aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/hwmon
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/hwmon')
-rw-r--r--Documentation/hwmon/adm12753
-rw-r--r--Documentation/hwmon/adt747512
-rw-r--r--Documentation/hwmon/hwmon-kernel-api.txt24
-rw-r--r--Documentation/hwmon/ina2xx15
-rw-r--r--Documentation/hwmon/ina32212
-rw-r--r--Documentation/hwmon/lm7511
-rw-r--r--Documentation/hwmon/ltc29785
-rw-r--r--Documentation/hwmon/mc13783-adc8
-rw-r--r--Documentation/hwmon/occ112
9 files changed, 177 insertions, 15 deletions
diff --git a/Documentation/hwmon/adm1275 b/Documentation/hwmon/adm1275
index 39033538eb03..5e277b0d91ce 100644
--- a/Documentation/hwmon/adm1275
+++ b/Documentation/hwmon/adm1275
@@ -58,6 +58,9 @@ The ADM1075, unlike many other PMBus devices, does not support internal voltage
or current scaling. Reported voltages, currents, and power are raw measurements,
and will typically have to be scaled.
+The shunt value in micro-ohms can be set via device tree at compile-time. Please
+refer to the Documentation/devicetree/bindings/hwmon/adm1275.txt for bindings
+if the device tree is used.
Platform data support
---------------------
diff --git a/Documentation/hwmon/adt7475 b/Documentation/hwmon/adt7475
index 09d73a10644c..01b46b290532 100644
--- a/Documentation/hwmon/adt7475
+++ b/Documentation/hwmon/adt7475
@@ -79,6 +79,18 @@ ADT7490:
* 2 GPIO pins (not implemented)
* system acoustics optimizations (not implemented)
+Sysfs Mapping
+-------------
+
+ ADT7490 ADT7476 ADT7475 ADT7473
+ ------- ------- ------- -------
+in0 2.5VIN (22) 2.5VIN (22) - -
+in1 VCCP (23) VCCP (23) VCCP (14) VCCP (14)
+in2 VCC (4) VCC (4) VCC (4) VCC (3)
+in3 5VIN (20) 5VIN (20)
+in4 12VIN (21) 12VIN (21)
+in5 VTT (8)
+
Special Features
----------------
diff --git a/Documentation/hwmon/hwmon-kernel-api.txt b/Documentation/hwmon/hwmon-kernel-api.txt
index eb7a78aebb38..8bdefb41be30 100644
--- a/Documentation/hwmon/hwmon-kernel-api.txt
+++ b/Documentation/hwmon/hwmon-kernel-api.txt
@@ -299,17 +299,25 @@ functions is used.
The header file linux/hwmon-sysfs.h provides a number of useful macros to
declare and use hardware monitoring sysfs attributes.
-In many cases, you can use the exsting define DEVICE_ATTR to declare such
-attributes. This is feasible if an attribute has no additional context. However,
-in many cases there will be additional information such as a sensor index which
-will need to be passed to the sysfs attribute handling function.
+In many cases, you can use the exsting define DEVICE_ATTR or its variants
+DEVICE_ATTR_{RW,RO,WO} to declare such attributes. This is feasible if an
+attribute has no additional context. However, in many cases there will be
+additional information such as a sensor index which will need to be passed
+to the sysfs attribute handling function.
SENSOR_DEVICE_ATTR and SENSOR_DEVICE_ATTR_2 can be used to define attributes
which need such additional context information. SENSOR_DEVICE_ATTR requires
one additional argument, SENSOR_DEVICE_ATTR_2 requires two.
-SENSOR_DEVICE_ATTR defines a struct sensor_device_attribute variable.
-This structure has the following fields.
+Simplified variants of SENSOR_DEVICE_ATTR and SENSOR_DEVICE_ATTR_2 are available
+and should be used if standard attribute permissions and function names are
+feasible. Standard permissions are 0644 for SENSOR_DEVICE_ATTR[_2]_RW,
+0444 for SENSOR_DEVICE_ATTR[_2]_RO, and 0200 for SENSOR_DEVICE_ATTR[_2]_WO.
+Standard functions, similar to DEVICE_ATTR_{RW,RO,WO}, have _show and _store
+appended to the provided function name.
+
+SENSOR_DEVICE_ATTR and its variants define a struct sensor_device_attribute
+variable. This structure has the following fields.
struct sensor_device_attribute {
struct device_attribute dev_attr;
@@ -320,8 +328,8 @@ You can use to_sensor_dev_attr to get the pointer to this structure from the
attribute read or write function. Its parameter is the device to which the
attribute is attached.
-SENSOR_DEVICE_ATTR_2 defines a struct sensor_device_attribute_2 variable,
-which is defined as follows.
+SENSOR_DEVICE_ATTR_2 and its variants define a struct sensor_device_attribute_2
+variable, which is defined as follows.
struct sensor_device_attribute_2 {
struct device_attribute dev_attr;
diff --git a/Documentation/hwmon/ina2xx b/Documentation/hwmon/ina2xx
index b8df81f6d6bc..0f36c021192d 100644
--- a/Documentation/hwmon/ina2xx
+++ b/Documentation/hwmon/ina2xx
@@ -62,3 +62,18 @@ bus and shunt voltage conversion times multiplied by the averaging rate. We
don't touch the conversion times and only modify the number of averages. The
lower limit of the update_interval is 2 ms, the upper limit is 2253 ms.
The actual programmed interval may vary from the desired value.
+
+General sysfs entries
+-------------
+
+in0_input Shunt voltage(mV) channel
+in1_input Bus voltage(mV) channel
+curr1_input Current(mA) measurement channel
+power1_input Power(uW) measurement channel
+shunt_resistor Shunt resistance(uOhm) channel
+
+Sysfs entries for ina226, ina230 and ina231 only
+-------------
+
+update_interval data conversion time; affects number of samples used
+ to average results for shunt and bus voltages.
diff --git a/Documentation/hwmon/ina3221 b/Documentation/hwmon/ina3221
index 0ff74854cb2e..4b82cbfb551c 100644
--- a/Documentation/hwmon/ina3221
+++ b/Documentation/hwmon/ina3221
@@ -21,6 +21,8 @@ and power are calculated host-side from these.
Sysfs entries
-------------
+in[123]_label Voltage channel labels
+in[123]_enable Voltage channel enable controls
in[123]_input Bus voltage(mV) channels
curr[123]_input Current(mA) measurement channels
shunt[123]_resistor Shunt resistance(uOhm) channels
diff --git a/Documentation/hwmon/lm75 b/Documentation/hwmon/lm75
index ac95edfcd907..010583608f12 100644
--- a/Documentation/hwmon/lm75
+++ b/Documentation/hwmon/lm75
@@ -17,8 +17,8 @@ Supported chips:
Addresses scanned: none
Datasheet: Publicly available at the Maxim website
http://www.maximintegrated.com/
- * Maxim MAX6625, MAX6626
- Prefixes: 'max6625', 'max6626'
+ * Maxim MAX6625, MAX6626, MAX31725, MAX31726
+ Prefixes: 'max6625', 'max6626', 'max31725', 'max31726'
Addresses scanned: none
Datasheet: Publicly available at the Maxim website
http://www.maxim-ic.com/
@@ -42,6 +42,11 @@ Supported chips:
Addresses scanned: none
Datasheet: Publicly available at the ST website
http://www.st.com/internet/analog/product/121769.jsp
+ * ST Microelectronics STLM75
+ Prefix: 'stlm75'
+ Addresses scanned: none
+ Datasheet: Publicly available at the ST website
+ https://www.st.com/resource/en/datasheet/stlm75.pdf
* Texas Instruments TMP100, TMP101, TMP105, TMP112, TMP75, TMP75C, TMP175, TMP275
Prefixes: 'tmp100', 'tmp101', 'tmp105', 'tmp112', 'tmp175', 'tmp75', 'tmp75c', 'tmp275'
Addresses scanned: none
@@ -86,7 +91,7 @@ The LM75 is essentially an industry standard; there may be other
LM75 clones not listed here, with or without various enhancements,
that are supported. The clones are not detected by the driver, unless
they reproduce the exact register tricks of the original LM75, and must
-therefore be instantiated explicitly. Higher resolution up to 12-bit
+therefore be instantiated explicitly. Higher resolution up to 16-bit
is supported by this driver, other specific enhancements are not.
The LM77 is not supported, contrary to what we pretended for a long time.
diff --git a/Documentation/hwmon/ltc2978 b/Documentation/hwmon/ltc2978
index 9a49d3c90cd1..dfb2caa401d9 100644
--- a/Documentation/hwmon/ltc2978
+++ b/Documentation/hwmon/ltc2978
@@ -55,6 +55,10 @@ Supported chips:
Prefix: 'ltm4676'
Addresses scanned: -
Datasheet: http://www.linear.com/product/ltm4676
+ * Analog Devices LTM4686
+ Prefix: 'ltm4686'
+ Addresses scanned: -
+ Datasheet: http://www.analog.com/ltm4686
Author: Guenter Roeck <linux@roeck-us.net>
@@ -76,6 +80,7 @@ additional components on a single die. The chip is instantiated and reported
as two separate chips on two different I2C bus addresses.
LTM4675 is a dual 9A or single 18A μModule regulator
LTM4676 is a dual 13A or single 26A uModule regulator.
+LTM4686 is a dual 10A or single 20A uModule regulator.
Usage Notes
diff --git a/Documentation/hwmon/mc13783-adc b/Documentation/hwmon/mc13783-adc
index d0e7b3fa9e75..05ccc9f159f1 100644
--- a/Documentation/hwmon/mc13783-adc
+++ b/Documentation/hwmon/mc13783-adc
@@ -2,12 +2,12 @@ Kernel driver mc13783-adc
=========================
Supported chips:
- * Freescale Atlas MC13783
+ * Freescale MC13783
Prefix: 'mc13783'
- Datasheet: http://www.freescale.com/files/rf_if/doc/data_sheet/MC13783.pdf?fsrch=1
- * Freescale Atlas MC13892
+ Datasheet: https://www.nxp.com/docs/en/data-sheet/MC13783.pdf
+ * Freescale MC13892
Prefix: 'mc13892'
- Datasheet: http://cache.freescale.com/files/analog/doc/data_sheet/MC13892.pdf?fsrch=1&sr=1
+ Datasheet: https://www.nxp.com/docs/en/data-sheet/MC13892.pdf
Authors:
Sascha Hauer <s.hauer@pengutronix.de>
diff --git a/Documentation/hwmon/occ b/Documentation/hwmon/occ
new file mode 100644
index 000000000000..e787596e03fe
--- /dev/null
+++ b/Documentation/hwmon/occ
@@ -0,0 +1,112 @@
+Kernel driver occ-hwmon
+=======================
+
+Supported chips:
+ * POWER8
+ * POWER9
+
+Author: Eddie James <eajames@linux.ibm.com>
+
+Description
+-----------
+
+This driver supports hardware monitoring for the On-Chip Controller (OCC)
+embedded on POWER processors. The OCC is a device that collects and aggregates
+sensor data from the processor and the system. The OCC can provide the raw
+sensor data as well as perform thermal and power management on the system.
+
+The P8 version of this driver is a client driver of I2C. It may be probed
+manually if an "ibm,p8-occ-hwmon" compatible device is found under the
+appropriate I2C bus node in the device-tree.
+
+The P9 version of this driver is a client driver of the FSI-based OCC driver.
+It will be probed automatically by the FSI-based OCC driver.
+
+Sysfs entries
+-------------
+
+The following attributes are supported. All attributes are read-only unless
+specified.
+
+The OCC sensor ID is an integer that represents the unique identifier of the
+sensor with respect to the OCC. For example, a temperature sensor for the third
+DIMM slot in the system may have a sensor ID of 7. This mapping is unavailable
+to the device driver, which must therefore export the sensor ID as-is.
+
+Some entries are only present with certain OCC sensor versions or only on
+certain OCCs in the system. The version number is not exported to the user
+but can be inferred.
+
+temp[1-n]_label OCC sensor ID.
+[with temperature sensor version 1]
+ temp[1-n]_input Measured temperature of the component in millidegrees
+ Celsius.
+[with temperature sensor version >= 2]
+ temp[1-n]_type The FRU (Field Replaceable Unit) type
+ (represented by an integer) for the component
+ that this sensor measures.
+ temp[1-n]_fault Temperature sensor fault boolean; 1 to indicate
+ that a fault is present or 0 to indicate that
+ no fault is present.
+ [with type == 3 (FRU type is VRM)]
+ temp[1-n]_alarm VRM temperature alarm boolean; 1 to indicate
+ alarm, 0 to indicate no alarm
+ [else]
+ temp[1-n]_input Measured temperature of the component in
+ millidegrees Celsius.
+
+freq[1-n]_label OCC sensor ID.
+freq[1-n]_input Measured frequency of the component in MHz.
+
+power[1-n]_input Latest measured power reading of the component in
+ microwatts.
+power[1-n]_average Average power of the component in microwatts.
+power[1-n]_average_interval The amount of time over which the power average
+ was taken in microseconds.
+[with power sensor version < 2]
+ power[1-n]_label OCC sensor ID.
+[with power sensor version >= 2]
+ power[1-n]_label OCC sensor ID + function ID + channel in the form
+ of a string, delimited by underscores, i.e. "0_15_1".
+ Both the function ID and channel are integers that
+ further identify the power sensor.
+[with power sensor version 0xa0]
+ power[1-n]_label OCC sensor ID + sensor type in the form of a string,
+ delimited by an underscore, i.e. "0_system". Sensor
+ type will be one of "system", "proc", "vdd" or "vdn".
+ For this sensor version, OCC sensor ID will be the same
+ for all power sensors.
+[present only on "master" OCC; represents the whole system power; only one of
+ this type of power sensor will be present]
+ power[1-n]_label "system"
+ power[1-n]_input Latest system output power in microwatts.
+ power[1-n]_cap Current system power cap in microwatts.
+ power[1-n]_cap_not_redundant System power cap in microwatts when
+ there is not redundant power.
+ power[1-n]_cap_max Maximum power cap that the OCC can enforce in
+ microwatts.
+ power[1-n]_cap_min Minimum power cap that the OCC can enforce in
+ microwatts.
+ power[1-n]_cap_user The power cap set by the user, in microwatts.
+ This attribute will return 0 if no user power
+ cap has been set. This attribute is read-write,
+ but writing any precision below watts will be
+ ignored, i.e. requesting a power cap of
+ 500900000 microwatts will result in a power cap
+ request of 500 watts.
+ [with caps sensor version > 1]
+ power[1-n]_cap_user_source Indicates how the user power cap was
+ set. This is an integer that maps to
+ system or firmware components that can
+ set the user power cap.
+
+The following "extn" sensors are exported as a way for the OCC to provide data
+that doesn't fit anywhere else. The meaning of these sensors is entirely
+dependent on their data, and cannot be statically defined.
+
+extn[1-n]_label ASCII ID or OCC sensor ID.
+extn[1-n]_flags This is one byte hexadecimal value. Bit 7 indicates the
+ type of the label attribute; 1 for sensor ID, 0 for
+ ASCII ID. Other bits are reserved.
+extn[1-n]_input 6 bytes of hexadecimal data, with a meaning defined by
+ the sensor ID.