aboutsummaryrefslogtreecommitdiffstats
path: root/extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch
diff options
context:
space:
mode:
Diffstat (limited to 'extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch')
-rw-r--r--extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch1889
1 files changed, 1889 insertions, 0 deletions
diff --git a/extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch b/extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch
new file mode 100644
index 00000000..400807d1
--- /dev/null
+++ b/extras/recipes-kernel/linux/linux-omap/usrp/0003-usrp-embedded-Add-driver-for-USRP-Embedded-FPGA-inte.patch
@@ -0,0 +1,1889 @@
+From 56a2e5e0ace395e94f176a90a12d3cfcd8b7f68f Mon Sep 17 00:00:00 2001
+From: Philip Balister <balister@moose.(none)>
+Date: Wed, 13 Jan 2010 14:35:39 -0500
+Subject: [PATCH 3/3] usrp-embedded : Add driver for USRP Embedded FPGA interface.
+
+---
+ arch/arm/mach-omap2/board-overo.c | 176 +++++-
+ drivers/misc/Kconfig | 9 +
+ drivers/misc/Makefile | 1 +
+ drivers/misc/usrp_e.c | 1481 +++++++++++++++++++++++++++++++++++++
+ include/linux/usrp_e.h | 87 +++
+ 5 files changed, 1750 insertions(+), 4 deletions(-)
+ create mode 100644 drivers/misc/usrp_e.c
+ create mode 100644 include/linux/usrp_e.h
+
+diff --git a/arch/arm/mach-omap2/board-overo.c b/arch/arm/mach-omap2/board-overo.c
+index 8a44c17..8686015 100644
+--- a/arch/arm/mach-omap2/board-overo.c
++++ b/arch/arm/mach-omap2/board-overo.c
+@@ -35,6 +35,8 @@
+ #include <linux/mtd/partitions.h>
+ #include <linux/mmc/host.h>
+
++#include <linux/spi/spi.h>
++
+ #include <asm/mach-types.h>
+ #include <asm/mach/arch.h>
+ #include <asm/mach/flash.h>
+@@ -63,6 +65,8 @@
+ #define OVERO_GPIO_USBH_NRESET 183
+
+ #define NAND_BLOCK_SIZE SZ_128K
++#define GPMC_CS0_BASE 0x60
++#define GPMC_CS_SIZE 0x30
+
+ #define OVERO_SMSC911X_CS 5
+ #define OVERO_SMSC911X_GPIO 176
+@@ -164,7 +168,9 @@ static struct platform_device overo_smsc911x2_device = {
+
+ static struct platform_device *smsc911x_devices[] = {
+ &overo_smsc911x_device,
++#if 0
+ &overo_smsc911x2_device,
++#endif
+ };
+
+ static inline void __init overo_init_smsc911x(void)
+@@ -194,6 +200,7 @@ static inline void __init overo_init_smsc911x(void)
+
+ /* set up second smsc911x chip */
+
++#if 0
+ if (gpmc_cs_request(OVERO_SMSC911X2_CS, SZ_16M, &cs_mem_base2) < 0) {
+ printk(KERN_ERR "Failed request for GPMC mem for smsc911x2\n");
+ return;
+@@ -213,6 +220,7 @@ static inline void __init overo_init_smsc911x(void)
+ overo_smsc911x2_resources[1].start = OMAP_GPIO_IRQ(OVERO_SMSC911X2_GPIO);
+ overo_smsc911x2_resources[1].end = 0;
+
++#endif
+ platform_add_devices(smsc911x_devices, ARRAY_SIZE(smsc911x_devices));
+ }
+
+@@ -353,6 +361,16 @@ static struct regulator_consumer_supply overo_vdda_dac_supply =
+ static struct regulator_consumer_supply overo_vdds_dsi_supply =
+ REGULATOR_SUPPLY("vdds_dsi", "omapdss");
+
++static struct spi_board_info overo_mcspi_board_info[] = {
++ {
++ .modalias = "spidev",
++ .max_speed_hz = 12000000, // 12 MHz
++ .bus_num = 1,
++ .chip_select = 0,
++ .mode = SPI_MODE_1,
++ },
++};
++
+ static struct mtd_partition overo_nand_partitions[] = {
+ {
+ .name = "xloader",
+@@ -432,8 +450,8 @@ static struct omap2_hsmmc_info mmc[] = {
+ .mmc = 2,
+ .caps = MMC_CAP_4_BIT_DATA,
+ .gpio_cd = -EINVAL,
+- .gpio_wp = -EINVAL,
+- .transceiver = true,
++ .transceiver = true,
++ .gpio_wp = 150,
+ .ocr_mask = 0x00100000, /* 3.3V */
+ },
+ {} /* Terminator */
+@@ -612,6 +630,8 @@ static const struct ehci_hcd_omap_platform_data ehci_pdata __initconst = {
+ static struct omap_board_mux board_mux[] __initdata = {
+ { .reg_offset = OMAP_MUX_TERMINATOR },
+ };
++#else
++#define board_mux NULL
+ #endif
+
+ static struct omap_musb_board_data musb_board_data = {
+@@ -626,6 +646,148 @@ static struct omap_musb_board_data musb_board_data = {
+ .power = 100,
+ };
+
++static void __init usrp1_e_init(void)
++{
++ unsigned int tmp;
++
++ printk("Setup up gpmc timing.\n");
++
++// Set up CS4, data read/write
++
++#if 1
++ // Signal control parameters per chip select
++ tmp = gpmc_cs_read_reg(4, GPMC_CS_CONFIG1);
++// tmp |= (GPMC_CONFIG1_MUXADDDATA);
++// tmp |= (GPMC_CONFIG1_WRITETYPE_SYNC);
++// tmp |= (GPMC_CONFIG1_READTYPE_SYNC);
++ tmp |= (GPMC_CONFIG1_FCLK_DIV(0));
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG1, tmp);
++ printk("GPMC_CONFIG1 reg: %x\n", tmp);
++#endif
++
++#if 1
++ // CS signal timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG2_CSONTIME(1); /* 1 */
++ tmp |= GPMC_CONFIG2_CSWROFFTIME(16); /* 16 */
++ tmp |= GPMC_CONFIG2_CSRDOFFTIME(16); /* 16 */
++ printk("GPMC_CONFIG2 reg: %x\n", tmp);
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG2, tmp);
++#endif
++
++#if 0
++ // nADV signal timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG3_ADVONTIME(1);
++ tmp |= GPMC_CONFIG3_ADVRDOFFTIME(2);
++ tmp |= GPMC_CONFIG3_ADVWROFFTIME(2);
++ printk("GPMC_CONFIG3 reg: %x\n", tmp);
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG3, tmp);
++#endif
++
++#if 1
++ // nWE and nOE signals timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG4_WEONTIME(3); /* 3 */
++ tmp |= GPMC_CONFIG4_WEOFFTIME(16); /* 16 */
++ tmp |= GPMC_CONFIG4_OEONTIME(3); /* 3 */
++ tmp |= GPMC_CONFIG4_OEOFFTIME(16); /* 16 */
++ printk("GPMC_CONFIG4 reg: %x\n", tmp);
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG4, tmp);
++#endif
++
++#if 1
++ // RdAccess time and Cycle time timing parameters configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG5_PAGEBURSTACCESSTIME(1);
++ tmp |= GPMC_CONFIG5_RDACCESSTIME(15); /* 15 */
++ tmp |= GPMC_CONFIG5_WRCYCLETIME(17); /* 17 */
++ tmp |= GPMC_CONFIG5_RDCYCLETIME(17); /* 17 */
++ printk("GPMC_CONFIG5 reg: %x\n", tmp);
++
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG5, tmp);
++#endif
++
++#if 1
++ // WrAccessTime WrDataOnADmuxBus, Cycle2Cycle, and BusTurnAround params
++ tmp = (1<<31);
++ tmp |= GPMC_CONFIG6_WRACCESSTIME(15); /* 15 */
++ tmp |= GPMC_CONFIG6_WRDATAONADMUXBUS(3);
++ tmp |= GPMC_CONFIG6_CYCLE2CYCLEDELAY(0);
++ tmp |= GPMC_CONFIG6_BUSTURNAROUND(0);
++ printk("GPMC_CONFIG6 reg: %x\n", tmp);
++ gpmc_cs_write_reg(4, GPMC_CS_CONFIG6, tmp);
++#endif
++
++// Configure timing for CS6, wishbone access
++
++#if 1
++ // Signal control parameters per chip select
++ tmp = gpmc_cs_read_reg(6, GPMC_CS_CONFIG1);
++// tmp |= (GPMC_CONFIG1_MUXADDDATA);
++ tmp |= (GPMC_CONFIG1_WRITETYPE_SYNC);
++ tmp |= (GPMC_CONFIG1_READTYPE_SYNC);
++ tmp |= (GPMC_CONFIG1_FCLK_DIV(0));
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG1, tmp);
++ printk("GPMC_CONFIG1 reg: %x\n", tmp);
++#endif
++
++#if 1
++ // CS signal timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG2_CSONTIME(1);
++ tmp |= GPMC_CONFIG2_CSWROFFTIME(17);
++ tmp |= GPMC_CONFIG2_CSRDOFFTIME(17);
++ printk("GPMC_CONFIG2 reg: %x\n", tmp);
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG2, tmp);
++#endif
++
++#if 0
++ // nADV signal timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG3_ADVONTIME(1);
++ tmp |= GPMC_CONFIG3_ADVRDOFFTIME(2);
++ tmp |= GPMC_CONFIG3_ADVWROFFTIME(2);
++ printk("GPMC_CONFIG3 reg: %x\n", tmp);
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG3, tmp);
++#endif
++
++#if 0
++ // nWE and nOE signals timing parameter configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG4_WEONTIME(3);
++ tmp |= GPMC_CONFIG4_WEOFFTIME(4);
++ tmp |= GPMC_CONFIG4_OEONTIME(3);
++ tmp |= GPMC_CONFIG4_OEOFFTIME(4);
++ printk("GPMC_CONFIG4 reg: %x\n", tmp);
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG4, tmp);
++#endif
++
++#if 0
++ // RdAccess time and Cycle time timing paraters configuration
++ tmp = 0;
++ tmp |= GPMC_CONFIG5_PAGEBURSTACCESSTIME(1);
++ tmp |= GPMC_CONFIG5_RDACCESSTIME(4);
++ tmp |= GPMC_CONFIG5_WRCYCLETIME(5);
++ tmp |= GPMC_CONFIG5_RDCYCLETIME(5);
++ printk("GPMC_CONFIG5 reg: %x\n", tmp);
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG5, tmp);
++#endif
++
++#if 1
++ // WrAccessTime WrDataOnADmuxBus, Cycle2Cycle, and BusTurnAround params
++ tmp = 0;
++ tmp |= GPMC_CONFIG6_WRACCESSTIME(15);
++ tmp |= GPMC_CONFIG6_WRDATAONADMUXBUS(3);
++ tmp |= GPMC_CONFIG6_CYCLE2CYCLEDELAY(3);
++ tmp |= GPMC_CONFIG6_CYCLE2CYCLESAMECSEN;
++ tmp |= GPMC_CONFIG6_BUSTURNAROUND(0);
++ printk("GPMC_CONFIG6 reg: %x\n", tmp);
++ gpmc_cs_write_reg(6, GPMC_CS_CONFIG6, tmp);
++#endif
++
++}
++
+ static void __init overo_init(void)
+ {
+ omap3_mux_init(board_mux, OMAP_PACKAGE_CBB);
+@@ -637,8 +799,14 @@ static void __init overo_init(void)
+ usb_ehci_init(&ehci_pdata);
+ overo_spi_init();
+ overo_init_smsc911x();
++#if 0
+ overo_display_init();
+-
++#endif
++ usrp1_e_init();
++#if 1
++ spi_register_board_info(overo_mcspi_board_info,
++ ARRAY_SIZE(overo_mcspi_board_info));
++#endif
+ /* Ensure SDRC pins are mux'd for self-refresh */
+ omap_mux_init_signal("sdrc_cke0", OMAP_PIN_OUTPUT);
+ omap_mux_init_signal("sdrc_cke1", OMAP_PIN_OUTPUT);
+@@ -680,7 +848,7 @@ static void __init overo_init(void)
+ "OVERO_GPIO_USBH_CPEN\n");
+ }
+
+-MACHINE_START(OVERO, "Gumstsix Overo")
++MACHINE_START(OVERO, "Gumstix Overo")
+ .boot_params = 0x80000100,
+ .map_io = omap3_map_io,
+ .reserve = omap_reserve,
+diff --git a/drivers/misc/Kconfig b/drivers/misc/Kconfig
+index 4d073f1..8bd6dfb 100644
+--- a/drivers/misc/Kconfig
++++ b/drivers/misc/Kconfig
+@@ -452,6 +452,15 @@ config PCH_PHUB
+ To compile this driver as a module, choose M here: the module will
+ be called pch_phub.
+
++config USRP_E
++ tristate "USRP-E FPGA interface driver"
++ default n
++ help
++ This driver is for the Ettus Research USRP Embedded Software
++ Defined Radio platform.
++
++ If you do not plan to run this kernel on that hardware choose N.
++
+ source "drivers/misc/c2port/Kconfig"
+ source "drivers/misc/eeprom/Kconfig"
+ source "drivers/misc/cb710/Kconfig"
+diff --git a/drivers/misc/Makefile b/drivers/misc/Makefile
+index 98009cc..f43483e 100644
+--- a/drivers/misc/Makefile
++++ b/drivers/misc/Makefile
+@@ -35,6 +35,7 @@ obj-$(CONFIG_TI_DAC7512) += ti_dac7512.o
+ obj-$(CONFIG_C2PORT) += c2port/
+ obj-$(CONFIG_IWMC3200TOP) += iwmc3200top/
+ obj-$(CONFIG_HMC6352) += hmc6352.o
++obj-$(CONFIG_USRP_E) += usrp_e.o
+ obj-y += eeprom/
+ obj-y += cb710/
+ obj-$(CONFIG_VMWARE_BALLOON) += vmw_balloon.o
+diff --git a/drivers/misc/usrp_e.c b/drivers/misc/usrp_e.c
+new file mode 100644
+index 0000000..2923b14
+--- /dev/null
++++ b/drivers/misc/usrp_e.c
+@@ -0,0 +1,1481 @@
++/*
++ * -*- linux-c -*-
++ * Interface for USRP Embedded from Ettus Research, LLC.
++ * This driver uses the GPMC interface on the OMAP3 to pass data
++ * to/from a Spartan 3 FPGA.
++ *
++ * Copyright (C) Ettus Research, LLC
++ *
++ * Written by Philip Balister <philip@opensdr.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License version 2 as
++ * published by the Free Software Foundation.
++ */
++
++#include "linux/fs.h"
++#include "linux/module.h"
++#include "linux/cdev.h"
++#include "linux/device.h"
++#include "linux/spinlock.h"
++#include "linux/errno.h"
++#include "linux/irq.h"
++#include "linux/interrupt.h"
++#include "linux/wait.h"
++#include "linux/sched.h"
++#include "linux/dma-mapping.h"
++#include "linux/semaphore.h"
++#include "linux/kthread.h"
++#include "linux/poll.h"
++#include "linux/slab.h"
++
++#include "plat/gpmc.h"
++#include "plat/gpio.h"
++#include "plat/dma.h"
++
++#include "asm/uaccess.h"
++#include "asm/io.h"
++#include "asm/atomic.h"
++
++#include "linux/usrp_e.h"
++
++#define TX_SPACE_AVAILABLE_GPIO 144
++#define RX_DATA_READY_GPIO 146
++
++static atomic_t use_count = ATOMIC_INIT(0);
++static atomic_t mapped = ATOMIC_INIT(0);
++static int shutting_down;
++
++struct spi_regs_wb;
++struct i2c_regs_wb;
++
++struct usrp_e_dev {
++ struct cdev cdev;
++ unsigned long mem_base;
++ unsigned long control_mem_base;
++ u32 *ioaddr;
++ u8 *ctl_addr;
++ struct spi_regs_wb *ctl_spi;
++ struct i2c_regs_wb *ctl_i2c;
++ spinlock_t fpga_lock;
++
++ atomic_t n_overruns;
++ atomic_t n_underruns;
++
++} *usrp_e_devp;
++
++struct dma_data {
++ int ch;
++ struct omap_dma_channel_params params;
++
++ unsigned long virt_from;
++ unsigned long virt_to;
++ unsigned long phys_from;
++ unsigned long phys_to;
++};
++
++#define MISC_REGS_BASE 0x0
++
++#define UE_REG_MISC_LED (MISC_REGS_BASE + 0)
++
++#define UE_REG_MISC_RX_LEN (MISC_REGS_BASE + 10)
++#define UE_REG_MISC_TX_LEN (MISC_REGS_BASE + 12)
++
++#define UE_REG_SLAVE(n) ((n)<<7)
++#define UE_REG_SR_ADDR(n) ((UE_REG_SLAVE(5)) + (4*(n)))
++
++#define UE_REG_CTRL_TX_CLEAR_UNDERRUN UE_REG_SR_ADDR(25)
++#define UE_SR_CLEAR_FIFO UE_REG_SR_ADDR(6)
++
++#define CTL_SPI_BASE 0x100
++
++struct spi_regs_wb {
++ u32 txrx0;
++ u32 txrx1;
++ u32 txrx2;
++ u32 txrx3;
++ u32 ctrl;
++ u32 div;
++ u32 ss;
++};
++
++/* Defines for spi ctrl register */
++#define UE_SPI_CTRL_ASS (BIT(13))
++#define UE_SPI_CTRL_IE (BIT(12))
++#define UE_SPI_CTRL_LSB (BIT(11))
++/* defines for TXNEG and RXNEG in usrp_e.h so user can pass them to driver. */
++#define UE_SPI_CTRL_GO_BSY (BIT(8))
++#define UE_SPI_CTRL_CHAR_LEN_MASK 0x7f
++
++
++#define CTL_I2C_BASE 0x180
++#if 1
++struct i2c_regs_wb {
++ u8 prescalar_lo;
++ u8 dummy;
++ u8 dummy1;
++ u8 dummy2;
++ u8 prescalar_hi;
++ u8 dummy3;
++ u8 dummy4;
++ u8 dummy5;
++ u8 ctrl;
++ u8 dummy6;
++ u8 dummy7;
++ u8 dummy8;
++ u8 data;
++ u8 dummy9;
++ u8 dummy10;
++ u8 dummy11;
++ u8 cmd_status;
++};
++#else
++struct i2c_regs_wb {
++ u16 prescalar_lo;
++ u16 dummy2;
++ u16 prescalar_hi;
++ u16 dummy3;
++ u16 ctrl;
++ u16 dummy6;
++ u16 data;
++ u16 dummy9;
++ u16 cmd_status;
++};
++#endif
++
++#define I2C_CTRL_EN (BIT(7)) /* core enable */
++#define I2C_CTRL_IE (BIT(6)) /* interrupt enable */
++
++/* STA, STO, RD, WR, and IACK bits are cleared automatically */
++
++#define I2C_CMD_START (BIT(7))
++#define I2C_CMD_STOP (BIT(6))
++#define I2C_CMD_RD (BIT(5))
++#define I2C_CMD_WR (BIT(4))
++#define I2C_CMD_NACK (BIT(3))
++#define I2C_CMD_RSVD_2 (BIT(2))
++#define I2C_CMD_RSVD_1 (BIT(1))
++#define I2C_CMD_IACK (BIT(0))
++
++#define I2C_ST_RXACK (BIT(7))
++#define I2C_ST_BUSY (BIT(6))
++#define I2C_ST_AL (BIT(5))
++#define I2C_RSVD_4 (BIT(4))
++#define I2C_RSVD_3 (BIT(3))
++#define I2C_RSVD_2 (BIT(2))
++#define I2C_ST_TIP (BIT(1))
++#define I2C_ST_IP (BIT(0))
++
++#define MAX_WB_DIV 4
++#define MASTER_CLK_RATE 64000000
++#define PRESCALAR(wb_div) (((MASTER_CLK_RATE/(wb_div)) / (5 * 100000)) - 1)
++
++static __u16 prescalar_values[MAX_WB_DIV+1] = {
++ 0xffff,
++ PRESCALAR(1),
++ PRESCALAR(2),
++ PRESCALAR(3),
++ PRESCALAR(4),
++};
++
++static struct dma_data *rx_dma;
++static struct dma_data *tx_dma;
++
++struct ring_buffer_entry {
++ unsigned long dma_addr;
++ __u8 *frame_addr;
++};
++
++struct ring_buffer {
++ struct ring_buffer_info (*rbi)[];
++ struct ring_buffer_entry (*rbe)[];
++ int num_pages;
++ unsigned long (*pages)[];
++};
++
++static struct ring_buffer tx_rb;
++static struct ring_buffer rx_rb;
++
++static struct usrp_e_ring_buffer_size_t rb_size;
++
++#define NUM_PAGES_RX_FLAGS 1
++#define NUM_RX_FRAMES 100
++#define NUM_PAGES_TX_FLAGS 1
++#define NUM_TX_FRAMES 100
++
++static int tx_rb_write;
++static int tx_rb_read;
++static int rx_rb_write;
++static int rx_rb_read;
++
++static int alloc_ring_buffer(struct ring_buffer *rb,
++ unsigned int num_bufs, enum dma_data_direction direction);
++static void delete_ring_buffer(struct ring_buffer *rb,
++ unsigned int num_bufs, enum dma_data_direction direction);
++static int alloc_ring_buffers(void);
++static void init_ring_buffer(struct ring_buffer *rb, int num_bufs,
++ int init_flags, enum dma_data_direction direction);
++
++static dev_t usrp_e_dev_number;
++static struct class *usrp_e_class;
++
++#define DEVICE_NAME "usrp_e"
++
++static const struct file_operations usrp_e_fops;
++
++static irqreturn_t space_available_irqhandler(int irq, void *dev_id);
++static irqreturn_t data_ready_irqhandler(int irq, void *dev_id);
++static void usrp_rx_dma_irq(int ch, u16 stat, void *data);
++static void usrp_tx_dma_irq(int ch, u16 stat, void *data);
++
++static DECLARE_WAIT_QUEUE_HEAD(data_received_queue);
++static DECLARE_WAIT_QUEUE_HEAD(space_available_queue);
++static DECLARE_WAIT_QUEUE_HEAD(received_data_from_user);
++static DECLARE_WAIT_QUEUE_HEAD(tx_rb_space_available);
++
++static int tx_dma_waiting_for_data;
++static int waiting_for_space_in_tx_rb;
++
++#define DEBUG_RX 1
++
++static DEFINE_SEMAPHORE(dma_lock);
++
++static void usrp_e_spi_init(void);
++static void usrp_e_i2c_init(void);
++
++static int init_dma_controller(void);
++static void release_dma_controller(void);
++static int get_frame_from_fpga_start(void);
++static int get_frame_from_fpga_finish(void);
++static int send_frame_to_fpga_start(void);
++static int send_frame_to_fpga_finish(void);
++
++static int rx_dma_active;
++static int tx_dma_active;
++
++static int __init
++usrp_e_init(void)
++{
++ int ret;
++ struct usrp_e_dev *p;
++
++ printk(KERN_DEBUG "usrp_e entering driver initialization\n");
++
++ if (alloc_chrdev_region(&usrp_e_dev_number, 0, 1, DEVICE_NAME) < 0) {
++ printk(KERN_DEBUG "Can't register device\n");
++ return -1;
++ }
++
++ usrp_e_class = class_create(THIS_MODULE, DEVICE_NAME);
++
++ usrp_e_devp = kzalloc(sizeof(struct usrp_e_dev), GFP_KERNEL);
++ if (!usrp_e_devp) {
++ printk(KERN_ERR "Bad kmalloc\n");
++ return -ENOMEM;
++ }
++
++ p = usrp_e_devp; /* Shorten var name so I stay sane. */
++
++ printk(KERN_DEBUG "usrp_e data struct malloc'd.\n");
++
++ atomic_set(&p->n_underruns, 0);
++ atomic_set(&p->n_overruns, 0);
++
++ printk(KERN_DEBUG "usrp_e Data initialized..\n");
++
++ cdev_init(&p->cdev, &usrp_e_fops);
++ p->cdev.owner = THIS_MODULE;
++
++ ret = cdev_add(&p->cdev, MKDEV(MAJOR(usrp_e_dev_number), 0), 1);
++ if (ret) {
++ printk(KERN_ERR "Bad cdev\n");
++ return ret;
++ }
++
++ printk(KERN_DEBUG "usrp_e major number : %d\n",
++ MAJOR(usrp_e_dev_number));
++ device_create(usrp_e_class, NULL, MKDEV(MAJOR(usrp_e_dev_number), 0),
++ NULL, "usrp_e%d", 0);
++
++ printk(KERN_DEBUG "Getting Chip Select\n");
++
++ if (gpmc_cs_request(4, SZ_2K, &p->mem_base) < 0) {
++ printk(KERN_ERR "Failed request for GPMC mem for usrp_e\n");
++ return -1;
++ }
++ printk(KERN_DEBUG "Got CS4, address = %lx\n", p->mem_base);
++
++ if (!request_mem_region(p->mem_base, SZ_2K, "usrp_e")) {
++ printk(KERN_ERR "Request_mem_region failed.\n");
++ gpmc_cs_free(4);
++ return -1;
++ }
++
++ p->ioaddr = ioremap(p->mem_base, SZ_2K);
++ spin_lock_init(&p->fpga_lock);
++
++ if (gpmc_cs_request(6, SZ_2K, &p->control_mem_base) < 0) {
++ printk(KERN_ERR "Failed request for GPMC control mem for usrp_e\n");
++ return -1;
++ }
++ printk(KERN_DEBUG "Got CS6, address = %lx\n", p->control_mem_base);
++
++ if (!request_mem_region(p->control_mem_base, SZ_2K, "usrp_e_c")) {
++ printk(KERN_ERR "Request_mem_region failed.\n");
++ gpmc_cs_free(6);
++ return -1;
++ }
++
++ p->ctl_addr = ioremap_nocache(p->control_mem_base, SZ_2K);
++
++ /* Initialize wishbone SPI and I2C interfaces */
++
++ usrp_e_spi_init();
++ usrp_e_i2c_init();
++
++ /* Configure GPIO's */
++
++ if (!(((gpio_request(TX_SPACE_AVAILABLE_GPIO,
++ "TX_SPACE_AVAILABLE_GPIO") == 0) &&
++ (gpio_direction_input(TX_SPACE_AVAILABLE_GPIO) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for TX_SPACE_AVAILABLE_GPIO\n");
++ return -1;
++ }
++
++ if (!(((gpio_request(RX_DATA_READY_GPIO, "RX_DATA_READY_GPIO") == 0) &&
++ (gpio_direction_input(RX_DATA_READY_GPIO) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for RX_DATA_READY_GPIO\n");
++ return -1;
++ }
++
++ /* Debug gpios */
++ if (!(((gpio_request(14, "Debug0") == 0) &&
++ (gpio_direction_output(14, 0) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for Debug0\n");
++ return -1;
++ }
++
++ if (!(((gpio_request(21, "Debug1") == 0) &&
++ (gpio_direction_output(21, 0) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for Debug1\n");
++ return -1;
++ }
++
++ if (!(((gpio_request(22, "Debug2") == 0) &&
++ (gpio_direction_output(22, 0) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for Debug2\n");
++ return -1;
++ }
++
++ if (!(((gpio_request(23, "Debug3") == 0) &&
++ (gpio_direction_output(23, 0) == 0)))) {
++ printk(KERN_ERR "Could not claim GPIO for Debug3\n");
++ return -1;
++ }
++
++
++ rb_size.num_pages_rx_flags = NUM_PAGES_RX_FLAGS;
++ rb_size.num_rx_frames = NUM_RX_FRAMES;
++ rb_size.num_pages_tx_flags = NUM_PAGES_TX_FLAGS;
++ rb_size.num_tx_frames = NUM_TX_FRAMES;
++
++ ret = alloc_ring_buffers();
++ if (ret < 0)
++ return ret;
++
++ /* Initialize various DMA related flags */
++ rx_dma_active = 0;
++ tx_dma_active = 0;
++ shutting_down = 0;
++
++ printk(KERN_DEBUG "usrp_e Driver Initialized.\n");
++
++ return 0;
++}
++
++static void __exit
++usrp_e_cleanup(void)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++
++ unregister_chrdev_region(usrp_e_dev_number, 1);
++
++ release_mem_region(p->mem_base, SZ_2K);
++ release_mem_region(p->control_mem_base, SZ_2K);
++
++ device_destroy(usrp_e_class, MKDEV(MAJOR(usrp_e_dev_number), 0));
++ cdev_del(&p->cdev);
++
++ class_destroy(usrp_e_class);
++
++ iounmap(p->ioaddr);
++ iounmap(p->ctl_addr);
++
++ gpmc_cs_free(4);
++ gpmc_cs_free(6);
++
++ printk(KERN_DEBUG "Freeing gpios\n");
++
++ gpio_free(TX_SPACE_AVAILABLE_GPIO);
++ gpio_free(RX_DATA_READY_GPIO);
++
++ /* debug */
++ gpio_free(14);
++ gpio_free(21);
++ gpio_free(22);
++ gpio_free(23);
++
++ delete_ring_buffer(&tx_rb, rb_size.num_tx_frames, DMA_TO_DEVICE);
++ delete_ring_buffer(&rx_rb, rb_size.num_rx_frames, DMA_FROM_DEVICE);
++
++ kfree(p);
++
++ printk(KERN_DEBUG "Leaving cleanup\n");
++}
++
++static int
++usrp_e_open(struct inode *inode, struct file *file)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ int ret;
++
++ printk(KERN_DEBUG "usrp_e open called, use_count = %d\n",
++ atomic_read(&use_count));
++ if (atomic_add_return(1, &use_count) != 1) {
++ printk(KERN_ERR "use_count = %d\n", atomic_read(&use_count));
++ atomic_dec(&use_count);
++ return -EBUSY;
++ }
++
++ /* Clear rx and tx fifos in the fpga */
++ writel(1, p->ctl_addr + UE_SR_CLEAR_FIFO);
++ writel(2, p->ctl_addr + UE_SR_CLEAR_FIFO);
++
++#if 0
++ usrp_e_devp = container_of(inode->i_cdev, struct usrp_e_dev, cdev);
++
++ file->private_data = usrp_e_devp;
++#endif
++
++ ret = init_dma_controller();
++ if (ret < 0)
++ return ret;
++
++ tx_rb_write = 0;
++ tx_rb_read = 0;
++
++ rx_rb_write = 0;
++ rx_rb_read = 0;
++
++ tx_dma_active = 0;
++ rx_dma_active = 0;
++ shutting_down = 0;
++
++ init_ring_buffer(&rx_rb, rb_size.num_rx_frames, RB_KERNEL, DMA_FROM_DEVICE);
++ init_ring_buffer(&tx_rb, rb_size.num_tx_frames, RB_KERNEL, DMA_TO_DEVICE);
++
++ /* Configure interrupts for GPIO pins */
++
++ ret = request_irq(gpio_to_irq(TX_SPACE_AVAILABLE_GPIO),
++ space_available_irqhandler,
++ IRQF_TRIGGER_RISING, "usrp_e_space_available", NULL);
++
++ ret = request_irq(gpio_to_irq(RX_DATA_READY_GPIO),
++ data_ready_irqhandler,
++ IRQF_TRIGGER_RISING, "usrp_e_data_ready", NULL);
++
++ printk(KERN_DEBUG "usrp: leaving open\n");
++ return 0;
++}
++
++static int
++usrp_e_release(struct inode *inode, struct file *file)
++{
++ struct usrp_e_dev *usrp_e_devp = file->private_data;
++
++ printk(KERN_DEBUG "usrp_e release called\n");
++
++ if (atomic_read(&use_count) != 1) {
++ printk(KERN_ERR "Attempt to close usrp_e driver that is not open");
++ return -ENOENT;
++ }
++
++ printk(KERN_DEBUG "Waiting for DMA to become inactive\n");
++ shutting_down = 0;
++ while (tx_dma_active || rx_dma_active)
++ cpu_relax();
++
++ /* Freeing gpio irq's */
++ printk(KERN_DEBUG "Freeing gpio irq's\n");
++
++ free_irq(gpio_to_irq(TX_SPACE_AVAILABLE_GPIO), NULL);
++ free_irq(gpio_to_irq(RX_DATA_READY_GPIO), NULL);
++
++ printk(KERN_DEBUG "Freeing DMA channels\n");
++
++ release_dma_controller();
++
++ usrp_e_devp = 0;
++
++ atomic_dec(&use_count);
++
++ return 0;
++}
++
++static ssize_t
++usrp_e_read(struct file *file, char *buf, size_t count, loff_t *ppos)
++{
++ size_t ret;
++ int rx_pkt_len;
++
++ if (count > SZ_2K)
++ return -EMSGSIZE;
++
++ if (!((*rx_rb.rbi)[rx_rb_read].flags & RB_USER)) {
++ if (wait_event_interruptible(data_received_queue,
++ (((*rx_rb.rbi)[rx_rb_read].flags & RB_USER))))
++ return -EINTR;
++ }
++
++ rx_pkt_len = (*rx_rb.rbi)[rx_rb_read].len;
++ ret = copy_to_user(buf, (*rx_rb.rbe)[rx_rb_read].frame_addr, rx_pkt_len);
++
++ (*rx_rb.rbi)[rx_rb_read].flags = RB_KERNEL;
++
++ rx_rb_read++;
++ if (rx_rb_read == rb_size.num_rx_frames)
++ rx_rb_read = 0;
++
++ get_frame_from_fpga_start();
++
++ return ((ret == 0) ? rx_pkt_len : -ret);
++}
++
++static ssize_t
++usrp_e_write(struct file *file, const char *buf, size_t count, loff_t *ppos)
++{
++ size_t ret;
++
++#if 0
++// printk("In write.\n");
++
++ /* Trigger a DMA transfer. Used to start transmit after writing */
++ /* data into the transmit ring buffer from user space */
++ if (count < 0) {
++ send_frame_to_fpga_start();
++ return 0;
++ }
++
++ if (count > SZ_2K)
++ return -EMSGSIZE;
++
++// printk("Write flags: %d\n", (*tx_rb.rbe)[tx_rb_write].flags);
++ if (!((*tx_rb.rbi)[tx_rb_write].flags & RB_KERNEL)) {
++ waiting_for_space_in_tx_rb = 1;
++// printk("Sleeping\n");
++ if (wait_event_interruptible(tx_rb_space_available,
++ ((*tx_rb.rbi)[tx_rb_write].flags & RB_KERNEL)))
++ return -EINTR;
++// printk("Waking\n");
++ }
++
++ ret = copy_from_user((*tx_rb.rbe)[tx_rb_write].frame_addr, buf, count);
++ if (ret)
++ return -ret;
++
++ (*tx_rb.rbi)[tx_rb_write].len = count;
++ (*tx_rb.rbi)[tx_rb_write].flags = RB_USER;
++
++ tx_rb_write++;
++ if (tx_rb_write == rb_size.num_tx_frames)
++ tx_rb_write = 0;
++
++// printk("Calling send_to_fpga_start from write\n");
++#endif
++ send_frame_to_fpga_start();
++
++ return count;
++}
++
++static loff_t
++usrp_e_llseek(struct file *file, loff_t offest, int orig)
++{
++ printk(KERN_DEBUG "usrp_e llseek called\n");
++
++ return 0;
++}
++
++static int usrp_e_ctl16(unsigned long arg, int direction)
++{
++ struct usrp_e_ctl16 __user *argp = (struct usrp_e_ctl16 __user *) arg;
++ int i;
++ struct usrp_e_ctl16 ctl;
++
++ if (copy_from_user(&ctl, argp, sizeof(struct usrp_e_ctl16)))
++ return -EFAULT;
++
++ if (ctl.count > 10)
++ return -EINVAL;
++
++ if (direction == 0) {
++ for (i = 0; i < ctl.count; i++)
++ writew(ctl.buf[i], &usrp_e_devp->ctl_addr \
++ [i + ctl.offset]);
++ } else if (direction == 1) {
++ for (i = 0; i < ctl.count; i++)
++ ctl.buf[i] = readw(&usrp_e_devp->ctl_addr \
++ [i + ctl.offset]);
++
++ if (copy_to_user(argp, &ctl, sizeof(struct usrp_e_ctl16)))
++ return -EFAULT;
++ } else
++ return -EFAULT;
++
++ return 0;
++}
++
++static int usrp_e_ctl32(unsigned long arg, int direction)
++{
++ struct usrp_e_ctl32 __user *argp = (struct usrp_e_ctl32 __user *) arg;
++ int i;
++ struct usrp_e_ctl32 ctl;
++
++ if (copy_from_user(&ctl, argp, sizeof(struct usrp_e_ctl32)))
++ return -EFAULT;
++
++ if (ctl.count > 20)
++ return -EINVAL;
++
++ if (direction == 0) {
++ for (i = 0; i < ctl.count; i++)
++ writel(ctl.buf[i], &usrp_e_devp->ctl_addr \
++ [i + ctl.offset]);
++ } else if (direction == 1) {
++ for (i = 0; i < ctl.count; i++)
++ ctl.buf[i] = readl(&usrp_e_devp->ctl_addr \
++ [i + ctl.offset]);
++
++ if (copy_to_user(argp, &ctl, sizeof(struct usrp_e_ctl16)))
++ return -EFAULT;
++
++ } else
++ return -EFAULT;
++
++ return 0;
++}
++
++static int usrp_e_get_rb_info(unsigned long arg)
++{
++ struct usrp_e_ring_buffer_size_t __user *argp = (struct usrp_e_ring_buffer_size_t __user *) arg;
++ int i;
++
++ if (copy_to_user(argp, &rb_size, sizeof(rb_size)))
++ return -EFAULT;
++
++ return 0;
++}
++
++static void usrp_e_spi_init()
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++
++ p->ctl_spi = (struct spi_regs_wb *)(p->ctl_addr + CTL_SPI_BASE);
++ p->ctl_spi->div = 64; /* 1 = Div by 4 (12.5 MHz) */
++}
++
++static int usrp_e_spi_wait(void)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++
++ while (p->ctl_spi->ctrl & UE_SPI_CTRL_GO_BSY) {
++ if (signal_pending(current)) {
++ printk(KERN_DEBUG "Signal received.\n");
++ set_current_state(TASK_RUNNING);
++ return -EINTR;
++ }
++ schedule();
++ }
++
++ return 0;
++}
++
++static int usrp_e_spi(unsigned long __user arg)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ struct usrp_e_spi __user *argp = (struct usrp_e_spi __user *) arg;
++ struct usrp_e_spi spi_cmd;
++ int ctrl, ret;
++
++ if (copy_from_user(&spi_cmd, argp, sizeof(struct usrp_e_spi)))
++ return -EFAULT;
++
++ spi_cmd.flags &= (UE_SPI_CTRL_TXNEG | UE_SPI_CTRL_RXNEG);
++ ctrl = UE_SPI_CTRL_ASS | (UE_SPI_CTRL_CHAR_LEN_MASK & spi_cmd.length) \
++ | spi_cmd.flags;
++
++ ret = usrp_e_spi_wait();
++ if (ret < 0)
++ return ret;
++
++ p->ctl_spi->ss = spi_cmd.slave & 0xff;
++
++ p->ctl_spi->txrx0 = spi_cmd.data;
++
++ p->ctl_spi->ctrl = ctrl;
++ p->ctl_spi->ctrl = ctrl | UE_SPI_CTRL_GO_BSY;
++
++ if (spi_cmd.readback) {
++ usrp_e_spi_wait();
++ if (copy_to_user(&argp->data, &p->ctl_spi->txrx0,
++ sizeof(__u32)))
++ return -EFAULT;
++ else
++ return 0;
++ } else
++ return 0;
++
++}
++
++static void usrp_e_i2c_init()
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ int wb_div;
++
++ p->ctl_i2c = (struct i2c_regs_wb *)(p->ctl_addr + CTL_I2C_BASE);
++
++ writeb(0, &p->ctl_i2c->ctrl); /* disable core */
++
++ /* Assume wb_div is 4, deal with this later */
++ wb_div = 4;
++ if (wb_div > MAX_WB_DIV)
++ wb_div = MAX_WB_DIV;
++
++ writeb((prescalar_values[wb_div] & 0xff), &p->ctl_i2c->prescalar_lo);
++ writeb(((prescalar_values[wb_div] >> 8) & 0xff),
++ &p->ctl_i2c->prescalar_hi);
++ writeb(I2C_CTRL_EN, &p->ctl_i2c->ctrl); /* enable core */
++}
++
++static int usrp_e_i2c_wait(__u32 mask, int chk_ack)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++
++ while (readb(&p->ctl_i2c->cmd_status) & mask) {
++ if (signal_pending(current)) {
++ printk(KERN_DEBUG "Signal received.\n");
++ set_current_state(TASK_RUNNING);
++ return -EINTR;
++ }
++ schedule();
++ }
++
++ if (chk_ack) {
++ if ((readb(&p->ctl_i2c->cmd_status) & I2C_ST_RXACK) == 0)
++ return 1;
++ else
++ return 0;
++ }
++
++ return 0;
++}
++
++static int usrp_e_i2c(unsigned long arg, int direction)
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ struct usrp_e_i2c __user *argp = (struct usrp_e_i2c __user *) arg;
++ struct usrp_e_i2c tmp;
++ struct usrp_e_i2c *i2c_msg;
++ int ret, len, i;
++
++ if (copy_from_user(&tmp, argp, sizeof(struct usrp_e_i2c)))
++ return -EFAULT;
++
++ i2c_msg = kmalloc(sizeof(struct usrp_e_i2c) + tmp.len, GFP_KERNEL);
++ if (!i2c_msg)
++ return -ENOMEM;
++
++ if (copy_from_user(i2c_msg, argp,
++ (sizeof(struct usrp_e_i2c) + tmp.len)))
++ return -EFAULT;
++
++ if (direction) {
++ /* read */
++ if (i2c_msg->len == 0)
++ return 1;
++
++ usrp_e_i2c_wait(I2C_ST_BUSY, 0);
++
++ writeb(((i2c_msg->addr << 1) | 1), &p->ctl_i2c->data);
++ writeb((I2C_CMD_WR | I2C_CMD_START), &p->ctl_i2c->cmd_status);
++ ret = usrp_e_i2c_wait(I2C_ST_TIP, 1);
++ if (ret < 0) {
++ return ret;
++ } else if (ret == 0) {
++ writeb(I2C_CMD_STOP, &p->ctl_i2c->cmd_status);
++ return 2;
++ }
++
++ for (len = i2c_msg->len, i = 0; len > 0; i++, len--) {
++ writeb((I2C_CMD_RD | ((len == 1) ?
++ (I2C_CMD_NACK | I2C_CMD_STOP) : 0)),
++ &p->ctl_i2c->cmd_status);
++ usrp_e_i2c_wait(I2C_ST_TIP, 0);
++ i2c_msg->data[i] = readb(&p->ctl_i2c->data);
++ }
++ if (copy_to_user(argp, i2c_msg, (sizeof(struct usrp_e_i2c) +
++ tmp.len)))
++ return -EFAULT;
++ } else {
++ /* write */
++ usrp_e_i2c_wait(I2C_ST_BUSY, 0);
++ writeb(((i2c_msg->addr << 1) | 0), &p->ctl_i2c->data);
++ writeb((I2C_CMD_WR | I2C_CMD_START |
++ (i2c_msg->len == 0 ? I2C_CMD_STOP : 0)),
++ &p->ctl_i2c->cmd_status);
++ ret = usrp_e_i2c_wait(I2C_ST_TIP, 1);
++ if (ret < 0) {
++ return ret;
++ } else if (ret == 0) {
++ writeb(I2C_CMD_STOP, &p->ctl_i2c->cmd_status);
++ return 2;
++ }
++ for (len = i2c_msg->len, i = 0; len > 0; i++, len--) {
++ writeb(i2c_msg->data[i], &p->ctl_i2c->data);
++ writeb((I2C_CMD_WR | (len == 1 ? I2C_CMD_STOP : 0)),
++ &p->ctl_i2c->cmd_status);
++ ret = usrp_e_i2c_wait(I2C_ST_TIP, 1);
++ if (ret < 0) {
++ return ret;
++ } else if (ret == 0) {
++ writeb(I2C_CMD_STOP, &p->ctl_i2c->cmd_status);
++ return 2;
++ }
++ }
++
++ }
++
++
++ return 1;
++}
++
++static int usrp_e_ioctl(struct file *file,
++ unsigned int cmd, unsigned long arg)
++{
++
++ switch (cmd) {
++ case USRP_E_WRITE_CTL16:
++ return usrp_e_ctl16(arg, 0);
++
++ case USRP_E_READ_CTL16:
++ return usrp_e_ctl16(arg, 1);
++
++ case USRP_E_WRITE_CTL32:
++ return usrp_e_ctl32(arg, 0);
++
++ case USRP_E_READ_CTL32:
++ return usrp_e_ctl32(arg, 1);
++
++ case USRP_E_SPI:
++ return usrp_e_spi(arg);
++
++ case USRP_E_I2C_WRITE:
++ return usrp_e_i2c(arg, 0);
++
++ case USRP_E_I2C_READ:
++ return usrp_e_i2c(arg, 1);
++
++ case USRP_E_GET_RB_INFO:
++ return usrp_e_get_rb_info(arg);
++
++ default:
++ return -ENOTTY;
++ }
++
++ return 0;
++}
++
++static unsigned int usrp_e_poll(struct file *filp, poll_table *wait)
++{
++ unsigned int mask = 0;
++
++ poll_wait(filp, &data_received_queue, wait);
++ poll_wait(filp, &tx_rb_space_available, wait);
++
++ // Make sure write is active before sleeping
++ send_frame_to_fpga_start();
++
++ /* Make sure to read in case the rx ring buffer is full */
++ get_frame_from_fpga_start();
++
++ // This likely needs some locking. The pointer is incremented
++ // before the flag state is updated.
++
++ if (rx_rb_write == 0) {
++ if ((*rx_rb.rbi)[rb_size.num_rx_frames - 1].flags & RB_USER)
++ mask |= POLLIN | POLLRDNORM;
++ } else {
++ if ((*rx_rb.rbi)[rx_rb_write - 1].flags & RB_USER)
++ mask |= POLLIN | POLLRDNORM;
++ }
++
++ if (tx_rb_read == 0) {
++ if ((*tx_rb.rbi)[rb_size.num_tx_frames - 1].flags & RB_KERNEL)
++ mask |= POLLOUT | POLLWRNORM;
++ } else {
++ if ((*tx_rb.rbi)[tx_rb_read - 1].flags & RB_KERNEL)
++ mask |= POLLOUT | POLLWRNORM;
++ }
++
++ return mask;
++
++}
++
++/* The mmap code is based on code in af_packet.c */
++
++static void usrp_e_mm_open(struct vm_area_struct *vma)
++{
++
++ atomic_inc(&mapped);
++}
++
++static void usrp_e_mm_close(struct vm_area_struct *vma)
++{
++
++ atomic_dec(&mapped);
++}
++
++static const struct vm_operations_struct usrp_e_mmap_ops = {
++ .open = usrp_e_mm_open,
++ .close = usrp_e_mm_close,
++};
++
++static int usrp_e_mmap(struct file *filp, struct vm_area_struct *vma)
++{
++ unsigned long size, expected_size;
++ unsigned int i;
++ unsigned long start;
++ int err;
++ struct page *page;
++
++ printk("In mmap\n");
++
++ if (vma->vm_pgoff)
++ return -EINVAL;
++
++ /* Verify the user will map the entire tx and rx ring buffer space */
++ expected_size = (rb_size.num_rx_frames + rb_size.num_tx_frames) * (PAGE_SIZE >> 1)
++ + (rb_size.num_pages_rx_flags + rb_size.num_pages_tx_flags) * PAGE_SIZE;
++
++ size = vma->vm_end - vma->vm_start;
++ printk(KERN_DEBUG "Size = %d, expected sixe = %d\n", size, expected_size);
++
++ if (size != expected_size)
++ return -EINVAL;
++
++ start = vma->vm_start;
++
++ page = virt_to_page(rx_rb.rbi);
++ err = vm_insert_page(vma, start, page);
++ if (err)
++ return -EINVAL;
++
++ start += PAGE_SIZE;
++
++ for (i = 0; i < rx_rb.num_pages; ++i) {
++ struct page *page = virt_to_page((*rx_rb.pages)[i]);
++ err = vm_insert_page(vma, start, page);
++ if (err)
++ return -EINVAL;
++
++ start += PAGE_SIZE;
++ }
++
++ page = virt_to_page(tx_rb.rbi);
++ err = vm_insert_page(vma, start, page);
++ if (err)
++ return -EINVAL;
++
++ start += PAGE_SIZE;
++
++ for (i = 0; i < tx_rb.num_pages; ++i) {
++ struct page *page = virt_to_page((*tx_rb.pages)[i]);
++
++ err = vm_insert_page(vma, start, page);
++ if (err)
++ return err;
++
++ start += PAGE_SIZE;
++ }
++
++ vma->vm_ops = &usrp_e_mmap_ops;
++
++ return 0;
++}
++
++static const struct file_operations usrp_e_fops = {
++ .owner = THIS_MODULE,
++ .open = usrp_e_open,
++ .release = usrp_e_release,
++ .read = usrp_e_read,
++ .write = usrp_e_write,
++ .llseek = usrp_e_llseek,
++ .unlocked_ioctl = usrp_e_ioctl,
++ .poll = usrp_e_poll,
++ .mmap = usrp_e_mmap,
++};
++
++MODULE_VERSION("0.1");
++MODULE_ALIAS(DEVICE_NAME);
++MODULE_DESCRIPTION(DEVICE_NAME);
++MODULE_AUTHOR("Philip Balister <philip@opensdr.com>");
++MODULE_LICENSE("GPL v2");
++
++module_init(usrp_e_init);
++module_exit(usrp_e_cleanup);
++
++static irqreturn_t space_available_irqhandler(int irq, void *dev_id)
++{
++ int serviced = IRQ_NONE;
++
++#ifdef DEBUG_TX
++ gpio_set_value(22, 1);
++#endif
++
++// printk("Calling send_to_fpga_start from space_available irq\n");
++ send_frame_to_fpga_start();
++
++ serviced = IRQ_HANDLED;
++
++#ifdef DEBUG_TX
++ gpio_set_value(22, 0);
++#endif
++
++ return serviced;
++}
++
++static void usrp_rx_dma_irq(int ch, u16 stat, void *data)
++{
++
++#ifdef DEBUG_RX
++ gpio_set_value(23, 1);
++#endif
++
++ rx_dma_active = 0;
++
++ get_frame_from_fpga_finish();
++
++#ifdef DEBUG_RX
++ gpio_set_value(23, 0);
++#endif
++}
++
++static void usrp_tx_dma_irq(int ch, u16 stat, void *data)
++{
++
++#ifdef DEBUG_TX
++ gpio_set_value(23, 1);
++#endif
++ tx_dma_active = 0;
++
++ send_frame_to_fpga_finish();
++
++#ifdef DEBUG_TX
++ gpio_set_value(23, 0);
++#endif
++
++/* Save
++ gpio_set_value(21, 1);
++ gpio_set_value(21, 0);
++*/
++
++}
++
++static irqreturn_t data_ready_irqhandler(int irq, void *dev_id)
++{
++ int serviced = IRQ_NONE;
++
++#ifdef DEBUG_RX
++ gpio_set_value(22, 1);
++#endif
++
++ get_frame_from_fpga_start();
++
++ serviced = IRQ_HANDLED;
++
++#ifdef DEBUG_RX
++ gpio_set_value(22, 0);
++#endif
++ return serviced;
++}
++
++static int init_dma_controller()
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++
++ rx_dma = kzalloc(sizeof(struct dma_data), GFP_KERNEL);
++ if (!rx_dma) {
++ printk(KERN_ERR "Failed to allocate memory for rx_dma struct.");
++ return -ENOMEM;
++ }
++
++ if (omap_request_dma(OMAP_DMA_NO_DEVICE, "usrp-e-rx",
++ usrp_rx_dma_irq, (void *) rx_dma, &rx_dma->ch)) {
++ printk(KERN_ERR "Could not get rx DMA channel for usrp_e\n");
++ return -ENOMEM;
++ }
++ printk(KERN_DEBUG "rx_dma->ch %d\n", rx_dma->ch);
++
++ rx_dma->phys_from = p->mem_base;
++
++ memset(&rx_dma->params, 0, sizeof(rx_dma->params));
++ rx_dma->params.data_type = OMAP_DMA_DATA_TYPE_S16;
++
++ rx_dma->params.src_amode = OMAP_DMA_AMODE_CONSTANT;
++ rx_dma->params.dst_amode = OMAP_DMA_AMODE_POST_INC;
++
++ rx_dma->params.src_start = p->mem_base;
++ rx_dma->params.dst_start = rx_dma->phys_to;
++
++ rx_dma->params.src_ei = 1;
++ rx_dma->params.src_fi = 1;
++ rx_dma->params.dst_ei = 1;
++ rx_dma->params.dst_fi = 1;
++
++ rx_dma->params.elem_count = 1024;
++ rx_dma->params.frame_count = 1;
++
++ rx_dma->params.read_prio = DMA_CH_PRIO_HIGH;
++ rx_dma->params.write_prio = DMA_CH_PRIO_LOW;
++
++ omap_set_dma_params(rx_dma->ch, &rx_dma->params);
++
++// Play with these with a real application
++//G omap_set_dma_src_burst_mode(rx_dma->ch, OMAP_DMA_DATA_BURST_16);
++// omap_set_dma_dest_burst_mode(rx_dma->ch, OMAP_DMA_DATA_BURST_16);
++
++#if 0 // Need to find implentations of the endian calls
++ omap_set_dma_src_endian_type(rx_dma->ch, OMAP_DMA_BIG_ENDIAN);
++ omap_set_dma_dst_endian_type(rx_dma->ch, OMAP_DMA_LITTLE_ENDIAN);
++#endif
++
++ tx_dma = kzalloc(sizeof(struct dma_data), GFP_KERNEL);
++ if (!tx_dma) {
++ printk(KERN_ERR "Failed to allocate memory for tx_dma struct.");
++ return -ENOMEM;
++ }
++
++ if (omap_request_dma(OMAP_DMA_NO_DEVICE, "usrp-e-tx",
++ usrp_tx_dma_irq, (void *) tx_dma, &tx_dma->ch)) {
++ printk(KERN_ERR "Could not get tx DMA channel for usrp_e\n");
++ return -ENOMEM;
++ }
++
++ printk(KERN_DEBUG "tx_dma->ch %d\n", tx_dma->ch);
++
++ tx_dma->phys_from = p->mem_base;
++
++ memset(&tx_dma->params, 0, sizeof(tx_dma->params));
++ tx_dma->params.data_type = OMAP_DMA_DATA_TYPE_S16;
++
++ tx_dma->params.src_amode = OMAP_DMA_AMODE_POST_INC;
++ tx_dma->params.dst_amode = OMAP_DMA_AMODE_CONSTANT;
++
++ tx_dma->params.src_start = tx_dma->phys_from;
++ tx_dma->params.dst_start = p->mem_base;
++
++ tx_dma->params.src_ei = 1;
++ tx_dma->params.src_fi = 1;
++ tx_dma->params.dst_ei = 1;
++ tx_dma->params.dst_fi = 1;
++
++ tx_dma->params.elem_count = 1024;
++ tx_dma->params.frame_count = 1;
++
++ tx_dma->params.read_prio = DMA_CH_PRIO_LOW;
++ tx_dma->params.write_prio = DMA_CH_PRIO_HIGH;
++
++ omap_set_dma_params(tx_dma->ch, &tx_dma->params);
++
++// Play with these with a real application
++//G omap_set_dma_src_burst_mode(tx_dma->ch, OMAP_DMA_DATA_BURST_16);
++// omap_set_dma_dest_burst_mode(tx_dma->ch, OMAP_DMA_DATA_BURST_16);
++
++ return 0;
++}
++
++static void release_dma_controller()
++{
++
++ omap_free_dma(rx_dma->ch);
++ omap_free_dma(tx_dma->ch);
++
++ kfree(rx_dma);
++ kfree(tx_dma);
++}
++
++static int get_frame_from_fpga_start()
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ struct ring_buffer_info *rbi = &(*rx_rb.rbi)[rx_rb_write];
++ struct ring_buffer_entry *rbe = &(*rx_rb.rbe)[rx_rb_write];
++ u16 elements_to_read;
++
++ /* Check for space available in the ring buffer */
++ /* If no space, drop data. A read call will restart dma transfers. */
++ if (((*rx_rb.rbi)[rx_rb_write].flags & RB_KERNEL) && (gpio_get_value(RX_DATA_READY_GPIO)) && !rx_dma_active && !shutting_down) {
++
++ rx_dma_active = 1;
++#ifdef DEBUG_RX
++ gpio_set_value(14, 1);
++#endif
++
++ elements_to_read = readw(p->ctl_addr + UE_REG_MISC_RX_LEN);
++
++ rbi->flags = RB_DMA_ACTIVE;
++
++ rbi->len = elements_to_read << 1;
++
++ omap_set_dma_dest_addr_size(rx_dma->ch, rbe->dma_addr,
++ elements_to_read);
++
++ dma_sync_single_for_device(NULL, rbe->dma_addr, SZ_2K, DMA_FROM_DEVICE);
++
++ omap_start_dma(rx_dma->ch);
++ }
++
++ return 0;
++}
++
++
++static int get_frame_from_fpga_finish()
++{
++ dma_sync_single_for_cpu(NULL, (*rx_rb.rbe)[rx_rb_write].dma_addr, SZ_2K, DMA_FROM_DEVICE);
++
++ (*rx_rb.rbi)[rx_rb_write].flags = RB_USER;
++ rx_rb_write++;
++ if (rx_rb_write == rb_size.num_rx_frames)
++ rx_rb_write = 0;
++
++ wake_up_interruptible(&data_received_queue);
++
++ rx_dma_active = 0;
++
++ get_frame_from_fpga_start();
++
++#ifdef DEBUG_RX
++ gpio_set_value(14, 0);
++#endif
++
++ return 0;
++}
++
++static int send_frame_to_fpga_start()
++{
++ struct usrp_e_dev *p = usrp_e_devp;
++ struct ring_buffer_info *rbi = &(*tx_rb.rbi)[tx_rb_read];
++ struct ring_buffer_entry *rbe = &(*tx_rb.rbe)[tx_rb_read];
++ u16 elements_to_write;
++
++// printk("In send_frame_to_fpga_start.\n");
++
++ /* Check if there is data to write to the FPGA, if so send it */
++ /* Otherwise, do nothing. Process is restarted by calls to write */
++ if (((*tx_rb.rbi)[tx_rb_read].flags & RB_USER) && !tx_dma_active && (gpio_get_value(TX_SPACE_AVAILABLE_GPIO)) && !shutting_down) {
++// printk("In send_frame_to_fpga_start, past if.\n");
++ tx_dma_active = 1;
++#ifdef DEBUG_TX
++ gpio_set_value(14, 1);
++#endif
++
++ elements_to_write = ((rbi->len) >> 1);
++
++ writew(elements_to_write, p->ctl_addr + UE_REG_MISC_TX_LEN);
++
++ rbi->flags = RB_DMA_ACTIVE;
++
++ omap_set_dma_src_addr_size(tx_dma->ch, rbe->dma_addr,
++ elements_to_write);
++
++ dma_sync_single_for_device(NULL, rbe->dma_addr, SZ_2K, DMA_TO_DEVICE);
++
++ omap_start_dma(tx_dma->ch);
++ }
++
++ return 0;
++}
++
++static int send_frame_to_fpga_finish()
++{
++
++ dma_sync_single_for_cpu(NULL, (*tx_rb.rbe)[tx_rb_read].dma_addr, SZ_2K, DMA_TO_DEVICE);
++
++ (*tx_rb.rbi)[tx_rb_read].flags = RB_KERNEL;
++
++ tx_rb_read++;
++ if (tx_rb_read == rb_size.num_tx_frames)
++ tx_rb_read = 0;
++
++ wake_up_interruptible(&tx_rb_space_available);
++
++ tx_dma_active = 0;
++
++ send_frame_to_fpga_start();
++
++#ifdef DEBUG_TX
++ gpio_set_value(14, 0);
++#endif
++
++ return 0;
++}
++
++static int alloc_ring_buffer(struct ring_buffer *rb,
++ unsigned int num_bufs, enum dma_data_direction direction)
++{
++ int i;
++
++ rb->rbi = __get_free_page(GFP_KERNEL | __GFP_COMP | __GFP_ZERO | __GFP_NOWARN);
++
++ rb->rbe = kzalloc(sizeof(struct ring_buffer_entry) * num_bufs, GFP_KERNEL);
++ if (!rb) {
++ printk(KERN_ERR "Failed to allocate memory for rb entries\n");
++ return -ENOMEM;
++ }
++
++ rb->num_pages = (num_bufs & 1) ? ((num_bufs + 1) / 2) : (num_bufs / 2);
++
++ rb->pages = kzalloc(sizeof(unsigned long) * rb->num_pages, GFP_KERNEL);
++ if (!(rb->pages)) {
++ printk(KERN_ERR "Failed to allocate memory for rb page entries\n");
++ return -ENOMEM;
++ }
++
++ for (i = 0; i < rb->num_pages; i++) {
++ (*rb->pages)[i] = __get_free_page(GFP_KERNEL | __GFP_DMA | __GFP_COMP | __GFP_ZERO | __GFP_NOWARN);
++
++ (*(rb->rbe))[i*2].frame_addr =
++ (*(rb->pages))[i];
++ (*(rb->rbe))[i*2 + 1].frame_addr =
++ ((*(rb->pages))[i] + SZ_2K);
++ if (!(*(rb->rbe))[i*2].frame_addr || !(*(rb->rbe))[i*2 + 1].frame_addr) {
++ printk(KERN_ERR "Failed to allocate memory dma buf\n");
++ return -ENOMEM;
++ }
++
++ (*(rb->rbe))[i*2].dma_addr = dma_map_single(NULL, (*(rb->rbe))[i*2].frame_addr, SZ_2K, direction);
++ (*(rb->rbe))[i*2 + 1].dma_addr = dma_map_single(NULL, (*(rb->rbe))[i*2 + 1].frame_addr, SZ_2K, direction);
++ if (!(*(rb->rbe))[i*2].dma_addr || !(*(rb->rbe))[i*2 + 1].dma_addr) {
++ printk(KERN_ERR "Failed to get physical address for dma buf\n");
++ return -ENOMEM;
++ }
++ }
++
++ return 0;
++}
++
++static void delete_ring_buffer(struct ring_buffer *rb,
++ unsigned int num_bufs, enum dma_data_direction direction)
++{
++ unsigned int i;
++ unsigned int num_pages;
++
++ printk(KERN_DEBUG "Entering delete_ring_buffer\n");
++
++ num_pages = (num_bufs & 1) ? ((num_bufs + 1) / 2) : (num_bufs / 2);
++
++ for (i = 0; i < num_pages; i++) {
++ dma_unmap_single(NULL, (*rb->rbe)[i*2].dma_addr, SZ_2K, direction);
++ dma_unmap_single(NULL, (*rb->rbe)[i*2 + 1].dma_addr, SZ_2K, direction);
++ free_page((*rb->pages)[i]);
++ }
++
++ free_page(rb->rbi);
++
++ kfree(rb->pages);
++ kfree(rb->rbe);
++
++ printk(KERN_DEBUG "Leaving delete_ring_buffer\n");
++}
++
++static int alloc_ring_buffers()
++{
++
++ if (alloc_ring_buffer(&tx_rb, rb_size.num_rx_frames, DMA_TO_DEVICE) < 0)
++ return -ENOMEM;
++ if (alloc_ring_buffer(&rx_rb, rb_size.num_tx_frames, DMA_FROM_DEVICE) < 0)
++ return -ENOMEM;
++
++ return 0;
++}
++
++static void init_ring_buffer(struct ring_buffer *rb, int num_bufs,
++ int initial_flags, enum dma_data_direction direction)
++{
++ int i;
++
++ for (i = 0; i < num_bufs; i++) {
++ dma_sync_single_for_device(NULL, (*rb->rbe)[i].dma_addr,
++ SZ_2K, direction);
++ dma_sync_single_for_cpu(NULL, (*rb->rbe)[i].dma_addr,
++ SZ_2K, direction);
++ (*rb->rbi)[i].flags = initial_flags;
++ }
++
++}
++
++#if 0
++static int tx_dma_func(void *data)
++{
++ int ret;
++ struct sched_param s = { .sched_priority = 1};
++
++ printk(KERN_DEBUG "In tx_dma_func\n");
++
++ allow_signal(SIGSTOP);
++
++ sched_setscheduler(current, SCHED_FIFO, &s);
++
++ while (!kthread_should_stop() && !closing_driver) {
++
++ if (!((*tx_rb.rbe)[tx_rb_read].flags & RB_USER)) {
++ tx_dma_waiting_for_data = 1;
++ ret = wait_event_interruptible(received_data_from_user,
++ (*tx_rb.rbe)[tx_rb_read].flags & RB_USER);
++ if (ret) {
++ printk(KERN_DEBUG
++ "tx_dma_func received signal %d\n",
++ ret);
++ if (closing_driver)
++ break;
++
++ }
++ tx_dma_waiting_for_data = 0;
++ }
++
++ if (wait_event_interruptible(space_available_queue,
++ gpio_get_value(TX_SPACE_AVAILABLE_GPIO))) {
++ printk(KERN_DEBUG "tx_dma received signal waiting for space.\n");
++ if (closing_driver)
++ break;
++ }
++
++ if (send_frame_to_fpga(&(*tx_rb.rbe)[tx_rb_read]) != 0) {
++ printk(KERN_DEBUG "send_frame received signal.\n");
++ if (closing_driver)
++ break;
++ }
++
++ (*tx_rb.rbe)[tx_rb_read].flags = RB_KERNEL;
++
++ tx_rb_read++;
++ if (tx_rb_read == RB_SIZE)
++ tx_rb_read = 0;
++
++#if 0
++ if (waiting_for_space_in_tx_rb)
++#endif
++ wake_up_interruptible(&tx_rb_space_queue);
++
++ }
++ return 0;
++}
++#endif
+diff --git a/include/linux/usrp_e.h b/include/linux/usrp_e.h
+new file mode 100644
+index 0000000..e52f709
+--- /dev/null
++++ b/include/linux/usrp_e.h
+@@ -0,0 +1,87 @@
++
++/*
++ * Copyright (C) 2010 Ettus Research, LLC
++ *
++ * Written by Philip Balister <philip@opensdr.com>
++ *
++ * This program is free software; you can redistribute it and/or modify
++ * it under the terms of the GNU General Public License as published by
++ * the Free Software Foundation; either version 2 of the License, or
++ * (at your option) any later version.
++ */
++
++#ifndef __USRP_E_H
++#define __USRP_E_H
++
++#include <linux/types.h>
++#include <linux/ioctl.h>
++
++struct usrp_e_ctl16 {
++ __u32 offset;
++ __u32 count;
++ __u16 buf[20];
++};
++
++struct usrp_e_ctl32 {
++ __u32 offset;
++ __u32 count;
++ __u32 buf[10];
++};
++
++/* SPI interface */
++
++#define UE_SPI_TXONLY 0
++#define UE_SPI_TXRX 1
++
++/* Defines for spi ctrl register */
++#define UE_SPI_CTRL_TXNEG (BIT(10))
++#define UE_SPI_CTRL_RXNEG (BIT(9))
++
++#define UE_SPI_PUSH_RISE 0
++#define UE_SPI_PUSH_FALL UE_SPI_CTRL_TXNEG
++#define UE_SPI_LATCH_RISE 0
++#define UE_SPI_LATCH_FALL UE_SPI_CTRL_RXNEG
++
++struct usrp_e_spi {
++ __u8 readback;
++ __u32 slave;
++ __u32 data;
++ __u32 length;
++ __u32 flags;
++};
++
++struct usrp_e_i2c {
++ __u8 addr;
++ __u32 len;
++ __u8 data[];
++};
++
++#define USRP_E_IOC_MAGIC 'u'
++#define USRP_E_WRITE_CTL16 _IOW(USRP_E_IOC_MAGIC, 0x20, struct usrp_e_ctl16)
++#define USRP_E_READ_CTL16 _IOWR(USRP_E_IOC_MAGIC, 0x21, struct usrp_e_ctl16)
++#define USRP_E_WRITE_CTL32 _IOW(USRP_E_IOC_MAGIC, 0x22, struct usrp_e_ctl32)
++#define USRP_E_READ_CTL32 _IOWR(USRP_E_IOC_MAGIC, 0x23, struct usrp_e_ctl32)
++#define USRP_E_SPI _IOWR(USRP_E_IOC_MAGIC, 0x24, struct usrp_e_spi)
++#define USRP_E_I2C_READ _IOWR(USRP_E_IOC_MAGIC, 0x25, struct usrp_e_i2c)
++#define USRP_E_I2C_WRITE _IOW(USRP_E_IOC_MAGIC, 0x26, struct usrp_e_i2c)
++#define USRP_E_GET_RB_INFO _IOR(USRP_E_IOC_MAGIC, 0x27, struct usrp_e_ring_buffer_size_t)
++
++/* Flag defines */
++#define RB_USER (BIT(0))
++#define RB_KERNEL (BIT(1))
++#define RB_OVERRUN (BIT(2))
++#define RB_DMA_ACTIVE (BIT(3))
++
++struct ring_buffer_info {
++ int flags;
++ int len;
++};
++
++struct usrp_e_ring_buffer_size_t {
++ int num_pages_rx_flags;
++ int num_rx_frames;
++ int num_pages_tx_flags;
++ int num_tx_frames;
++};
++
++#endif
+--
+1.6.6.1
+