summaryrefslogtreecommitdiffstats
path: root/arch/arm64/kvm/sys_regs.c
blob: 2071260a275bd236923da5650da86a012eaa5b4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (C) 2012,2013 - ARM Ltd
 * Author: Marc Zyngier <marc.zyngier@arm.com>
 *
 * Derived from arch/arm/kvm/coproc.c:
 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
 * Authors: Rusty Russell <rusty@rustcorp.com.au>
 *          Christoffer Dall <c.dall@virtualopensystems.com>
 */

#include <linux/bsearch.h>
#include <linux/kvm_host.h>
#include <linux/mm.h>
#include <linux/printk.h>
#include <linux/uaccess.h>

#include <asm/cacheflush.h>
#include <asm/cputype.h>
#include <asm/debug-monitors.h>
#include <asm/esr.h>
#include <asm/kvm_arm.h>
#include <asm/kvm_coproc.h>
#include <asm/kvm_emulate.h>
#include <asm/kvm_host.h>
#include <asm/kvm_hyp.h>
#include <asm/kvm_mmu.h>
#include <asm/perf_event.h>
#include <asm/sysreg.h>

#include <trace/events/kvm.h>

#include "sys_regs.h"

#include "trace.h"

/*
 * All of this file is extremly similar to the ARM coproc.c, but the
 * types are different. My gut feeling is that it should be pretty
 * easy to merge, but that would be an ABI breakage -- again. VFP
 * would also need to be abstracted.
 *
 * For AArch32, we only take care of what is being trapped. Anything
 * that has to do with init and userspace access has to go via the
 * 64bit interface.
 */

static bool read_from_write_only(struct kvm_vcpu *vcpu,
				 struct sys_reg_params *params,
				 const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

static bool write_to_read_only(struct kvm_vcpu *vcpu,
			       struct sys_reg_params *params,
			       const struct sys_reg_desc *r)
{
	WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
	return false;
}

u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_read;

	/*
	 * System registers listed in the switch are not saved on every
	 * exit from the guest but are only saved on vcpu_put.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the guest cannot modify its
	 * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
	 * thread when emulating cross-VCPU communication.
	 */
	switch (reg) {
	case CSSELR_EL1:	return read_sysreg_s(SYS_CSSELR_EL1);
	case SCTLR_EL1:		return read_sysreg_s(SYS_SCTLR_EL12);
	case ACTLR_EL1:		return read_sysreg_s(SYS_ACTLR_EL1);
	case CPACR_EL1:		return read_sysreg_s(SYS_CPACR_EL12);
	case TTBR0_EL1:		return read_sysreg_s(SYS_TTBR0_EL12);
	case TTBR1_EL1:		return read_sysreg_s(SYS_TTBR1_EL12);
	case TCR_EL1:		return read_sysreg_s(SYS_TCR_EL12);
	case ESR_EL1:		return read_sysreg_s(SYS_ESR_EL12);
	case AFSR0_EL1:		return read_sysreg_s(SYS_AFSR0_EL12);
	case AFSR1_EL1:		return read_sysreg_s(SYS_AFSR1_EL12);
	case FAR_EL1:		return read_sysreg_s(SYS_FAR_EL12);
	case MAIR_EL1:		return read_sysreg_s(SYS_MAIR_EL12);
	case VBAR_EL1:		return read_sysreg_s(SYS_VBAR_EL12);
	case CONTEXTIDR_EL1:	return read_sysreg_s(SYS_CONTEXTIDR_EL12);
	case TPIDR_EL0:		return read_sysreg_s(SYS_TPIDR_EL0);
	case TPIDRRO_EL0:	return read_sysreg_s(SYS_TPIDRRO_EL0);
	case TPIDR_EL1:		return read_sysreg_s(SYS_TPIDR_EL1);
	case AMAIR_EL1:		return read_sysreg_s(SYS_AMAIR_EL12);
	case CNTKCTL_EL1:	return read_sysreg_s(SYS_CNTKCTL_EL12);
	case PAR_EL1:		return read_sysreg_s(SYS_PAR_EL1);
	case DACR32_EL2:	return read_sysreg_s(SYS_DACR32_EL2);
	case IFSR32_EL2:	return read_sysreg_s(SYS_IFSR32_EL2);
	case DBGVCR32_EL2:	return read_sysreg_s(SYS_DBGVCR32_EL2);
	}

immediate_read:
	return __vcpu_sys_reg(vcpu, reg);
}

void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
{
	if (!vcpu->arch.sysregs_loaded_on_cpu)
		goto immediate_write;

	/*
	 * System registers listed in the switch are not restored on every
	 * entry to the guest but are only restored on vcpu_load.
	 *
	 * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
	 * should never be listed below, because the the MPIDR should only be
	 * set once, before running the VCPU, and never changed later.
	 */
	switch (reg) {
	case CSSELR_EL1:	write_sysreg_s(val, SYS_CSSELR_EL1);	return;
	case SCTLR_EL1:		write_sysreg_s(val, SYS_SCTLR_EL12);	return;
	case ACTLR_EL1:		write_sysreg_s(val, SYS_ACTLR_EL1);	return;
	case CPACR_EL1:		write_sysreg_s(val, SYS_CPACR_EL12);	return;
	case TTBR0_EL1:		write_sysreg_s(val, SYS_TTBR0_EL12);	return;
	case TTBR1_EL1:		write_sysreg_s(val, SYS_TTBR1_EL12);	return;
	case TCR_EL1:		write_sysreg_s(val, SYS_TCR_EL12);	return;
	case ESR_EL1:		write_sysreg_s(val, SYS_ESR_EL12);	return;
	case AFSR0_EL1:		write_sysreg_s(val, SYS_AFSR0_EL12);	return;
	case AFSR1_EL1:		write_sysreg_s(val, SYS_AFSR1_EL12);	return;
	case FAR_EL1:		write_sysreg_s(val, SYS_FAR_EL12);	return;
	case MAIR_EL1:		write_sysreg_s(val, SYS_MAIR_EL12);	return;
	case VBAR_EL1:		write_sysreg_s(val, SYS_VBAR_EL12);	return;
	case CONTEXTIDR_EL1:	write_sysreg_s(val, SYS_CONTEXTIDR_EL12); return;
	case TPIDR_EL0:		write_sysreg_s(val, SYS_TPIDR_EL0);	return;
	case TPIDRRO_EL0:	write_sysreg_s(val, SYS_TPIDRRO_EL0);	return;
	case TPIDR_EL1:		write_sysreg_s(val, SYS_TPIDR_EL1);	return;
	case AMAIR_EL1:		write_sysreg_s(val, SYS_AMAIR_EL12);	return;
	case CNTKCTL_EL1:	write_sysreg_s(val, SYS_CNTKCTL_EL12);	return;
	case PAR_EL1:		write_sysreg_s(val, SYS_PAR_EL1);	return;
	case DACR32_EL2:	write_sysreg_s(val, SYS_DACR32_EL2);	return;
	case IFSR32_EL2:	write_sysreg_s(val, SYS_IFSR32_EL2);	return;
	case DBGVCR32_EL2:	write_sysreg_s(val, SYS_DBGVCR32_EL2);	return;
	}

immediate_write:
	 __vcpu_sys_reg(vcpu, reg) = val;
}

/* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
static u32 cache_levels;

/* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
#define CSSELR_MAX 12

/* Which cache CCSIDR represents depends on CSSELR value. */
static u32 get_ccsidr(u32 csselr)
{
	u32 ccsidr;

	/* Make sure noone else changes CSSELR during this! */
	local_irq_disable();
	write_sysreg(csselr, csselr_el1);
	isb();
	ccsidr = read_sysreg(ccsidr_el1);
	local_irq_enable();

	return ccsidr;
}

/*
 * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
 */
static bool access_dcsw(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	/*
	 * Only track S/W ops if we don't have FWB. It still indicates
	 * that the guest is a bit broken (S/W operations should only
	 * be done by firmware, knowing that there is only a single
	 * CPU left in the system, and certainly not from non-secure
	 * software).
	 */
	if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
		kvm_set_way_flush(vcpu);

	return true;
}

/*
 * Generic accessor for VM registers. Only called as long as HCR_TVM
 * is set. If the guest enables the MMU, we stop trapping the VM
 * sys_regs and leave it in complete control of the caches.
 */
static bool access_vm_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	bool was_enabled = vcpu_has_cache_enabled(vcpu);
	u64 val;
	int reg = r->reg;

	BUG_ON(!p->is_write);

	/* See the 32bit mapping in kvm_host.h */
	if (p->is_aarch32)
		reg = r->reg / 2;

	if (!p->is_aarch32 || !p->is_32bit) {
		val = p->regval;
	} else {
		val = vcpu_read_sys_reg(vcpu, reg);
		if (r->reg % 2)
			val = (p->regval << 32) | (u64)lower_32_bits(val);
		else
			val = ((u64)upper_32_bits(val) << 32) |
				lower_32_bits(p->regval);
	}
	vcpu_write_sys_reg(vcpu, val, reg);

	kvm_toggle_cache(vcpu, was_enabled);
	return true;
}

/*
 * Trap handler for the GICv3 SGI generation system register.
 * Forward the request to the VGIC emulation.
 * The cp15_64 code makes sure this automatically works
 * for both AArch64 and AArch32 accesses.
 */
static bool access_gic_sgi(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	bool g1;

	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	/*
	 * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
	 * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
	 * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
	 * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
	 * group.
	 */
	if (p->is_aarch32) {
		switch (p->Op1) {
		default:		/* Keep GCC quiet */
		case 0:			/* ICC_SGI1R */
			g1 = true;
			break;
		case 1:			/* ICC_ASGI1R */
		case 2:			/* ICC_SGI0R */
			g1 = false;
			break;
		}
	} else {
		switch (p->Op2) {
		default:		/* Keep GCC quiet */
		case 5:			/* ICC_SGI1R_EL1 */
			g1 = true;
			break;
		case 6:			/* ICC_ASGI1R_EL1 */
		case 7:			/* ICC_SGI0R_EL1 */
			g1 = false;
			break;
		}
	}

	vgic_v3_dispatch_sgi(vcpu, p->regval, g1);

	return true;
}

static bool access_gic_sre(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);

	p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
	return true;
}

static bool trap_raz_wi(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (p->is_write)
		return ignore_write(vcpu, p);
	else
		return read_zero(vcpu, p);
}

/*
 * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
 * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
 * system, these registers should UNDEF. LORID_EL1 being a RO register, we
 * treat it separately.
 */
static bool trap_loregion(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
	u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);

	if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write && sr == SYS_LORID_EL1)
		return write_to_read_only(vcpu, p, r);

	return trap_raz_wi(vcpu, p, r);
}

static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		p->regval = (1 << 3);
		return true;
	}
}

static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *p,
				   const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		p->regval = read_sysreg(dbgauthstatus_el1);
		return true;
	}
}

/*
 * We want to avoid world-switching all the DBG registers all the
 * time:
 * 
 * - If we've touched any debug register, it is likely that we're
 *   going to touch more of them. It then makes sense to disable the
 *   traps and start doing the save/restore dance
 * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
 *   then mandatory to save/restore the registers, as the guest
 *   depends on them.
 * 
 * For this, we use a DIRTY bit, indicating the guest has modified the
 * debug registers, used as follow:
 *
 * On guest entry:
 * - If the dirty bit is set (because we're coming back from trapping),
 *   disable the traps, save host registers, restore guest registers.
 * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
 *   set the dirty bit, disable the traps, save host registers,
 *   restore guest registers.
 * - Otherwise, enable the traps
 *
 * On guest exit:
 * - If the dirty bit is set, save guest registers, restore host
 *   registers and clear the dirty bit. This ensure that the host can
 *   now use the debug registers.
 */
static bool trap_debug_regs(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r)
{
	if (p->is_write) {
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
	}

	trace_trap_reg(__func__, r->reg, p->is_write, p->regval);

	return true;
}

/*
 * reg_to_dbg/dbg_to_reg
 *
 * A 32 bit write to a debug register leave top bits alone
 * A 32 bit read from a debug register only returns the bottom bits
 *
 * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
 * hyp.S code switches between host and guest values in future.
 */
static void reg_to_dbg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
{
	u64 val = p->regval;

	if (p->is_32bit) {
		val &= 0xffffffffUL;
		val |= ((*dbg_reg >> 32) << 32);
	}

	*dbg_reg = val;
	vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
}

static void dbg_to_reg(struct kvm_vcpu *vcpu,
		       struct sys_reg_params *p,
		       u64 *dbg_reg)
{
	p->regval = *dbg_reg;
	if (p->is_32bit)
		p->regval &= 0xffffffffUL;
}

static bool trap_bvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

	return true;
}

static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static void reset_bvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
}

static bool trap_bcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

	return true;
}

static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;

	return 0;
}

static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static void reset_bcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
}

static bool trap_wvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

	trace_trap_reg(__func__, rd->reg, p->is_write,
		vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);

	return true;
}

static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static void reset_wvr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
}

static bool trap_wcr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (p->is_write)
		reg_to_dbg(vcpu, p, dbg_reg);
	else
		dbg_to_reg(vcpu, p, dbg_reg);

	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

	return true;
}

static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
	const struct kvm_one_reg *reg, void __user *uaddr)
{
	__u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];

	if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
		return -EFAULT;
	return 0;
}

static void reset_wcr(struct kvm_vcpu *vcpu,
		      const struct sys_reg_desc *rd)
{
	vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
}

static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 amair = read_sysreg(amair_el1);
	vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
}

static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 mpidr;

	/*
	 * Map the vcpu_id into the first three affinity level fields of
	 * the MPIDR. We limit the number of VCPUs in level 0 due to a
	 * limitation to 16 CPUs in that level in the ICC_SGIxR registers
	 * of the GICv3 to be able to address each CPU directly when
	 * sending IPIs.
	 */
	mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
	mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
	mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
	vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
}

static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
{
	u64 pmcr, val;

	pmcr = read_sysreg(pmcr_el0);
	/*
	 * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
	 * except PMCR.E resetting to zero.
	 */
	val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
	       | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
	__vcpu_sys_reg(vcpu, r->reg) = val;
}

static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
{
	u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
	bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);

	if (!enabled)
		kvm_inject_undefined(vcpu);

	return !enabled;
}

static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
}

static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
}

static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
}

static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
{
	return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
}

static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	u64 val;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (p->is_write) {
		/* Only update writeable bits of PMCR */
		val = __vcpu_sys_reg(vcpu, PMCR_EL0);
		val &= ~ARMV8_PMU_PMCR_MASK;
		val |= p->regval & ARMV8_PMU_PMCR_MASK;
		__vcpu_sys_reg(vcpu, PMCR_EL0) = val;
		kvm_pmu_handle_pmcr(vcpu, val);
		kvm_vcpu_pmu_restore_guest(vcpu);
	} else {
		/* PMCR.P & PMCR.C are RAZ */
		val = __vcpu_sys_reg(vcpu, PMCR_EL0)
		      & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
		p->regval = val;
	}

	return true;
}

static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (pmu_access_event_counter_el0_disabled(vcpu))
		return false;

	if (p->is_write)
		__vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
	else
		/* return PMSELR.SEL field */
		p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
			    & ARMV8_PMU_COUNTER_MASK;

	return true;
}

static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u64 pmceid;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	BUG_ON(p->is_write);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (!(p->Op2 & 1))
		pmceid = read_sysreg(pmceid0_el0);
	else
		pmceid = read_sysreg(pmceid1_el0);

	p->regval = pmceid;

	return true;
}

static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
{
	u64 pmcr, val;

	pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
	val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
	if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	return true;
}

static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	u64 idx;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (r->CRn == 9 && r->CRm == 13) {
		if (r->Op2 == 2) {
			/* PMXEVCNTR_EL0 */
			if (pmu_access_event_counter_el0_disabled(vcpu))
				return false;

			idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
			      & ARMV8_PMU_COUNTER_MASK;
		} else if (r->Op2 == 0) {
			/* PMCCNTR_EL0 */
			if (pmu_access_cycle_counter_el0_disabled(vcpu))
				return false;

			idx = ARMV8_PMU_CYCLE_IDX;
		} else {
			return false;
		}
	} else if (r->CRn == 0 && r->CRm == 9) {
		/* PMCCNTR */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ARMV8_PMU_CYCLE_IDX;
	} else if (r->CRn == 14 && (r->CRm & 12) == 8) {
		/* PMEVCNTRn_EL0 */
		if (pmu_access_event_counter_el0_disabled(vcpu))
			return false;

		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
	} else {
		return false;
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		if (pmu_access_el0_disabled(vcpu))
			return false;

		kvm_pmu_set_counter_value(vcpu, idx, p->regval);
	} else {
		p->regval = kvm_pmu_get_counter_value(vcpu, idx);
	}

	return true;
}

static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			       const struct sys_reg_desc *r)
{
	u64 idx, reg;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
		/* PMXEVTYPER_EL0 */
		idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
		reg = PMEVTYPER0_EL0 + idx;
	} else if (r->CRn == 14 && (r->CRm & 12) == 12) {
		idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
		if (idx == ARMV8_PMU_CYCLE_IDX)
			reg = PMCCFILTR_EL0;
		else
			/* PMEVTYPERn_EL0 */
			reg = PMEVTYPER0_EL0 + idx;
	} else {
		BUG();
	}

	if (!pmu_counter_idx_valid(vcpu, idx))
		return false;

	if (p->is_write) {
		kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
		__vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
		kvm_vcpu_pmu_restore_guest(vcpu);
	} else {
		p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
	}

	return true;
}

static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 val, mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	mask = kvm_pmu_valid_counter_mask(vcpu);
	if (p->is_write) {
		val = p->regval & mask;
		if (r->Op2 & 0x1) {
			/* accessing PMCNTENSET_EL0 */
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
			kvm_pmu_enable_counter_mask(vcpu, val);
			kvm_vcpu_pmu_restore_guest(vcpu);
		} else {
			/* accessing PMCNTENCLR_EL0 */
			__vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
			kvm_pmu_disable_counter_mask(vcpu, val);
		}
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
	}

	return true;
}

static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (!vcpu_mode_priv(vcpu)) {
		kvm_inject_undefined(vcpu);
		return false;
	}

	if (p->is_write) {
		u64 val = p->regval & mask;

		if (r->Op2 & 0x1)
			/* accessing PMINTENSET_EL1 */
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
		else
			/* accessing PMINTENCLR_EL1 */
			__vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
	}

	return true;
}

static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	u64 mask = kvm_pmu_valid_counter_mask(vcpu);

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (pmu_access_el0_disabled(vcpu))
		return false;

	if (p->is_write) {
		if (r->CRm & 0x2)
			/* accessing PMOVSSET_EL0 */
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
		else
			/* accessing PMOVSCLR_EL0 */
			__vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
	}

	return true;
}

static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			   const struct sys_reg_desc *r)
{
	u64 mask;

	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (!p->is_write)
		return read_from_write_only(vcpu, p, r);

	if (pmu_write_swinc_el0_disabled(vcpu))
		return false;

	mask = kvm_pmu_valid_counter_mask(vcpu);
	kvm_pmu_software_increment(vcpu, p->regval & mask);
	return true;
}

static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			     const struct sys_reg_desc *r)
{
	if (!kvm_arm_pmu_v3_ready(vcpu))
		return trap_raz_wi(vcpu, p, r);

	if (p->is_write) {
		if (!vcpu_mode_priv(vcpu)) {
			kvm_inject_undefined(vcpu);
			return false;
		}

		__vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
			       p->regval & ARMV8_PMU_USERENR_MASK;
	} else {
		p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
			    & ARMV8_PMU_USERENR_MASK;
	}

	return true;
}

#define reg_to_encoding(x)						\
	sys_reg((u32)(x)->Op0, (u32)(x)->Op1,				\
		(u32)(x)->CRn, (u32)(x)->CRm, (u32)(x)->Op2);

/* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
#define DBG_BCR_BVR_WCR_WVR_EL1(n)					\
	{ SYS_DESC(SYS_DBGBVRn_EL1(n)),					\
	  trap_bvr, reset_bvr, 0, 0, get_bvr, set_bvr },		\
	{ SYS_DESC(SYS_DBGBCRn_EL1(n)),					\
	  trap_bcr, reset_bcr, 0, 0, get_bcr, set_bcr },		\
	{ SYS_DESC(SYS_DBGWVRn_EL1(n)),					\
	  trap_wvr, reset_wvr, 0, 0,  get_wvr, set_wvr },		\
	{ SYS_DESC(SYS_DBGWCRn_EL1(n)),					\
	  trap_wcr, reset_wcr, 0, 0,  get_wcr, set_wcr }

/* Macro to expand the PMEVCNTRn_EL0 register */
#define PMU_PMEVCNTR_EL0(n)						\
	{ SYS_DESC(SYS_PMEVCNTRn_EL0(n)),					\
	  access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }

/* Macro to expand the PMEVTYPERn_EL0 register */
#define PMU_PMEVTYPER_EL0(n)						\
	{ SYS_DESC(SYS_PMEVTYPERn_EL0(n)),					\
	  access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }

static bool trap_ptrauth(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *rd)
{
	kvm_arm_vcpu_ptrauth_trap(vcpu);

	/*
	 * Return false for both cases as we never skip the trapped
	 * instruction:
	 *
	 * - Either we re-execute the same key register access instruction
	 *   after enabling ptrauth.
	 * - Or an UNDEF is injected as ptrauth is not supported/enabled.
	 */
	return false;
}

static unsigned int ptrauth_visibility(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd)
{
	return vcpu_has_ptrauth(vcpu) ? 0 : REG_HIDDEN_USER | REG_HIDDEN_GUEST;
}

#define __PTRAUTH_KEY(k)						\
	{ SYS_DESC(SYS_## k), trap_ptrauth, reset_unknown, k,		\
	.visibility = ptrauth_visibility}

#define PTRAUTH_KEY(k)							\
	__PTRAUTH_KEY(k ## KEYLO_EL1),					\
	__PTRAUTH_KEY(k ## KEYHI_EL1)

static bool access_arch_timer(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	enum kvm_arch_timers tmr;
	enum kvm_arch_timer_regs treg;
	u64 reg = reg_to_encoding(r);

	switch (reg) {
	case SYS_CNTP_TVAL_EL0:
	case SYS_AARCH32_CNTP_TVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_TVAL;
		break;
	case SYS_CNTP_CTL_EL0:
	case SYS_AARCH32_CNTP_CTL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CTL;
		break;
	case SYS_CNTP_CVAL_EL0:
	case SYS_AARCH32_CNTP_CVAL:
		tmr = TIMER_PTIMER;
		treg = TIMER_REG_CVAL;
		break;
	default:
		BUG();
	}

	if (p->is_write)
		kvm_arm_timer_write_sysreg(vcpu, tmr, treg, p->regval);
	else
		p->regval = kvm_arm_timer_read_sysreg(vcpu, tmr, treg);

	return true;
}

/* Read a sanitised cpufeature ID register by sys_reg_desc */
static u64 read_id_reg(const struct kvm_vcpu *vcpu,
		struct sys_reg_desc const *r, bool raz)
{
	u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
			 (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
	u64 val = raz ? 0 : read_sanitised_ftr_reg(id);

	if (id == SYS_ID_AA64PFR0_EL1 && !vcpu_has_sve(vcpu)) {
		val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
	} else if (id == SYS_ID_AA64ISAR1_EL1 && !vcpu_has_ptrauth(vcpu)) {
		val &= ~((0xfUL << ID_AA64ISAR1_APA_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_API_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
			 (0xfUL << ID_AA64ISAR1_GPI_SHIFT));
	}

	return val;
}

/* cpufeature ID register access trap handlers */

static bool __access_id_reg(struct kvm_vcpu *vcpu,
			    struct sys_reg_params *p,
			    const struct sys_reg_desc *r,
			    bool raz)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_id_reg(vcpu, r, raz);
	return true;
}

static bool access_id_reg(struct kvm_vcpu *vcpu,
			  struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, false);
}

static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
			      struct sys_reg_params *p,
			      const struct sys_reg_desc *r)
{
	return __access_id_reg(vcpu, p, r, true);
}

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
static u64 sys_reg_to_index(const struct sys_reg_desc *reg);

/* Visibility overrides for SVE-specific control registers */
static unsigned int sve_visibility(const struct kvm_vcpu *vcpu,
				   const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER | REG_HIDDEN_GUEST;
}

/* Visibility overrides for SVE-specific ID registers */
static unsigned int sve_id_visibility(const struct kvm_vcpu *vcpu,
				      const struct sys_reg_desc *rd)
{
	if (vcpu_has_sve(vcpu))
		return 0;

	return REG_HIDDEN_USER;
}

/* Generate the emulated ID_AA64ZFR0_EL1 value exposed to the guest */
static u64 guest_id_aa64zfr0_el1(const struct kvm_vcpu *vcpu)
{
	if (!vcpu_has_sve(vcpu))
		return 0;

	return read_sanitised_ftr_reg(SYS_ID_AA64ZFR0_EL1);
}

static bool access_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
				   struct sys_reg_params *p,
				   const struct sys_reg_desc *rd)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, rd);

	p->regval = guest_id_aa64zfr0_el1(vcpu);
	return true;
}

static int get_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	u64 val;

	if (WARN_ON(!vcpu_has_sve(vcpu)))
		return -ENOENT;

	val = guest_id_aa64zfr0_el1(vcpu);
	return reg_to_user(uaddr, &val, reg->id);
}

static int set_id_aa64zfr0_el1(struct kvm_vcpu *vcpu,
		const struct sys_reg_desc *rd,
		const struct kvm_one_reg *reg, void __user *uaddr)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	if (WARN_ON(!vcpu_has_sve(vcpu)))
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != guest_id_aa64zfr0_el1(vcpu))
		return -EINVAL;

	return 0;
}

/*
 * cpufeature ID register user accessors
 *
 * For now, these registers are immutable for userspace, so no values
 * are stored, and for set_id_reg() we don't allow the effective value
 * to be changed.
 */
static int __get_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	const u64 val = read_id_reg(vcpu, rd, raz);

	return reg_to_user(uaddr, &val, id);
}

static int __set_id_reg(const struct kvm_vcpu *vcpu,
			const struct sys_reg_desc *rd, void __user *uaddr,
			bool raz)
{
	const u64 id = sys_reg_to_index(rd);
	int err;
	u64 val;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (val != read_id_reg(vcpu, rd, raz))
		return -EINVAL;

	return 0;
}

static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(vcpu, rd, uaddr, false);
}

static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
		      const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(vcpu, rd, uaddr, false);
}

static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __get_id_reg(vcpu, rd, uaddr, true);
}

static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
			  const struct kvm_one_reg *reg, void __user *uaddr)
{
	return __set_id_reg(vcpu, rd, uaddr, true);
}

static bool access_ctr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
		       const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sanitised_ftr_reg(SYS_CTR_EL0);
	return true;
}

static bool access_clidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	p->regval = read_sysreg(clidr_el1);
	return true;
}

static bool access_csselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	if (p->is_write)
		vcpu_write_sys_reg(vcpu, p->regval, r->reg);
	else
		p->regval = vcpu_read_sys_reg(vcpu, r->reg);
	return true;
}

static bool access_ccsidr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
			  const struct sys_reg_desc *r)
{
	u32 csselr;

	if (p->is_write)
		return write_to_read_only(vcpu, p, r);

	csselr = vcpu_read_sys_reg(vcpu, CSSELR_EL1);
	p->regval = get_ccsidr(csselr);

	/*
	 * Guests should not be doing cache operations by set/way at all, and
	 * for this reason, we trap them and attempt to infer the intent, so
	 * that we can flush the entire guest's address space at the appropriate
	 * time.
	 * To prevent this trapping from causing performance problems, let's
	 * expose the geometry of all data and unified caches (which are
	 * guaranteed to be PIPT and thus non-aliasing) as 1 set and 1 way.
	 * [If guests should attempt to infer aliasing properties from the
	 * geometry (which is not permitted by the architecture), they would
	 * only do so for virtually indexed caches.]
	 */
	if (!(csselr & 1)) // data or unified cache
		p->regval &= ~GENMASK(27, 3);
	return true;
}

/* sys_reg_desc initialiser for known cpufeature ID registers */
#define ID_SANITISED(name) {			\
	SYS_DESC(SYS_##name),			\
	.access	= access_id_reg,		\
	.get_user = get_id_reg,			\
	.set_user = set_id_reg,			\
}

/*
 * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
 * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
 * (1 <= crm < 8, 0 <= Op2 < 8).
 */
#define ID_UNALLOCATED(crm, op2) {			\
	Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),	\
	.access = access_raz_id_reg,			\
	.get_user = get_raz_id_reg,			\
	.set_user = set_raz_id_reg,			\
}

/*
 * sys_reg_desc initialiser for known ID registers that we hide from guests.
 * For now, these are exposed just like unallocated ID regs: they appear
 * RAZ for the guest.
 */
#define ID_HIDDEN(name) {			\
	SYS_DESC(SYS_##name),			\
	.access = access_raz_id_reg,		\
	.get_user = get_raz_id_reg,		\
	.set_user = set_raz_id_reg,		\
}

/*
 * Architected system registers.
 * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
 *
 * Debug handling: We do trap most, if not all debug related system
 * registers. The implementation is good enough to ensure that a guest
 * can use these with minimal performance degradation. The drawback is
 * that we don't implement any of the external debug, none of the
 * OSlock protocol. This should be revisited if we ever encounter a
 * more demanding guest...
 */
static const struct sys_reg_desc sys_reg_descs[] = {
	{ SYS_DESC(SYS_DC_ISW), access_dcsw },
	{ SYS_DESC(SYS_DC_CSW), access_dcsw },
	{ SYS_DESC(SYS_DC_CISW), access_dcsw },

	DBG_BCR_BVR_WCR_WVR_EL1(0),
	DBG_BCR_BVR_WCR_WVR_EL1(1),
	{ SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
	{ SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
	DBG_BCR_BVR_WCR_WVR_EL1(2),
	DBG_BCR_BVR_WCR_WVR_EL1(3),
	DBG_BCR_BVR_WCR_WVR_EL1(4),
	DBG_BCR_BVR_WCR_WVR_EL1(5),
	DBG_BCR_BVR_WCR_WVR_EL1(6),
	DBG_BCR_BVR_WCR_WVR_EL1(7),
	DBG_BCR_BVR_WCR_WVR_EL1(8),
	DBG_BCR_BVR_WCR_WVR_EL1(9),
	DBG_BCR_BVR_WCR_WVR_EL1(10),
	DBG_BCR_BVR_WCR_WVR_EL1(11),
	DBG_BCR_BVR_WCR_WVR_EL1(12),
	DBG_BCR_BVR_WCR_WVR_EL1(13),
	DBG_BCR_BVR_WCR_WVR_EL1(14),
	DBG_BCR_BVR_WCR_WVR_EL1(15),

	{ SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
	{ SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },

	{ SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
	{ SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
	// DBGDTR[TR]X_EL0 share the same encoding
	{ SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },

	{ SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },

	{ SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },

	/*
	 * ID regs: all ID_SANITISED() entries here must have corresponding
	 * entries in arm64_ftr_regs[].
	 */

	/* AArch64 mappings of the AArch32 ID registers */
	/* CRm=1 */
	ID_SANITISED(ID_PFR0_EL1),
	ID_SANITISED(ID_PFR1_EL1),
	ID_SANITISED(ID_DFR0_EL1),
	ID_HIDDEN(ID_AFR0_EL1),
	ID_SANITISED(ID_MMFR0_EL1),
	ID_SANITISED(ID_MMFR1_EL1),
	ID_SANITISED(ID_MMFR2_EL1),
	ID_SANITISED(ID_MMFR3_EL1),

	/* CRm=2 */
	ID_SANITISED(ID_ISAR0_EL1),
	ID_SANITISED(ID_ISAR1_EL1),
	ID_SANITISED(ID_ISAR2_EL1),
	ID_SANITISED(ID_ISAR3_EL1),
	ID_SANITISED(ID_ISAR4_EL1),
	ID_SANITISED(ID_ISAR5_EL1),
	ID_SANITISED(ID_MMFR4_EL1),
	ID_UNALLOCATED(2,7),

	/* CRm=3 */
	ID_SANITISED(MVFR0_EL1),
	ID_SANITISED(MVFR1_EL1),
	ID_SANITISED(MVFR2_EL1),
	ID_UNALLOCATED(3,3),
	ID_UNALLOCATED(3,4),
	ID_UNALLOCATED(3,5),
	ID_UNALLOCATED(3,6),
	ID_UNALLOCATED(3,7),

	/* AArch64 ID registers */
	/* CRm=4 */
	ID_SANITISED(ID_AA64PFR0_EL1),
	ID_SANITISED(ID_AA64PFR1_EL1),
	ID_UNALLOCATED(4,2),
	ID_UNALLOCATED(4,3),
	{ SYS_DESC(SYS_ID_AA64ZFR0_EL1), access_id_aa64zfr0_el1, .get_user = get_id_aa64zfr0_el1, .set_user = set_id_aa64zfr0_el1, .visibility = sve_id_visibility },
	ID_UNALLOCATED(4,5),
	ID_UNALLOCATED(4,6),
	ID_UNALLOCATED(4,7),

	/* CRm=5 */
	ID_SANITISED(ID_AA64DFR0_EL1),
	ID_SANITISED(ID_AA64DFR1_EL1),
	ID_UNALLOCATED(5,2),
	ID_UNALLOCATED(5,3),
	ID_HIDDEN(ID_AA64AFR0_EL1),
	ID_HIDDEN(ID_AA64AFR1_EL1),
	ID_UNALLOCATED(5,6),
	ID_UNALLOCATED(5,7),

	/* CRm=6 */
	ID_SANITISED(ID_AA64ISAR0_EL1),
	ID_SANITISED(ID_AA64ISAR1_EL1),
	ID_UNALLOCATED(6,2),
	ID_UNALLOCATED(6,3),
	ID_UNALLOCATED(6,4),
	ID_UNALLOCATED(6,5),
	ID_UNALLOCATED(6,6),
	ID_UNALLOCATED(6,7),

	/* CRm=7 */
	ID_SANITISED(ID_AA64MMFR0_EL1),
	ID_SANITISED(ID_AA64MMFR1_EL1),
	ID_SANITISED(ID_AA64MMFR2_EL1),
	ID_UNALLOCATED(7,3),
	ID_UNALLOCATED(7,4),
	ID_UNALLOCATED(7,5),
	ID_UNALLOCATED(7,6),
	ID_UNALLOCATED(7,7),

	{ SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
	{ SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
	{ SYS_DESC(SYS_ZCR_EL1), NULL, reset_val, ZCR_EL1, 0, .visibility = sve_visibility },
	{ SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
	{ SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
	{ SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },

	PTRAUTH_KEY(APIA),
	PTRAUTH_KEY(APIB),
	PTRAUTH_KEY(APDA),
	PTRAUTH_KEY(APDB),
	PTRAUTH_KEY(APGA),

	{ SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
	{ SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
	{ SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },

	{ SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
	{ SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },

	{ SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
	{ SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },

	{ SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
	{ SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },

	{ SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
	{ SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },

	{ SYS_DESC(SYS_LORSA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LOREA_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORN_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORC_EL1), trap_loregion },
	{ SYS_DESC(SYS_LORID_EL1), trap_loregion },

	{ SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
	{ SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },

	{ SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
	{ SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
	{ SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
	{ SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },

	{ SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
	{ SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },

	{ SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},

	{ SYS_DESC(SYS_CCSIDR_EL1), access_ccsidr },
	{ SYS_DESC(SYS_CLIDR_EL1), access_clidr },
	{ SYS_DESC(SYS_CSSELR_EL1), access_csselr, reset_unknown, CSSELR_EL1 },
	{ SYS_DESC(SYS_CTR_EL0), access_ctr },

	{ SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, PMCR_EL0 },
	{ SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
	{ SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
	{ SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
	{ SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
	{ SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
	{ SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
	{ SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
	{ SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
	/*
	 * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
	{ SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
	{ SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },

	{ SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
	{ SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },

	{ SYS_DESC(SYS_CNTP_TVAL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CTL_EL0), access_arch_timer },
	{ SYS_DESC(SYS_CNTP_CVAL_EL0), access_arch_timer },

	/* PMEVCNTRn_EL0 */
	PMU_PMEVCNTR_EL0(0),
	PMU_PMEVCNTR_EL0(1),
	PMU_PMEVCNTR_EL0(2),
	PMU_PMEVCNTR_EL0(3),
	PMU_PMEVCNTR_EL0(4),
	PMU_PMEVCNTR_EL0(5),
	PMU_PMEVCNTR_EL0(6),
	PMU_PMEVCNTR_EL0(7),
	PMU_PMEVCNTR_EL0(8),
	PMU_PMEVCNTR_EL0(9),
	PMU_PMEVCNTR_EL0(10),
	PMU_PMEVCNTR_EL0(11),
	PMU_PMEVCNTR_EL0(12),
	PMU_PMEVCNTR_EL0(13),
	PMU_PMEVCNTR_EL0(14),
	PMU_PMEVCNTR_EL0(15),
	PMU_PMEVCNTR_EL0(16),
	PMU_PMEVCNTR_EL0(17),
	PMU_PMEVCNTR_EL0(18),
	PMU_PMEVCNTR_EL0(19),
	PMU_PMEVCNTR_EL0(20),
	PMU_PMEVCNTR_EL0(21),
	PMU_PMEVCNTR_EL0(22),
	PMU_PMEVCNTR_EL0(23),
	PMU_PMEVCNTR_EL0(24),
	PMU_PMEVCNTR_EL0(25),
	PMU_PMEVCNTR_EL0(26),
	PMU_PMEVCNTR_EL0(27),
	PMU_PMEVCNTR_EL0(28),
	PMU_PMEVCNTR_EL0(29),
	PMU_PMEVCNTR_EL0(30),
	/* PMEVTYPERn_EL0 */
	PMU_PMEVTYPER_EL0(0),
	PMU_PMEVTYPER_EL0(1),
	PMU_PMEVTYPER_EL0(2),
	PMU_PMEVTYPER_EL0(3),
	PMU_PMEVTYPER_EL0(4),
	PMU_PMEVTYPER_EL0(5),
	PMU_PMEVTYPER_EL0(6),
	PMU_PMEVTYPER_EL0(7),
	PMU_PMEVTYPER_EL0(8),
	PMU_PMEVTYPER_EL0(9),
	PMU_PMEVTYPER_EL0(10),
	PMU_PMEVTYPER_EL0(11),
	PMU_PMEVTYPER_EL0(12),
	PMU_PMEVTYPER_EL0(13),
	PMU_PMEVTYPER_EL0(14),
	PMU_PMEVTYPER_EL0(15),
	PMU_PMEVTYPER_EL0(16),
	PMU_PMEVTYPER_EL0(17),
	PMU_PMEVTYPER_EL0(18),
	PMU_PMEVTYPER_EL0(19),
	PMU_PMEVTYPER_EL0(20),
	PMU_PMEVTYPER_EL0(21),
	PMU_PMEVTYPER_EL0(22),
	PMU_PMEVTYPER_EL0(23),
	PMU_PMEVTYPER_EL0(24),
	PMU_PMEVTYPER_EL0(25),
	PMU_PMEVTYPER_EL0(26),
	PMU_PMEVTYPER_EL0(27),
	PMU_PMEVTYPER_EL0(28),
	PMU_PMEVTYPER_EL0(29),
	PMU_PMEVTYPER_EL0(30),
	/*
	 * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
	 * in 32bit mode. Here we choose to reset it as zero for consistency.
	 */
	{ SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },

	{ SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
	{ SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
	{ SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
};

static bool trap_dbgidr(struct kvm_vcpu *vcpu,
			struct sys_reg_params *p,
			const struct sys_reg_desc *r)
{
	if (p->is_write) {
		return ignore_write(vcpu, p);
	} else {
		u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
		u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
		u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);

		p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
			     (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
			     (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
			     | (6 << 16) | (el3 << 14) | (el3 << 12));
		return true;
	}
}

static bool trap_debug32(struct kvm_vcpu *vcpu,
			 struct sys_reg_params *p,
			 const struct sys_reg_desc *r)
{
	if (p->is_write) {
		vcpu_cp14(vcpu, r->reg) = p->regval;
		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
		p->regval = vcpu_cp14(vcpu, r->reg);
	}

	return true;
}

/* AArch32 debug register mappings
 *
 * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
 * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
 *
 * All control registers and watchpoint value registers are mapped to
 * the lower 32 bits of their AArch64 equivalents. We share the trap
 * handlers with the above AArch64 code which checks what mode the
 * system is in.
 */

static bool trap_xvr(struct kvm_vcpu *vcpu,
		     struct sys_reg_params *p,
		     const struct sys_reg_desc *rd)
{
	u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];

	if (p->is_write) {
		u64 val = *dbg_reg;

		val &= 0xffffffffUL;
		val |= p->regval << 32;
		*dbg_reg = val;

		vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
	} else {
		p->regval = *dbg_reg >> 32;
	}

	trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);

	return true;
}

#define DBG_BCR_BVR_WCR_WVR(n)						\
	/* DBGBVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n }, 	\
	/* DBGBCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },	\
	/* DBGWVRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },	\
	/* DBGWCRn */							\
	{ Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }

#define DBGBXVR(n)							\
	{ Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }

/*
 * Trapped cp14 registers. We generally ignore most of the external
 * debug, on the principle that they don't really make sense to a
 * guest. Revisit this one day, would this principle change.
 */
static const struct sys_reg_desc cp14_regs[] = {
	/* DBGIDR */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
	/* DBGDTRRXext */
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },

	DBG_BCR_BVR_WCR_WVR(0),
	/* DBGDSCRint */
	{ Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(1),
	/* DBGDCCINT */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
	/* DBGDSCRext */
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(2),
	/* DBGDTR[RT]Xint */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
	/* DBGDTR[RT]Xext */
	{ Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(3),
	DBG_BCR_BVR_WCR_WVR(4),
	DBG_BCR_BVR_WCR_WVR(5),
	/* DBGWFAR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
	/* DBGOSECCR */
	{ Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
	DBG_BCR_BVR_WCR_WVR(6),
	/* DBGVCR */
	{ Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
	DBG_BCR_BVR_WCR_WVR(7),
	DBG_BCR_BVR_WCR_WVR(8),
	DBG_BCR_BVR_WCR_WVR(9),
	DBG_BCR_BVR_WCR_WVR(10),
	DBG_BCR_BVR_WCR_WVR(11),
	DBG_BCR_BVR_WCR_WVR(12),
	DBG_BCR_BVR_WCR_WVR(13),
	DBG_BCR_BVR_WCR_WVR(14),
	DBG_BCR_BVR_WCR_WVR(15),

	/* DBGDRAR (32bit) */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },

	DBGBXVR(0),
	/* DBGOSLAR */
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
	DBGBXVR(1),
	/* DBGOSLSR */
	{ Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
	DBGBXVR(2),
	DBGBXVR(3),
	/* DBGOSDLR */
	{ Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
	DBGBXVR(4),
	/* DBGPRCR */
	{ Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
	DBGBXVR(5),
	DBGBXVR(6),
	DBGBXVR(7),
	DBGBXVR(8),
	DBGBXVR(9),
	DBGBXVR(10),
	DBGBXVR(11),
	DBGBXVR(12),
	DBGBXVR(13),
	DBGBXVR(14),
	DBGBXVR(15),

	/* DBGDSAR (32bit) */
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },

	/* DBGDEVID2 */
	{ Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
	/* DBGDEVID1 */
	{ Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
	/* DBGDEVID */
	{ Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
	/* DBGCLAIMSET */
	{ Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
	/* DBGCLAIMCLR */
	{ Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
	/* DBGAUTHSTATUS */
	{ Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
};

/* Trapped cp14 64bit registers */
static const struct sys_reg_desc cp14_64_regs[] = {
	/* DBGDRAR (64bit) */
	{ Op1( 0), CRm( 1), .access = trap_raz_wi },

	/* DBGDSAR (64bit) */
	{ Op1( 0), CRm( 2), .access = trap_raz_wi },
};

/* Macro to expand the PMEVCNTRn register */
#define PMU_PMEVCNTR(n)							\
	/* PMEVCNTRn */							\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evcntr }

/* Macro to expand the PMEVTYPERn register */
#define PMU_PMEVTYPER(n)						\
	/* PMEVTYPERn */						\
	{ Op1(0), CRn(0b1110),						\
	  CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),		\
	  access_pmu_evtyper }

/*
 * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
 * depending on the way they are accessed (as a 32bit or a 64bit
 * register).
 */
static const struct sys_reg_desc cp15_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 0), Op2( 1), access_ctr },
	{ Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
	{ Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
	{ Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
	{ Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
	{ Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },

	/*
	 * DC{C,I,CI}SW operations:
	 */
	{ Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
	{ Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },

	/* PMU */
	{ Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
	{ Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
	{ Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },

	{ Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
	{ Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
	{ Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },

	/* ICC_SRE */
	{ Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },

	{ Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },

	/* Arch Tmers */
	{ SYS_DESC(SYS_AARCH32_CNTP_TVAL), access_arch_timer },
	{ SYS_DESC(SYS_AARCH32_CNTP_CTL), access_arch_timer },

	/* PMEVCNTRn */
	PMU_PMEVCNTR(0),
	PMU_PMEVCNTR(1),
	PMU_PMEVCNTR(2),
	PMU_PMEVCNTR(3),
	PMU_PMEVCNTR(4),
	PMU_PMEVCNTR(5),
	PMU_PMEVCNTR(6),
	PMU_PMEVCNTR(7),
	PMU_PMEVCNTR(8),
	PMU_PMEVCNTR(9),
	PMU_PMEVCNTR(10),
	PMU_PMEVCNTR(11),
	PMU_PMEVCNTR(12),
	PMU_PMEVCNTR(13),
	PMU_PMEVCNTR(14),
	PMU_PMEVCNTR(15),
	PMU_PMEVCNTR(16),
	PMU_PMEVCNTR(17),
	PMU_PMEVCNTR(18),
	PMU_PMEVCNTR(19),
	PMU_PMEVCNTR(20),
	PMU_PMEVCNTR(21),
	PMU_PMEVCNTR(22),
	PMU_PMEVCNTR(23),
	PMU_PMEVCNTR(24),
	PMU_PMEVCNTR(25),
	PMU_PMEVCNTR(26),
	PMU_PMEVCNTR(27),
	PMU_PMEVCNTR(28),
	PMU_PMEVCNTR(29),
	PMU_PMEVCNTR(30),
	/* PMEVTYPERn */
	PMU_PMEVTYPER(0),
	PMU_PMEVTYPER(1),
	PMU_PMEVTYPER(2),
	PMU_PMEVTYPER(3),
	PMU_PMEVTYPER(4),
	PMU_PMEVTYPER(5),
	PMU_PMEVTYPER(6),
	PMU_PMEVTYPER(7),
	PMU_PMEVTYPER(8),
	PMU_PMEVTYPER(9),
	PMU_PMEVTYPER(10),
	PMU_PMEVTYPER(11),
	PMU_PMEVTYPER(12),
	PMU_PMEVTYPER(13),
	PMU_PMEVTYPER(14),
	PMU_PMEVTYPER(15),
	PMU_PMEVTYPER(16),
	PMU_PMEVTYPER(17),
	PMU_PMEVTYPER(18),
	PMU_PMEVTYPER(19),
	PMU_PMEVTYPER(20),
	PMU_PMEVTYPER(21),
	PMU_PMEVTYPER(22),
	PMU_PMEVTYPER(23),
	PMU_PMEVTYPER(24),
	PMU_PMEVTYPER(25),
	PMU_PMEVTYPER(26),
	PMU_PMEVTYPER(27),
	PMU_PMEVTYPER(28),
	PMU_PMEVTYPER(29),
	PMU_PMEVTYPER(30),
	/* PMCCFILTR */
	{ Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },

	{ Op1(1), CRn( 0), CRm( 0), Op2(0), access_ccsidr },
	{ Op1(1), CRn( 0), CRm( 0), Op2(1), access_clidr },
	{ Op1(2), CRn( 0), CRm( 0), Op2(0), access_csselr, NULL, c0_CSSELR },
};

static const struct sys_reg_desc cp15_64_regs[] = {
	{ Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
	{ Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
	{ Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
	{ Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
	{ Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
	{ Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
	{ SYS_DESC(SYS_AARCH32_CNTP_CVAL),    access_arch_timer },
};

/* Target specific emulation tables */
static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];

void kvm_register_target_sys_reg_table(unsigned int target,
				       struct kvm_sys_reg_target_table *table)
{
	target_tables[target] = table;
}

/* Get specific register table for this target. */
static const struct sys_reg_desc *get_target_table(unsigned target,
						   bool mode_is_64,
						   size_t *num)
{
	struct kvm_sys_reg_target_table *table;

	table = target_tables[target];
	if (mode_is_64) {
		*num = table->table64.num;
		return table->table64.table;
	} else {
		*num = table->table32.num;
		return table->table32.table;
	}
}

static int match_sys_reg(const void *key, const void *elt)
{
	const unsigned long pval = (unsigned long)key;
	const struct sys_reg_desc *r = elt;

	return pval - reg_to_encoding(r);
}

static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
					 const struct sys_reg_desc table[],
					 unsigned int num)
{
	unsigned long pval = reg_to_encoding(params);

	return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
}

int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	kvm_inject_undefined(vcpu);
	return 1;
}

static void perform_access(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params,
			   const struct sys_reg_desc *r)
{
	trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);

	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_guest(vcpu, r)) {
		kvm_inject_undefined(vcpu);
		return;
	}

	/*
	 * Not having an accessor means that we have configured a trap
	 * that we don't know how to handle. This certainly qualifies
	 * as a gross bug that should be fixed right away.
	 */
	BUG_ON(!r->access);

	/* Skip instruction if instructed so */
	if (likely(r->access(vcpu, params, r)))
		kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
}

/*
 * emulate_cp --  tries to match a sys_reg access in a handling table, and
 *                call the corresponding trap handler.
 *
 * @params: pointer to the descriptor of the access
 * @table: array of trap descriptors
 * @num: size of the trap descriptor array
 *
 * Return 0 if the access has been handled, and -1 if not.
 */
static int emulate_cp(struct kvm_vcpu *vcpu,
		      struct sys_reg_params *params,
		      const struct sys_reg_desc *table,
		      size_t num)
{
	const struct sys_reg_desc *r;

	if (!table)
		return -1;	/* Not handled */

	r = find_reg(params, table, num);

	if (r) {
		perform_access(vcpu, params, r);
		return 0;
	}

	/* Not handled */
	return -1;
}

static void unhandled_cp_access(struct kvm_vcpu *vcpu,
				struct sys_reg_params *params)
{
	u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
	int cp = -1;

	switch(hsr_ec) {
	case ESR_ELx_EC_CP15_32:
	case ESR_ELx_EC_CP15_64:
		cp = 15;
		break;
	case ESR_ELx_EC_CP14_MR:
	case ESR_ELx_EC_CP14_64:
		cp = 14;
		break;
	default:
		WARN_ON(1);
	}

	kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
		cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
	print_sys_reg_instr(params);
	kvm_inject_undefined(vcpu);
}

/**
 * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int Rt2 = (hsr >> 10) & 0x1f;

	params.is_aarch32 = true;
	params.is_32bit = false;
	params.CRm = (hsr >> 1) & 0xf;
	params.is_write = ((hsr & 1) == 0);

	params.Op0 = 0;
	params.Op1 = (hsr >> 16) & 0xf;
	params.Op2 = 0;
	params.CRn = 0;

	/*
	 * Make a 64-bit value out of Rt and Rt2. As we use the same trap
	 * backends between AArch32 and AArch64, we get away with it.
	 */
	if (params.is_write) {
		params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
		params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
	}

	/*
	 * Try to emulate the coprocessor access using the target
	 * specific table first, and using the global table afterwards.
	 * If either of the tables contains a handler, handle the
	 * potential register operation in the case of a read and return
	 * with success.
	 */
	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		/* Split up the value between registers for the read side */
		if (!params.is_write) {
			vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
			vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
		}

		return 1;
	}

	unhandled_cp_access(vcpu, &params);
	return 1;
}

/**
 * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *global,
			    size_t nr_global,
			    const struct sys_reg_desc *target_specific,
			    size_t nr_specific)
{
	struct sys_reg_params params;
	u32 hsr = kvm_vcpu_get_hsr(vcpu);
	int Rt  = kvm_vcpu_sys_get_rt(vcpu);

	params.is_aarch32 = true;
	params.is_32bit = true;
	params.CRm = (hsr >> 1) & 0xf;
	params.regval = vcpu_get_reg(vcpu, Rt);
	params.is_write = ((hsr & 1) == 0);
	params.CRn = (hsr >> 10) & 0xf;
	params.Op0 = 0;
	params.Op1 = (hsr >> 14) & 0x7;
	params.Op2 = (hsr >> 17) & 0x7;

	if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
	    !emulate_cp(vcpu, &params, global, nr_global)) {
		if (!params.is_write)
			vcpu_set_reg(vcpu, Rt, params.regval);
		return 1;
	}

	unhandled_cp_access(vcpu, &params);
	return 1;
}

int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_64(vcpu,
				cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
				target_specific, num);
}

int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	const struct sys_reg_desc *target_specific;
	size_t num;

	target_specific = get_target_table(vcpu->arch.target, false, &num);
	return kvm_handle_cp_32(vcpu,
				cp15_regs, ARRAY_SIZE(cp15_regs),
				target_specific, num);
}

int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_64(vcpu,
				cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
				NULL, 0);
}

int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	return kvm_handle_cp_32(vcpu,
				cp14_regs, ARRAY_SIZE(cp14_regs),
				NULL, 0);
}

static int emulate_sys_reg(struct kvm_vcpu *vcpu,
			   struct sys_reg_params *params)
{
	size_t num;
	const struct sys_reg_desc *table, *r;

	table = get_target_table(vcpu->arch.target, true, &num);

	/* Search target-specific then generic table. */
	r = find_reg(params, table, num);
	if (!r)
		r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	if (likely(r)) {
		perform_access(vcpu, params, r);
	} else {
		kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
			*vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
		print_sys_reg_instr(params);
		kvm_inject_undefined(vcpu);
	}
	return 1;
}

static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
				const struct sys_reg_desc *table, size_t num,
				unsigned long *bmap)
{
	unsigned long i;

	for (i = 0; i < num; i++)
		if (table[i].reset) {
			int reg = table[i].reg;

			table[i].reset(vcpu, &table[i]);
			if (reg > 0 && reg < NR_SYS_REGS)
				set_bit(reg, bmap);
		}
}

/**
 * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
 * @vcpu: The VCPU pointer
 * @run:  The kvm_run struct
 */
int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
	struct sys_reg_params params;
	unsigned long esr = kvm_vcpu_get_hsr(vcpu);
	int Rt = kvm_vcpu_sys_get_rt(vcpu);
	int ret;

	trace_kvm_handle_sys_reg(esr);

	params.is_aarch32 = false;
	params.is_32bit = false;
	params.Op0 = (esr >> 20) & 3;
	params.Op1 = (esr >> 14) & 0x7;
	params.CRn = (esr >> 10) & 0xf;
	params.CRm = (esr >> 1) & 0xf;
	params.Op2 = (esr >> 17) & 0x7;
	params.regval = vcpu_get_reg(vcpu, Rt);
	params.is_write = !(esr & 1);

	ret = emulate_sys_reg(vcpu, &params);

	if (!params.is_write)
		vcpu_set_reg(vcpu, Rt, params.regval);
	return ret;
}

/******************************************************************************
 * Userspace API
 *****************************************************************************/

static bool index_to_params(u64 id, struct sys_reg_params *params)
{
	switch (id & KVM_REG_SIZE_MASK) {
	case KVM_REG_SIZE_U64:
		/* Any unused index bits means it's not valid. */
		if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
			      | KVM_REG_ARM_COPROC_MASK
			      | KVM_REG_ARM64_SYSREG_OP0_MASK
			      | KVM_REG_ARM64_SYSREG_OP1_MASK
			      | KVM_REG_ARM64_SYSREG_CRN_MASK
			      | KVM_REG_ARM64_SYSREG_CRM_MASK
			      | KVM_REG_ARM64_SYSREG_OP2_MASK))
			return false;
		params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
		params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
		params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
		params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
			       >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
		params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
			       >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
		return true;
	default:
		return false;
	}
}

const struct sys_reg_desc *find_reg_by_id(u64 id,
					  struct sys_reg_params *params,
					  const struct sys_reg_desc table[],
					  unsigned int num)
{
	if (!index_to_params(id, params))
		return NULL;

	return find_reg(params, table, num);
}

/* Decode an index value, and find the sys_reg_desc entry. */
static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
						    u64 id)
{
	size_t num;
	const struct sys_reg_desc *table, *r;
	struct sys_reg_params params;

	/* We only do sys_reg for now. */
	if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
		return NULL;

	table = get_target_table(vcpu->arch.target, true, &num);
	r = find_reg_by_id(id, &params, table, num);
	if (!r)
		r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));

	/* Not saved in the sys_reg array and not otherwise accessible? */
	if (r && !(r->reg || r->get_user))
		r = NULL;

	return r;
}

/*
 * These are the invariant sys_reg registers: we let the guest see the
 * host versions of these, so they're part of the guest state.
 *
 * A future CPU may provide a mechanism to present different values to
 * the guest, or a future kvm may trap them.
 */

#define FUNCTION_INVARIANT(reg)						\
	static void get_##reg(struct kvm_vcpu *v,			\
			      const struct sys_reg_desc *r)		\
	{								\
		((struct sys_reg_desc *)r)->val = read_sysreg(reg);	\
	}

FUNCTION_INVARIANT(midr_el1)
FUNCTION_INVARIANT(revidr_el1)
FUNCTION_INVARIANT(clidr_el1)
FUNCTION_INVARIANT(aidr_el1)

static void get_ctr_el0(struct kvm_vcpu *v, const struct sys_reg_desc *r)
{
	((struct sys_reg_desc *)r)->val = read_sanitised_ftr_reg(SYS_CTR_EL0);
}

/* ->val is filled in by kvm_sys_reg_table_init() */
static struct sys_reg_desc invariant_sys_regs[] = {
	{ SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
	{ SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
	{ SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
	{ SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
	{ SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
};

static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
{
	if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
{
	if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
		return -EFAULT;
	return 0;
}

static int get_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;

	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	return reg_to_user(uaddr, &r->val, id);
}

static int set_invariant_sys_reg(u64 id, void __user *uaddr)
{
	struct sys_reg_params params;
	const struct sys_reg_desc *r;
	int err;
	u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */

	r = find_reg_by_id(id, &params, invariant_sys_regs,
			   ARRAY_SIZE(invariant_sys_regs));
	if (!r)
		return -ENOENT;

	err = reg_from_user(&val, uaddr, id);
	if (err)
		return err;

	/* This is what we mean by invariant: you can't change it. */
	if (r->val != val)
		return -EINVAL;

	return 0;
}

static bool is_valid_cache(u32 val)
{
	u32 level, ctype;

	if (val >= CSSELR_MAX)
		return false;

	/* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
	level = (val >> 1);
	ctype = (cache_levels >> (level * 3)) & 7;

	switch (ctype) {
	case 0: /* No cache */
		return false;
	case 1: /* Instruction cache only */
		return (val & 1);
	case 2: /* Data cache only */
	case 4: /* Unified cache */
		return !(val & 1);
	case 3: /* Separate instruction and data caches */
		return true;
	default: /* Reserved: we can't know instruction or data. */
		return false;
	}
}

static int demux_c15_get(u64 id, void __user *uaddr)
{
	u32 val;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		return put_user(get_ccsidr(val), uval);
	default:
		return -ENOENT;
	}
}

static int demux_c15_set(u64 id, void __user *uaddr)
{
	u32 val, newval;
	u32 __user *uval = uaddr;

	/* Fail if we have unknown bits set. */
	if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
		   | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
		return -ENOENT;

	switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
	case KVM_REG_ARM_DEMUX_ID_CCSIDR:
		if (KVM_REG_SIZE(id) != 4)
			return -ENOENT;
		val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
			>> KVM_REG_ARM_DEMUX_VAL_SHIFT;
		if (!is_valid_cache(val))
			return -ENOENT;

		if (get_user(newval, uval))
			return -EFAULT;

		/* This is also invariant: you can't change it. */
		if (newval != get_ccsidr(val))
			return -EINVAL;
		return 0;
	default:
		return -ENOENT;
	}
}

int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_get(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return get_invariant_sys_reg(reg->id, uaddr);

	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

	if (r->get_user)
		return (r->get_user)(vcpu, r, reg, uaddr);

	return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
}

int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
{
	const struct sys_reg_desc *r;
	void __user *uaddr = (void __user *)(unsigned long)reg->addr;

	if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
		return demux_c15_set(reg->id, uaddr);

	if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
		return -ENOENT;

	r = index_to_sys_reg_desc(vcpu, reg->id);
	if (!r)
		return set_invariant_sys_reg(reg->id, uaddr);

	/* Check for regs disabled by runtime config */
	if (sysreg_hidden_from_user(vcpu, r))
		return -ENOENT;

	if (r->set_user)
		return (r->set_user)(vcpu, r, reg, uaddr);

	return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
}

static unsigned int num_demux_regs(void)
{
	unsigned int i, count = 0;

	for (i = 0; i < CSSELR_MAX; i++)
		if (is_valid_cache(i))
			count++;

	return count;
}

static int write_demux_regids(u64 __user *uindices)
{
	u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
	unsigned int i;

	val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
	for (i = 0; i < CSSELR_MAX; i++) {
		if (!is_valid_cache(i))
			continue;
		if (put_user(val | i, uindices))
			return -EFAULT;
		uindices++;
	}
	return 0;
}

static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
{
	return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
		KVM_REG_ARM64_SYSREG |
		(reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
		(reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
		(reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
		(reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
		(reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
}

static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
{
	if (!*uind)
		return true;

	if (put_user(sys_reg_to_index(reg), *uind))
		return false;

	(*uind)++;
	return true;
}

static int walk_one_sys_reg(const struct kvm_vcpu *vcpu,
			    const struct sys_reg_desc *rd,
			    u64 __user **uind,
			    unsigned int *total)
{
	/*
	 * Ignore registers we trap but don't save,
	 * and for which no custom user accessor is provided.
	 */
	if (!(rd->reg || rd->get_user))
		return 0;

	if (sysreg_hidden_from_user(vcpu, rd))
		return 0;

	if (!copy_reg_to_user(rd, uind))
		return -EFAULT;

	(*total)++;
	return 0;
}

/* Assumed ordered tables, see kvm_sys_reg_table_init. */
static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
{
	const struct sys_reg_desc *i1, *i2, *end1, *end2;
	unsigned int total = 0;
	size_t num;
	int err;

	/* We check for duplicates here, to allow arch-specific overrides. */
	i1 = get_target_table(vcpu->arch.target, true, &num);
	end1 = i1 + num;
	i2 = sys_reg_descs;
	end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);

	BUG_ON(i1 == end1 || i2 == end2);

	/* Walk carefully, as both tables may refer to the same register. */
	while (i1 || i2) {
		int cmp = cmp_sys_reg(i1, i2);
		/* target-specific overrides generic entry. */
		if (cmp <= 0)
			err = walk_one_sys_reg(vcpu, i1, &uind, &total);
		else
			err = walk_one_sys_reg(vcpu, i2, &uind, &total);

		if (err)
			return err;

		if (cmp <= 0 && ++i1 == end1)
			i1 = NULL;
		if (cmp >= 0 && ++i2 == end2)
			i2 = NULL;
	}
	return total;
}

unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
{
	return ARRAY_SIZE(invariant_sys_regs)
		+ num_demux_regs()
		+ walk_sys_regs(vcpu, (u64 __user *)NULL);
}

int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
{
	unsigned int i;
	int err;

	/* Then give them all the invariant registers' indices. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
		if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
			return -EFAULT;
		uindices++;
	}

	err = walk_sys_regs(vcpu, uindices);
	if (err < 0)
		return err;
	uindices += err;

	return write_demux_regids(uindices);
}

static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
{
	unsigned int i;

	for (i = 1; i < n; i++) {
		if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
			kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
			return 1;
		}
	}

	return 0;
}

void kvm_sys_reg_table_init(void)
{
	unsigned int i;
	struct sys_reg_desc clidr;

	/* Make sure tables are unique and in order. */
	BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
	BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
	BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
	BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
	BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
	BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));

	/* We abuse the reset function to overwrite the table itself. */
	for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
		invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);

	/*
	 * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
	 *
	 *   If software reads the Cache Type fields from Ctype1
	 *   upwards, once it has seen a value of 0b000, no caches
	 *   exist at further-out levels of the hierarchy. So, for
	 *   example, if Ctype3 is the first Cache Type field with a
	 *   value of 0b000, the values of Ctype4 to Ctype7 must be
	 *   ignored.
	 */
	get_clidr_el1(NULL, &clidr); /* Ugly... */
	cache_levels = clidr.val;
	for (i = 0; i < 7; i++)
		if (((cache_levels >> (i*3)) & 7) == 0)
			break;
	/* Clear all higher bits. */
	cache_levels &= (1 << (i*3))-1;
}

/**
 * kvm_reset_sys_regs - sets system registers to reset value
 * @vcpu: The VCPU pointer
 *
 * This function finds the right table above and sets the registers on the
 * virtual CPU struct to their architecturally defined reset values.
 */
void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
{
	size_t num;
	const struct sys_reg_desc *table;
	DECLARE_BITMAP(bmap, NR_SYS_REGS) = { 0, };

	/* Generic chip reset first (so target could override). */
	reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs), bmap);

	table = get_target_table(vcpu->arch.target, true, &num);
	reset_sys_reg_descs(vcpu, table, num, bmap);

	for (num = 1; num < NR_SYS_REGS; num++) {
		if (WARN(!test_bit(num, bmap),
			 "Didn't reset __vcpu_sys_reg(%zi)\n", num))
			break;
	}
}