aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/networking/device_drivers/intel
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/networking/device_drivers/intel')
-rw-r--r--Documentation/networking/device_drivers/intel/e100.rst188
-rw-r--r--Documentation/networking/device_drivers/intel/e1000.rst463
-rw-r--r--Documentation/networking/device_drivers/intel/e1000e.rst383
-rw-r--r--Documentation/networking/device_drivers/intel/fm10k.rst142
-rw-r--r--Documentation/networking/device_drivers/intel/i40e.rst771
-rw-r--r--Documentation/networking/device_drivers/intel/iavf.rst331
-rw-r--r--Documentation/networking/device_drivers/intel/ice.rst46
-rw-r--r--Documentation/networking/device_drivers/intel/igb.rst213
-rw-r--r--Documentation/networking/device_drivers/intel/igbvf.rst65
-rw-r--r--Documentation/networking/device_drivers/intel/ipw2100.rst323
-rw-r--r--Documentation/networking/device_drivers/intel/ipw2200.rst526
-rw-r--r--Documentation/networking/device_drivers/intel/ixgb.rst468
-rw-r--r--Documentation/networking/device_drivers/intel/ixgbe.rst541
-rw-r--r--Documentation/networking/device_drivers/intel/ixgbevf.rst67
14 files changed, 0 insertions, 4527 deletions
diff --git a/Documentation/networking/device_drivers/intel/e100.rst b/Documentation/networking/device_drivers/intel/e100.rst
deleted file mode 100644
index 3ac21e7119a7..000000000000
--- a/Documentation/networking/device_drivers/intel/e100.rst
+++ /dev/null
@@ -1,188 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=============================================================
-Linux Base Driver for the Intel(R) PRO/100 Family of Adapters
-=============================================================
-
-June 1, 2018
-
-Contents
-========
-
-- In This Release
-- Identifying Your Adapter
-- Building and Installation
-- Driver Configuration Parameters
-- Additional Configurations
-- Known Issues
-- Support
-
-
-In This Release
-===============
-
-This file describes the Linux Base Driver for the Intel(R) PRO/100 Family of
-Adapters. This driver includes support for Itanium(R)2-based systems.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel PRO/100 adapter.
-
-The following features are now available in supported kernels:
- - Native VLANs
- - Channel Bonding (teaming)
- - SNMP
-
-Channel Bonding documentation can be found in the Linux kernel source:
-/Documentation/networking/bonding.rst
-
-
-Identifying Your Adapter
-========================
-
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-http://www.intel.com/support
-
-Driver Configuration Parameters
-===============================
-
-The default value for each parameter is generally the recommended setting,
-unless otherwise noted.
-
-Rx Descriptors:
- Number of receive descriptors. A receive descriptor is a data
- structure that describes a receive buffer and its attributes to the network
- controller. The data in the descriptor is used by the controller to write
- data from the controller to host memory. In the 3.x.x driver the valid range
- for this parameter is 64-256. The default value is 256. This parameter can be
- changed using the command::
-
- ethtool -G eth? rx n
-
- Where n is the number of desired Rx descriptors.
-
-Tx Descriptors:
- Number of transmit descriptors. A transmit descriptor is a data
- structure that describes a transmit buffer and its attributes to the network
- controller. The data in the descriptor is used by the controller to read
- data from the host memory to the controller. In the 3.x.x driver the valid
- range for this parameter is 64-256. The default value is 128. This parameter
- can be changed using the command::
-
- ethtool -G eth? tx n
-
- Where n is the number of desired Tx descriptors.
-
-Speed/Duplex:
- The driver auto-negotiates the link speed and duplex settings by
- default. The ethtool utility can be used as follows to force speed/duplex.::
-
- ethtool -s eth? autoneg off speed {10|100} duplex {full|half}
-
- NOTE: setting the speed/duplex to incorrect values will cause the link to
- fail.
-
-Event Log Message Level:
- The driver uses the message level flag to log events
- to syslog. The message level can be set at driver load time. It can also be
- set using the command::
-
- ethtool -s eth? msglvl n
-
-
-Additional Configurations
-=========================
-
-Configuring the Driver on Different Distributions
--------------------------------------------------
-
-Configuring a network driver to load properly when the system is started
-is distribution dependent. Typically, the configuration process involves
-adding an alias line to `/etc/modprobe.d/*.conf` as well as editing other
-system startup scripts and/or configuration files. Many popular Linux
-distributions ship with tools to make these changes for you. To learn
-the proper way to configure a network device for your system, refer to
-your distribution documentation. If during this process you are asked
-for the driver or module name, the name for the Linux Base Driver for
-the Intel PRO/100 Family of Adapters is e100.
-
-As an example, if you install the e100 driver for two PRO/100 adapters
-(eth0 and eth1), add the following to a configuration file in
-/etc/modprobe.d/::
-
- alias eth0 e100
- alias eth1 e100
-
-Viewing Link Messages
----------------------
-
-In order to see link messages and other Intel driver information on your
-console, you must set the dmesg level up to six. This can be done by
-entering the following on the command line before loading the e100
-driver::
-
- dmesg -n 6
-
-If you wish to see all messages issued by the driver, including debug
-messages, set the dmesg level to eight.
-
-NOTE: This setting is not saved across reboots.
-
-ethtool
--------
-
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The ethtool
-version 1.6 or later is required for this functionality.
-
-The latest release of ethtool can be found from
-https://www.kernel.org/pub/software/network/ethtool/
-
-Enabling Wake on LAN (WoL)
---------------------------
-WoL is provided through the ethtool utility. For instructions on
-enabling WoL with ethtool, refer to the ethtool man page. WoL will be
-enabled on the system during the next shut down or reboot. For this
-driver version, in order to enable WoL, the e100 driver must be loaded
-when shutting down or rebooting the system.
-
-NAPI
-----
-
-NAPI (Rx polling mode) is supported in the e100 driver.
-
-See https://wiki.linuxfoundation.org/networking/napi for more
-information on NAPI.
-
-Multiple Interfaces on Same Ethernet Broadcast Network
-------------------------------------------------------
-
-Due to the default ARP behavior on Linux, it is not possible to have one
-system on two IP networks in the same Ethernet broadcast domain
-(non-partitioned switch) behave as expected. All Ethernet interfaces
-will respond to IP traffic for any IP address assigned to the system.
-This results in unbalanced receive traffic.
-
-If you have multiple interfaces in a server, either turn on ARP
-filtering by
-
-(1) entering::
-
- echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
-
- (this only works if your kernel's version is higher than 2.4.5), or
-
-(2) installing the interfaces in separate broadcast domains (either
- in different switches or in a switch partitioned to VLANs).
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-http://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-http://sourceforge.net/projects/e1000
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/e1000.rst b/Documentation/networking/device_drivers/intel/e1000.rst
deleted file mode 100644
index 4aaae0f7d6ba..000000000000
--- a/Documentation/networking/device_drivers/intel/e1000.rst
+++ /dev/null
@@ -1,463 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-==========================================================
-Linux Base Driver for Intel(R) Ethernet Network Connection
-==========================================================
-
-Intel Gigabit Linux driver.
-Copyright(c) 1999 - 2013 Intel Corporation.
-
-Contents
-========
-
-- Identifying Your Adapter
-- Command Line Parameters
-- Speed and Duplex Configuration
-- Additional Configurations
-- Support
-
-Identifying Your Adapter
-========================
-
-For more information on how to identify your adapter, go to the Adapter &
-Driver ID Guide at:
-
- http://support.intel.com/support/go/network/adapter/idguide.htm
-
-For the latest Intel network drivers for Linux, refer to the following
-website. In the search field, enter your adapter name or type, or use the
-networking link on the left to search for your adapter:
-
- http://support.intel.com/support/go/network/adapter/home.htm
-
-Command Line Parameters
-=======================
-
-The default value for each parameter is generally the recommended setting,
-unless otherwise noted.
-
-NOTES:
- For more information about the AutoNeg, Duplex, and Speed
- parameters, see the "Speed and Duplex Configuration" section in
- this document.
-
- For more information about the InterruptThrottleRate,
- RxIntDelay, TxIntDelay, RxAbsIntDelay, and TxAbsIntDelay
- parameters, see the application note at:
- http://www.intel.com/design/network/applnots/ap450.htm
-
-AutoNeg
--------
-
-(Supported only on adapters with copper connections)
-
-:Valid Range: 0x01-0x0F, 0x20-0x2F
-:Default Value: 0x2F
-
-This parameter is a bit-mask that specifies the speed and duplex settings
-advertised by the adapter. When this parameter is used, the Speed and
-Duplex parameters must not be specified.
-
-NOTE:
- Refer to the Speed and Duplex section of this readme for more
- information on the AutoNeg parameter.
-
-Duplex
-------
-
-(Supported only on adapters with copper connections)
-
-:Valid Range: 0-2 (0=auto-negotiate, 1=half, 2=full)
-:Default Value: 0
-
-This defines the direction in which data is allowed to flow. Can be
-either one or two-directional. If both Duplex and the link partner are
-set to auto-negotiate, the board auto-detects the correct duplex. If the
-link partner is forced (either full or half), Duplex defaults to half-
-duplex.
-
-FlowControl
------------
-
-:Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
-:Default Value: Reads flow control settings from the EEPROM
-
-This parameter controls the automatic generation(Tx) and response(Rx)
-to Ethernet PAUSE frames.
-
-InterruptThrottleRate
----------------------
-
-(not supported on Intel(R) 82542, 82543 or 82544-based adapters)
-
-:Valid Range:
- 0,1,3,4,100-100000 (0=off, 1=dynamic, 3=dynamic conservative,
- 4=simplified balancing)
-:Default Value: 3
-
-The driver can limit the amount of interrupts per second that the adapter
-will generate for incoming packets. It does this by writing a value to the
-adapter that is based on the maximum amount of interrupts that the adapter
-will generate per second.
-
-Setting InterruptThrottleRate to a value greater or equal to 100
-will program the adapter to send out a maximum of that many interrupts
-per second, even if more packets have come in. This reduces interrupt
-load on the system and can lower CPU utilization under heavy load,
-but will increase latency as packets are not processed as quickly.
-
-The default behaviour of the driver previously assumed a static
-InterruptThrottleRate value of 8000, providing a good fallback value for
-all traffic types,but lacking in small packet performance and latency.
-The hardware can handle many more small packets per second however, and
-for this reason an adaptive interrupt moderation algorithm was implemented.
-
-Since 7.3.x, the driver has two adaptive modes (setting 1 or 3) in which
-it dynamically adjusts the InterruptThrottleRate value based on the traffic
-that it receives. After determining the type of incoming traffic in the last
-timeframe, it will adjust the InterruptThrottleRate to an appropriate value
-for that traffic.
-
-The algorithm classifies the incoming traffic every interval into
-classes. Once the class is determined, the InterruptThrottleRate value is
-adjusted to suit that traffic type the best. There are three classes defined:
-"Bulk traffic", for large amounts of packets of normal size; "Low latency",
-for small amounts of traffic and/or a significant percentage of small
-packets; and "Lowest latency", for almost completely small packets or
-minimal traffic.
-
-In dynamic conservative mode, the InterruptThrottleRate value is set to 4000
-for traffic that falls in class "Bulk traffic". If traffic falls in the "Low
-latency" or "Lowest latency" class, the InterruptThrottleRate is increased
-stepwise to 20000. This default mode is suitable for most applications.
-
-For situations where low latency is vital such as cluster or
-grid computing, the algorithm can reduce latency even more when
-InterruptThrottleRate is set to mode 1. In this mode, which operates
-the same as mode 3, the InterruptThrottleRate will be increased stepwise to
-70000 for traffic in class "Lowest latency".
-
-In simplified mode the interrupt rate is based on the ratio of TX and
-RX traffic. If the bytes per second rate is approximately equal, the
-interrupt rate will drop as low as 2000 interrupts per second. If the
-traffic is mostly transmit or mostly receive, the interrupt rate could
-be as high as 8000.
-
-Setting InterruptThrottleRate to 0 turns off any interrupt moderation
-and may improve small packet latency, but is generally not suitable
-for bulk throughput traffic.
-
-NOTE:
- InterruptThrottleRate takes precedence over the TxAbsIntDelay and
- RxAbsIntDelay parameters. In other words, minimizing the receive
- and/or transmit absolute delays does not force the controller to
- generate more interrupts than what the Interrupt Throttle Rate
- allows.
-
-CAUTION:
- If you are using the Intel(R) PRO/1000 CT Network Connection
- (controller 82547), setting InterruptThrottleRate to a value
- greater than 75,000, may hang (stop transmitting) adapters
- under certain network conditions. If this occurs a NETDEV
- WATCHDOG message is logged in the system event log. In
- addition, the controller is automatically reset, restoring
- the network connection. To eliminate the potential for the
- hang, ensure that InterruptThrottleRate is set no greater
- than 75,000 and is not set to 0.
-
-NOTE:
- When e1000 is loaded with default settings and multiple adapters
- are in use simultaneously, the CPU utilization may increase non-
- linearly. In order to limit the CPU utilization without impacting
- the overall throughput, we recommend that you load the driver as
- follows::
-
- modprobe e1000 InterruptThrottleRate=3000,3000,3000
-
- This sets the InterruptThrottleRate to 3000 interrupts/sec for
- the first, second, and third instances of the driver. The range
- of 2000 to 3000 interrupts per second works on a majority of
- systems and is a good starting point, but the optimal value will
- be platform-specific. If CPU utilization is not a concern, use
- RX_POLLING (NAPI) and default driver settings.
-
-RxDescriptors
--------------
-
-:Valid Range:
- - 48-256 for 82542 and 82543-based adapters
- - 48-4096 for all other supported adapters
-:Default Value: 256
-
-This value specifies the number of receive buffer descriptors allocated
-by the driver. Increasing this value allows the driver to buffer more
-incoming packets, at the expense of increased system memory utilization.
-
-Each descriptor is 16 bytes. A receive buffer is also allocated for each
-descriptor and can be either 2048, 4096, 8192, or 16384 bytes, depending
-on the MTU setting. The maximum MTU size is 16110.
-
-NOTE:
- MTU designates the frame size. It only needs to be set for Jumbo
- Frames. Depending on the available system resources, the request
- for a higher number of receive descriptors may be denied. In this
- case, use a lower number.
-
-RxIntDelay
-----------
-
-:Valid Range: 0-65535 (0=off)
-:Default Value: 0
-
-This value delays the generation of receive interrupts in units of 1.024
-microseconds. Receive interrupt reduction can improve CPU efficiency if
-properly tuned for specific network traffic. Increasing this value adds
-extra latency to frame reception and can end up decreasing the throughput
-of TCP traffic. If the system is reporting dropped receives, this value
-may be set too high, causing the driver to run out of available receive
-descriptors.
-
-CAUTION:
- When setting RxIntDelay to a value other than 0, adapters may
- hang (stop transmitting) under certain network conditions. If
- this occurs a NETDEV WATCHDOG message is logged in the system
- event log. In addition, the controller is automatically reset,
- restoring the network connection. To eliminate the potential
- for the hang ensure that RxIntDelay is set to 0.
-
-RxAbsIntDelay
--------------
-
-(This parameter is supported only on 82540, 82545 and later adapters.)
-
-:Valid Range: 0-65535 (0=off)
-:Default Value: 128
-
-This value, in units of 1.024 microseconds, limits the delay in which a
-receive interrupt is generated. Useful only if RxIntDelay is non-zero,
-this value ensures that an interrupt is generated after the initial
-packet is received within the set amount of time. Proper tuning,
-along with RxIntDelay, may improve traffic throughput in specific network
-conditions.
-
-Speed
------
-
-(This parameter is supported only on adapters with copper connections.)
-
-:Valid Settings: 0, 10, 100, 1000
-:Default Value: 0 (auto-negotiate at all supported speeds)
-
-Speed forces the line speed to the specified value in megabits per second
-(Mbps). If this parameter is not specified or is set to 0 and the link
-partner is set to auto-negotiate, the board will auto-detect the correct
-speed. Duplex should also be set when Speed is set to either 10 or 100.
-
-TxDescriptors
--------------
-
-:Valid Range:
- - 48-256 for 82542 and 82543-based adapters
- - 48-4096 for all other supported adapters
-:Default Value: 256
-
-This value is the number of transmit descriptors allocated by the driver.
-Increasing this value allows the driver to queue more transmits. Each
-descriptor is 16 bytes.
-
-NOTE:
- Depending on the available system resources, the request for a
- higher number of transmit descriptors may be denied. In this case,
- use a lower number.
-
-TxIntDelay
-----------
-
-:Valid Range: 0-65535 (0=off)
-:Default Value: 8
-
-This value delays the generation of transmit interrupts in units of
-1.024 microseconds. Transmit interrupt reduction can improve CPU
-efficiency if properly tuned for specific network traffic. If the
-system is reporting dropped transmits, this value may be set too high
-causing the driver to run out of available transmit descriptors.
-
-TxAbsIntDelay
--------------
-
-(This parameter is supported only on 82540, 82545 and later adapters.)
-
-:Valid Range: 0-65535 (0=off)
-:Default Value: 32
-
-This value, in units of 1.024 microseconds, limits the delay in which a
-transmit interrupt is generated. Useful only if TxIntDelay is non-zero,
-this value ensures that an interrupt is generated after the initial
-packet is sent on the wire within the set amount of time. Proper tuning,
-along with TxIntDelay, may improve traffic throughput in specific
-network conditions.
-
-XsumRX
-------
-
-(This parameter is NOT supported on the 82542-based adapter.)
-
-:Valid Range: 0-1
-:Default Value: 1
-
-A value of '1' indicates that the driver should enable IP checksum
-offload for received packets (both UDP and TCP) to the adapter hardware.
-
-Copybreak
----------
-
-:Valid Range: 0-xxxxxxx (0=off)
-:Default Value: 256
-:Usage: modprobe e1000.ko copybreak=128
-
-Driver copies all packets below or equaling this size to a fresh RX
-buffer before handing it up the stack.
-
-This parameter is different than other parameters, in that it is a
-single (not 1,1,1 etc.) parameter applied to all driver instances and
-it is also available during runtime at
-/sys/module/e1000/parameters/copybreak
-
-SmartPowerDownEnable
---------------------
-
-:Valid Range: 0-1
-:Default Value: 0 (disabled)
-
-Allows PHY to turn off in lower power states. The user can turn off
-this parameter in supported chipsets.
-
-Speed and Duplex Configuration
-==============================
-
-Three keywords are used to control the speed and duplex configuration.
-These keywords are Speed, Duplex, and AutoNeg.
-
-If the board uses a fiber interface, these keywords are ignored, and the
-fiber interface board only links at 1000 Mbps full-duplex.
-
-For copper-based boards, the keywords interact as follows:
-
-- The default operation is auto-negotiate. The board advertises all
- supported speed and duplex combinations, and it links at the highest
- common speed and duplex mode IF the link partner is set to auto-negotiate.
-
-- If Speed = 1000, limited auto-negotiation is enabled and only 1000 Mbps
- is advertised (The 1000BaseT spec requires auto-negotiation.)
-
-- If Speed = 10 or 100, then both Speed and Duplex should be set. Auto-
- negotiation is disabled, and the AutoNeg parameter is ignored. Partner
- SHOULD also be forced.
-
-The AutoNeg parameter is used when more control is required over the
-auto-negotiation process. It should be used when you wish to control which
-speed and duplex combinations are advertised during the auto-negotiation
-process.
-
-The parameter may be specified as either a decimal or hexadecimal value as
-determined by the bitmap below.
-
-============== ====== ====== ======= ======= ====== ====== ======= ======
-Bit position 7 6 5 4 3 2 1 0
-Decimal Value 128 64 32 16 8 4 2 1
-Hex value 80 40 20 10 8 4 2 1
-Speed (Mbps) N/A N/A 1000 N/A 100 100 10 10
-Duplex Full Full Half Full Half
-============== ====== ====== ======= ======= ====== ====== ======= ======
-
-Some examples of using AutoNeg::
-
- modprobe e1000 AutoNeg=0x01 (Restricts autonegotiation to 10 Half)
- modprobe e1000 AutoNeg=1 (Same as above)
- modprobe e1000 AutoNeg=0x02 (Restricts autonegotiation to 10 Full)
- modprobe e1000 AutoNeg=0x03 (Restricts autonegotiation to 10 Half or 10 Full)
- modprobe e1000 AutoNeg=0x04 (Restricts autonegotiation to 100 Half)
- modprobe e1000 AutoNeg=0x05 (Restricts autonegotiation to 10 Half or 100
- Half)
- modprobe e1000 AutoNeg=0x020 (Restricts autonegotiation to 1000 Full)
- modprobe e1000 AutoNeg=32 (Same as above)
-
-Note that when this parameter is used, Speed and Duplex must not be specified.
-
-If the link partner is forced to a specific speed and duplex, then this
-parameter should not be used. Instead, use the Speed and Duplex parameters
-previously mentioned to force the adapter to the same speed and duplex.
-
-Additional Configurations
-=========================
-
-Jumbo Frames
-------------
-
- Jumbo Frames support is enabled by changing the MTU to a value larger than
- the default of 1500. Use the ifconfig command to increase the MTU size.
- For example::
-
- ifconfig eth<x> mtu 9000 up
-
- This setting is not saved across reboots. It can be made permanent if
- you add::
-
- MTU=9000
-
- to the file /etc/sysconfig/network-scripts/ifcfg-eth<x>. This example
- applies to the Red Hat distributions; other distributions may store this
- setting in a different location.
-
-Notes:
- Degradation in throughput performance may be observed in some Jumbo frames
- environments. If this is observed, increasing the application's socket buffer
- size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values may help.
- See the specific application manual and /usr/src/linux*/Documentation/
- networking/ip-sysctl.txt for more details.
-
- - The maximum MTU setting for Jumbo Frames is 16110. This value coincides
- with the maximum Jumbo Frames size of 16128.
-
- - Using Jumbo frames at 10 or 100 Mbps is not supported and may result in
- poor performance or loss of link.
-
- - Adapters based on the Intel(R) 82542 and 82573V/E controller do not
- support Jumbo Frames. These correspond to the following product names::
-
- Intel(R) PRO/1000 Gigabit Server Adapter
- Intel(R) PRO/1000 PM Network Connection
-
-ethtool
--------
-
- The driver utilizes the ethtool interface for driver configuration and
- diagnostics, as well as displaying statistical information. The ethtool
- version 1.6 or later is required for this functionality.
-
- The latest release of ethtool can be found from
- https://www.kernel.org/pub/software/network/ethtool/
-
-Enabling Wake on LAN (WoL)
---------------------------
-
- WoL is configured through the ethtool utility.
-
- WoL will be enabled on the system during the next shut down or reboot.
- For this driver version, in order to enable WoL, the e1000 driver must be
- loaded when shutting down or rebooting the system.
-
-Support
-=======
-
-For general information, go to the Intel support website at:
-
- http://support.intel.com
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
- http://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on the supported
-kernel with a supported adapter, email the specific information related
-to the issue to e1000-devel@lists.sf.net
diff --git a/Documentation/networking/device_drivers/intel/e1000e.rst b/Documentation/networking/device_drivers/intel/e1000e.rst
deleted file mode 100644
index f49cd370e7bf..000000000000
--- a/Documentation/networking/device_drivers/intel/e1000e.rst
+++ /dev/null
@@ -1,383 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=====================================================
-Linux Driver for Intel(R) Ethernet Network Connection
-=====================================================
-
-Intel Gigabit Linux driver.
-Copyright(c) 2008-2018 Intel Corporation.
-
-Contents
-========
-
-- Identifying Your Adapter
-- Command Line Parameters
-- Additional Configurations
-- Support
-
-
-Identifying Your Adapter
-========================
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-https://www.intel.com/support
-
-
-Command Line Parameters
-=======================
-If the driver is built as a module, the following optional parameters are used
-by entering them on the command line with the modprobe command using this
-syntax::
-
- modprobe e1000e [<option>=<VAL1>,<VAL2>,...]
-
-There needs to be a <VAL#> for each network port in the system supported by
-this driver. The values will be applied to each instance, in function order.
-For example::
-
- modprobe e1000e InterruptThrottleRate=16000,16000
-
-In this case, there are two network ports supported by e1000e in the system.
-The default value for each parameter is generally the recommended setting,
-unless otherwise noted.
-
-NOTE: A descriptor describes a data buffer and attributes related to the data
-buffer. This information is accessed by the hardware.
-
-InterruptThrottleRate
----------------------
-:Valid Range: 0,1,3,4,100-100000
-:Default Value: 3
-
-Interrupt Throttle Rate controls the number of interrupts each interrupt
-vector can generate per second. Increasing ITR lowers latency at the cost of
-increased CPU utilization, though it may help throughput in some circumstances.
-
-Setting InterruptThrottleRate to a value greater or equal to 100
-will program the adapter to send out a maximum of that many interrupts
-per second, even if more packets have come in. This reduces interrupt
-load on the system and can lower CPU utilization under heavy load,
-but will increase latency as packets are not processed as quickly.
-
-The default behaviour of the driver previously assumed a static
-InterruptThrottleRate value of 8000, providing a good fallback value for
-all traffic types, but lacking in small packet performance and latency.
-The hardware can handle many more small packets per second however, and
-for this reason an adaptive interrupt moderation algorithm was implemented.
-
-The driver has two adaptive modes (setting 1 or 3) in which
-it dynamically adjusts the InterruptThrottleRate value based on the traffic
-that it receives. After determining the type of incoming traffic in the last
-timeframe, it will adjust the InterruptThrottleRate to an appropriate value
-for that traffic.
-
-The algorithm classifies the incoming traffic every interval into
-classes. Once the class is determined, the InterruptThrottleRate value is
-adjusted to suit that traffic type the best. There are three classes defined:
-"Bulk traffic", for large amounts of packets of normal size; "Low latency",
-for small amounts of traffic and/or a significant percentage of small
-packets; and "Lowest latency", for almost completely small packets or
-minimal traffic.
-
- - 0: Off
- Turns off any interrupt moderation and may improve small packet latency.
- However, this is generally not suitable for bulk throughput traffic due
- to the increased CPU utilization of the higher interrupt rate.
- - 1: Dynamic mode
- This mode attempts to moderate interrupts per vector while maintaining
- very low latency. This can sometimes cause extra CPU utilization. If
- planning on deploying e1000e in a latency sensitive environment, this
- parameter should be considered.
- - 3: Dynamic Conservative mode (default)
- In dynamic conservative mode, the InterruptThrottleRate value is set to
- 4000 for traffic that falls in class "Bulk traffic". If traffic falls in
- the "Low latency" or "Lowest latency" class, the InterruptThrottleRate is
- increased stepwise to 20000. This default mode is suitable for most
- applications.
- - 4: Simplified Balancing mode
- In simplified mode the interrupt rate is based on the ratio of TX and
- RX traffic. If the bytes per second rate is approximately equal, the
- interrupt rate will drop as low as 2000 interrupts per second. If the
- traffic is mostly transmit or mostly receive, the interrupt rate could
- be as high as 8000.
- - 100-100000:
- Setting InterruptThrottleRate to a value greater or equal to 100
- will program the adapter to send at most that many interrupts per second,
- even if more packets have come in. This reduces interrupt load on the
- system and can lower CPU utilization under heavy load, but will increase
- latency as packets are not processed as quickly.
-
-NOTE: InterruptThrottleRate takes precedence over the TxAbsIntDelay and
-RxAbsIntDelay parameters. In other words, minimizing the receive and/or
-transmit absolute delays does not force the controller to generate more
-interrupts than what the Interrupt Throttle Rate allows.
-
-RxIntDelay
-----------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 0
-
-This value delays the generation of receive interrupts in units of 1.024
-microseconds. Receive interrupt reduction can improve CPU efficiency if
-properly tuned for specific network traffic. Increasing this value adds extra
-latency to frame reception and can end up decreasing the throughput of TCP
-traffic. If the system is reporting dropped receives, this value may be set
-too high, causing the driver to run out of available receive descriptors.
-
-CAUTION: When setting RxIntDelay to a value other than 0, adapters may hang
-(stop transmitting) under certain network conditions. If this occurs a NETDEV
-WATCHDOG message is logged in the system event log. In addition, the
-controller is automatically reset, restoring the network connection. To
-eliminate the potential for the hang ensure that RxIntDelay is set to 0.
-
-RxAbsIntDelay
--------------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 8
-
-This value, in units of 1.024 microseconds, limits the delay in which a
-receive interrupt is generated. This value ensures that an interrupt is
-generated after the initial packet is received within the set amount of time,
-which is useful only if RxIntDelay is non-zero. Proper tuning, along with
-RxIntDelay, may improve traffic throughput in specific network conditions.
-
-TxIntDelay
-----------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 8
-
-This value delays the generation of transmit interrupts in units of 1.024
-microseconds. Transmit interrupt reduction can improve CPU efficiency if
-properly tuned for specific network traffic. If the system is reporting
-dropped transmits, this value may be set too high causing the driver to run
-out of available transmit descriptors.
-
-TxAbsIntDelay
--------------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 32
-
-This value, in units of 1.024 microseconds, limits the delay in which a
-transmit interrupt is generated. It is useful only if TxIntDelay is non-zero.
-It ensures that an interrupt is generated after the initial Packet is sent on
-the wire within the set amount of time. Proper tuning, along with TxIntDelay,
-may improve traffic throughput in specific network conditions.
-
-copybreak
----------
-:Valid Range: 0-xxxxxxx (0=off)
-:Default Value: 256
-
-The driver copies all packets below or equaling this size to a fresh receive
-buffer before handing it up the stack.
-This parameter differs from other parameters because it is a single (not 1,1,1
-etc.) parameter applied to all driver instances and it is also available
-during runtime at /sys/module/e1000e/parameters/copybreak.
-
-To use copybreak, type::
-
- modprobe e1000e.ko copybreak=128
-
-SmartPowerDownEnable
---------------------
-:Valid Range: 0,1
-:Default Value: 0 (disabled)
-
-Allows the PHY to turn off in lower power states. The user can turn off this
-parameter in supported chipsets.
-
-KumeranLockLoss
----------------
-:Valid Range: 0,1
-:Default Value: 1 (enabled)
-
-This workaround skips resetting the PHY at shutdown for the initial silicon
-releases of ICH8 systems.
-
-IntMode
--------
-:Valid Range: 0-2
-:Default Value: 0
-
- +-------+----------------+
- | Value | Interrupt Mode |
- +=======+================+
- | 0 | Legacy |
- +-------+----------------+
- | 1 | MSI |
- +-------+----------------+
- | 2 | MSI-X |
- +-------+----------------+
-
-IntMode allows load time control over the type of interrupt registered for by
-the driver. MSI-X is required for multiple queue support, and some kernels and
-combinations of kernel .config options will force a lower level of interrupt
-support.
-
-This command will show different values for each type of interrupt::
-
- cat /proc/interrupts
-
-CrcStripping
-------------
-:Valid Range: 0,1
-:Default Value: 1 (enabled)
-
-Strip the CRC from received packets before sending up the network stack. If
-you have a machine with a BMC enabled but cannot receive IPMI traffic after
-loading or enabling the driver, try disabling this feature.
-
-WriteProtectNVM
----------------
-:Valid Range: 0,1
-:Default Value: 1 (enabled)
-
-If set to 1, configure the hardware to ignore all write/erase cycles to the
-GbE region in the ICHx NVM (in order to prevent accidental corruption of the
-NVM). This feature can be disabled by setting the parameter to 0 during initial
-driver load.
-
-NOTE: The machine must be power cycled (full off/on) when enabling NVM writes
-via setting the parameter to zero. Once the NVM has been locked (via the
-parameter at 1 when the driver loads) it cannot be unlocked except via power
-cycle.
-
-Debug
------
-:Valid Range: 0-16 (0=none,...,16=all)
-:Default Value: 0
-
-This parameter adjusts the level of debug messages displayed in the system logs.
-
-
-Additional Features and Configurations
-======================================
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file:
-
-- For RHEL: /etc/sysconfig/network-scripts/ifcfg-eth<x>
-- For SLES: /etc/sysconfig/network/<config_file>
-
-NOTE: The maximum MTU setting for Jumbo Frames is 8996. This value coincides
-with the maximum Jumbo Frames size of 9018 bytes.
-
-NOTE: Using Jumbo frames at 10 or 100 Mbps is not supported and may result in
-poor performance or loss of link.
-
-NOTE: The following adapters limit Jumbo Frames sized packets to a maximum of
-4088 bytes:
-
- - Intel(R) 82578DM Gigabit Network Connection
- - Intel(R) 82577LM Gigabit Network Connection
-
-The following adapters do not support Jumbo Frames:
-
- - Intel(R) PRO/1000 Gigabit Server Adapter
- - Intel(R) PRO/1000 PM Network Connection
- - Intel(R) 82562G 10/100 Network Connection
- - Intel(R) 82562G-2 10/100 Network Connection
- - Intel(R) 82562GT 10/100 Network Connection
- - Intel(R) 82562GT-2 10/100 Network Connection
- - Intel(R) 82562V 10/100 Network Connection
- - Intel(R) 82562V-2 10/100 Network Connection
- - Intel(R) 82566DC Gigabit Network Connection
- - Intel(R) 82566DC-2 Gigabit Network Connection
- - Intel(R) 82566DM Gigabit Network Connection
- - Intel(R) 82566MC Gigabit Network Connection
- - Intel(R) 82566MM Gigabit Network Connection
- - Intel(R) 82567V-3 Gigabit Network Connection
- - Intel(R) 82577LC Gigabit Network Connection
- - Intel(R) 82578DC Gigabit Network Connection
-
-NOTE: Jumbo Frames cannot be configured on an 82579-based Network device if
-MACSec is enabled on the system.
-
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-
-https://www.kernel.org/pub/software/network/ethtool/
-
-NOTE: When validating enable/disable tests on some parts (for example, 82578),
-it is necessary to add a few seconds between tests when working with ethtool.
-
-
-Speed and Duplex Configuration
-------------------------------
-In addressing speed and duplex configuration issues, you need to distinguish
-between copper-based adapters and fiber-based adapters.
-
-In the default mode, an Intel(R) Ethernet Network Adapter using copper
-connections will attempt to auto-negotiate with its link partner to determine
-the best setting. If the adapter cannot establish link with the link partner
-using auto-negotiation, you may need to manually configure the adapter and link
-partner to identical settings to establish link and pass packets. This should
-only be needed when attempting to link with an older switch that does not
-support auto-negotiation or one that has been forced to a specific speed or
-duplex mode. Your link partner must match the setting you choose. 1 Gbps speeds
-and higher cannot be forced. Use the autonegotiation advertising setting to
-manually set devices for 1 Gbps and higher.
-
-Speed, duplex, and autonegotiation advertising are configured through the
-ethtool utility.
-
-Caution: Only experienced network administrators should force speed and duplex
-or change autonegotiation advertising manually. The settings at the switch must
-always match the adapter settings. Adapter performance may suffer or your
-adapter may not operate if you configure the adapter differently from your
-switch.
-
-An Intel(R) Ethernet Network Adapter using fiber-based connections, however,
-will not attempt to auto-negotiate with its link partner since those adapters
-operate only in full duplex and only at their native speed.
-
-
-Enabling Wake on LAN (WoL)
---------------------------
-WoL is configured through the ethtool utility.
-
-WoL will be enabled on the system during the next shut down or reboot. For
-this driver version, in order to enable WoL, the e1000e driver must be loaded
-prior to shutting down or suspending the system.
-
-NOTE: Wake on LAN is only supported on port A for the following devices:
-- Intel(R) PRO/1000 PT Dual Port Network Connection
-- Intel(R) PRO/1000 PT Dual Port Server Connection
-- Intel(R) PRO/1000 PT Dual Port Server Adapter
-- Intel(R) PRO/1000 PF Dual Port Server Adapter
-- Intel(R) PRO/1000 PT Quad Port Server Adapter
-- Intel(R) Gigabit PT Quad Port Server ExpressModule
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/fm10k.rst b/Documentation/networking/device_drivers/intel/fm10k.rst
deleted file mode 100644
index 4d279e64e221..000000000000
--- a/Documentation/networking/device_drivers/intel/fm10k.rst
+++ /dev/null
@@ -1,142 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=============================================================
-Linux Base Driver for Intel(R) Ethernet Multi-host Controller
-=============================================================
-
-August 20, 2018
-Copyright(c) 2015-2018 Intel Corporation.
-
-Contents
-========
-- Identifying Your Adapter
-- Additional Configurations
-- Performance Tuning
-- Known Issues
-- Support
-
-Identifying Your Adapter
-========================
-The driver in this release is compatible with devices based on the Intel(R)
-Ethernet Multi-host Controller.
-
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-http://www.intel.com/support
-
-
-Flow Control
-------------
-The Intel(R) Ethernet Switch Host Interface Driver does not support Flow
-Control. It will not send pause frames. This may result in dropped frames.
-
-
-Virtual Functions (VFs)
------------------------
-Use sysfs to enable VFs.
-Valid Range: 0-64
-
-For example::
-
- echo $num_vf_enabled > /sys/class/net/$dev/device/sriov_numvfs //enable VFs
- echo 0 > /sys/class/net/$dev/device/sriov_numvfs //disable VFs
-
-NOTE: Neither the device nor the driver control how VFs are mapped into config
-space. Bus layout will vary by operating system. On operating systems that
-support it, you can check sysfs to find the mapping.
-
-NOTE: When SR-IOV mode is enabled, hardware VLAN filtering and VLAN tag
-stripping/insertion will remain enabled. Please remove the old VLAN filter
-before the new VLAN filter is added. For example::
-
- ip link set eth0 vf 0 vlan 100 // set vlan 100 for VF 0
- ip link set eth0 vf 0 vlan 0 // Delete vlan 100
- ip link set eth0 vf 0 vlan 200 // set a new vlan 200 for VF 0
-
-
-Additional Features and Configurations
-======================================
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file:
-
-- For RHEL: /etc/sysconfig/network-scripts/ifcfg-eth<x>
-- For SLES: /etc/sysconfig/network/<config_file>
-
-NOTE: The maximum MTU setting for Jumbo Frames is 15342. This value coincides
-with the maximum Jumbo Frames size of 15364 bytes.
-
-NOTE: This driver will attempt to use multiple page sized buffers to receive
-each jumbo packet. This should help to avoid buffer starvation issues when
-allocating receive packets.
-
-
-Generic Receive Offload, aka GRO
---------------------------------
-The driver supports the in-kernel software implementation of GRO. GRO has
-shown that by coalescing Rx traffic into larger chunks of data, CPU
-utilization can be significantly reduced when under large Rx load. GRO is an
-evolution of the previously-used LRO interface. GRO is able to coalesce
-other protocols besides TCP. It's also safe to use with configurations that
-are problematic for LRO, namely bridging and iSCSI.
-
-
-
-Supported ethtool Commands and Options for Filtering
-----------------------------------------------------
--n --show-nfc
- Retrieves the receive network flow classification configurations.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6
- Retrieves the hash options for the specified network traffic type.
-
--N --config-nfc
- Configures the receive network flow classification.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r
- Configures the hash options for the specified network traffic type.
-
-- udp4: UDP over IPv4
-- udp6: UDP over IPv6
-- f Hash on bytes 0 and 1 of the Layer 4 header of the rx packet.
-- n Hash on bytes 2 and 3 of the Layer 4 header of the rx packet.
-
-
-Known Issues/Troubleshooting
-============================
-
-Enabling SR-IOV in a 64-bit Microsoft Windows Server 2012/R2 guest OS under Linux KVM
--------------------------------------------------------------------------------------
-KVM Hypervisor/VMM supports direct assignment of a PCIe device to a VM. This
-includes traditional PCIe devices, as well as SR-IOV-capable devices based on
-the Intel Ethernet Controller XL710.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/i40e.rst b/Documentation/networking/device_drivers/intel/i40e.rst
deleted file mode 100644
index 8a9b18573688..000000000000
--- a/Documentation/networking/device_drivers/intel/i40e.rst
+++ /dev/null
@@ -1,771 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=================================================================
-Linux Base Driver for the Intel(R) Ethernet Controller 700 Series
-=================================================================
-
-Intel 40 Gigabit Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-
-- Overview
-- Identifying Your Adapter
-- Intel(R) Ethernet Flow Director
-- Additional Configurations
-- Known Issues
-- Support
-
-
-Driver information can be obtained using ethtool, lspci, and ifconfig.
-Instructions on updating ethtool can be found in the section Additional
-Configurations later in this document.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel adapter. All hardware requirements listed apply to use
-with Linux.
-
-
-Identifying Your Adapter
-========================
-The driver is compatible with devices based on the following:
-
- * Intel(R) Ethernet Controller X710
- * Intel(R) Ethernet Controller XL710
- * Intel(R) Ethernet Network Connection X722
- * Intel(R) Ethernet Controller XXV710
-
-For the best performance, make sure the latest NVM/FW is installed on your
-device.
-
-For information on how to identify your adapter, and for the latest NVM/FW
-images and Intel network drivers, refer to the Intel Support website:
-https://www.intel.com/support
-
-SFP+ and QSFP+ Devices
-----------------------
-For information about supported media, refer to this document:
-https://www.intel.com/content/dam/www/public/us/en/documents/release-notes/xl710-ethernet-controller-feature-matrix.pdf
-
-NOTE: Some adapters based on the Intel(R) Ethernet Controller 700 Series only
-support Intel Ethernet Optics modules. On these adapters, other modules are not
-supported and will not function. In all cases Intel recommends using Intel
-Ethernet Optics; other modules may function but are not validated by Intel.
-Contact Intel for supported media types.
-
-NOTE: For connections based on Intel(R) Ethernet Controller 700 Series, support
-is dependent on your system board. Please see your vendor for details.
-
-NOTE: In systems that do not have adequate airflow to cool the adapter and
-optical modules, you must use high temperature optical modules.
-
-Virtual Functions (VFs)
------------------------
-Use sysfs to enable VFs. For example::
-
- #echo $num_vf_enabled > /sys/class/net/$dev/device/sriov_numvfs #enable VFs
- #echo 0 > /sys/class/net/$dev/device/sriov_numvfs #disable VFs
-
-For example, the following instructions will configure PF eth0 and the first VF
-on VLAN 10::
-
- $ ip link set dev eth0 vf 0 vlan 10
-
-VLAN Tag Packet Steering
-------------------------
-Allows you to send all packets with a specific VLAN tag to a particular SR-IOV
-virtual function (VF). Further, this feature allows you to designate a
-particular VF as trusted, and allows that trusted VF to request selective
-promiscuous mode on the Physical Function (PF).
-
-To set a VF as trusted or untrusted, enter the following command in the
-Hypervisor::
-
- # ip link set dev eth0 vf 1 trust [on|off]
-
-Once the VF is designated as trusted, use the following commands in the VM to
-set the VF to promiscuous mode.
-
-::
-
- For promiscuous all:
- #ip link set eth2 promisc on
- Where eth2 is a VF interface in the VM
-
- For promiscuous Multicast:
- #ip link set eth2 allmulticast on
- Where eth2 is a VF interface in the VM
-
-NOTE: By default, the ethtool priv-flag vf-true-promisc-support is set to
-"off",meaning that promiscuous mode for the VF will be limited. To set the
-promiscuous mode for the VF to true promiscuous and allow the VF to see all
-ingress traffic, use the following command::
-
- #ethtool -set-priv-flags p261p1 vf-true-promisc-support on
-
-The vf-true-promisc-support priv-flag does not enable promiscuous mode; rather,
-it designates which type of promiscuous mode (limited or true) you will get
-when you enable promiscuous mode using the ip link commands above. Note that
-this is a global setting that affects the entire device. However,the
-vf-true-promisc-support priv-flag is only exposed to the first PF of the
-device. The PF remains in limited promiscuous mode (unless it is in MFP mode)
-regardless of the vf-true-promisc-support setting.
-
-Now add a VLAN interface on the VF interface::
-
- #ip link add link eth2 name eth2.100 type vlan id 100
-
-Note that the order in which you set the VF to promiscuous mode and add the
-VLAN interface does not matter (you can do either first). The end result in
-this example is that the VF will get all traffic that is tagged with VLAN 100.
-
-Intel(R) Ethernet Flow Director
--------------------------------
-The Intel Ethernet Flow Director performs the following tasks:
-
-- Directs receive packets according to their flows to different queues.
-- Enables tight control on routing a flow in the platform.
-- Matches flows and CPU cores for flow affinity.
-- Supports multiple parameters for flexible flow classification and load
- balancing (in SFP mode only).
-
-NOTE: The Linux i40e driver supports the following flow types: IPv4, TCPv4, and
-UDPv4. For a given flow type, it supports valid combinations of IP addresses
-(source or destination) and UDP/TCP ports (source and destination). For
-example, you can supply only a source IP address, a source IP address and a
-destination port, or any combination of one or more of these four parameters.
-
-NOTE: The Linux i40e driver allows you to filter traffic based on a
-user-defined flexible two-byte pattern and offset by using the ethtool user-def
-and mask fields. Only L3 and L4 flow types are supported for user-defined
-flexible filters. For a given flow type, you must clear all Intel Ethernet Flow
-Director filters before changing the input set (for that flow type).
-
-To enable or disable the Intel Ethernet Flow Director::
-
- # ethtool -K ethX ntuple <on|off>
-
-When disabling ntuple filters, all the user programmed filters are flushed from
-the driver cache and hardware. All needed filters must be re-added when ntuple
-is re-enabled.
-
-To add a filter that directs packet to queue 2, use -U or -N switch::
-
- # ethtool -N ethX flow-type tcp4 src-ip 192.168.10.1 dst-ip \
- 192.168.10.2 src-port 2000 dst-port 2001 action 2 [loc 1]
-
-To set a filter using only the source and destination IP address::
-
- # ethtool -N ethX flow-type tcp4 src-ip 192.168.10.1 dst-ip \
- 192.168.10.2 action 2 [loc 1]
-
-To see the list of filters currently present::
-
- # ethtool <-u|-n> ethX
-
-Application Targeted Routing (ATR) Perfect Filters
---------------------------------------------------
-ATR is enabled by default when the kernel is in multiple transmit queue mode.
-An ATR Intel Ethernet Flow Director filter rule is added when a TCP-IP flow
-starts and is deleted when the flow ends. When a TCP-IP Intel Ethernet Flow
-Director rule is added from ethtool (Sideband filter), ATR is turned off by the
-driver. To re-enable ATR, the sideband can be disabled with the ethtool -K
-option. For example::
-
- ethtool –K [adapter] ntuple [off|on]
-
-If sideband is re-enabled after ATR is re-enabled, ATR remains enabled until a
-TCP-IP flow is added. When all TCP-IP sideband rules are deleted, ATR is
-automatically re-enabled.
-
-Packets that match the ATR rules are counted in fdir_atr_match stats in
-ethtool, which also can be used to verify whether ATR rules still exist.
-
-Sideband Perfect Filters
-------------------------
-Sideband Perfect Filters are used to direct traffic that matches specified
-characteristics. They are enabled through ethtool's ntuple interface. To add a
-new filter use the following command::
-
- ethtool -U <device> flow-type <type> src-ip <ip> dst-ip <ip> src-port <port> \
- dst-port <port> action <queue>
-
-Where:
- <device> - the ethernet device to program
- <type> - can be ip4, tcp4, udp4, or sctp4
- <ip> - the ip address to match on
- <port> - the port number to match on
- <queue> - the queue to direct traffic towards (-1 discards matching traffic)
-
-Use the following command to display all of the active filters::
-
- ethtool -u <device>
-
-Use the following command to delete a filter::
-
- ethtool -U <device> delete <N>
-
-Where <N> is the filter id displayed when printing all the active filters, and
-may also have been specified using "loc <N>" when adding the filter.
-
-The following example matches TCP traffic sent from 192.168.0.1, port 5300,
-directed to 192.168.0.5, port 80, and sends it to queue 7::
-
- ethtool -U enp130s0 flow-type tcp4 src-ip 192.168.0.1 dst-ip 192.168.0.5 \
- src-port 5300 dst-port 80 action 7
-
-For each flow-type, the programmed filters must all have the same matching
-input set. For example, issuing the following two commands is acceptable::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.5 src-port 55 action 10
-
-Issuing the next two commands, however, is not acceptable, since the first
-specifies src-ip and the second specifies dst-ip::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 dst-ip 192.168.0.5 src-port 55 action 10
-
-The second command will fail with an error. You may program multiple filters
-with the same fields, using different values, but, on one device, you may not
-program two tcp4 filters with different matching fields.
-
-Matching on a sub-portion of a field is not supported by the i40e driver, thus
-partial mask fields are not supported.
-
-The driver also supports matching user-defined data within the packet payload.
-This flexible data is specified using the "user-def" field of the ethtool
-command in the following way:
-
-+----------------------------+--------------------------+
-| 31 28 24 20 16 | 15 12 8 4 0 |
-+----------------------------+--------------------------+
-| offset into packet payload | 2 bytes of flexible data |
-+----------------------------+--------------------------+
-
-For example,
-
-::
-
- ... user-def 0x4FFFF ...
-
-tells the filter to look 4 bytes into the payload and match that value against
-0xFFFF. The offset is based on the beginning of the payload, and not the
-beginning of the packet. Thus
-
-::
-
- flow-type tcp4 ... user-def 0x8BEAF ...
-
-would match TCP/IPv4 packets which have the value 0xBEAF 8 bytes into the
-TCP/IPv4 payload.
-
-Note that ICMP headers are parsed as 4 bytes of header and 4 bytes of payload.
-Thus to match the first byte of the payload, you must actually add 4 bytes to
-the offset. Also note that ip4 filters match both ICMP frames as well as raw
-(unknown) ip4 frames, where the payload will be the L3 payload of the IP4 frame.
-
-The maximum offset is 64. The hardware will only read up to 64 bytes of data
-from the payload. The offset must be even because the flexible data is 2 bytes
-long and must be aligned to byte 0 of the packet payload.
-
-The user-defined flexible offset is also considered part of the input set and
-cannot be programmed separately for multiple filters of the same type. However,
-the flexible data is not part of the input set and multiple filters may use the
-same offset but match against different data.
-
-To create filters that direct traffic to a specific Virtual Function, use the
-"action" parameter. Specify the action as a 64 bit value, where the lower 32
-bits represents the queue number, while the next 8 bits represent which VF.
-Note that 0 is the PF, so the VF identifier is offset by 1. For example::
-
- ... action 0x800000002 ...
-
-specifies to direct traffic to Virtual Function 7 (8 minus 1) into queue 2 of
-that VF.
-
-Note that these filters will not break internal routing rules, and will not
-route traffic that otherwise would not have been sent to the specified Virtual
-Function.
-
-Setting the link-down-on-close Private Flag
--------------------------------------------
-When the link-down-on-close private flag is set to "on", the port's link will
-go down when the interface is brought down using the ifconfig ethX down command.
-
-Use ethtool to view and set link-down-on-close, as follows::
-
- ethtool --show-priv-flags ethX
- ethtool --set-priv-flags ethX link-down-on-close [on|off]
-
-Viewing Link Messages
----------------------
-Link messages will not be displayed to the console if the distribution is
-restricting system messages. In order to see network driver link messages on
-your console, set dmesg to eight by entering the following::
-
- dmesg -n 8
-
-NOTE: This setting is not saved across reboots.
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file::
-
- /etc/sysconfig/network-scripts/ifcfg-eth<x> // for RHEL
- /etc/sysconfig/network/<config_file> // for SLES
-
-NOTE: The maximum MTU setting for Jumbo Frames is 9702. This value coincides
-with the maximum Jumbo Frames size of 9728 bytes.
-
-NOTE: This driver will attempt to use multiple page sized buffers to receive
-each jumbo packet. This should help to avoid buffer starvation issues when
-allocating receive packets.
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-https://www.kernel.org/pub/software/network/ethtool/
-
-Supported ethtool Commands and Options for Filtering
-----------------------------------------------------
--n --show-nfc
- Retrieves the receive network flow classification configurations.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6
- Retrieves the hash options for the specified network traffic type.
-
--N --config-nfc
- Configures the receive network flow classification.
-
-rx-flow-hash tcp4|udp4|ah4|esp4|sctp4|tcp6|udp6|ah6|esp6|sctp6 m|v|t|s|d|f|n|r...
- Configures the hash options for the specified network traffic type.
-
-udp4 UDP over IPv4
-udp6 UDP over IPv6
-
-f Hash on bytes 0 and 1 of the Layer 4 header of the Rx packet.
-n Hash on bytes 2 and 3 of the Layer 4 header of the Rx packet.
-
-Speed and Duplex Configuration
-------------------------------
-In addressing speed and duplex configuration issues, you need to distinguish
-between copper-based adapters and fiber-based adapters.
-
-In the default mode, an Intel(R) Ethernet Network Adapter using copper
-connections will attempt to auto-negotiate with its link partner to determine
-the best setting. If the adapter cannot establish link with the link partner
-using auto-negotiation, you may need to manually configure the adapter and link
-partner to identical settings to establish link and pass packets. This should
-only be needed when attempting to link with an older switch that does not
-support auto-negotiation or one that has been forced to a specific speed or
-duplex mode. Your link partner must match the setting you choose. 1 Gbps speeds
-and higher cannot be forced. Use the autonegotiation advertising setting to
-manually set devices for 1 Gbps and higher.
-
-NOTE: You cannot set the speed for devices based on the Intel(R) Ethernet
-Network Adapter XXV710 based devices.
-
-Speed, duplex, and autonegotiation advertising are configured through the
-ethtool utility.
-
-Caution: Only experienced network administrators should force speed and duplex
-or change autonegotiation advertising manually. The settings at the switch must
-always match the adapter settings. Adapter performance may suffer or your
-adapter may not operate if you configure the adapter differently from your
-switch.
-
-An Intel(R) Ethernet Network Adapter using fiber-based connections, however,
-will not attempt to auto-negotiate with its link partner since those adapters
-operate only in full duplex and only at their native speed.
-
-NAPI
-----
-NAPI (Rx polling mode) is supported in the i40e driver.
-For more information on NAPI, see
-https://wiki.linuxfoundation.org/networking/napi
-
-Flow Control
-------------
-Ethernet Flow Control (IEEE 802.3x) can be configured with ethtool to enable
-receiving and transmitting pause frames for i40e. When transmit is enabled,
-pause frames are generated when the receive packet buffer crosses a predefined
-threshold. When receive is enabled, the transmit unit will halt for the time
-delay specified when a pause frame is received.
-
-NOTE: You must have a flow control capable link partner.
-
-Flow Control is on by default.
-
-Use ethtool to change the flow control settings.
-
-To enable or disable Rx or Tx Flow Control::
-
- ethtool -A eth? rx <on|off> tx <on|off>
-
-Note: This command only enables or disables Flow Control if auto-negotiation is
-disabled. If auto-negotiation is enabled, this command changes the parameters
-used for auto-negotiation with the link partner.
-
-To enable or disable auto-negotiation::
-
- ethtool -s eth? autoneg <on|off>
-
-Note: Flow Control auto-negotiation is part of link auto-negotiation. Depending
-on your device, you may not be able to change the auto-negotiation setting.
-
-RSS Hash Flow
--------------
-Allows you to set the hash bytes per flow type and any combination of one or
-more options for Receive Side Scaling (RSS) hash byte configuration.
-
-::
-
- # ethtool -N <dev> rx-flow-hash <type> <option>
-
-Where <type> is:
- tcp4 signifying TCP over IPv4
- udp4 signifying UDP over IPv4
- tcp6 signifying TCP over IPv6
- udp6 signifying UDP over IPv6
-And <option> is one or more of:
- s Hash on the IP source address of the Rx packet.
- d Hash on the IP destination address of the Rx packet.
- f Hash on bytes 0 and 1 of the Layer 4 header of the Rx packet.
- n Hash on bytes 2 and 3 of the Layer 4 header of the Rx packet.
-
-MAC and VLAN anti-spoofing feature
-----------------------------------
-When a malicious driver attempts to send a spoofed packet, it is dropped by the
-hardware and not transmitted.
-NOTE: This feature can be disabled for a specific Virtual Function (VF)::
-
- ip link set <pf dev> vf <vf id> spoofchk {off|on}
-
-IEEE 1588 Precision Time Protocol (PTP) Hardware Clock (PHC)
-------------------------------------------------------------
-Precision Time Protocol (PTP) is used to synchronize clocks in a computer
-network. PTP support varies among Intel devices that support this driver. Use
-"ethtool -T <netdev name>" to get a definitive list of PTP capabilities
-supported by the device.
-
-IEEE 802.1ad (QinQ) Support
----------------------------
-The IEEE 802.1ad standard, informally known as QinQ, allows for multiple VLAN
-IDs within a single Ethernet frame. VLAN IDs are sometimes referred to as
-"tags," and multiple VLAN IDs are thus referred to as a "tag stack." Tag stacks
-allow L2 tunneling and the ability to segregate traffic within a particular
-VLAN ID, among other uses.
-
-The following are examples of how to configure 802.1ad (QinQ)::
-
- ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
- ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
-
-Where "24" and "371" are example VLAN IDs.
-
-NOTES:
- Receive checksum offloads, cloud filters, and VLAN acceleration are not
- supported for 802.1ad (QinQ) packets.
-
-VXLAN and GENEVE Overlay HW Offloading
---------------------------------------
-Virtual Extensible LAN (VXLAN) allows you to extend an L2 network over an L3
-network, which may be useful in a virtualized or cloud environment. Some
-Intel(R) Ethernet Network devices perform VXLAN processing, offloading it from
-the operating system. This reduces CPU utilization.
-
-VXLAN offloading is controlled by the Tx and Rx checksum offload options
-provided by ethtool. That is, if Tx checksum offload is enabled, and the
-adapter has the capability, VXLAN offloading is also enabled.
-
-Support for VXLAN and GENEVE HW offloading is dependent on kernel support of
-the HW offloading features.
-
-Multiple Functions per Port
----------------------------
-Some adapters based on the Intel Ethernet Controller X710/XL710 support
-multiple functions on a single physical port. Configure these functions through
-the System Setup/BIOS.
-
-Minimum TX Bandwidth is the guaranteed minimum data transmission bandwidth, as
-a percentage of the full physical port link speed, that the partition will
-receive. The bandwidth the partition is awarded will never fall below the level
-you specify.
-
-The range for the minimum bandwidth values is:
-1 to ((100 minus # of partitions on the physical port) plus 1)
-For example, if a physical port has 4 partitions, the range would be:
-1 to ((100 - 4) + 1 = 97)
-
-The Maximum Bandwidth percentage represents the maximum transmit bandwidth
-allocated to the partition as a percentage of the full physical port link
-speed. The accepted range of values is 1-100. The value is used as a limiter,
-should you chose that any one particular function not be able to consume 100%
-of a port's bandwidth (should it be available). The sum of all the values for
-Maximum Bandwidth is not restricted, because no more than 100% of a port's
-bandwidth can ever be used.
-
-NOTE: X710/XXV710 devices fail to enable Max VFs (64) when Multiple Functions
-per Port (MFP) and SR-IOV are enabled. An error from i40e is logged that says
-"add vsi failed for VF N, aq_err 16". To workaround the issue, enable less than
-64 virtual functions (VFs).
-
-Data Center Bridging (DCB)
---------------------------
-DCB is a configuration Quality of Service implementation in hardware. It uses
-the VLAN priority tag (802.1p) to filter traffic. That means that there are 8
-different priorities that traffic can be filtered into. It also enables
-priority flow control (802.1Qbb) which can limit or eliminate the number of
-dropped packets during network stress. Bandwidth can be allocated to each of
-these priorities, which is enforced at the hardware level (802.1Qaz).
-
-Adapter firmware implements LLDP and DCBX protocol agents as per 802.1AB and
-802.1Qaz respectively. The firmware based DCBX agent runs in willing mode only
-and can accept settings from a DCBX capable peer. Software configuration of
-DCBX parameters via dcbtool/lldptool are not supported.
-
-NOTE: Firmware LLDP can be disabled by setting the private flag disable-fw-lldp.
-
-The i40e driver implements the DCB netlink interface layer to allow user-space
-to communicate with the driver and query DCB configuration for the port.
-
-NOTE:
-The kernel assumes that TC0 is available, and will disable Priority Flow
-Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
-enabled when setting up DCB on your switch.
-
-Interrupt Rate Limiting
------------------------
-:Valid Range: 0-235 (0=no limit)
-
-The Intel(R) Ethernet Controller XL710 family supports an interrupt rate
-limiting mechanism. The user can control, via ethtool, the number of
-microseconds between interrupts.
-
-Syntax::
-
- # ethtool -C ethX rx-usecs-high N
-
-The range of 0-235 microseconds provides an effective range of 4,310 to 250,000
-interrupts per second. The value of rx-usecs-high can be set independently of
-rx-usecs and tx-usecs in the same ethtool command, and is also independent of
-the adaptive interrupt moderation algorithm. The underlying hardware supports
-granularity in 4-microsecond intervals, so adjacent values may result in the
-same interrupt rate.
-
-One possible use case is the following::
-
- # ethtool -C ethX adaptive-rx off adaptive-tx off rx-usecs-high 20 rx-usecs \
- 5 tx-usecs 5
-
-The above command would disable adaptive interrupt moderation, and allow a
-maximum of 5 microseconds before indicating a receive or transmit was complete.
-However, instead of resulting in as many as 200,000 interrupts per second, it
-limits total interrupts per second to 50,000 via the rx-usecs-high parameter.
-
-Performance Optimization
-========================
-Driver defaults are meant to fit a wide variety of workloads, but if further
-optimization is required we recommend experimenting with the following settings.
-
-NOTE: For better performance when processing small (64B) frame sizes, try
-enabling Hyper threading in the BIOS in order to increase the number of logical
-cores in the system and subsequently increase the number of queues available to
-the adapter.
-
-Virtualized Environments
-------------------------
-1. Disable XPS on both ends by using the included virt_perf_default script
-or by running the following command as root::
-
- for file in `ls /sys/class/net/<ethX>/queues/tx-*/xps_cpus`;
- do echo 0 > $file; done
-
-2. Using the appropriate mechanism (vcpupin) in the vm, pin the cpu's to
-individual lcpu's, making sure to use a set of cpu's included in the
-device's local_cpulist: /sys/class/net/<ethX>/device/local_cpulist.
-
-3. Configure as many Rx/Tx queues in the VM as available. Do not rely on
-the default setting of 1.
-
-
-Non-virtualized Environments
-----------------------------
-Pin the adapter's IRQs to specific cores by disabling the irqbalance service
-and using the included set_irq_affinity script. Please see the script's help
-text for further options.
-
-- The following settings will distribute the IRQs across all the cores evenly::
-
- # scripts/set_irq_affinity -x all <interface1> , [ <interface2>, ... ]
-
-- The following settings will distribute the IRQs across all the cores that are
- local to the adapter (same NUMA node)::
-
- # scripts/set_irq_affinity -x local <interface1> ,[ <interface2>, ... ]
-
-For very CPU intensive workloads, we recommend pinning the IRQs to all cores.
-
-For IP Forwarding: Disable Adaptive ITR and lower Rx and Tx interrupts per
-queue using ethtool.
-
-- Setting rx-usecs and tx-usecs to 125 will limit interrupts to about 8000
- interrupts per second per queue.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 125 \
- tx-usecs 125
-
-For lower CPU utilization: Disable Adaptive ITR and lower Rx and Tx interrupts
-per queue using ethtool.
-
-- Setting rx-usecs and tx-usecs to 250 will limit interrupts to about 4000
- interrupts per second per queue.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 250 \
- tx-usecs 250
-
-For lower latency: Disable Adaptive ITR and ITR by setting Rx and Tx to 0 using
-ethtool.
-
-::
-
- # ethtool -C <interface> adaptive-rx off adaptive-tx off rx-usecs 0 \
- tx-usecs 0
-
-Application Device Queues (ADq)
--------------------------------
-Application Device Queues (ADq) allows you to dedicate one or more queues to a
-specific application. This can reduce latency for the specified application,
-and allow Tx traffic to be rate limited per application. Follow the steps below
-to set ADq.
-
-1. Create traffic classes (TCs). Maximum of 8 TCs can be created per interface.
-The shaper bw_rlimit parameter is optional.
-
-Example: Sets up two tcs, tc0 and tc1, with 16 queues each and max tx rate set
-to 1Gbit for tc0 and 3Gbit for tc1.
-
-::
-
- # tc qdisc add dev <interface> root mqprio num_tc 2 map 0 0 0 0 1 1 1 1
- queues 16@0 16@16 hw 1 mode channel shaper bw_rlimit min_rate 1Gbit 2Gbit
- max_rate 1Gbit 3Gbit
-
-map: priority mapping for up to 16 priorities to tcs (e.g. map 0 0 0 0 1 1 1 1
-sets priorities 0-3 to use tc0 and 4-7 to use tc1)
-
-queues: for each tc, <num queues>@<offset> (e.g. queues 16@0 16@16 assigns
-16 queues to tc0 at offset 0 and 16 queues to tc1 at offset 16. Max total
-number of queues for all tcs is 64 or number of cores, whichever is lower.)
-
-hw 1 mode channel: ‘channel’ with ‘hw’ set to 1 is a new new hardware
-offload mode in mqprio that makes full use of the mqprio options, the
-TCs, the queue configurations, and the QoS parameters.
-
-shaper bw_rlimit: for each tc, sets minimum and maximum bandwidth rates.
-Totals must be equal or less than port speed.
-
-For example: min_rate 1Gbit 3Gbit: Verify bandwidth limit using network
-monitoring tools such as ifstat or sar –n DEV [interval] [number of samples]
-
-2. Enable HW TC offload on interface::
-
- # ethtool -K <interface> hw-tc-offload on
-
-3. Apply TCs to ingress (RX) flow of interface::
-
- # tc qdisc add dev <interface> ingress
-
-NOTES:
- - Run all tc commands from the iproute2 <pathtoiproute2>/tc/ directory.
- - ADq is not compatible with cloud filters.
- - Setting up channels via ethtool (ethtool -L) is not supported when the
- TCs are configured using mqprio.
- - You must have iproute2 latest version
- - NVM version 6.01 or later is required.
- - ADq cannot be enabled when any the following features are enabled: Data
- Center Bridging (DCB), Multiple Functions per Port (MFP), or Sideband
- Filters.
- - If another driver (for example, DPDK) has set cloud filters, you cannot
- enable ADq.
- - Tunnel filters are not supported in ADq. If encapsulated packets do
- arrive in non-tunnel mode, filtering will be done on the inner headers.
- For example, for VXLAN traffic in non-tunnel mode, PCTYPE is identified
- as a VXLAN encapsulated packet, outer headers are ignored. Therefore,
- inner headers are matched.
- - If a TC filter on a PF matches traffic over a VF (on the PF), that
- traffic will be routed to the appropriate queue of the PF, and will
- not be passed on the VF. Such traffic will end up getting dropped higher
- up in the TCP/IP stack as it does not match PF address data.
- - If traffic matches multiple TC filters that point to different TCs,
- that traffic will be duplicated and sent to all matching TC queues.
- The hardware switch mirrors the packet to a VSI list when multiple
- filters are matched.
-
-
-Known Issues/Troubleshooting
-============================
-
-NOTE: 1 Gb devices based on the Intel(R) Ethernet Network Connection X722 do
-not support the following features:
-
- * Data Center Bridging (DCB)
- * QOS
- * VMQ
- * SR-IOV
- * Task Encapsulation offload (VXLAN, NVGRE)
- * Energy Efficient Ethernet (EEE)
- * Auto-media detect
-
-Unexpected Issues when the device driver and DPDK share a device
-----------------------------------------------------------------
-Unexpected issues may result when an i40e device is in multi driver mode and
-the kernel driver and DPDK driver are sharing the device. This is because
-access to the global NIC resources is not synchronized between multiple
-drivers. Any change to the global NIC configuration (writing to a global
-register, setting global configuration by AQ, or changing switch modes) will
-affect all ports and drivers on the device. Loading DPDK with the
-"multi-driver" module parameter may mitigate some of the issues.
-
-TC0 must be enabled when setting up DCB on a switch
----------------------------------------------------
-The kernel assumes that TC0 is available, and will disable Priority Flow
-Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
-enabled when setting up DCB on your switch.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/iavf.rst b/Documentation/networking/device_drivers/intel/iavf.rst
deleted file mode 100644
index 84ac7e75f363..000000000000
--- a/Documentation/networking/device_drivers/intel/iavf.rst
+++ /dev/null
@@ -1,331 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=================================================================
-Linux Base Driver for Intel(R) Ethernet Adaptive Virtual Function
-=================================================================
-
-Intel Ethernet Adaptive Virtual Function Linux driver.
-Copyright(c) 2013-2018 Intel Corporation.
-
-Contents
-========
-
-- Overview
-- Identifying Your Adapter
-- Additional Configurations
-- Known Issues/Troubleshooting
-- Support
-
-Overview
-========
-
-This file describes the iavf Linux Base Driver. This driver was formerly
-called i40evf.
-
-The iavf driver supports the below mentioned virtual function devices and
-can only be activated on kernels running the i40e or newer Physical Function
-(PF) driver compiled with CONFIG_PCI_IOV. The iavf driver requires
-CONFIG_PCI_MSI to be enabled.
-
-The guest OS loading the iavf driver must support MSI-X interrupts.
-
-Identifying Your Adapter
-========================
-
-The driver in this kernel is compatible with devices based on the following:
- * Intel(R) XL710 X710 Virtual Function
- * Intel(R) X722 Virtual Function
- * Intel(R) XXV710 Virtual Function
- * Intel(R) Ethernet Adaptive Virtual Function
-
-For the best performance, make sure the latest NVM/FW is installed on your
-device.
-
-For information on how to identify your adapter, and for the latest NVM/FW
-images and Intel network drivers, refer to the Intel Support website:
-http://www.intel.com/support
-
-
-Additional Features and Configurations
-======================================
-
-Viewing Link Messages
----------------------
-Link messages will not be displayed to the console if the distribution is
-restricting system messages. In order to see network driver link messages on
-your console, set dmesg to eight by entering the following::
-
- # dmesg -n 8
-
-NOTE:
- This setting is not saved across reboots.
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-https://www.kernel.org/pub/software/network/ethtool/
-
-Setting VLAN Tag Stripping
---------------------------
-If you have applications that require Virtual Functions (VFs) to receive
-packets with VLAN tags, you can disable VLAN tag stripping for the VF. The
-Physical Function (PF) processes requests issued from the VF to enable or
-disable VLAN tag stripping. Note that if the PF has assigned a VLAN to a VF,
-then requests from that VF to set VLAN tag stripping will be ignored.
-
-To enable/disable VLAN tag stripping for a VF, issue the following command
-from inside the VM in which you are running the VF::
-
- # ethtool -K <if_name> rxvlan on/off
-
-or alternatively::
-
- # ethtool --offload <if_name> rxvlan on/off
-
-Adaptive Virtual Function
--------------------------
-Adaptive Virtual Function (AVF) allows the virtual function driver, or VF, to
-adapt to changing feature sets of the physical function driver (PF) with which
-it is associated. This allows system administrators to update a PF without
-having to update all the VFs associated with it. All AVFs have a single common
-device ID and branding string.
-
-AVFs have a minimum set of features known as "base mode," but may provide
-additional features depending on what features are available in the PF with
-which the AVF is associated. The following are base mode features:
-
-- 4 Queue Pairs (QP) and associated Configuration Status Registers (CSRs)
- for Tx/Rx
-- i40e descriptors and ring format
-- Descriptor write-back completion
-- 1 control queue, with i40e descriptors, CSRs and ring format
-- 5 MSI-X interrupt vectors and corresponding i40e CSRs
-- 1 Interrupt Throttle Rate (ITR) index
-- 1 Virtual Station Interface (VSI) per VF
-- 1 Traffic Class (TC), TC0
-- Receive Side Scaling (RSS) with 64 entry indirection table and key,
- configured through the PF
-- 1 unicast MAC address reserved per VF
-- 16 MAC address filters for each VF
-- Stateless offloads - non-tunneled checksums
-- AVF device ID
-- HW mailbox is used for VF to PF communications (including on Windows)
-
-IEEE 802.1ad (QinQ) Support
----------------------------
-The IEEE 802.1ad standard, informally known as QinQ, allows for multiple VLAN
-IDs within a single Ethernet frame. VLAN IDs are sometimes referred to as
-"tags," and multiple VLAN IDs are thus referred to as a "tag stack." Tag stacks
-allow L2 tunneling and the ability to segregate traffic within a particular
-VLAN ID, among other uses.
-
-The following are examples of how to configure 802.1ad (QinQ)::
-
- # ip link add link eth0 eth0.24 type vlan proto 802.1ad id 24
- # ip link add link eth0.24 eth0.24.371 type vlan proto 802.1Q id 371
-
-Where "24" and "371" are example VLAN IDs.
-
-NOTES:
- Receive checksum offloads, cloud filters, and VLAN acceleration are not
- supported for 802.1ad (QinQ) packets.
-
-Application Device Queues (ADq)
--------------------------------
-Application Device Queues (ADq) allows you to dedicate one or more queues to a
-specific application. This can reduce latency for the specified application,
-and allow Tx traffic to be rate limited per application. Follow the steps below
-to set ADq.
-
-Requirements:
-
-- The sch_mqprio, act_mirred and cls_flower modules must be loaded
-- The latest version of iproute2
-- If another driver (for example, DPDK) has set cloud filters, you cannot
- enable ADQ
-- Depending on the underlying PF device, ADQ cannot be enabled when the
- following features are enabled:
-
- + Data Center Bridging (DCB)
- + Multiple Functions per Port (MFP)
- + Sideband Filters
-
-1. Create traffic classes (TCs). Maximum of 8 TCs can be created per interface.
-The shaper bw_rlimit parameter is optional.
-
-Example: Sets up two tcs, tc0 and tc1, with 16 queues each and max tx rate set
-to 1Gbit for tc0 and 3Gbit for tc1.
-
-::
-
- tc qdisc add dev <interface> root mqprio num_tc 2 map 0 0 0 0 1 1 1 1
- queues 16@0 16@16 hw 1 mode channel shaper bw_rlimit min_rate 1Gbit 2Gbit
- max_rate 1Gbit 3Gbit
-
-map: priority mapping for up to 16 priorities to tcs (e.g. map 0 0 0 0 1 1 1 1
-sets priorities 0-3 to use tc0 and 4-7 to use tc1)
-
-queues: for each tc, <num queues>@<offset> (e.g. queues 16@0 16@16 assigns
-16 queues to tc0 at offset 0 and 16 queues to tc1 at offset 16. Max total
-number of queues for all tcs is 64 or number of cores, whichever is lower.)
-
-hw 1 mode channel: ‘channel’ with ‘hw’ set to 1 is a new new hardware
-offload mode in mqprio that makes full use of the mqprio options, the
-TCs, the queue configurations, and the QoS parameters.
-
-shaper bw_rlimit: for each tc, sets minimum and maximum bandwidth rates.
-Totals must be equal or less than port speed.
-
-For example: min_rate 1Gbit 3Gbit: Verify bandwidth limit using network
-monitoring tools such as ifstat or sar –n DEV [interval] [number of samples]
-
-NOTE:
- Setting up channels via ethtool (ethtool -L) is not supported when the
- TCs are configured using mqprio.
-
-2. Enable HW TC offload on interface::
-
- # ethtool -K <interface> hw-tc-offload on
-
-3. Apply TCs to ingress (RX) flow of interface::
-
- # tc qdisc add dev <interface> ingress
-
-NOTES:
- - Run all tc commands from the iproute2 <pathtoiproute2>/tc/ directory
- - ADq is not compatible with cloud filters
- - Setting up channels via ethtool (ethtool -L) is not supported when the TCs
- are configured using mqprio
- - You must have iproute2 latest version
- - NVM version 6.01 or later is required
- - ADq cannot be enabled when any the following features are enabled: Data
- Center Bridging (DCB), Multiple Functions per Port (MFP), or Sideband Filters
- - If another driver (for example, DPDK) has set cloud filters, you cannot
- enable ADq
- - Tunnel filters are not supported in ADq. If encapsulated packets do arrive
- in non-tunnel mode, filtering will be done on the inner headers. For example,
- for VXLAN traffic in non-tunnel mode, PCTYPE is identified as a VXLAN
- encapsulated packet, outer headers are ignored. Therefore, inner headers are
- matched.
- - If a TC filter on a PF matches traffic over a VF (on the PF), that traffic
- will be routed to the appropriate queue of the PF, and will not be passed on
- the VF. Such traffic will end up getting dropped higher up in the TCP/IP
- stack as it does not match PF address data.
- - If traffic matches multiple TC filters that point to different TCs, that
- traffic will be duplicated and sent to all matching TC queues. The hardware
- switch mirrors the packet to a VSI list when multiple filters are matched.
-
-
-Known Issues/Troubleshooting
-============================
-
-Bonding fails with VFs bound to an Intel(R) Ethernet Controller 700 series device
----------------------------------------------------------------------------------
-If you bind Virtual Functions (VFs) to an Intel(R) Ethernet Controller 700
-series based device, the VF slaves may fail when they become the active slave.
-If the MAC address of the VF is set by the PF (Physical Function) of the
-device, when you add a slave, or change the active-backup slave, Linux bonding
-tries to sync the backup slave's MAC address to the same MAC address as the
-active slave. Linux bonding will fail at this point. This issue will not occur
-if the VF's MAC address is not set by the PF.
-
-Traffic Is Not Being Passed Between VM and Client
--------------------------------------------------
-You may not be able to pass traffic between a client system and a
-Virtual Machine (VM) running on a separate host if the Virtual Function
-(VF, or Virtual NIC) is not in trusted mode and spoof checking is enabled
-on the VF. Note that this situation can occur in any combination of client,
-host, and guest operating system. For information on how to set the VF to
-trusted mode, refer to the section "VLAN Tag Packet Steering" in this
-readme document. For information on setting spoof checking, refer to the
-section "MAC and VLAN anti-spoofing feature" in this readme document.
-
-Do not unload port driver if VF with active VM is bound to it
--------------------------------------------------------------
-Do not unload a port's driver if a Virtual Function (VF) with an active Virtual
-Machine (VM) is bound to it. Doing so will cause the port to appear to hang.
-Once the VM shuts down, or otherwise releases the VF, the command will complete.
-
-Using four traffic classes fails
---------------------------------
-Do not try to reserve more than three traffic classes in the iavf driver. Doing
-so will fail to set any traffic classes and will cause the driver to write
-errors to stdout. Use a maximum of three queues to avoid this issue.
-
-Multiple log error messages on iavf driver removal
---------------------------------------------------
-If you have several VFs and you remove the iavf driver, several instances of
-the following log errors are written to the log::
-
- Unable to send opcode 2 to PF, err I40E_ERR_QUEUE_EMPTY, aq_err ok
- Unable to send the message to VF 2 aq_err 12
- ARQ Overflow Error detected
-
-Virtual machine does not get link
----------------------------------
-If the virtual machine has more than one virtual port assigned to it, and those
-virtual ports are bound to different physical ports, you may not get link on
-all of the virtual ports. The following command may work around the issue::
-
- # ethtool -r <PF>
-
-Where <PF> is the PF interface in the host, for example: p5p1. You may need to
-run the command more than once to get link on all virtual ports.
-
-MAC address of Virtual Function changes unexpectedly
-----------------------------------------------------
-If a Virtual Function's MAC address is not assigned in the host, then the VF
-(virtual function) driver will use a random MAC address. This random MAC
-address may change each time the VF driver is reloaded. You can assign a static
-MAC address in the host machine. This static MAC address will survive
-a VF driver reload.
-
-Driver Buffer Overflow Fix
---------------------------
-The fix to resolve CVE-2016-8105, referenced in Intel SA-00069
-https://www.intel.com/content/www/us/en/security-center/advisory/intel-sa-00069.html
-is included in this and future versions of the driver.
-
-Multiple Interfaces on Same Ethernet Broadcast Network
-------------------------------------------------------
-Due to the default ARP behavior on Linux, it is not possible to have one system
-on two IP networks in the same Ethernet broadcast domain (non-partitioned
-switch) behave as expected. All Ethernet interfaces will respond to IP traffic
-for any IP address assigned to the system. This results in unbalanced receive
-traffic.
-
-If you have multiple interfaces in a server, either turn on ARP filtering by
-entering::
-
- # echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
-
-NOTE:
- This setting is not saved across reboots. The configuration change can be
- made permanent by adding the following line to the file /etc/sysctl.conf::
-
- net.ipv4.conf.all.arp_filter = 1
-
-Another alternative is to install the interfaces in separate broadcast domains
-(either in different switches or in a switch partitioned to VLANs).
-
-Rx Page Allocation Errors
--------------------------
-'Page allocation failure. order:0' errors may occur under stress.
-This is caused by the way the Linux kernel reports this stressed condition.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://support.intel.com
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on the supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net
diff --git a/Documentation/networking/device_drivers/intel/ice.rst b/Documentation/networking/device_drivers/intel/ice.rst
deleted file mode 100644
index ee43ea57d443..000000000000
--- a/Documentation/networking/device_drivers/intel/ice.rst
+++ /dev/null
@@ -1,46 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-==================================================================
-Linux Base Driver for the Intel(R) Ethernet Connection E800 Series
-==================================================================
-
-Intel ice Linux driver.
-Copyright(c) 2018 Intel Corporation.
-
-Contents
-========
-
-- Enabling the driver
-- Support
-
-The driver in this release supports Intel's E800 Series of products. For
-more information, visit Intel's support page at https://support.intel.com.
-
-Enabling the driver
-===================
-The driver is enabled via the standard kernel configuration system,
-using the make command::
-
- make oldconfig/menuconfig/etc.
-
-The driver is located in the menu structure at:
-
- -> Device Drivers
- -> Network device support (NETDEVICES [=y])
- -> Ethernet driver support
- -> Intel devices
- -> Intel(R) Ethernet Connection E800 Series Support
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/igb.rst b/Documentation/networking/device_drivers/intel/igb.rst
deleted file mode 100644
index 87e560fe5eaa..000000000000
--- a/Documentation/networking/device_drivers/intel/igb.rst
+++ /dev/null
@@ -1,213 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-==========================================================
-Linux Base Driver for Intel(R) Ethernet Network Connection
-==========================================================
-
-Intel Gigabit Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-
-- Identifying Your Adapter
-- Command Line Parameters
-- Additional Configurations
-- Support
-
-
-Identifying Your Adapter
-========================
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-http://www.intel.com/support
-
-
-Command Line Parameters
-========================
-If the driver is built as a module, the following optional parameters are used
-by entering them on the command line with the modprobe command using this
-syntax::
-
- modprobe igb [<option>=<VAL1>,<VAL2>,...]
-
-There needs to be a <VAL#> for each network port in the system supported by
-this driver. The values will be applied to each instance, in function order.
-For example::
-
- modprobe igb max_vfs=2,4
-
-In this case, there are two network ports supported by igb in the system.
-
-NOTE: A descriptor describes a data buffer and attributes related to the data
-buffer. This information is accessed by the hardware.
-
-max_vfs
--------
-:Valid Range: 0-7
-
-This parameter adds support for SR-IOV. It causes the driver to spawn up to
-max_vfs worth of virtual functions. If the value is greater than 0 it will
-also force the VMDq parameter to be 1 or more.
-
-The parameters for the driver are referenced by position. Thus, if you have a
-dual port adapter, or more than one adapter in your system, and want N virtual
-functions per port, you must specify a number for each port with each parameter
-separated by a comma. For example::
-
- modprobe igb max_vfs=4
-
-This will spawn 4 VFs on the first port.
-
-::
-
- modprobe igb max_vfs=2,4
-
-This will spawn 2 VFs on the first port and 4 VFs on the second port.
-
-NOTE: Caution must be used in loading the driver with these parameters.
-Depending on your system configuration, number of slots, etc., it is impossible
-to predict in all cases where the positions would be on the command line.
-
-NOTE: Neither the device nor the driver control how VFs are mapped into config
-space. Bus layout will vary by operating system. On operating systems that
-support it, you can check sysfs to find the mapping.
-
-NOTE: When either SR-IOV mode or VMDq mode is enabled, hardware VLAN filtering
-and VLAN tag stripping/insertion will remain enabled. Please remove the old
-VLAN filter before the new VLAN filter is added. For example::
-
- ip link set eth0 vf 0 vlan 100 // set vlan 100 for VF 0
- ip link set eth0 vf 0 vlan 0 // Delete vlan 100
- ip link set eth0 vf 0 vlan 200 // set a new vlan 200 for VF 0
-
-Debug
------
-:Valid Range: 0-16 (0=none,...,16=all)
-:Default Value: 0
-
-This parameter adjusts the level debug messages displayed in the system logs.
-
-
-Additional Features and Configurations
-======================================
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file:
-
-- For RHEL: /etc/sysconfig/network-scripts/ifcfg-eth<x>
-- For SLES: /etc/sysconfig/network/<config_file>
-
-NOTE: The maximum MTU setting for Jumbo Frames is 9216. This value coincides
-with the maximum Jumbo Frames size of 9234 bytes.
-
-NOTE: Using Jumbo frames at 10 or 100 Mbps is not supported and may result in
-poor performance or loss of link.
-
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-
-https://www.kernel.org/pub/software/network/ethtool/
-
-
-Enabling Wake on LAN (WoL)
---------------------------
-WoL is configured through the ethtool utility.
-
-WoL will be enabled on the system during the next shut down or reboot. For
-this driver version, in order to enable WoL, the igb driver must be loaded
-prior to shutting down or suspending the system.
-
-NOTE: Wake on LAN is only supported on port A of multi-port devices. Also
-Wake On LAN is not supported for the following device:
-- Intel(R) Gigabit VT Quad Port Server Adapter
-
-
-Multiqueue
-----------
-In this mode, a separate MSI-X vector is allocated for each queue and one for
-"other" interrupts such as link status change and errors. All interrupts are
-throttled via interrupt moderation. Interrupt moderation must be used to avoid
-interrupt storms while the driver is processing one interrupt. The moderation
-value should be at least as large as the expected time for the driver to
-process an interrupt. Multiqueue is off by default.
-
-REQUIREMENTS: MSI-X support is required for Multiqueue. If MSI-X is not found,
-the system will fallback to MSI or to Legacy interrupts. This driver supports
-receive multiqueue on all kernels that support MSI-X.
-
-NOTE: On some kernels a reboot is required to switch between single queue mode
-and multiqueue mode or vice-versa.
-
-
-MAC and VLAN anti-spoofing feature
-----------------------------------
-When a malicious driver attempts to send a spoofed packet, it is dropped by the
-hardware and not transmitted.
-
-An interrupt is sent to the PF driver notifying it of the spoof attempt. When a
-spoofed packet is detected, the PF driver will send the following message to
-the system log (displayed by the "dmesg" command):
-Spoof event(s) detected on VF(n), where n = the VF that attempted to do the
-spoofing
-
-
-Setting MAC Address, VLAN and Rate Limit Using IProute2 Tool
-------------------------------------------------------------
-You can set a MAC address of a Virtual Function (VF), a default VLAN and the
-rate limit using the IProute2 tool. Download the latest version of the
-IProute2 tool from Sourceforge if your version does not have all the features
-you require.
-
-Credit Based Shaper (Qav Mode)
-------------------------------
-When enabling the CBS qdisc in the hardware offload mode, traffic shaping using
-the CBS (described in the IEEE 802.1Q-2018 Section 8.6.8.2 and discussed in the
-Annex L) algorithm will run in the i210 controller, so it's more accurate and
-uses less CPU.
-
-When using offloaded CBS, and the traffic rate obeys the configured rate
-(doesn't go above it), CBS should have little to no effect in the latency.
-
-The offloaded version of the algorithm has some limits, caused by how the idle
-slope is expressed in the adapter's registers. It can only represent idle slopes
-in 16.38431 kbps units, which means that if a idle slope of 2576kbps is
-requested, the controller will be configured to use a idle slope of ~2589 kbps,
-because the driver rounds the value up. For more details, see the comments on
-:c:func:`igb_config_tx_modes()`.
-
-NOTE: This feature is exclusive to i210 models.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/igbvf.rst b/Documentation/networking/device_drivers/intel/igbvf.rst
deleted file mode 100644
index 557fc020ef31..000000000000
--- a/Documentation/networking/device_drivers/intel/igbvf.rst
+++ /dev/null
@@ -1,65 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-===========================================================
-Linux Base Virtual Function Driver for Intel(R) 1G Ethernet
-===========================================================
-
-Intel Gigabit Virtual Function Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-- Identifying Your Adapter
-- Additional Configurations
-- Support
-
-This driver supports Intel 82576-based virtual function devices-based virtual
-function devices that can only be activated on kernels that support SR-IOV.
-
-SR-IOV requires the correct platform and OS support.
-
-The guest OS loading this driver must support MSI-X interrupts.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel adapter. All hardware requirements listed apply to use
-with Linux.
-
-Driver information can be obtained using ethtool, lspci, and ifconfig.
-Instructions on updating ethtool can be found in the section Additional
-Configurations later in this document.
-
-NOTE: There is a limit of a total of 32 shared VLANs to 1 or more VFs.
-
-
-Identifying Your Adapter
-========================
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-http://www.intel.com/support
-
-
-Additional Features and Configurations
-======================================
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-
-https://www.kernel.org/pub/software/network/ethtool/
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/ipw2100.rst b/Documentation/networking/device_drivers/intel/ipw2100.rst
deleted file mode 100644
index d54ad522f937..000000000000
--- a/Documentation/networking/device_drivers/intel/ipw2100.rst
+++ /dev/null
@@ -1,323 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-.. include:: <isonum.txt>
-
-===========================================
-Intel(R) PRO/Wireless 2100 Driver for Linux
-===========================================
-
-Support for:
-
-- Intel(R) PRO/Wireless 2100 Network Connection
-
-Copyright |copy| 2003-2006, Intel Corporation
-
-README.ipw2100
-
-:Version: git-1.1.5
-:Date: January 25, 2006
-
-.. Index
-
- 0. IMPORTANT INFORMATION BEFORE USING THIS DRIVER
- 1. Introduction
- 2. Release git-1.1.5 Current Features
- 3. Command Line Parameters
- 4. Sysfs Helper Files
- 5. Radio Kill Switch
- 6. Dynamic Firmware
- 7. Power Management
- 8. Support
- 9. License
-
-
-0. IMPORTANT INFORMATION BEFORE USING THIS DRIVER
-=================================================
-
-Important Notice FOR ALL USERS OR DISTRIBUTORS!!!!
-
-Intel wireless LAN adapters are engineered, manufactured, tested, and
-quality checked to ensure that they meet all necessary local and
-governmental regulatory agency requirements for the regions that they
-are designated and/or marked to ship into. Since wireless LANs are
-generally unlicensed devices that share spectrum with radars,
-satellites, and other licensed and unlicensed devices, it is sometimes
-necessary to dynamically detect, avoid, and limit usage to avoid
-interference with these devices. In many instances Intel is required to
-provide test data to prove regional and local compliance to regional and
-governmental regulations before certification or approval to use the
-product is granted. Intel's wireless LAN's EEPROM, firmware, and
-software driver are designed to carefully control parameters that affect
-radio operation and to ensure electromagnetic compliance (EMC). These
-parameters include, without limitation, RF power, spectrum usage,
-channel scanning, and human exposure.
-
-For these reasons Intel cannot permit any manipulation by third parties
-of the software provided in binary format with the wireless WLAN
-adapters (e.g., the EEPROM and firmware). Furthermore, if you use any
-patches, utilities, or code with the Intel wireless LAN adapters that
-have been manipulated by an unauthorized party (i.e., patches,
-utilities, or code (including open source code modifications) which have
-not been validated by Intel), (i) you will be solely responsible for
-ensuring the regulatory compliance of the products, (ii) Intel will bear
-no liability, under any theory of liability for any issues associated
-with the modified products, including without limitation, claims under
-the warranty and/or issues arising from regulatory non-compliance, and
-(iii) Intel will not provide or be required to assist in providing
-support to any third parties for such modified products.
-
-Note: Many regulatory agencies consider Wireless LAN adapters to be
-modules, and accordingly, condition system-level regulatory approval
-upon receipt and review of test data documenting that the antennas and
-system configuration do not cause the EMC and radio operation to be
-non-compliant.
-
-The drivers available for download from SourceForge are provided as a
-part of a development project. Conformance to local regulatory
-requirements is the responsibility of the individual developer. As
-such, if you are interested in deploying or shipping a driver as part of
-solution intended to be used for purposes other than development, please
-obtain a tested driver from Intel Customer Support at:
-
-http://www.intel.com/support/wireless/sb/CS-006408.htm
-
-1. Introduction
-===============
-
-This document provides a brief overview of the features supported by the
-IPW2100 driver project. The main project website, where the latest
-development version of the driver can be found, is:
-
- http://ipw2100.sourceforge.net
-
-There you can find the not only the latest releases, but also information about
-potential fixes and patches, as well as links to the development mailing list
-for the driver project.
-
-
-2. Release git-1.1.5 Current Supported Features
-===============================================
-
-- Managed (BSS) and Ad-Hoc (IBSS)
-- WEP (shared key and open)
-- Wireless Tools support
-- 802.1x (tested with XSupplicant 1.0.1)
-
-Enabled (but not supported) features:
-- Monitor/RFMon mode
-- WPA/WPA2
-
-The distinction between officially supported and enabled is a reflection
-on the amount of validation and interoperability testing that has been
-performed on a given feature.
-
-
-3. Command Line Parameters
-==========================
-
-If the driver is built as a module, the following optional parameters are used
-by entering them on the command line with the modprobe command using this
-syntax::
-
- modprobe ipw2100 [<option>=<VAL1><,VAL2>...]
-
-For example, to disable the radio on driver loading, enter:
-
- modprobe ipw2100 disable=1
-
-The ipw2100 driver supports the following module parameters:
-
-========= ============== ============ ==============================
-Name Value Example Meaning
-========= ============== ============ ==============================
-debug 0x0-0xffffffff debug=1024 Debug level set to 1024
-mode 0,1,2 mode=1 AdHoc
-channel int channel=3 Only valid in AdHoc or Monitor
-associate boolean associate=0 Do NOT auto associate
-disable boolean disable=1 Do not power the HW
-========= ============== ============ ==============================
-
-
-4. Sysfs Helper Files
-=====================
-
-There are several ways to control the behavior of the driver. Many of the
-general capabilities are exposed through the Wireless Tools (iwconfig). There
-are a few capabilities that are exposed through entries in the Linux Sysfs.
-
-
-**Driver Level**
-
-For the driver level files, look in /sys/bus/pci/drivers/ipw2100/
-
- debug_level
- This controls the same global as the 'debug' module parameter. For
- information on the various debugging levels available, run the 'dvals'
- script found in the driver source directory.
-
- .. note::
-
- 'debug_level' is only enabled if CONFIG_IPW2100_DEBUG is turn on.
-
-**Device Level**
-
-For the device level files look in::
-
- /sys/bus/pci/drivers/ipw2100/{PCI-ID}/
-
-For example::
-
- /sys/bus/pci/drivers/ipw2100/0000:02:01.0
-
-For the device level files, see /sys/bus/pci/drivers/ipw2100:
-
- rf_kill
- read
-
- == =========================================
- 0 RF kill not enabled (radio on)
- 1 SW based RF kill active (radio off)
- 2 HW based RF kill active (radio off)
- 3 Both HW and SW RF kill active (radio off)
- == =========================================
-
- write
-
- == ==================================================
- 0 If SW based RF kill active, turn the radio back on
- 1 If radio is on, activate SW based RF kill
- == ==================================================
-
- .. note::
-
- If you enable the SW based RF kill and then toggle the HW
- based RF kill from ON -> OFF -> ON, the radio will NOT come back on
-
-
-5. Radio Kill Switch
-====================
-
-Most laptops provide the ability for the user to physically disable the radio.
-Some vendors have implemented this as a physical switch that requires no
-software to turn the radio off and on. On other laptops, however, the switch
-is controlled through a button being pressed and a software driver then making
-calls to turn the radio off and on. This is referred to as a "software based
-RF kill switch"
-
-See the Sysfs helper file 'rf_kill' for determining the state of the RF switch
-on your system.
-
-
-6. Dynamic Firmware
-===================
-
-As the firmware is licensed under a restricted use license, it can not be
-included within the kernel sources. To enable the IPW2100 you will need a
-firmware image to load into the wireless NIC's processors.
-
-You can obtain these images from <http://ipw2100.sf.net/firmware.php>.
-
-See INSTALL for instructions on installing the firmware.
-
-
-7. Power Management
-===================
-
-The IPW2100 supports the configuration of the Power Save Protocol
-through a private wireless extension interface. The IPW2100 supports
-the following different modes:
-
- === ===========================================================
- off No power management. Radio is always on.
- on Automatic power management
- 1-5 Different levels of power management. The higher the
- number the greater the power savings, but with an impact to
- packet latencies.
- === ===========================================================
-
-Power management works by powering down the radio after a certain
-interval of time has passed where no packets are passed through the
-radio. Once powered down, the radio remains in that state for a given
-period of time. For higher power savings, the interval between last
-packet processed to sleep is shorter and the sleep period is longer.
-
-When the radio is asleep, the access point sending data to the station
-must buffer packets at the AP until the station wakes up and requests
-any buffered packets. If you have an AP that does not correctly support
-the PSP protocol you may experience packet loss or very poor performance
-while power management is enabled. If this is the case, you will need
-to try and find a firmware update for your AP, or disable power
-management (via ``iwconfig eth1 power off``)
-
-To configure the power level on the IPW2100 you use a combination of
-iwconfig and iwpriv. iwconfig is used to turn power management on, off,
-and set it to auto.
-
- ========================= ====================================
- iwconfig eth1 power off Disables radio power down
- iwconfig eth1 power on Enables radio power management to
- last set level (defaults to AUTO)
- iwpriv eth1 set_power 0 Sets power level to AUTO and enables
- power management if not previously
- enabled.
- iwpriv eth1 set_power 1-5 Set the power level as specified,
- enabling power management if not
- previously enabled.
- ========================= ====================================
-
-You can view the current power level setting via::
-
- iwpriv eth1 get_power
-
-It will return the current period or timeout that is configured as a string
-in the form of xxxx/yyyy (z) where xxxx is the timeout interval (amount of
-time after packet processing), yyyy is the period to sleep (amount of time to
-wait before powering the radio and querying the access point for buffered
-packets), and z is the 'power level'. If power management is turned off the
-xxxx/yyyy will be replaced with 'off' -- the level reported will be the active
-level if `iwconfig eth1 power on` is invoked.
-
-
-8. Support
-==========
-
-For general development information and support,
-go to:
-
- http://ipw2100.sf.net/
-
-The ipw2100 1.1.0 driver and firmware can be downloaded from:
-
- http://support.intel.com
-
-For installation support on the ipw2100 1.1.0 driver on Linux kernels
-2.6.8 or greater, email support is available from:
-
- http://supportmail.intel.com
-
-9. License
-==========
-
- Copyright |copy| 2003 - 2006 Intel Corporation. All rights reserved.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License (version 2) as
- published by the Free Software Foundation.
-
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 59
- Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- The full GNU General Public License is included in this distribution in the
- file called LICENSE.
-
- License Contact Information:
-
- James P. Ketrenos <ipw2100-admin@linux.intel.com>
-
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
diff --git a/Documentation/networking/device_drivers/intel/ipw2200.rst b/Documentation/networking/device_drivers/intel/ipw2200.rst
deleted file mode 100644
index 0cb42d2fd7e5..000000000000
--- a/Documentation/networking/device_drivers/intel/ipw2200.rst
+++ /dev/null
@@ -1,526 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0
-.. include:: <isonum.txt>
-
-==============================================
-Intel(R) PRO/Wireless 2915ABG Driver for Linux
-==============================================
-
-
-Support for:
-
-- Intel(R) PRO/Wireless 2200BG Network Connection
-- Intel(R) PRO/Wireless 2915ABG Network Connection
-
-Note: The Intel(R) PRO/Wireless 2915ABG Driver for Linux and Intel(R)
-PRO/Wireless 2200BG Driver for Linux is a unified driver that works on
-both hardware adapters listed above. In this document the Intel(R)
-PRO/Wireless 2915ABG Driver for Linux will be used to reference the
-unified driver.
-
-Copyright |copy| 2004-2006, Intel Corporation
-
-README.ipw2200
-
-:Version: 1.1.2
-:Date: March 30, 2006
-
-
-.. Index
-
- 0. IMPORTANT INFORMATION BEFORE USING THIS DRIVER
- 1. Introduction
- 1.1. Overview of features
- 1.2. Module parameters
- 1.3. Wireless Extension Private Methods
- 1.4. Sysfs Helper Files
- 1.5. Supported channels
- 2. Ad-Hoc Networking
- 3. Interacting with Wireless Tools
- 3.1. iwconfig mode
- 3.2. iwconfig sens
- 4. About the Version Numbers
- 5. Firmware installation
- 6. Support
- 7. License
-
-
-0. IMPORTANT INFORMATION BEFORE USING THIS DRIVER
-=================================================
-
-Important Notice FOR ALL USERS OR DISTRIBUTORS!!!!
-
-Intel wireless LAN adapters are engineered, manufactured, tested, and
-quality checked to ensure that they meet all necessary local and
-governmental regulatory agency requirements for the regions that they
-are designated and/or marked to ship into. Since wireless LANs are
-generally unlicensed devices that share spectrum with radars,
-satellites, and other licensed and unlicensed devices, it is sometimes
-necessary to dynamically detect, avoid, and limit usage to avoid
-interference with these devices. In many instances Intel is required to
-provide test data to prove regional and local compliance to regional and
-governmental regulations before certification or approval to use the
-product is granted. Intel's wireless LAN's EEPROM, firmware, and
-software driver are designed to carefully control parameters that affect
-radio operation and to ensure electromagnetic compliance (EMC). These
-parameters include, without limitation, RF power, spectrum usage,
-channel scanning, and human exposure.
-
-For these reasons Intel cannot permit any manipulation by third parties
-of the software provided in binary format with the wireless WLAN
-adapters (e.g., the EEPROM and firmware). Furthermore, if you use any
-patches, utilities, or code with the Intel wireless LAN adapters that
-have been manipulated by an unauthorized party (i.e., patches,
-utilities, or code (including open source code modifications) which have
-not been validated by Intel), (i) you will be solely responsible for
-ensuring the regulatory compliance of the products, (ii) Intel will bear
-no liability, under any theory of liability for any issues associated
-with the modified products, including without limitation, claims under
-the warranty and/or issues arising from regulatory non-compliance, and
-(iii) Intel will not provide or be required to assist in providing
-support to any third parties for such modified products.
-
-Note: Many regulatory agencies consider Wireless LAN adapters to be
-modules, and accordingly, condition system-level regulatory approval
-upon receipt and review of test data documenting that the antennas and
-system configuration do not cause the EMC and radio operation to be
-non-compliant.
-
-The drivers available for download from SourceForge are provided as a
-part of a development project. Conformance to local regulatory
-requirements is the responsibility of the individual developer. As
-such, if you are interested in deploying or shipping a driver as part of
-solution intended to be used for purposes other than development, please
-obtain a tested driver from Intel Customer Support at:
-
-http://support.intel.com
-
-
-1. Introduction
-===============
-
-The following sections attempt to provide a brief introduction to using
-the Intel(R) PRO/Wireless 2915ABG Driver for Linux.
-
-This document is not meant to be a comprehensive manual on
-understanding or using wireless technologies, but should be sufficient
-to get you moving without wires on Linux.
-
-For information on building and installing the driver, see the INSTALL
-file.
-
-
-1.1. Overview of Features
--------------------------
-The current release (1.1.2) supports the following features:
-
-+ BSS mode (Infrastructure, Managed)
-+ IBSS mode (Ad-Hoc)
-+ WEP (OPEN and SHARED KEY mode)
-+ 802.1x EAP via wpa_supplicant and xsupplicant
-+ Wireless Extension support
-+ Full B and G rate support (2200 and 2915)
-+ Full A rate support (2915 only)
-+ Transmit power control
-+ S state support (ACPI suspend/resume)
-
-The following features are currently enabled, but not officially
-supported:
-
-+ WPA
-+ long/short preamble support
-+ Monitor mode (aka RFMon)
-
-The distinction between officially supported and enabled is a reflection
-on the amount of validation and interoperability testing that has been
-performed on a given feature.
-
-
-
-1.2. Command Line Parameters
-----------------------------
-
-Like many modules used in the Linux kernel, the Intel(R) PRO/Wireless
-2915ABG Driver for Linux allows configuration options to be provided
-as module parameters. The most common way to specify a module parameter
-is via the command line.
-
-The general form is::
-
- % modprobe ipw2200 parameter=value
-
-Where the supported parameter are:
-
- associate
- Set to 0 to disable the auto scan-and-associate functionality of the
- driver. If disabled, the driver will not attempt to scan
- for and associate to a network until it has been configured with
- one or more properties for the target network, for example configuring
- the network SSID. Default is 0 (do not auto-associate)
-
- Example: % modprobe ipw2200 associate=0
-
- auto_create
- Set to 0 to disable the auto creation of an Ad-Hoc network
- matching the channel and network name parameters provided.
- Default is 1.
-
- channel
- channel number for association. The normal method for setting
- the channel would be to use the standard wireless tools
- (i.e. `iwconfig eth1 channel 10`), but it is useful sometimes
- to set this while debugging. Channel 0 means 'ANY'
-
- debug
- If using a debug build, this is used to control the amount of debug
- info is logged. See the 'dvals' and 'load' script for more info on
- how to use this (the dvals and load scripts are provided as part
- of the ipw2200 development snapshot releases available from the
- SourceForge project at http://ipw2200.sf.net)
-
- led
- Can be used to turn on experimental LED code.
- 0 = Off, 1 = On. Default is 1.
-
- mode
- Can be used to set the default mode of the adapter.
- 0 = Managed, 1 = Ad-Hoc, 2 = Monitor
-
-
-1.3. Wireless Extension Private Methods
----------------------------------------
-
-As an interface designed to handle generic hardware, there are certain
-capabilities not exposed through the normal Wireless Tool interface. As
-such, a provision is provided for a driver to declare custom, or
-private, methods. The Intel(R) PRO/Wireless 2915ABG Driver for Linux
-defines several of these to configure various settings.
-
-The general form of using the private wireless methods is::
-
- % iwpriv $IFNAME method parameters
-
-Where $IFNAME is the interface name the device is registered with
-(typically eth1, customized via one of the various network interface
-name managers, such as ifrename)
-
-The supported private methods are:
-
- get_mode
- Can be used to report out which IEEE mode the driver is
- configured to support. Example:
-
- % iwpriv eth1 get_mode
- eth1 get_mode:802.11bg (6)
-
- set_mode
- Can be used to configure which IEEE mode the driver will
- support.
-
- Usage::
-
- % iwpriv eth1 set_mode {mode}
-
- Where {mode} is a number in the range 1-7:
-
- == =====================
- 1 802.11a (2915 only)
- 2 802.11b
- 3 802.11ab (2915 only)
- 4 802.11g
- 5 802.11ag (2915 only)
- 6 802.11bg
- 7 802.11abg (2915 only)
- == =====================
-
- get_preamble
- Can be used to report configuration of preamble length.
-
- set_preamble
- Can be used to set the configuration of preamble length:
-
- Usage::
-
- % iwpriv eth1 set_preamble {mode}
-
- Where {mode} is one of:
-
- == ========================================
- 1 Long preamble only
- 0 Auto (long or short based on connection)
- == ========================================
-
-
-1.4. Sysfs Helper Files
------------------------
-
-The Linux kernel provides a pseudo file system that can be used to
-access various components of the operating system. The Intel(R)
-PRO/Wireless 2915ABG Driver for Linux exposes several configuration
-parameters through this mechanism.
-
-An entry in the sysfs can support reading and/or writing. You can
-typically query the contents of a sysfs entry through the use of cat,
-and can set the contents via echo. For example::
-
- % cat /sys/bus/pci/drivers/ipw2200/debug_level
-
-Will report the current debug level of the driver's logging subsystem
-(only available if CONFIG_IPW2200_DEBUG was configured when the driver
-was built).
-
-You can set the debug level via::
-
- % echo $VALUE > /sys/bus/pci/drivers/ipw2200/debug_level
-
-Where $VALUE would be a number in the case of this sysfs entry. The
-input to sysfs files does not have to be a number. For example, the
-firmware loader used by hotplug utilizes sysfs entries for transferring
-the firmware image from user space into the driver.
-
-The Intel(R) PRO/Wireless 2915ABG Driver for Linux exposes sysfs entries
-at two levels -- driver level, which apply to all instances of the driver
-(in the event that there are more than one device installed) and device
-level, which applies only to the single specific instance.
-
-
-1.4.1 Driver Level Sysfs Helper Files
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-For the driver level files, look in /sys/bus/pci/drivers/ipw2200/
-
- debug_level
- This controls the same global as the 'debug' module parameter
-
-
-
-1.4.2 Device Level Sysfs Helper Files
-^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
-
-For the device level files, look in::
-
- /sys/bus/pci/drivers/ipw2200/{PCI-ID}/
-
-For example:::
-
- /sys/bus/pci/drivers/ipw2200/0000:02:01.0
-
-For the device level files, see /sys/bus/pci/drivers/ipw2200:
-
- rf_kill
- read -
-
- == =========================================
- 0 RF kill not enabled (radio on)
- 1 SW based RF kill active (radio off)
- 2 HW based RF kill active (radio off)
- 3 Both HW and SW RF kill active (radio off)
- == =========================================
-
- write -
-
- == ==================================================
- 0 If SW based RF kill active, turn the radio back on
- 1 If radio is on, activate SW based RF kill
- == ==================================================
-
- .. note::
-
- If you enable the SW based RF kill and then toggle the HW
- based RF kill from ON -> OFF -> ON, the radio will NOT come back on
-
- ucode
- read-only access to the ucode version number
-
- led
- read -
-
- == =================
- 0 LED code disabled
- 1 LED code enabled
- == =================
-
- write -
-
- == ================
- 0 Disable LED code
- 1 Enable LED code
- == ================
-
-
- .. note::
-
- The LED code has been reported to hang some systems when
- running ifconfig and is therefore disabled by default.
-
-
-1.5. Supported channels
------------------------
-
-Upon loading the Intel(R) PRO/Wireless 2915ABG Driver for Linux, a
-message stating the detected geography code and the number of 802.11
-channels supported by the card will be displayed in the log.
-
-The geography code corresponds to a regulatory domain as shown in the
-table below.
-
- +------+----------------------------+--------------------+
- | | | Supported channels |
- | Code | Geography +----------+---------+
- | | | 802.11bg | 802.11a |
- +======+============================+==========+=========+
- | --- | Restricted | 11 | 0 |
- +------+----------------------------+----------+---------+
- | ZZF | Custom US/Canada | 11 | 8 |
- +------+----------------------------+----------+---------+
- | ZZD | Rest of World | 13 | 0 |
- +------+----------------------------+----------+---------+
- | ZZA | Custom USA & Europe & High | 11 | 13 |
- +------+----------------------------+----------+---------+
- | ZZB | Custom NA & Europe | 11 | 13 |
- +------+----------------------------+----------+---------+
- | ZZC | Custom Japan | 11 | 4 |
- +------+----------------------------+----------+---------+
- | ZZM | Custom | 11 | 0 |
- +------+----------------------------+----------+---------+
- | ZZE | Europe | 13 | 19 |
- +------+----------------------------+----------+---------+
- | ZZJ | Custom Japan | 14 | 4 |
- +------+----------------------------+----------+---------+
- | ZZR | Rest of World | 14 | 0 |
- +------+----------------------------+----------+---------+
- | ZZH | High Band | 13 | 4 |
- +------+----------------------------+----------+---------+
- | ZZG | Custom Europe | 13 | 4 |
- +------+----------------------------+----------+---------+
- | ZZK | Europe | 13 | 24 |
- +------+----------------------------+----------+---------+
- | ZZL | Europe | 11 | 13 |
- +------+----------------------------+----------+---------+
-
-2. Ad-Hoc Networking
-=====================
-
-When using a device in an Ad-Hoc network, it is useful to understand the
-sequence and requirements for the driver to be able to create, join, or
-merge networks.
-
-The following attempts to provide enough information so that you can
-have a consistent experience while using the driver as a member of an
-Ad-Hoc network.
-
-2.1. Joining an Ad-Hoc Network
-------------------------------
-
-The easiest way to get onto an Ad-Hoc network is to join one that
-already exists.
-
-2.2. Creating an Ad-Hoc Network
--------------------------------
-
-An Ad-Hoc networks is created using the syntax of the Wireless tool.
-
-For Example:
-iwconfig eth1 mode ad-hoc essid testing channel 2
-
-2.3. Merging Ad-Hoc Networks
-----------------------------
-
-
-3. Interaction with Wireless Tools
-==================================
-
-3.1 iwconfig mode
------------------
-
-When configuring the mode of the adapter, all run-time configured parameters
-are reset to the value used when the module was loaded. This includes
-channels, rates, ESSID, etc.
-
-3.2 iwconfig sens
------------------
-
-The 'iwconfig ethX sens XX' command will not set the signal sensitivity
-threshold, as described in iwconfig documentation, but rather the number
-of consecutive missed beacons that will trigger handover, i.e. roaming
-to another access point. At the same time, it will set the disassociation
-threshold to 3 times the given value.
-
-
-4. About the Version Numbers
-=============================
-
-Due to the nature of open source development projects, there are
-frequently changes being incorporated that have not gone through
-a complete validation process. These changes are incorporated into
-development snapshot releases.
-
-Releases are numbered with a three level scheme:
-
- major.minor.development
-
-Any version where the 'development' portion is 0 (for example
-1.0.0, 1.1.0, etc.) indicates a stable version that will be made
-available for kernel inclusion.
-
-Any version where the 'development' portion is not a 0 (for
-example 1.0.1, 1.1.5, etc.) indicates a development version that is
-being made available for testing and cutting edge users. The stability
-and functionality of the development releases are not know. We make
-efforts to try and keep all snapshots reasonably stable, but due to the
-frequency of their release, and the desire to get those releases
-available as quickly as possible, unknown anomalies should be expected.
-
-The major version number will be incremented when significant changes
-are made to the driver. Currently, there are no major changes planned.
-
-5. Firmware installation
-========================
-
-The driver requires a firmware image, download it and extract the
-files under /lib/firmware (or wherever your hotplug's firmware.agent
-will look for firmware files)
-
-The firmware can be downloaded from the following URL:
-
- http://ipw2200.sf.net/
-
-
-6. Support
-==========
-
-For direct support of the 1.0.0 version, you can contact
-http://supportmail.intel.com, or you can use the open source project
-support.
-
-For general information and support, go to:
-
- http://ipw2200.sf.net/
-
-
-7. License
-==========
-
- Copyright |copy| 2003 - 2006 Intel Corporation. All rights reserved.
-
- This program is free software; you can redistribute it and/or modify it
- under the terms of the GNU General Public License version 2 as
- published by the Free Software Foundation.
-
- This program is distributed in the hope that it will be useful, but WITHOUT
- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
- more details.
-
- You should have received a copy of the GNU General Public License along with
- this program; if not, write to the Free Software Foundation, Inc., 59
- Temple Place - Suite 330, Boston, MA 02111-1307, USA.
-
- The full GNU General Public License is included in this distribution in the
- file called LICENSE.
-
- Contact Information:
-
- James P. Ketrenos <ipw2100-admin@linux.intel.com>
-
- Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
-
diff --git a/Documentation/networking/device_drivers/intel/ixgb.rst b/Documentation/networking/device_drivers/intel/ixgb.rst
deleted file mode 100644
index ab624f1a44a8..000000000000
--- a/Documentation/networking/device_drivers/intel/ixgb.rst
+++ /dev/null
@@ -1,468 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-=====================================================================
-Linux Base Driver for 10 Gigabit Intel(R) Ethernet Network Connection
-=====================================================================
-
-October 1, 2018
-
-
-Contents
-========
-
-- In This Release
-- Identifying Your Adapter
-- Command Line Parameters
-- Improving Performance
-- Additional Configurations
-- Known Issues/Troubleshooting
-- Support
-
-
-
-In This Release
-===============
-
-This file describes the ixgb Linux Base Driver for the 10 Gigabit Intel(R)
-Network Connection. This driver includes support for Itanium(R)2-based
-systems.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your 10 Gigabit adapter. All hardware requirements listed apply
-to use with Linux.
-
-The following features are available in this kernel:
- - Native VLANs
- - Channel Bonding (teaming)
- - SNMP
-
-Channel Bonding documentation can be found in the Linux kernel source:
-/Documentation/networking/bonding.rst
-
-The driver information previously displayed in the /proc filesystem is not
-supported in this release. Alternatively, you can use ethtool (version 1.6
-or later), lspci, and iproute2 to obtain the same information.
-
-Instructions on updating ethtool can be found in the section "Additional
-Configurations" later in this document.
-
-
-Identifying Your Adapter
-========================
-
-The following Intel network adapters are compatible with the drivers in this
-release:
-
-+------------+------------------------------+----------------------------------+
-| Controller | Adapter Name | Physical Layer |
-+============+==============================+==================================+
-| 82597EX | Intel(R) PRO/10GbE LR/SR/CX4 | - 10G Base-LR (fiber) |
-| | Server Adapters | - 10G Base-SR (fiber) |
-| | | - 10G Base-CX4 (copper) |
-+------------+------------------------------+----------------------------------+
-
-For more information on how to identify your adapter, go to the Adapter &
-Driver ID Guide at:
-
- https://support.intel.com
-
-
-Command Line Parameters
-=======================
-
-If the driver is built as a module, the following optional parameters are
-used by entering them on the command line with the modprobe command using
-this syntax::
-
- modprobe ixgb [<option>=<VAL1>,<VAL2>,...]
-
-For example, with two 10GbE PCI adapters, entering::
-
- modprobe ixgb TxDescriptors=80,128
-
-loads the ixgb driver with 80 TX resources for the first adapter and 128 TX
-resources for the second adapter.
-
-The default value for each parameter is generally the recommended setting,
-unless otherwise noted.
-
-Copybreak
----------
-:Valid Range: 0-XXXX
-:Default Value: 256
-
- This is the maximum size of packet that is copied to a new buffer on
- receive.
-
-Debug
------
-:Valid Range: 0-16 (0=none,...,16=all)
-:Default Value: 0
-
- This parameter adjusts the level of debug messages displayed in the
- system logs.
-
-FlowControl
------------
-:Valid Range: 0-3 (0=none, 1=Rx only, 2=Tx only, 3=Rx&Tx)
-:Default Value: 1 if no EEPROM, otherwise read from EEPROM
-
- This parameter controls the automatic generation(Tx) and response(Rx) to
- Ethernet PAUSE frames. There are hardware bugs associated with enabling
- Tx flow control so beware.
-
-RxDescriptors
--------------
-:Valid Range: 64-4096
-:Default Value: 1024
-
- This value is the number of receive descriptors allocated by the driver.
- Increasing this value allows the driver to buffer more incoming packets.
- Each descriptor is 16 bytes. A receive buffer is also allocated for
- each descriptor and can be either 2048, 4056, 8192, or 16384 bytes,
- depending on the MTU setting. When the MTU size is 1500 or less, the
- receive buffer size is 2048 bytes. When the MTU is greater than 1500 the
- receive buffer size will be either 4056, 8192, or 16384 bytes. The
- maximum MTU size is 16114.
-
-TxDescriptors
--------------
-:Valid Range: 64-4096
-:Default Value: 256
-
- This value is the number of transmit descriptors allocated by the driver.
- Increasing this value allows the driver to queue more transmits. Each
- descriptor is 16 bytes.
-
-RxIntDelay
-----------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 72
-
- This value delays the generation of receive interrupts in units of
- 0.8192 microseconds. Receive interrupt reduction can improve CPU
- efficiency if properly tuned for specific network traffic. Increasing
- this value adds extra latency to frame reception and can end up
- decreasing the throughput of TCP traffic. If the system is reporting
- dropped receives, this value may be set too high, causing the driver to
- run out of available receive descriptors.
-
-TxIntDelay
-----------
-:Valid Range: 0-65535 (0=off)
-:Default Value: 32
-
- This value delays the generation of transmit interrupts in units of
- 0.8192 microseconds. Transmit interrupt reduction can improve CPU
- efficiency if properly tuned for specific network traffic. Increasing
- this value adds extra latency to frame transmission and can end up
- decreasing the throughput of TCP traffic. If this value is set too high,
- it will cause the driver to run out of available transmit descriptors.
-
-XsumRX
-------
-:Valid Range: 0-1
-:Default Value: 1
-
- A value of '1' indicates that the driver should enable IP checksum
- offload for received packets (both UDP and TCP) to the adapter hardware.
-
-RxFCHighThresh
---------------
-:Valid Range: 1,536-262,136 (0x600 - 0x3FFF8, 8 byte granularity)
-:Default Value: 196,608 (0x30000)
-
- Receive Flow control high threshold (when we send a pause frame)
-
-RxFCLowThresh
--------------
-:Valid Range: 64-262,136 (0x40 - 0x3FFF8, 8 byte granularity)
-:Default Value: 163,840 (0x28000)
-
- Receive Flow control low threshold (when we send a resume frame)
-
-FCReqTimeout
-------------
-:Valid Range: 1-65535
-:Default Value: 65535
-
- Flow control request timeout (how long to pause the link partner's tx)
-
-IntDelayEnable
---------------
-:Value Range: 0,1
-:Default Value: 1
-
- Interrupt Delay, 0 disables transmit interrupt delay and 1 enables it.
-
-
-Improving Performance
-=====================
-
-With the 10 Gigabit server adapters, the default Linux configuration will
-very likely limit the total available throughput artificially. There is a set
-of configuration changes that, when applied together, will increase the ability
-of Linux to transmit and receive data. The following enhancements were
-originally acquired from settings published at http://www.spec.org/web99/ for
-various submitted results using Linux.
-
-NOTE:
- These changes are only suggestions, and serve as a starting point for
- tuning your network performance.
-
-The changes are made in three major ways, listed in order of greatest effect:
-
-- Use ip link to modify the mtu (maximum transmission unit) and the txqueuelen
- parameter.
-- Use sysctl to modify /proc parameters (essentially kernel tuning)
-- Use setpci to modify the MMRBC field in PCI-X configuration space to increase
- transmit burst lengths on the bus.
-
-NOTE:
- setpci modifies the adapter's configuration registers to allow it to read
- up to 4k bytes at a time (for transmits). However, for some systems the
- behavior after modifying this register may be undefined (possibly errors of
- some kind). A power-cycle, hard reset or explicitly setting the e6 register
- back to 22 (setpci -d 8086:1a48 e6.b=22) may be required to get back to a
- stable configuration.
-
-- COPY these lines and paste them into ixgb_perf.sh:
-
-::
-
- #!/bin/bash
- echo "configuring network performance , edit this file to change the interface
- or device ID of 10GbE card"
- # set mmrbc to 4k reads, modify only Intel 10GbE device IDs
- # replace 1a48 with appropriate 10GbE device's ID installed on the system,
- # if needed.
- setpci -d 8086:1a48 e6.b=2e
- # set the MTU (max transmission unit) - it requires your switch and clients
- # to change as well.
- # set the txqueuelen
- # your ixgb adapter should be loaded as eth1 for this to work, change if needed
- ip li set dev eth1 mtu 9000 txqueuelen 1000 up
- # call the sysctl utility to modify /proc/sys entries
- sysctl -p ./sysctl_ixgb.conf
-
-- COPY these lines and paste them into sysctl_ixgb.conf:
-
-::
-
- # some of the defaults may be different for your kernel
- # call this file with sysctl -p <this file>
- # these are just suggested values that worked well to increase throughput in
- # several network benchmark tests, your mileage may vary
-
- ### IPV4 specific settings
- # turn TCP timestamp support off, default 1, reduces CPU use
- net.ipv4.tcp_timestamps = 0
- # turn SACK support off, default on
- # on systems with a VERY fast bus -> memory interface this is the big gainer
- net.ipv4.tcp_sack = 0
- # set min/default/max TCP read buffer, default 4096 87380 174760
- net.ipv4.tcp_rmem = 10000000 10000000 10000000
- # set min/pressure/max TCP write buffer, default 4096 16384 131072
- net.ipv4.tcp_wmem = 10000000 10000000 10000000
- # set min/pressure/max TCP buffer space, default 31744 32256 32768
- net.ipv4.tcp_mem = 10000000 10000000 10000000
-
- ### CORE settings (mostly for socket and UDP effect)
- # set maximum receive socket buffer size, default 131071
- net.core.rmem_max = 524287
- # set maximum send socket buffer size, default 131071
- net.core.wmem_max = 524287
- # set default receive socket buffer size, default 65535
- net.core.rmem_default = 524287
- # set default send socket buffer size, default 65535
- net.core.wmem_default = 524287
- # set maximum amount of option memory buffers, default 10240
- net.core.optmem_max = 524287
- # set number of unprocessed input packets before kernel starts dropping them; default 300
- net.core.netdev_max_backlog = 300000
-
-Edit the ixgb_perf.sh script if necessary to change eth1 to whatever interface
-your ixgb driver is using and/or replace '1a48' with appropriate 10GbE device's
-ID installed on the system.
-
-NOTE:
- Unless these scripts are added to the boot process, these changes will
- only last only until the next system reboot.
-
-
-Resolving Slow UDP Traffic
---------------------------
-If your server does not seem to be able to receive UDP traffic as fast as it
-can receive TCP traffic, it could be because Linux, by default, does not set
-the network stack buffers as large as they need to be to support high UDP
-transfer rates. One way to alleviate this problem is to allow more memory to
-be used by the IP stack to store incoming data.
-
-For instance, use the commands::
-
- sysctl -w net.core.rmem_max=262143
-
-and::
-
- sysctl -w net.core.rmem_default=262143
-
-to increase the read buffer memory max and default to 262143 (256k - 1) from
-defaults of max=131071 (128k - 1) and default=65535 (64k - 1). These variables
-will increase the amount of memory used by the network stack for receives, and
-can be increased significantly more if necessary for your application.
-
-
-Additional Configurations
-=========================
-
-Configuring the Driver on Different Distributions
--------------------------------------------------
-Configuring a network driver to load properly when the system is started is
-distribution dependent. Typically, the configuration process involves adding
-an alias line to /etc/modprobe.conf as well as editing other system startup
-scripts and/or configuration files. Many popular Linux distributions ship
-with tools to make these changes for you. To learn the proper way to
-configure a network device for your system, refer to your distribution
-documentation. If during this process you are asked for the driver or module
-name, the name for the Linux Base Driver for the Intel 10GbE Family of
-Adapters is ixgb.
-
-Viewing Link Messages
----------------------
-Link messages will not be displayed to the console if the distribution is
-restricting system messages. In order to see network driver link messages on
-your console, set dmesg to eight by entering the following::
-
- dmesg -n 8
-
-NOTE: This setting is not saved across reboots.
-
-Jumbo Frames
-------------
-The driver supports Jumbo Frames for all adapters. Jumbo Frames support is
-enabled by changing the MTU to a value larger than the default of 1500.
-The maximum value for the MTU is 16114. Use the ip command to
-increase the MTU size. For example::
-
- ip li set dev ethx mtu 9000
-
-The maximum MTU setting for Jumbo Frames is 16114. This value coincides
-with the maximum Jumbo Frames size of 16128.
-
-Ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The ethtool
-version 1.6 or later is required for this functionality.
-
-The latest release of ethtool can be found from
-https://www.kernel.org/pub/software/network/ethtool/
-
-NOTE:
- The ethtool version 1.6 only supports a limited set of ethtool options.
- Support for a more complete ethtool feature set can be enabled by
- upgrading to the latest version.
-
-NAPI
-----
-NAPI (Rx polling mode) is supported in the ixgb driver.
-
-See https://wiki.linuxfoundation.org/networking/napi for more information on
-NAPI.
-
-
-Known Issues/Troubleshooting
-============================
-
-NOTE:
- After installing the driver, if your Intel Network Connection is not
- working, verify in the "In This Release" section of the readme that you have
- installed the correct driver.
-
-Cable Interoperability Issue with Fujitsu XENPAK Module in SmartBits Chassis
-----------------------------------------------------------------------------
-Excessive CRC errors may be observed if the Intel(R) PRO/10GbE CX4
-Server adapter is connected to a Fujitsu XENPAK CX4 module in a SmartBits
-chassis using 15 m/24AWG cable assemblies manufactured by Fujitsu or Leoni.
-The CRC errors may be received either by the Intel(R) PRO/10GbE CX4
-Server adapter or the SmartBits. If this situation occurs using a different
-cable assembly may resolve the issue.
-
-Cable Interoperability Issues with HP Procurve 3400cl Switch Port
------------------------------------------------------------------
-Excessive CRC errors may be observed if the Intel(R) PRO/10GbE CX4 Server
-adapter is connected to an HP Procurve 3400cl switch port using short cables
-(1 m or shorter). If this situation occurs, using a longer cable may resolve
-the issue.
-
-Excessive CRC errors may be observed using Fujitsu 24AWG cable assemblies that
-Are 10 m or longer or where using a Leoni 15 m/24AWG cable assembly. The CRC
-errors may be received either by the CX4 Server adapter or at the switch. If
-this situation occurs, using a different cable assembly may resolve the issue.
-
-Jumbo Frames System Requirement
--------------------------------
-Memory allocation failures have been observed on Linux systems with 64 MB
-of RAM or less that are running Jumbo Frames. If you are using Jumbo
-Frames, your system may require more than the advertised minimum
-requirement of 64 MB of system memory.
-
-Performance Degradation with Jumbo Frames
------------------------------------------
-Degradation in throughput performance may be observed in some Jumbo frames
-environments. If this is observed, increasing the application's socket buffer
-size and/or increasing the /proc/sys/net/ipv4/tcp_*mem entry values may help.
-See the specific application manual and /usr/src/linux*/Documentation/
-networking/ip-sysctl.txt for more details.
-
-Allocating Rx Buffers when Using Jumbo Frames
----------------------------------------------
-Allocating Rx buffers when using Jumbo Frames on 2.6.x kernels may fail if
-the available memory is heavily fragmented. This issue may be seen with PCI-X
-adapters or with packet split disabled. This can be reduced or eliminated
-by changing the amount of available memory for receive buffer allocation, by
-increasing /proc/sys/vm/min_free_kbytes.
-
-Multiple Interfaces on Same Ethernet Broadcast Network
-------------------------------------------------------
-Due to the default ARP behavior on Linux, it is not possible to have
-one system on two IP networks in the same Ethernet broadcast domain
-(non-partitioned switch) behave as expected. All Ethernet interfaces
-will respond to IP traffic for any IP address assigned to the system.
-This results in unbalanced receive traffic.
-
-If you have multiple interfaces in a server, do either of the following:
-
- - Turn on ARP filtering by entering::
-
- echo 1 > /proc/sys/net/ipv4/conf/all/arp_filter
-
- - Install the interfaces in separate broadcast domains - either in
- different switches or in a switch partitioned to VLANs.
-
-UDP Stress Test Dropped Packet Issue
---------------------------------------
-Under small packets UDP stress test with 10GbE driver, the Linux system
-may drop UDP packets due to the fullness of socket buffers. You may want
-to change the driver's Flow Control variables to the minimum value for
-controlling packet reception.
-
-Tx Hangs Possible Under Stress
-------------------------------
-Under stress conditions, if TX hangs occur, turning off TSO
-"ethtool -K eth0 tso off" may resolve the problem.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net
diff --git a/Documentation/networking/device_drivers/intel/ixgbe.rst b/Documentation/networking/device_drivers/intel/ixgbe.rst
deleted file mode 100644
index f1d5233e5e51..000000000000
--- a/Documentation/networking/device_drivers/intel/ixgbe.rst
+++ /dev/null
@@ -1,541 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-===========================================================================
-Linux Base Driver for the Intel(R) Ethernet 10 Gigabit PCI Express Adapters
-===========================================================================
-
-Intel 10 Gigabit Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-
-- Identifying Your Adapter
-- Command Line Parameters
-- Additional Configurations
-- Known Issues
-- Support
-
-Identifying Your Adapter
-========================
-The driver is compatible with devices based on the following:
-
- * Intel(R) Ethernet Controller 82598
- * Intel(R) Ethernet Controller 82599
- * Intel(R) Ethernet Controller X520
- * Intel(R) Ethernet Controller X540
- * Intel(R) Ethernet Controller x550
- * Intel(R) Ethernet Controller X552
- * Intel(R) Ethernet Controller X553
-
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-https://www.intel.com/support
-
-SFP+ Devices with Pluggable Optics
-----------------------------------
-
-82599-BASED ADAPTERS
-~~~~~~~~~~~~~~~~~~~~
-NOTES:
-- If your 82599-based Intel(R) Network Adapter came with Intel optics or is an
-Intel(R) Ethernet Server Adapter X520-2, then it only supports Intel optics
-and/or the direct attach cables listed below.
-- When 82599-based SFP+ devices are connected back to back, they should be set
-to the same Speed setting via ethtool. Results may vary if you mix speed
-settings.
-
-+---------------+---------------------------------------+------------------+
-| Supplier | Type | Part Numbers |
-+===============+=======================================+==================+
-| SR Modules |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ SR (bailed) | FTLX8571D3BCV-IT |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ SR (bailed) | AFBR-703SDZ-IN2 |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ SR (bailed) | AFBR-703SDDZ-IN1 |
-+---------------+---------------------------------------+------------------+
-| LR Modules |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ LR (bailed) | FTLX1471D3BCV-IT |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ LR (bailed) | AFCT-701SDZ-IN2 |
-+---------------+---------------------------------------+------------------+
-| Intel | DUAL RATE 1G/10G SFP+ LR (bailed) | AFCT-701SDDZ-IN1 |
-+---------------+---------------------------------------+------------------+
-
-The following is a list of 3rd party SFP+ modules that have received some
-testing. Not all modules are applicable to all devices.
-
-+---------------+---------------------------------------+------------------+
-| Supplier | Type | Part Numbers |
-+===============+=======================================+==================+
-| Finisar | SFP+ SR bailed, 10g single rate | FTLX8571D3BCL |
-+---------------+---------------------------------------+------------------+
-| Avago | SFP+ SR bailed, 10g single rate | AFBR-700SDZ |
-+---------------+---------------------------------------+------------------+
-| Finisar | SFP+ LR bailed, 10g single rate | FTLX1471D3BCL |
-+---------------+---------------------------------------+------------------+
-| Finisar | DUAL RATE 1G/10G SFP+ SR (No Bail) | FTLX8571D3QCV-IT |
-+---------------+---------------------------------------+------------------+
-| Avago | DUAL RATE 1G/10G SFP+ SR (No Bail) | AFBR-703SDZ-IN1 |
-+---------------+---------------------------------------+------------------+
-| Finisar | DUAL RATE 1G/10G SFP+ LR (No Bail) | FTLX1471D3QCV-IT |
-+---------------+---------------------------------------+------------------+
-| Avago | DUAL RATE 1G/10G SFP+ LR (No Bail) | AFCT-701SDZ-IN1 |
-+---------------+---------------------------------------+------------------+
-| Finisar | 1000BASE-T SFP | FCLF8522P2BTL |
-+---------------+---------------------------------------+------------------+
-| Avago | 1000BASE-T | ABCU-5710RZ |
-+---------------+---------------------------------------+------------------+
-| HP | 1000BASE-SX SFP | 453153-001 |
-+---------------+---------------------------------------+------------------+
-
-82599-based adapters support all passive and active limiting direct attach
-cables that comply with SFF-8431 v4.1 and SFF-8472 v10.4 specifications.
-
-Laser turns off for SFP+ when ifconfig ethX down
-~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-"ifconfig ethX down" turns off the laser for 82599-based SFP+ fiber adapters.
-"ifconfig ethX up" turns on the laser.
-Alternatively, you can use "ip link set [down/up] dev ethX" to turn the
-laser off and on.
-
-
-82599-based QSFP+ Adapters
-~~~~~~~~~~~~~~~~~~~~~~~~~~
-NOTES:
-- If your 82599-based Intel(R) Network Adapter came with Intel optics, it only
-supports Intel optics.
-- 82599-based QSFP+ adapters only support 4x10 Gbps connections. 1x40 Gbps
-connections are not supported. QSFP+ link partners must be configured for
-4x10 Gbps.
-- 82599-based QSFP+ adapters do not support automatic link speed detection.
-The link speed must be configured to either 10 Gbps or 1 Gbps to match the link
-partners speed capabilities. Incorrect speed configurations will result in
-failure to link.
-- Intel(R) Ethernet Converged Network Adapter X520-Q1 only supports the optics
-and direct attach cables listed below.
-
-+---------------+---------------------------------------+------------------+
-| Supplier | Type | Part Numbers |
-+===============+=======================================+==================+
-| Intel | DUAL RATE 1G/10G QSFP+ SRL (bailed) | E10GQSFPSR |
-+---------------+---------------------------------------+------------------+
-
-82599-based QSFP+ adapters support all passive and active limiting QSFP+
-direct attach cables that comply with SFF-8436 v4.1 specifications.
-
-82598-BASED ADAPTERS
-~~~~~~~~~~~~~~~~~~~~
-NOTES:
-- Intel(r) Ethernet Network Adapters that support removable optical modules
-only support their original module type (for example, the Intel(R) 10 Gigabit
-SR Dual Port Express Module only supports SR optical modules). If you plug in
-a different type of module, the driver will not load.
-- Hot Swapping/hot plugging optical modules is not supported.
-- Only single speed, 10 gigabit modules are supported.
-- LAN on Motherboard (LOMs) may support DA, SR, or LR modules. Other module
-types are not supported. Please see your system documentation for details.
-
-The following is a list of SFP+ modules and direct attach cables that have
-received some testing. Not all modules are applicable to all devices.
-
-+---------------+---------------------------------------+------------------+
-| Supplier | Type | Part Numbers |
-+===============+=======================================+==================+
-| Finisar | SFP+ SR bailed, 10g single rate | FTLX8571D3BCL |
-+---------------+---------------------------------------+------------------+
-| Avago | SFP+ SR bailed, 10g single rate | AFBR-700SDZ |
-+---------------+---------------------------------------+------------------+
-| Finisar | SFP+ LR bailed, 10g single rate | FTLX1471D3BCL |
-+---------------+---------------------------------------+------------------+
-
-82598-based adapters support all passive direct attach cables that comply with
-SFF-8431 v4.1 and SFF-8472 v10.4 specifications. Active direct attach cables
-are not supported.
-
-Third party optic modules and cables referred to above are listed only for the
-purpose of highlighting third party specifications and potential
-compatibility, and are not recommendations or endorsements or sponsorship of
-any third party's product by Intel. Intel is not endorsing or promoting
-products made by any third party and the third party reference is provided
-only to share information regarding certain optic modules and cables with the
-above specifications. There may be other manufacturers or suppliers, producing
-or supplying optic modules and cables with similar or matching descriptions.
-Customers must use their own discretion and diligence to purchase optic
-modules and cables from any third party of their choice. Customers are solely
-responsible for assessing the suitability of the product and/or devices and
-for the selection of the vendor for purchasing any product. THE OPTIC MODULES
-AND CABLES REFERRED TO ABOVE ARE NOT WARRANTED OR SUPPORTED BY INTEL. INTEL
-ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED
-WARRANTY, RELATING TO SALE AND/OR USE OF SUCH THIRD PARTY PRODUCTS OR
-SELECTION OF VENDOR BY CUSTOMERS.
-
-Command Line Parameters
-=======================
-
-max_vfs
--------
-:Valid Range: 1-63
-
-This parameter adds support for SR-IOV. It causes the driver to spawn up to
-max_vfs worth of virtual functions.
-If the value is greater than 0 it will also force the VMDq parameter to be 1 or
-more.
-
-NOTE: This parameter is only used on kernel 3.7.x and below. On kernel 3.8.x
-and above, use sysfs to enable VFs. Also, for Red Hat distributions, this
-parameter is only used on version 6.6 and older. For version 6.7 and newer, use
-sysfs. For example::
-
- #echo $num_vf_enabled > /sys/class/net/$dev/device/sriov_numvfs // enable VFs
- #echo 0 > /sys/class/net/$dev/device/sriov_numvfs //disable VFs
-
-The parameters for the driver are referenced by position. Thus, if you have a
-dual port adapter, or more than one adapter in your system, and want N virtual
-functions per port, you must specify a number for each port with each parameter
-separated by a comma. For example::
-
- modprobe ixgbe max_vfs=4
-
-This will spawn 4 VFs on the first port.
-
-::
-
- modprobe ixgbe max_vfs=2,4
-
-This will spawn 2 VFs on the first port and 4 VFs on the second port.
-
-NOTE: Caution must be used in loading the driver with these parameters.
-Depending on your system configuration, number of slots, etc., it is impossible
-to predict in all cases where the positions would be on the command line.
-
-NOTE: Neither the device nor the driver control how VFs are mapped into config
-space. Bus layout will vary by operating system. On operating systems that
-support it, you can check sysfs to find the mapping.
-
-NOTE: When either SR-IOV mode or VMDq mode is enabled, hardware VLAN filtering
-and VLAN tag stripping/insertion will remain enabled. Please remove the old
-VLAN filter before the new VLAN filter is added. For example,
-
-::
-
- ip link set eth0 vf 0 vlan 100 // set VLAN 100 for VF 0
- ip link set eth0 vf 0 vlan 0 // Delete VLAN 100
- ip link set eth0 vf 0 vlan 200 // set a new VLAN 200 for VF 0
-
-With kernel 3.6, the driver supports the simultaneous usage of max_vfs and DCB
-features, subject to the constraints described below. Prior to kernel 3.6, the
-driver did not support the simultaneous operation of max_vfs greater than 0 and
-the DCB features (multiple traffic classes utilizing Priority Flow Control and
-Extended Transmission Selection).
-
-When DCB is enabled, network traffic is transmitted and received through
-multiple traffic classes (packet buffers in the NIC). The traffic is associated
-with a specific class based on priority, which has a value of 0 through 7 used
-in the VLAN tag. When SR-IOV is not enabled, each traffic class is associated
-with a set of receive/transmit descriptor queue pairs. The number of queue
-pairs for a given traffic class depends on the hardware configuration. When
-SR-IOV is enabled, the descriptor queue pairs are grouped into pools. The
-Physical Function (PF) and each Virtual Function (VF) is allocated a pool of
-receive/transmit descriptor queue pairs. When multiple traffic classes are
-configured (for example, DCB is enabled), each pool contains a queue pair from
-each traffic class. When a single traffic class is configured in the hardware,
-the pools contain multiple queue pairs from the single traffic class.
-
-The number of VFs that can be allocated depends on the number of traffic
-classes that can be enabled. The configurable number of traffic classes for
-each enabled VF is as follows:
-0 - 15 VFs = Up to 8 traffic classes, depending on device support
-16 - 31 VFs = Up to 4 traffic classes
-32 - 63 VFs = 1 traffic class
-
-When VFs are configured, the PF is allocated one pool as well. The PF supports
-the DCB features with the constraint that each traffic class will only use a
-single queue pair. When zero VFs are configured, the PF can support multiple
-queue pairs per traffic class.
-
-allow_unsupported_sfp
----------------------
-:Valid Range: 0,1
-:Default Value: 0 (disabled)
-
-This parameter allows unsupported and untested SFP+ modules on 82599-based
-adapters, as long as the type of module is known to the driver.
-
-debug
------
-:Valid Range: 0-16 (0=none,...,16=all)
-:Default Value: 0
-
-This parameter adjusts the level of debug messages displayed in the system
-logs.
-
-
-Additional Features and Configurations
-======================================
-
-Flow Control
-------------
-Ethernet Flow Control (IEEE 802.3x) can be configured with ethtool to enable
-receiving and transmitting pause frames for ixgbe. When transmit is enabled,
-pause frames are generated when the receive packet buffer crosses a predefined
-threshold. When receive is enabled, the transmit unit will halt for the time
-delay specified when a pause frame is received.
-
-NOTE: You must have a flow control capable link partner.
-
-Flow Control is enabled by default.
-
-Use ethtool to change the flow control settings. To enable or disable Rx or
-Tx Flow Control::
-
- ethtool -A eth? rx <on|off> tx <on|off>
-
-Note: This command only enables or disables Flow Control if auto-negotiation is
-disabled. If auto-negotiation is enabled, this command changes the parameters
-used for auto-negotiation with the link partner.
-
-To enable or disable auto-negotiation::
-
- ethtool -s eth? autoneg <on|off>
-
-Note: Flow Control auto-negotiation is part of link auto-negotiation. Depending
-on your device, you may not be able to change the auto-negotiation setting.
-
-NOTE: For 82598 backplane cards entering 1 gigabit mode, flow control default
-behavior is changed to off. Flow control in 1 gigabit mode on these devices can
-lead to transmit hangs.
-
-Intel(R) Ethernet Flow Director
--------------------------------
-The Intel Ethernet Flow Director performs the following tasks:
-
-- Directs receive packets according to their flows to different queues.
-- Enables tight control on routing a flow in the platform.
-- Matches flows and CPU cores for flow affinity.
-- Supports multiple parameters for flexible flow classification and load
- balancing (in SFP mode only).
-
-NOTE: Intel Ethernet Flow Director masking works in the opposite manner from
-subnet masking. In the following command::
-
- #ethtool -N eth11 flow-type ip4 src-ip 172.4.1.2 m 255.0.0.0 dst-ip \
- 172.21.1.1 m 255.128.0.0 action 31
-
-The src-ip value that is written to the filter will be 0.4.1.2, not 172.0.0.0
-as might be expected. Similarly, the dst-ip value written to the filter will be
-0.21.1.1, not 172.0.0.0.
-
-To enable or disable the Intel Ethernet Flow Director::
-
- # ethtool -K ethX ntuple <on|off>
-
-When disabling ntuple filters, all the user programmed filters are flushed from
-the driver cache and hardware. All needed filters must be re-added when ntuple
-is re-enabled.
-
-To add a filter that directs packet to queue 2, use -U or -N switch::
-
- # ethtool -N ethX flow-type tcp4 src-ip 192.168.10.1 dst-ip \
- 192.168.10.2 src-port 2000 dst-port 2001 action 2 [loc 1]
-
-To see the list of filters currently present::
-
- # ethtool <-u|-n> ethX
-
-Sideband Perfect Filters
-------------------------
-Sideband Perfect Filters are used to direct traffic that matches specified
-characteristics. They are enabled through ethtool's ntuple interface. To add a
-new filter use the following command::
-
- ethtool -U <device> flow-type <type> src-ip <ip> dst-ip <ip> src-port <port> \
- dst-port <port> action <queue>
-
-Where:
- <device> - the ethernet device to program
- <type> - can be ip4, tcp4, udp4, or sctp4
- <ip> - the IP address to match on
- <port> - the port number to match on
- <queue> - the queue to direct traffic towards (-1 discards the matched traffic)
-
-Use the following command to delete a filter::
-
- ethtool -U <device> delete <N>
-
-Where <N> is the filter id displayed when printing all the active filters, and
-may also have been specified using "loc <N>" when adding the filter.
-
-The following example matches TCP traffic sent from 192.168.0.1, port 5300,
-directed to 192.168.0.5, port 80, and sends it to queue 7::
-
- ethtool -U enp130s0 flow-type tcp4 src-ip 192.168.0.1 dst-ip 192.168.0.5 \
- src-port 5300 dst-port 80 action 7
-
-For each flow-type, the programmed filters must all have the same matching
-input set. For example, issuing the following two commands is acceptable::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.5 src-port 55 action 10
-
-Issuing the next two commands, however, is not acceptable, since the first
-specifies src-ip and the second specifies dst-ip::
-
- ethtool -U enp130s0 flow-type ip4 src-ip 192.168.0.1 src-port 5300 action 7
- ethtool -U enp130s0 flow-type ip4 dst-ip 192.168.0.5 src-port 55 action 10
-
-The second command will fail with an error. You may program multiple filters
-with the same fields, using different values, but, on one device, you may not
-program two TCP4 filters with different matching fields.
-
-Matching on a sub-portion of a field is not supported by the ixgbe driver, thus
-partial mask fields are not supported.
-
-To create filters that direct traffic to a specific Virtual Function, use the
-"user-def" parameter. Specify the user-def as a 64 bit value, where the lower 32
-bits represents the queue number, while the next 8 bits represent which VF.
-Note that 0 is the PF, so the VF identifier is offset by 1. For example::
-
- ... user-def 0x800000002 ...
-
-specifies to direct traffic to Virtual Function 7 (8 minus 1) into queue 2 of
-that VF.
-
-Note that these filters will not break internal routing rules, and will not
-route traffic that otherwise would not have been sent to the specified Virtual
-Function.
-
-Jumbo Frames
-------------
-Jumbo Frames support is enabled by changing the Maximum Transmission Unit (MTU)
-to a value larger than the default value of 1500.
-
-Use the ifconfig command to increase the MTU size. For example, enter the
-following where <x> is the interface number::
-
- ifconfig eth<x> mtu 9000 up
-
-Alternatively, you can use the ip command as follows::
-
- ip link set mtu 9000 dev eth<x>
- ip link set up dev eth<x>
-
-This setting is not saved across reboots. The setting change can be made
-permanent by adding 'MTU=9000' to the file::
-
- /etc/sysconfig/network-scripts/ifcfg-eth<x> // for RHEL
- /etc/sysconfig/network/<config_file> // for SLES
-
-NOTE: The maximum MTU setting for Jumbo Frames is 9710. This value coincides
-with the maximum Jumbo Frames size of 9728 bytes.
-
-NOTE: This driver will attempt to use multiple page sized buffers to receive
-each jumbo packet. This should help to avoid buffer starvation issues when
-allocating receive packets.
-
-NOTE: For 82599-based network connections, if you are enabling jumbo frames in
-a virtual function (VF), jumbo frames must first be enabled in the physical
-function (PF). The VF MTU setting cannot be larger than the PF MTU.
-
-Generic Receive Offload, aka GRO
---------------------------------
-The driver supports the in-kernel software implementation of GRO. GRO has
-shown that by coalescing Rx traffic into larger chunks of data, CPU
-utilization can be significantly reduced when under large Rx load. GRO is an
-evolution of the previously-used LRO interface. GRO is able to coalesce
-other protocols besides TCP. It's also safe to use with configurations that
-are problematic for LRO, namely bridging and iSCSI.
-
-Data Center Bridging (DCB)
---------------------------
-NOTE:
-The kernel assumes that TC0 is available, and will disable Priority Flow
-Control (PFC) on the device if TC0 is not available. To fix this, ensure TC0 is
-enabled when setting up DCB on your switch.
-
-DCB is a configuration Quality of Service implementation in hardware. It uses
-the VLAN priority tag (802.1p) to filter traffic. That means that there are 8
-different priorities that traffic can be filtered into. It also enables
-priority flow control (802.1Qbb) which can limit or eliminate the number of
-dropped packets during network stress. Bandwidth can be allocated to each of
-these priorities, which is enforced at the hardware level (802.1Qaz).
-
-Adapter firmware implements LLDP and DCBX protocol agents as per 802.1AB and
-802.1Qaz respectively. The firmware based DCBX agent runs in willing mode only
-and can accept settings from a DCBX capable peer. Software configuration of
-DCBX parameters via dcbtool/lldptool are not supported.
-
-The ixgbe driver implements the DCB netlink interface layer to allow user-space
-to communicate with the driver and query DCB configuration for the port.
-
-ethtool
--------
-The driver utilizes the ethtool interface for driver configuration and
-diagnostics, as well as displaying statistical information. The latest ethtool
-version is required for this functionality. Download it at:
-https://www.kernel.org/pub/software/network/ethtool/
-
-FCoE
-----
-The ixgbe driver supports Fiber Channel over Ethernet (FCoE) and Data Center
-Bridging (DCB). This code has no default effect on the regular driver
-operation. Configuring DCB and FCoE is outside the scope of this README. Refer
-to http://www.open-fcoe.org/ for FCoE project information and contact
-ixgbe-eedc@lists.sourceforge.net for DCB information.
-
-MAC and VLAN anti-spoofing feature
-----------------------------------
-When a malicious driver attempts to send a spoofed packet, it is dropped by the
-hardware and not transmitted.
-
-An interrupt is sent to the PF driver notifying it of the spoof attempt. When a
-spoofed packet is detected, the PF driver will send the following message to
-the system log (displayed by the "dmesg" command)::
-
- ixgbe ethX: ixgbe_spoof_check: n spoofed packets detected
-
-where "x" is the PF interface number; and "n" is number of spoofed packets.
-NOTE: This feature can be disabled for a specific Virtual Function (VF)::
-
- ip link set <pf dev> vf <vf id> spoofchk {off|on}
-
-IPsec Offload
--------------
-The ixgbe driver supports IPsec Hardware Offload. When creating Security
-Associations with "ip xfrm ..." the 'offload' tag option can be used to
-register the IPsec SA with the driver in order to get higher throughput in
-the secure communications.
-
-The offload is also supported for ixgbe's VFs, but the VF must be set as
-'trusted' and the support must be enabled with::
-
- ethtool --set-priv-flags eth<x> vf-ipsec on
- ip link set eth<x> vf <y> trust on
-
-
-Known Issues/Troubleshooting
-============================
-
-Enabling SR-IOV in a 64-bit Microsoft Windows Server 2012/R2 guest OS
----------------------------------------------------------------------
-Linux KVM Hypervisor/VMM supports direct assignment of a PCIe device to a VM.
-This includes traditional PCIe devices, as well as SR-IOV-capable devices based
-on the Intel Ethernet Controller XL710.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.
diff --git a/Documentation/networking/device_drivers/intel/ixgbevf.rst b/Documentation/networking/device_drivers/intel/ixgbevf.rst
deleted file mode 100644
index 76bbde736f21..000000000000
--- a/Documentation/networking/device_drivers/intel/ixgbevf.rst
+++ /dev/null
@@ -1,67 +0,0 @@
-.. SPDX-License-Identifier: GPL-2.0+
-
-============================================================
-Linux Base Virtual Function Driver for Intel(R) 10G Ethernet
-============================================================
-
-Intel 10 Gigabit Virtual Function Linux driver.
-Copyright(c) 1999-2018 Intel Corporation.
-
-Contents
-========
-
-- Identifying Your Adapter
-- Known Issues
-- Support
-
-This driver supports 82599, X540, X550, and X552-based virtual function devices
-that can only be activated on kernels that support SR-IOV.
-
-For questions related to hardware requirements, refer to the documentation
-supplied with your Intel adapter. All hardware requirements listed apply to use
-with Linux.
-
-
-Identifying Your Adapter
-========================
-The driver is compatible with devices based on the following:
-
- * Intel(R) Ethernet Controller 82598
- * Intel(R) Ethernet Controller 82599
- * Intel(R) Ethernet Controller X520
- * Intel(R) Ethernet Controller X540
- * Intel(R) Ethernet Controller x550
- * Intel(R) Ethernet Controller X552
- * Intel(R) Ethernet Controller X553
-
-For information on how to identify your adapter, and for the latest Intel
-network drivers, refer to the Intel Support website:
-https://www.intel.com/support
-
-Known Issues/Troubleshooting
-============================
-
-SR-IOV requires the correct platform and OS support.
-
-The guest OS loading this driver must support MSI-X interrupts.
-
-This driver is only supported as a loadable module at this time. Intel is not
-supplying patches against the kernel source to allow for static linking of the
-drivers.
-
-VLANs: There is a limit of a total of 64 shared VLANs to 1 or more VFs.
-
-
-Support
-=======
-For general information, go to the Intel support website at:
-
-https://www.intel.com/support/
-
-or the Intel Wired Networking project hosted by Sourceforge at:
-
-https://sourceforge.net/projects/e1000
-
-If an issue is identified with the released source code on a supported kernel
-with a supported adapter, email the specific information related to the issue
-to e1000-devel@lists.sf.net.