aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/powerpc/transactional_memory.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/powerpc/transactional_memory.rst')
-rw-r--r--Documentation/powerpc/transactional_memory.rst274
1 files changed, 0 insertions, 274 deletions
diff --git a/Documentation/powerpc/transactional_memory.rst b/Documentation/powerpc/transactional_memory.rst
deleted file mode 100644
index b5b09bf00966..000000000000
--- a/Documentation/powerpc/transactional_memory.rst
+++ /dev/null
@@ -1,274 +0,0 @@
-============================
-Transactional Memory support
-============================
-
-POWER kernel support for this feature is currently limited to supporting
-its use by user programs. It is not currently used by the kernel itself.
-
-This file aims to sum up how it is supported by Linux and what behaviour you
-can expect from your user programs.
-
-
-Basic overview
-==============
-
-Hardware Transactional Memory is supported on POWER8 processors, and is a
-feature that enables a different form of atomic memory access. Several new
-instructions are presented to delimit transactions; transactions are
-guaranteed to either complete atomically or roll back and undo any partial
-changes.
-
-A simple transaction looks like this::
-
- begin_move_money:
- tbegin
- beq abort_handler
-
- ld r4, SAVINGS_ACCT(r3)
- ld r5, CURRENT_ACCT(r3)
- subi r5, r5, 1
- addi r4, r4, 1
- std r4, SAVINGS_ACCT(r3)
- std r5, CURRENT_ACCT(r3)
-
- tend
-
- b continue
-
- abort_handler:
- ... test for odd failures ...
-
- /* Retry the transaction if it failed because it conflicted with
- * someone else: */
- b begin_move_money
-
-
-The 'tbegin' instruction denotes the start point, and 'tend' the end point.
-Between these points the processor is in 'Transactional' state; any memory
-references will complete in one go if there are no conflicts with other
-transactional or non-transactional accesses within the system. In this
-example, the transaction completes as though it were normal straight-line code
-IF no other processor has touched SAVINGS_ACCT(r3) or CURRENT_ACCT(r3); an
-atomic move of money from the current account to the savings account has been
-performed. Even though the normal ld/std instructions are used (note no
-lwarx/stwcx), either *both* SAVINGS_ACCT(r3) and CURRENT_ACCT(r3) will be
-updated, or neither will be updated.
-
-If, in the meantime, there is a conflict with the locations accessed by the
-transaction, the transaction will be aborted by the CPU. Register and memory
-state will roll back to that at the 'tbegin', and control will continue from
-'tbegin+4'. The branch to abort_handler will be taken this second time; the
-abort handler can check the cause of the failure, and retry.
-
-Checkpointed registers include all GPRs, FPRs, VRs/VSRs, LR, CCR/CR, CTR, FPCSR
-and a few other status/flag regs; see the ISA for details.
-
-Causes of transaction aborts
-============================
-
-- Conflicts with cache lines used by other processors
-- Signals
-- Context switches
-- See the ISA for full documentation of everything that will abort transactions.
-
-
-Syscalls
-========
-
-Syscalls made from within an active transaction will not be performed and the
-transaction will be doomed by the kernel with the failure code TM_CAUSE_SYSCALL
-| TM_CAUSE_PERSISTENT.
-
-Syscalls made from within a suspended transaction are performed as normal and
-the transaction is not explicitly doomed by the kernel. However, what the
-kernel does to perform the syscall may result in the transaction being doomed
-by the hardware. The syscall is performed in suspended mode so any side
-effects will be persistent, independent of transaction success or failure. No
-guarantees are provided by the kernel about which syscalls will affect
-transaction success.
-
-Care must be taken when relying on syscalls to abort during active transactions
-if the calls are made via a library. Libraries may cache values (which may
-give the appearance of success) or perform operations that cause transaction
-failure before entering the kernel (which may produce different failure codes).
-Examples are glibc's getpid() and lazy symbol resolution.
-
-
-Signals
-=======
-
-Delivery of signals (both sync and async) during transactions provides a second
-thread state (ucontext/mcontext) to represent the second transactional register
-state. Signal delivery 'treclaim's to capture both register states, so signals
-abort transactions. The usual ucontext_t passed to the signal handler
-represents the checkpointed/original register state; the signal appears to have
-arisen at 'tbegin+4'.
-
-If the sighandler ucontext has uc_link set, a second ucontext has been
-delivered. For future compatibility the MSR.TS field should be checked to
-determine the transactional state -- if so, the second ucontext in uc->uc_link
-represents the active transactional registers at the point of the signal.
-
-For 64-bit processes, uc->uc_mcontext.regs->msr is a full 64-bit MSR and its TS
-field shows the transactional mode.
-
-For 32-bit processes, the mcontext's MSR register is only 32 bits; the top 32
-bits are stored in the MSR of the second ucontext, i.e. in
-uc->uc_link->uc_mcontext.regs->msr. The top word contains the transactional
-state TS.
-
-However, basic signal handlers don't need to be aware of transactions
-and simply returning from the handler will deal with things correctly:
-
-Transaction-aware signal handlers can read the transactional register state
-from the second ucontext. This will be necessary for crash handlers to
-determine, for example, the address of the instruction causing the SIGSEGV.
-
-Example signal handler::
-
- void crash_handler(int sig, siginfo_t *si, void *uc)
- {
- ucontext_t *ucp = uc;
- ucontext_t *transactional_ucp = ucp->uc_link;
-
- if (ucp_link) {
- u64 msr = ucp->uc_mcontext.regs->msr;
- /* May have transactional ucontext! */
- #ifndef __powerpc64__
- msr |= ((u64)transactional_ucp->uc_mcontext.regs->msr) << 32;
- #endif
- if (MSR_TM_ACTIVE(msr)) {
- /* Yes, we crashed during a transaction. Oops. */
- fprintf(stderr, "Transaction to be restarted at 0x%llx, but "
- "crashy instruction was at 0x%llx\n",
- ucp->uc_mcontext.regs->nip,
- transactional_ucp->uc_mcontext.regs->nip);
- }
- }
-
- fix_the_problem(ucp->dar);
- }
-
-When in an active transaction that takes a signal, we need to be careful with
-the stack. It's possible that the stack has moved back up after the tbegin.
-The obvious case here is when the tbegin is called inside a function that
-returns before a tend. In this case, the stack is part of the checkpointed
-transactional memory state. If we write over this non transactionally or in
-suspend, we are in trouble because if we get a tm abort, the program counter and
-stack pointer will be back at the tbegin but our in memory stack won't be valid
-anymore.
-
-To avoid this, when taking a signal in an active transaction, we need to use
-the stack pointer from the checkpointed state, rather than the speculated
-state. This ensures that the signal context (written tm suspended) will be
-written below the stack required for the rollback. The transaction is aborted
-because of the treclaim, so any memory written between the tbegin and the
-signal will be rolled back anyway.
-
-For signals taken in non-TM or suspended mode, we use the
-normal/non-checkpointed stack pointer.
-
-Any transaction initiated inside a sighandler and suspended on return
-from the sighandler to the kernel will get reclaimed and discarded.
-
-Failure cause codes used by kernel
-==================================
-
-These are defined in <asm/reg.h>, and distinguish different reasons why the
-kernel aborted a transaction:
-
- ====================== ================================
- TM_CAUSE_RESCHED Thread was rescheduled.
- TM_CAUSE_TLBI Software TLB invalid.
- TM_CAUSE_FAC_UNAV FP/VEC/VSX unavailable trap.
- TM_CAUSE_SYSCALL Syscall from active transaction.
- TM_CAUSE_SIGNAL Signal delivered.
- TM_CAUSE_MISC Currently unused.
- TM_CAUSE_ALIGNMENT Alignment fault.
- TM_CAUSE_EMULATE Emulation that touched memory.
- ====================== ================================
-
-These can be checked by the user program's abort handler as TEXASR[0:7]. If
-bit 7 is set, it indicates that the error is consider persistent. For example
-a TM_CAUSE_ALIGNMENT will be persistent while a TM_CAUSE_RESCHED will not.
-
-GDB
-===
-
-GDB and ptrace are not currently TM-aware. If one stops during a transaction,
-it looks like the transaction has just started (the checkpointed state is
-presented). The transaction cannot then be continued and will take the failure
-handler route. Furthermore, the transactional 2nd register state will be
-inaccessible. GDB can currently be used on programs using TM, but not sensibly
-in parts within transactions.
-
-POWER9
-======
-
-TM on POWER9 has issues with storing the complete register state. This
-is described in this commit::
-
- commit 4bb3c7a0208fc13ca70598efd109901a7cd45ae7
- Author: Paul Mackerras <paulus@ozlabs.org>
- Date: Wed Mar 21 21:32:01 2018 +1100
- KVM: PPC: Book3S HV: Work around transactional memory bugs in POWER9
-
-To account for this different POWER9 chips have TM enabled in
-different ways.
-
-On POWER9N DD2.01 and below, TM is disabled. ie
-HWCAP2[PPC_FEATURE2_HTM] is not set.
-
-On POWER9N DD2.1 TM is configured by firmware to always abort a
-transaction when tm suspend occurs. So tsuspend will cause a
-transaction to be aborted and rolled back. Kernel exceptions will also
-cause the transaction to be aborted and rolled back and the exception
-will not occur. If userspace constructs a sigcontext that enables TM
-suspend, the sigcontext will be rejected by the kernel. This mode is
-advertised to users with HWCAP2[PPC_FEATURE2_HTM_NO_SUSPEND] set.
-HWCAP2[PPC_FEATURE2_HTM] is not set in this mode.
-
-On POWER9N DD2.2 and above, KVM and POWERVM emulate TM for guests (as
-described in commit 4bb3c7a0208f), hence TM is enabled for guests
-ie. HWCAP2[PPC_FEATURE2_HTM] is set for guest userspace. Guests that
-makes heavy use of TM suspend (tsuspend or kernel suspend) will result
-in traps into the hypervisor and hence will suffer a performance
-degradation. Host userspace has TM disabled
-ie. HWCAP2[PPC_FEATURE2_HTM] is not set. (although we make enable it
-at some point in the future if we bring the emulation into host
-userspace context switching).
-
-POWER9C DD1.2 and above are only available with POWERVM and hence
-Linux only runs as a guest. On these systems TM is emulated like on
-POWER9N DD2.2.
-
-Guest migration from POWER8 to POWER9 will work with POWER9N DD2.2 and
-POWER9C DD1.2. Since earlier POWER9 processors don't support TM
-emulation, migration from POWER8 to POWER9 is not supported there.
-
-Kernel implementation
-=====================
-
-h/rfid mtmsrd quirk
--------------------
-
-As defined in the ISA, rfid has a quirk which is useful in early
-exception handling. When in a userspace transaction and we enter the
-kernel via some exception, MSR will end up as TM=0 and TS=01 (ie. TM
-off but TM suspended). Regularly the kernel will want change bits in
-the MSR and will perform an rfid to do this. In this case rfid can
-have SRR0 TM = 0 and TS = 00 (ie. TM off and non transaction) and the
-resulting MSR will retain TM = 0 and TS=01 from before (ie. stay in
-suspend). This is a quirk in the architecture as this would normally
-be a transition from TS=01 to TS=00 (ie. suspend -> non transactional)
-which is an illegal transition.
-
-This quirk is described the architecture in the definition of rfid
-with these lines:
-
- if (MSR 29:31 ¬ = 0b010 | SRR1 29:31 ¬ = 0b000) then
- MSR 29:31 <- SRR1 29:31
-
-hrfid and mtmsrd have the same quirk.
-
-The Linux kernel uses this quirk in it's early exception handling.