// SPDX-License-Identifier: GPL-2.0 /* * TSA driver * * Copyright 2022 CS GROUP France * * Author: Herve Codina */ #include "tsa.h" #include #include #include #include #include #include #include #include /* TSA SI RAM routing tables entry */ #define TSA_SIRAM_ENTRY_LAST (1 << 16) #define TSA_SIRAM_ENTRY_BYTE (1 << 17) #define TSA_SIRAM_ENTRY_CNT(x) (((x) & 0x0f) << 18) #define TSA_SIRAM_ENTRY_CSEL_MASK (0x7 << 22) #define TSA_SIRAM_ENTRY_CSEL_NU (0x0 << 22) #define TSA_SIRAM_ENTRY_CSEL_SCC2 (0x2 << 22) #define TSA_SIRAM_ENTRY_CSEL_SCC3 (0x3 << 22) #define TSA_SIRAM_ENTRY_CSEL_SCC4 (0x4 << 22) #define TSA_SIRAM_ENTRY_CSEL_SMC1 (0x5 << 22) #define TSA_SIRAM_ENTRY_CSEL_SMC2 (0x6 << 22) /* SI mode register (32 bits) */ #define TSA_SIMODE 0x00 #define TSA_SIMODE_SMC2 0x80000000 #define TSA_SIMODE_SMC1 0x00008000 #define TSA_SIMODE_TDMA(x) ((x) << 0) #define TSA_SIMODE_TDMB(x) ((x) << 16) #define TSA_SIMODE_TDM_MASK 0x0fff #define TSA_SIMODE_TDM_SDM_MASK 0x0c00 #define TSA_SIMODE_TDM_SDM_NORM 0x0000 #define TSA_SIMODE_TDM_SDM_ECHO 0x0400 #define TSA_SIMODE_TDM_SDM_INTL_LOOP 0x0800 #define TSA_SIMODE_TDM_SDM_LOOP_CTRL 0x0c00 #define TSA_SIMODE_TDM_RFSD(x) ((x) << 8) #define TSA_SIMODE_TDM_DSC 0x0080 #define TSA_SIMODE_TDM_CRT 0x0040 #define TSA_SIMODE_TDM_STZ 0x0020 #define TSA_SIMODE_TDM_CE 0x0010 #define TSA_SIMODE_TDM_FE 0x0008 #define TSA_SIMODE_TDM_GM 0x0004 #define TSA_SIMODE_TDM_TFSD(x) ((x) << 0) /* SI global mode register (8 bits) */ #define TSA_SIGMR 0x04 #define TSA_SIGMR_ENB (1<<3) #define TSA_SIGMR_ENA (1<<2) #define TSA_SIGMR_RDM_MASK 0x03 #define TSA_SIGMR_RDM_STATIC_TDMA 0x00 #define TSA_SIGMR_RDM_DYN_TDMA 0x01 #define TSA_SIGMR_RDM_STATIC_TDMAB 0x02 #define TSA_SIGMR_RDM_DYN_TDMAB 0x03 /* SI status register (8 bits) */ #define TSA_SISTR 0x06 /* SI command register (8 bits) */ #define TSA_SICMR 0x07 /* SI clock route register (32 bits) */ #define TSA_SICR 0x0C #define TSA_SICR_SCC2(x) ((x) << 8) #define TSA_SICR_SCC3(x) ((x) << 16) #define TSA_SICR_SCC4(x) ((x) << 24) #define TSA_SICR_SCC_MASK 0x0ff #define TSA_SICR_SCC_GRX (1 << 7) #define TSA_SICR_SCC_SCX_TSA (1 << 6) #define TSA_SICR_SCC_RXCS_MASK (0x7 << 3) #define TSA_SICR_SCC_RXCS_BRG1 (0x0 << 3) #define TSA_SICR_SCC_RXCS_BRG2 (0x1 << 3) #define TSA_SICR_SCC_RXCS_BRG3 (0x2 << 3) #define TSA_SICR_SCC_RXCS_BRG4 (0x3 << 3) #define TSA_SICR_SCC_RXCS_CLK15 (0x4 << 3) #define TSA_SICR_SCC_RXCS_CLK26 (0x5 << 3) #define TSA_SICR_SCC_RXCS_CLK37 (0x6 << 3) #define TSA_SICR_SCC_RXCS_CLK48 (0x7 << 3) #define TSA_SICR_SCC_TXCS_MASK (0x7 << 0) #define TSA_SICR_SCC_TXCS_BRG1 (0x0 << 0) #define TSA_SICR_SCC_TXCS_BRG2 (0x1 << 0) #define TSA_SICR_SCC_TXCS_BRG3 (0x2 << 0) #define TSA_SICR_SCC_TXCS_BRG4 (0x3 << 0) #define TSA_SICR_SCC_TXCS_CLK15 (0x4 << 0) #define TSA_SICR_SCC_TXCS_CLK26 (0x5 << 0) #define TSA_SICR_SCC_TXCS_CLK37 (0x6 << 0) #define TSA_SICR_SCC_TXCS_CLK48 (0x7 << 0) /* Serial interface RAM pointer register (32 bits) */ #define TSA_SIRP 0x10 struct tsa_entries_area { void __iomem *entries_start; void __iomem *entries_next; void __iomem *last_entry; }; struct tsa_tdm { bool is_enable; struct clk *l1rclk_clk; struct clk *l1rsync_clk; struct clk *l1tclk_clk; struct clk *l1tsync_clk; u32 simode_tdm; }; #define TSA_TDMA 0 #define TSA_TDMB 1 struct tsa { struct device *dev; void __iomem *si_regs; void __iomem *si_ram; resource_size_t si_ram_sz; spinlock_t lock; int tdms; /* TSA_TDMx ORed */ struct tsa_tdm tdm[2]; /* TDMa and TDMb */ struct tsa_serial { unsigned int id; struct tsa_serial_info info; } serials[6]; }; static inline struct tsa *tsa_serial_get_tsa(struct tsa_serial *tsa_serial) { /* The serials table is indexed by the serial id */ return container_of(tsa_serial, struct tsa, serials[tsa_serial->id]); } static inline void tsa_write32(void __iomem *addr, u32 val) { iowrite32be(val, addr); } static inline void tsa_write8(void __iomem *addr, u32 val) { iowrite8(val, addr); } static inline u32 tsa_read32(void __iomem *addr) { return ioread32be(addr); } static inline void tsa_clrbits32(void __iomem *addr, u32 clr) { tsa_write32(addr, tsa_read32(addr) & ~clr); } static inline void tsa_clrsetbits32(void __iomem *addr, u32 clr, u32 set) { tsa_write32(addr, (tsa_read32(addr) & ~clr) | set); } int tsa_serial_connect(struct tsa_serial *tsa_serial) { struct tsa *tsa = tsa_serial_get_tsa(tsa_serial); unsigned long flags; u32 clear; u32 set; switch (tsa_serial->id) { case FSL_CPM_TSA_SCC2: clear = TSA_SICR_SCC2(TSA_SICR_SCC_MASK); set = TSA_SICR_SCC2(TSA_SICR_SCC_SCX_TSA); break; case FSL_CPM_TSA_SCC3: clear = TSA_SICR_SCC3(TSA_SICR_SCC_MASK); set = TSA_SICR_SCC3(TSA_SICR_SCC_SCX_TSA); break; case FSL_CPM_TSA_SCC4: clear = TSA_SICR_SCC4(TSA_SICR_SCC_MASK); set = TSA_SICR_SCC4(TSA_SICR_SCC_SCX_TSA); break; default: dev_err(tsa->dev, "Unsupported serial id %u\n", tsa_serial->id); return -EINVAL; } spin_lock_irqsave(&tsa->lock, flags); tsa_clrsetbits32(tsa->si_regs + TSA_SICR, clear, set); spin_unlock_irqrestore(&tsa->lock, flags); return 0; } EXPORT_SYMBOL(tsa_serial_connect); int tsa_serial_disconnect(struct tsa_serial *tsa_serial) { struct tsa *tsa = tsa_serial_get_tsa(tsa_serial); unsigned long flags; u32 clear; switch (tsa_serial->id) { case FSL_CPM_TSA_SCC2: clear = TSA_SICR_SCC2(TSA_SICR_SCC_MASK); break; case FSL_CPM_TSA_SCC3: clear = TSA_SICR_SCC3(TSA_SICR_SCC_MASK); break; case FSL_CPM_TSA_SCC4: clear = TSA_SICR_SCC4(TSA_SICR_SCC_MASK); break; default: dev_err(tsa->dev, "Unsupported serial id %u\n", tsa_serial->id); return -EINVAL; } spin_lock_irqsave(&tsa->lock, flags); tsa_clrsetbits32(tsa->si_regs + TSA_SICR, clear, 0); spin_unlock_irqrestore(&tsa->lock, flags); return 0; } EXPORT_SYMBOL(tsa_serial_disconnect); int tsa_serial_get_info(struct tsa_serial *tsa_serial, struct tsa_serial_info *info) { memcpy(info, &tsa_serial->info, sizeof(*info)); return 0; } EXPORT_SYMBOL(tsa_serial_get_info); static void tsa_init_entries_area(struct tsa *tsa, struct tsa_entries_area *area, u32 tdms, u32 tdm_id, bool is_rx) { resource_size_t quarter; resource_size_t half; quarter = tsa->si_ram_sz/4; half = tsa->si_ram_sz/2; if (tdms == BIT(TSA_TDMA)) { /* Only TDMA */ if (is_rx) { /* First half of si_ram */ area->entries_start = tsa->si_ram; area->entries_next = area->entries_start + half; area->last_entry = NULL; } else { /* Second half of si_ram */ area->entries_start = tsa->si_ram + half; area->entries_next = area->entries_start + half; area->last_entry = NULL; } } else { /* Only TDMB or both TDMs */ if (tdm_id == TSA_TDMA) { if (is_rx) { /* First half of first half of si_ram */ area->entries_start = tsa->si_ram; area->entries_next = area->entries_start + quarter; area->last_entry = NULL; } else { /* First half of second half of si_ram */ area->entries_start = tsa->si_ram + (2 * quarter); area->entries_next = area->entries_start + quarter; area->last_entry = NULL; } } else { if (is_rx) { /* Second half of first half of si_ram */ area->entries_start = tsa->si_ram + quarter; area->entries_next = area->entries_start + quarter; area->last_entry = NULL; } else { /* Second half of second half of si_ram */ area->entries_start = tsa->si_ram + (3 * quarter); area->entries_next = area->entries_start + quarter; area->last_entry = NULL; } } } } static const char *tsa_serial_id2name(struct tsa *tsa, u32 serial_id) { switch (serial_id) { case FSL_CPM_TSA_NU: return "Not used"; case FSL_CPM_TSA_SCC2: return "SCC2"; case FSL_CPM_TSA_SCC3: return "SCC3"; case FSL_CPM_TSA_SCC4: return "SCC4"; case FSL_CPM_TSA_SMC1: return "SMC1"; case FSL_CPM_TSA_SMC2: return "SMC2"; default: break; } return NULL; } static u32 tsa_serial_id2csel(struct tsa *tsa, u32 serial_id) { switch (serial_id) { case FSL_CPM_TSA_SCC2: return TSA_SIRAM_ENTRY_CSEL_SCC2; case FSL_CPM_TSA_SCC3: return TSA_SIRAM_ENTRY_CSEL_SCC3; case FSL_CPM_TSA_SCC4: return TSA_SIRAM_ENTRY_CSEL_SCC4; case FSL_CPM_TSA_SMC1: return TSA_SIRAM_ENTRY_CSEL_SMC1; case FSL_CPM_TSA_SMC2: return TSA_SIRAM_ENTRY_CSEL_SMC2; default: break; } return TSA_SIRAM_ENTRY_CSEL_NU; } static int tsa_add_entry(struct tsa *tsa, struct tsa_entries_area *area, u32 count, u32 serial_id) { void __iomem *addr; u32 left; u32 val; u32 cnt; u32 nb; addr = area->last_entry ? area->last_entry + 4 : area->entries_start; nb = DIV_ROUND_UP(count, 8); if ((addr + (nb * 4)) > area->entries_next) { dev_err(tsa->dev, "si ram area full\n"); return -ENOSPC; } if (area->last_entry) { /* Clear last flag */ tsa_clrbits32(area->last_entry, TSA_SIRAM_ENTRY_LAST); } left = count; while (left) { val = TSA_SIRAM_ENTRY_BYTE | tsa_serial_id2csel(tsa, serial_id); if (left > 16) { cnt = 16; } else { cnt = left; val |= TSA_SIRAM_ENTRY_LAST; area->last_entry = addr; } val |= TSA_SIRAM_ENTRY_CNT(cnt - 1); tsa_write32(addr, val); addr += 4; left -= cnt; } return 0; } static int tsa_of_parse_tdm_route(struct tsa *tsa, struct device_node *tdm_np, u32 tdms, u32 tdm_id, bool is_rx) { struct tsa_entries_area area; const char *route_name; u32 serial_id; int len, i; u32 count; const char *serial_name; struct tsa_serial_info *serial_info; struct tsa_tdm *tdm; int ret; u32 ts; route_name = is_rx ? "fsl,rx-ts-routes" : "fsl,tx-ts-routes"; len = of_property_count_u32_elems(tdm_np, route_name); if (len < 0) { dev_err(tsa->dev, "%pOF: failed to read %s\n", tdm_np, route_name); return len; } if (len % 2 != 0) { dev_err(tsa->dev, "%pOF: wrong %s format\n", tdm_np, route_name); return -EINVAL; } tsa_init_entries_area(tsa, &area, tdms, tdm_id, is_rx); ts = 0; for (i = 0; i < len; i += 2) { of_property_read_u32_index(tdm_np, route_name, i, &count); of_property_read_u32_index(tdm_np, route_name, i + 1, &serial_id); if (serial_id >= ARRAY_SIZE(tsa->serials)) { dev_err(tsa->dev, "%pOF: invalid serial id (%u)\n", tdm_np, serial_id); return -EINVAL; } serial_name = tsa_serial_id2name(tsa, serial_id); if (!serial_name) { dev_err(tsa->dev, "%pOF: unsupported serial id (%u)\n", tdm_np, serial_id); return -EINVAL; } dev_dbg(tsa->dev, "tdm_id=%u, %s ts %u..%u -> %s\n", tdm_id, route_name, ts, ts+count-1, serial_name); ts += count; ret = tsa_add_entry(tsa, &area, count, serial_id); if (ret) return ret; serial_info = &tsa->serials[serial_id].info; tdm = &tsa->tdm[tdm_id]; if (is_rx) { serial_info->rx_fs_rate = clk_get_rate(tdm->l1rsync_clk); serial_info->rx_bit_rate = clk_get_rate(tdm->l1rclk_clk); serial_info->nb_rx_ts += count; } else { serial_info->tx_fs_rate = tdm->l1tsync_clk ? clk_get_rate(tdm->l1tsync_clk) : clk_get_rate(tdm->l1rsync_clk); serial_info->tx_bit_rate = tdm->l1tclk_clk ? clk_get_rate(tdm->l1tclk_clk) : clk_get_rate(tdm->l1rclk_clk); serial_info->nb_tx_ts += count; } } return 0; } static inline int tsa_of_parse_tdm_rx_route(struct tsa *tsa, struct device_node *tdm_np, u32 tdms, u32 tdm_id) { return tsa_of_parse_tdm_route(tsa, tdm_np, tdms, tdm_id, true); } static inline int tsa_of_parse_tdm_tx_route(struct tsa *tsa, struct device_node *tdm_np, u32 tdms, u32 tdm_id) { return tsa_of_parse_tdm_route(tsa, tdm_np, tdms, tdm_id, false); } static int tsa_of_parse_tdms(struct tsa *tsa, struct device_node *np) { struct device_node *tdm_np; struct tsa_tdm *tdm; struct clk *clk; u32 tdm_id, val; int ret; int i; tsa->tdms = 0; tsa->tdm[0].is_enable = false; tsa->tdm[1].is_enable = false; for_each_available_child_of_node(np, tdm_np) { ret = of_property_read_u32(tdm_np, "reg", &tdm_id); if (ret) { dev_err(tsa->dev, "%pOF: failed to read reg\n", tdm_np); of_node_put(tdm_np); return ret; } switch (tdm_id) { case 0: tsa->tdms |= BIT(TSA_TDMA); break; case 1: tsa->tdms |= BIT(TSA_TDMB); break; default: dev_err(tsa->dev, "%pOF: Invalid tdm_id (%u)\n", tdm_np, tdm_id); of_node_put(tdm_np); return -EINVAL; } } for_each_available_child_of_node(np, tdm_np) { ret = of_property_read_u32(tdm_np, "reg", &tdm_id); if (ret) { dev_err(tsa->dev, "%pOF: failed to read reg\n", tdm_np); of_node_put(tdm_np); return ret; } tdm = &tsa->tdm[tdm_id]; tdm->simode_tdm = TSA_SIMODE_TDM_SDM_NORM; val = 0; ret = of_property_read_u32(tdm_np, "fsl,rx-frame-sync-delay-bits", &val); if (ret && ret != -EINVAL) { dev_err(tsa->dev, "%pOF: failed to read fsl,rx-frame-sync-delay-bits\n", tdm_np); of_node_put(tdm_np); return ret; } if (val > 3) { dev_err(tsa->dev, "%pOF: Invalid fsl,rx-frame-sync-delay-bits (%u)\n", tdm_np, val); of_node_put(tdm_np); return -EINVAL; } tdm->simode_tdm |= TSA_SIMODE_TDM_RFSD(val); val = 0; ret = of_property_read_u32(tdm_np, "fsl,tx-frame-sync-delay-bits", &val); if (ret && ret != -EINVAL) { dev_err(tsa->dev, "%pOF: failed to read fsl,tx-frame-sync-delay-bits\n", tdm_np); of_node_put(tdm_np); return ret; } if (val > 3) { dev_err(tsa->dev, "%pOF: Invalid fsl,tx-frame-sync-delay-bits (%u)\n", tdm_np, val); of_node_put(tdm_np); return -EINVAL; } tdm->simode_tdm |= TSA_SIMODE_TDM_TFSD(val); if (of_property_read_bool(tdm_np, "fsl,common-rxtx-pins")) tdm->simode_tdm |= TSA_SIMODE_TDM_CRT; if (of_property_read_bool(tdm_np, "fsl,clock-falling-edge")) tdm->simode_tdm |= TSA_SIMODE_TDM_CE; if (of_property_read_bool(tdm_np, "fsl,fsync-rising-edge")) tdm->simode_tdm |= TSA_SIMODE_TDM_FE; if (of_property_read_bool(tdm_np, "fsl,double-speed-clock")) tdm->simode_tdm |= TSA_SIMODE_TDM_DSC; clk = of_clk_get_by_name(tdm_np, "l1rsync"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); of_node_put(tdm_np); goto err; } ret = clk_prepare_enable(clk); if (ret) { clk_put(clk); of_node_put(tdm_np); goto err; } tdm->l1rsync_clk = clk; clk = of_clk_get_by_name(tdm_np, "l1rclk"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); of_node_put(tdm_np); goto err; } ret = clk_prepare_enable(clk); if (ret) { clk_put(clk); of_node_put(tdm_np); goto err; } tdm->l1rclk_clk = clk; if (!(tdm->simode_tdm & TSA_SIMODE_TDM_CRT)) { clk = of_clk_get_by_name(tdm_np, "l1tsync"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); of_node_put(tdm_np); goto err; } ret = clk_prepare_enable(clk); if (ret) { clk_put(clk); of_node_put(tdm_np); goto err; } tdm->l1tsync_clk = clk; clk = of_clk_get_by_name(tdm_np, "l1tclk"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); of_node_put(tdm_np); goto err; } ret = clk_prepare_enable(clk); if (ret) { clk_put(clk); of_node_put(tdm_np); goto err; } tdm->l1tclk_clk = clk; } ret = tsa_of_parse_tdm_rx_route(tsa, tdm_np, tsa->tdms, tdm_id); if (ret) { of_node_put(tdm_np); goto err; } ret = tsa_of_parse_tdm_tx_route(tsa, tdm_np, tsa->tdms, tdm_id); if (ret) { of_node_put(tdm_np); goto err; } tdm->is_enable = true; } return 0; err: for (i = 0; i < 2; i++) { if (tsa->tdm[i].l1rsync_clk) { clk_disable_unprepare(tsa->tdm[i].l1rsync_clk); clk_put(tsa->tdm[i].l1rsync_clk); } if (tsa->tdm[i].l1rclk_clk) { clk_disable_unprepare(tsa->tdm[i].l1rclk_clk); clk_put(tsa->tdm[i].l1rclk_clk); } if (tsa->tdm[i].l1tsync_clk) { clk_disable_unprepare(tsa->tdm[i].l1rsync_clk); clk_put(tsa->tdm[i].l1rsync_clk); } if (tsa->tdm[i].l1tclk_clk) { clk_disable_unprepare(tsa->tdm[i].l1rclk_clk); clk_put(tsa->tdm[i].l1rclk_clk); } } return ret; } static void tsa_init_si_ram(struct tsa *tsa) { resource_size_t i; /* Fill all entries as the last one */ for (i = 0; i < tsa->si_ram_sz; i += 4) tsa_write32(tsa->si_ram + i, TSA_SIRAM_ENTRY_LAST); } static int tsa_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; struct resource *res; struct tsa *tsa; unsigned int i; u32 val; int ret; tsa = devm_kzalloc(&pdev->dev, sizeof(*tsa), GFP_KERNEL); if (!tsa) return -ENOMEM; tsa->dev = &pdev->dev; for (i = 0; i < ARRAY_SIZE(tsa->serials); i++) tsa->serials[i].id = i; spin_lock_init(&tsa->lock); tsa->si_regs = devm_platform_ioremap_resource_byname(pdev, "si_regs"); if (IS_ERR(tsa->si_regs)) return PTR_ERR(tsa->si_regs); res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "si_ram"); if (!res) { dev_err(tsa->dev, "si_ram resource missing\n"); return -EINVAL; } tsa->si_ram_sz = resource_size(res); tsa->si_ram = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(tsa->si_ram)) return PTR_ERR(tsa->si_ram); tsa_init_si_ram(tsa); ret = tsa_of_parse_tdms(tsa, np); if (ret) return ret; /* Set SIMODE */ val = 0; if (tsa->tdm[0].is_enable) val |= TSA_SIMODE_TDMA(tsa->tdm[0].simode_tdm); if (tsa->tdm[1].is_enable) val |= TSA_SIMODE_TDMB(tsa->tdm[1].simode_tdm); tsa_clrsetbits32(tsa->si_regs + TSA_SIMODE, TSA_SIMODE_TDMA(TSA_SIMODE_TDM_MASK) | TSA_SIMODE_TDMB(TSA_SIMODE_TDM_MASK), val); /* Set SIGMR */ val = (tsa->tdms == BIT(TSA_TDMA)) ? TSA_SIGMR_RDM_STATIC_TDMA : TSA_SIGMR_RDM_STATIC_TDMAB; if (tsa->tdms & BIT(TSA_TDMA)) val |= TSA_SIGMR_ENA; if (tsa->tdms & BIT(TSA_TDMB)) val |= TSA_SIGMR_ENB; tsa_write8(tsa->si_regs + TSA_SIGMR, val); platform_set_drvdata(pdev, tsa); return 0; } static void tsa_remove(struct platform_device *pdev) { struct tsa *tsa = platform_get_drvdata(pdev); int i; for (i = 0; i < 2; i++) { if (tsa->tdm[i].l1rsync_clk) { clk_disable_unprepare(tsa->tdm[i].l1rsync_clk); clk_put(tsa->tdm[i].l1rsync_clk); } if (tsa->tdm[i].l1rclk_clk) { clk_disable_unprepare(tsa->tdm[i].l1rclk_clk); clk_put(tsa->tdm[i].l1rclk_clk); } if (tsa->tdm[i].l1tsync_clk) { clk_disable_unprepare(tsa->tdm[i].l1rsync_clk); clk_put(tsa->tdm[i].l1rsync_clk); } if (tsa->tdm[i].l1tclk_clk) { clk_disable_unprepare(tsa->tdm[i].l1rclk_clk); clk_put(tsa->tdm[i].l1rclk_clk); } } } static const struct of_device_id tsa_id_table[] = { { .compatible = "fsl,cpm1-tsa" }, {} /* sentinel */ }; MODULE_DEVICE_TABLE(of, tsa_id_table); static struct platform_driver tsa_driver = { .driver = { .name = "fsl-tsa", .of_match_table = of_match_ptr(tsa_id_table), }, .probe = tsa_probe, .remove_new = tsa_remove, }; module_platform_driver(tsa_driver); struct tsa_serial *tsa_serial_get_byphandle(struct device_node *np, const char *phandle_name) { struct of_phandle_args out_args; struct platform_device *pdev; struct tsa_serial *tsa_serial; struct tsa *tsa; int ret; ret = of_parse_phandle_with_fixed_args(np, phandle_name, 1, 0, &out_args); if (ret < 0) return ERR_PTR(ret); if (!of_match_node(tsa_driver.driver.of_match_table, out_args.np)) { of_node_put(out_args.np); return ERR_PTR(-EINVAL); } pdev = of_find_device_by_node(out_args.np); of_node_put(out_args.np); if (!pdev) return ERR_PTR(-ENODEV); tsa = platform_get_drvdata(pdev); if (!tsa) { platform_device_put(pdev); return ERR_PTR(-EPROBE_DEFER); } if (out_args.args_count != 1) { platform_device_put(pdev); return ERR_PTR(-EINVAL); } if (out_args.args[0] >= ARRAY_SIZE(tsa->serials)) { platform_device_put(pdev); return ERR_PTR(-EINVAL); } tsa_serial = &tsa->serials[out_args.args[0]]; /* * Be sure that the serial id matches the phandle arg. * The tsa_serials table is indexed by serial ids. The serial id is set * during the probe() call and needs to be coherent. */ if (WARN_ON(tsa_serial->id != out_args.args[0])) { platform_device_put(pdev); return ERR_PTR(-EINVAL); } return tsa_serial; } EXPORT_SYMBOL(tsa_serial_get_byphandle); void tsa_serial_put(struct tsa_serial *tsa_serial) { struct tsa *tsa = tsa_serial_get_tsa(tsa_serial); put_device(tsa->dev); } EXPORT_SYMBOL(tsa_serial_put); static void devm_tsa_serial_release(struct device *dev, void *res) { struct tsa_serial **tsa_serial = res; tsa_serial_put(*tsa_serial); } struct tsa_serial *devm_tsa_serial_get_byphandle(struct device *dev, struct device_node *np, const char *phandle_name) { struct tsa_serial *tsa_serial; struct tsa_serial **dr; dr = devres_alloc(devm_tsa_serial_release, sizeof(*dr), GFP_KERNEL); if (!dr) return ERR_PTR(-ENOMEM); tsa_serial = tsa_serial_get_byphandle(np, phandle_name); if (!IS_ERR(tsa_serial)) { *dr = tsa_serial; devres_add(dev, dr); } else { devres_free(dr); } return tsa_serial; } EXPORT_SYMBOL(devm_tsa_serial_get_byphandle); MODULE_AUTHOR("Herve Codina "); MODULE_DESCRIPTION("CPM TSA driver"); MODULE_LICENSE("GPL");