aboutsummaryrefslogtreecommitdiffstats
path: root/include/linux/pwm.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/linux/pwm.h')
-rw-r--r--include/linux/pwm.h16
1 files changed, 10 insertions, 6 deletions
diff --git a/include/linux/pwm.h b/include/linux/pwm.h
index 908b67c847cd..c038ae36b10e 100644
--- a/include/linux/pwm.h
+++ b/include/linux/pwm.h
@@ -464,6 +464,8 @@ static inline bool pwm_can_sleep(struct pwm_device *pwm)
static inline void pwm_apply_args(struct pwm_device *pwm)
{
+ struct pwm_state state = { };
+
/*
* PWM users calling pwm_apply_args() expect to have a fresh config
* where the polarity and period are set according to pwm_args info.
@@ -476,18 +478,20 @@ static inline void pwm_apply_args(struct pwm_device *pwm)
* at startup (even if they are actually enabled), thus authorizing
* polarity setting.
*
- * Instead of setting ->enabled to false, we call pwm_disable()
- * before pwm_set_polarity() to ensure that everything is configured
- * as expected, and the PWM is really disabled when the user request
- * it.
+ * To fulfill this requirement, we apply a new state which disables
+ * the PWM device and set the reference period and polarity config.
*
* Note that PWM users requiring a smooth handover between the
* bootloader and the kernel (like critical regulators controlled by
* PWM devices) will have to switch to the atomic API and avoid calling
* pwm_apply_args().
*/
- pwm_disable(pwm);
- pwm_set_polarity(pwm, pwm->args.polarity);
+
+ state.enabled = false;
+ state.polarity = pwm->args.polarity;
+ state.period = pwm->args.period;
+
+ pwm_apply_state(pwm, &state);
}
struct pwm_lookup {