aboutsummaryrefslogtreecommitdiffstats
path: root/Documentation/core-api/pin_user_pages.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Documentation/core-api/pin_user_pages.rst')
-rw-r--r--Documentation/core-api/pin_user_pages.rst43
1 files changed, 25 insertions, 18 deletions
diff --git a/Documentation/core-api/pin_user_pages.rst b/Documentation/core-api/pin_user_pages.rst
index 7ca8c7bac650..6b5f7e6e7155 100644
--- a/Documentation/core-api/pin_user_pages.rst
+++ b/Documentation/core-api/pin_user_pages.rst
@@ -55,18 +55,17 @@ flags the caller provides. The caller is required to pass in a non-null struct
pages* array, and the function then pins pages by incrementing each by a special
value: GUP_PIN_COUNTING_BIAS.
-For huge pages (and in fact, any compound page of more than 2 pages), the
-GUP_PIN_COUNTING_BIAS scheme is not used. Instead, an exact form of pin counting
-is achieved, by using the 3rd struct page in the compound page. A new struct
-page field, hpage_pinned_refcount, has been added in order to support this.
-
-This approach for compound pages avoids the counting upper limit problems that
-are discussed below. Those limitations would have been aggravated severely by
-huge pages, because each tail page adds a refcount to the head page. And in
-fact, testing revealed that, without a separate hpage_pinned_refcount field,
-page overflows were seen in some huge page stress tests.
-
-This also means that huge pages and compound pages (of order > 1) do not suffer
+For large folios, the GUP_PIN_COUNTING_BIAS scheme is not used. Instead,
+the extra space available in the struct folio is used to store the
+pincount directly.
+
+This approach for large folios avoids the counting upper limit problems
+that are discussed below. Those limitations would have been aggravated
+severely by huge pages, because each tail page adds a refcount to the
+head page. And in fact, testing revealed that, without a separate pincount
+field, refcount overflows were seen in some huge page stress tests.
+
+This also means that huge pages and large folios do not suffer
from the false positives problem that is mentioned below.::
Function
@@ -113,6 +112,12 @@ pages:
This also leads to limitations: there are only 31-10==21 bits available for a
counter that increments 10 bits at a time.
+* Because of that limitation, special handling is applied to the zero pages
+ when using FOLL_PIN. We only pretend to pin a zero page - we don't alter its
+ refcount or pincount at all (it is permanent, so there's no need). The
+ unpinning functions also don't do anything to a zero page. This is
+ transparent to the caller.
+
* Callers must specifically request "dma-pinned tracking of pages". In other
words, just calling get_user_pages() will not suffice; a new set of functions,
pin_user_page() and related, must be used.
@@ -148,6 +153,8 @@ NOTE: Some pages, such as DAX pages, cannot be pinned with longterm pins. That's
because DAX pages do not have a separate page cache, and so "pinning" implies
locking down file system blocks, which is not (yet) supported in that way.
+.. _mmu-notifier-registration-case:
+
CASE 3: MMU notifier registration, with or without page faulting hardware
-------------------------------------------------------------------------
Device drivers can pin pages via get_user_pages*(), and register for mmu
@@ -221,12 +228,12 @@ Unit testing
============
This file::
- tools/testing/selftests/vm/gup_benchmark.c
+ tools/testing/selftests/mm/gup_test.c
has the following new calls to exercise the new pin*() wrapper functions:
-* PIN_FAST_BENCHMARK (./gup_benchmark -a)
-* PIN_BENCHMARK (./gup_benchmark -b)
+* PIN_FAST_BENCHMARK (./gup_test -a)
+* PIN_BASIC_TEST (./gup_test -b)
You can monitor how many total dma-pinned pages have been acquired and released
since the system was booted, via two new /proc/vmstat entries: ::
@@ -264,9 +271,9 @@ place.)
Other diagnostics
=================
-dump_page() has been enhanced slightly, to handle these new counting fields, and
-to better report on compound pages in general. Specifically, for compound pages
-with order > 1, the exact (hpage_pinned_refcount) pincount is reported.
+dump_page() has been enhanced slightly to handle these new counting
+fields, and to better report on large folios in general. Specifically,
+for large folios, the exact pincount is reported.
References
==========