] used internally by the driver. Stacked on top of that is OP-TEE Message
-Protocol [4].
-
-OP-TEE SMC interface provides the basic functions required by SMCCC and some
-additional functions specific for OP-TEE. The most interesting functions are:
-
-- OPTEE_SMC_FUNCID_CALLS_UID (part of SMCCC) returns the version information
- which is then returned by TEE_IOC_VERSION
-
-- OPTEE_SMC_CALL_GET_OS_UUID returns the particular OP-TEE implementation, used
- to tell, for instance, a TrustZone OP-TEE apart from an OP-TEE running on a
- separate secure co-processor.
-
-- OPTEE_SMC_CALL_WITH_ARG drives the OP-TEE message protocol
-
-- OPTEE_SMC_GET_SHM_CONFIG lets the driver and OP-TEE agree on which memory
- range to used for shared memory between Linux and OP-TEE.
-
-The GlobalPlatform TEE Client API [5] is implemented on top of the generic
-TEE API.
-
-Picture of the relationship between the different components in the
-OP-TEE architecture::
-
- User space Kernel Secure world
- ~~~~~~~~~~ ~~~~~~ ~~~~~~~~~~~~
- +--------+ +-------------+
- | Client | | Trusted |
- +--------+ | Application |
- /\ +-------------+
- || +----------+ /\
- || |tee- | ||
- || |supplicant| \/
- || +----------+ +-------------+
- \/ /\ | TEE Internal|
- +-------+ || | API |
- + TEE | || +--------+--------+ +-------------+
- | Client| || | TEE | OP-TEE | | OP-TEE |
- | API | \/ | subsys | driver | | Trusted OS |
- +-------+----------------+----+-------+----+-----------+-------------+
- | Generic TEE API | | OP-TEE MSG |
- | IOCTL (TEE_IOC_*) | | SMCCC (OPTEE_SMC_CALL_*) |
- +-----------------------------+ +------------------------------+
-
-RPC (Remote Procedure Call) are requests from secure world to kernel driver
-or tee-supplicant. An RPC is identified by a special range of SMCCC return
-values from OPTEE_SMC_CALL_WITH_ARG. RPC messages which are intended for the
-kernel are handled by the kernel driver. Other RPC messages will be forwarded to
-tee-supplicant without further involvement of the driver, except switching
-shared memory buffer representation.
-
-OP-TEE device enumeration
--------------------------
-
-OP-TEE provides a pseudo Trusted Application: drivers/tee/optee/device.c in
-order to support device enumeration. In other words, OP-TEE driver invokes this
-application to retrieve a list of Trusted Applications which can be registered
-as devices on the TEE bus.
-
-AMD-TEE driver
-==============
-
-The AMD-TEE driver handles the communication with AMD's TEE environment. The
-TEE environment is provided by AMD Secure Processor.
-
-The AMD Secure Processor (formerly called Platform Security Processor or PSP)
-is a dedicated processor that features ARM TrustZone technology, along with a
-software-based Trusted Execution Environment (TEE) designed to enable
-third-party Trusted Applications. This feature is currently enabled only for
-APUs.
-
-The following picture shows a high level overview of AMD-TEE::
-
- |
- x86 |
- |
- User space (Kernel space) | AMD Secure Processor (PSP)
- ~~~~~~~~~~ ~~~~~~~~~~~~~~ | ~~~~~~~~~~~~~~~~~~~~~~~~~~
- |
- +--------+ | +-------------+
- | Client | | | Trusted |
- +--------+ | | Application |
- /\ | +-------------+
- || | /\
- || | ||
- || | \/
- || | +----------+
- || | | TEE |
- || | | Internal |
- \/ | | API |
- +---------+ +-----------+---------+ +----------+
- | TEE | | TEE | AMD-TEE | | AMD-TEE |
- | Client | | subsystem | driver | | Trusted |
- | API | | | | | OS |
- +---------+-----------+----+------+---------+---------+----------+
- | Generic TEE API | | ASP | Mailbox |
- | IOCTL (TEE_IOC_*) | | driver | Register Protocol |
- +--------------------------+ +---------+--------------------+
-
-At the lowest level (in x86), the AMD Secure Processor (ASP) driver uses the
-CPU to PSP mailbox regsister to submit commands to the PSP. The format of the
-command buffer is opaque to the ASP driver. It's role is to submit commands to
-the secure processor and return results to AMD-TEE driver. The interface
-between AMD-TEE driver and AMD Secure Processor driver can be found in [6].
-
-The AMD-TEE driver packages the command buffer payload for processing in TEE.
-The command buffer format for the different TEE commands can be found in [7].
-
-The TEE commands supported by AMD-TEE Trusted OS are:
-
-* TEE_CMD_ID_LOAD_TA - loads a Trusted Application (TA) binary into
- TEE environment.
-* TEE_CMD_ID_UNLOAD_TA - unloads TA binary from TEE environment.
-* TEE_CMD_ID_OPEN_SESSION - opens a session with a loaded TA.
-* TEE_CMD_ID_CLOSE_SESSION - closes session with loaded TA
-* TEE_CMD_ID_INVOKE_CMD - invokes a command with loaded TA
-* TEE_CMD_ID_MAP_SHARED_MEM - maps shared memory
-* TEE_CMD_ID_UNMAP_SHARED_MEM - unmaps shared memory
-
-AMD-TEE Trusted OS is the firmware running on AMD Secure Processor.
-
-The AMD-TEE driver registers itself with TEE subsystem and implements the
-following driver function callbacks:
-
-* get_version - returns the driver implementation id and capability.
-* open - sets up the driver context data structure.
-* release - frees up driver resources.
-* open_session - loads the TA binary and opens session with loaded TA.
-* close_session - closes session with loaded TA and unloads it.
-* invoke_func - invokes a command with loaded TA.
-
-cancel_req driver callback is not supported by AMD-TEE.
-
-The GlobalPlatform TEE Client API [5] can be used by the user space (client) to
-talk to AMD's TEE. AMD's TEE provides a secure environment for loading, opening
-a session, invoking commands and clossing session with TA.
-
-References
-==========
-
-[1] https://github.com/OP-TEE/optee_os
-
-[2] http://infocenter.arm.com/help/topic/com.arm.doc.den0028a/index.html
-
-[3] drivers/tee/optee/optee_smc.h
-
-[4] drivers/tee/optee/optee_msg.h
-
-[5] http://www.globalplatform.org/specificationsdevice.asp look for
- "TEE Client API Specification v1.0" and click download.
-
-[6] include/linux/psp-tee.h
-
-[7] drivers/tee/amdtee/amdtee_if.h