/* * atusb.c - Driver for the ATUSB IEEE 802.15.4 dongle * * Written 2013 by Werner Almesberger * * Copyright (c) 2015 - 2016 Stefan Schmidt * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2 * * Based on at86rf230.c and spi_atusb.c. * at86rf230.c is * Copyright (C) 2009 Siemens AG * Written by: Dmitry Eremin-Solenikov * * spi_atusb.c is * Copyright (c) 2011 Richard Sharpe * Copyright (c) 2011 Stefan Schmidt * Copyright (c) 2011 Werner Almesberger * * USB initialization is * Copyright (c) 2013 Alexander Aring */ #include #include #include #include #include #include #include #include #include "at86rf230.h" #include "atusb.h" #define ATUSB_JEDEC_ATMEL 0x1f /* JEDEC manufacturer ID */ #define ATUSB_NUM_RX_URBS 4 /* allow for a bit of local latency */ #define ATUSB_ALLOC_DELAY_MS 100 /* delay after failed allocation */ #define ATUSB_TX_TIMEOUT_MS 200 /* on the air timeout */ struct atusb { struct ieee802154_hw *hw; struct usb_device *usb_dev; int shutdown; /* non-zero if shutting down */ int err; /* set by first error */ /* RX variables */ struct delayed_work work; /* memory allocations */ struct usb_anchor idle_urbs; /* URBs waiting to be submitted */ struct usb_anchor rx_urbs; /* URBs waiting for reception */ /* TX variables */ struct usb_ctrlrequest tx_dr; struct urb *tx_urb; struct sk_buff *tx_skb; uint8_t tx_ack_seq; /* current TX ACK sequence number */ /* Firmware variable */ unsigned char fw_ver_maj; /* Firmware major version number */ unsigned char fw_ver_min; /* Firmware minor version number */ unsigned char fw_hw_type; /* Firmware hardware type */ }; /* ----- USB commands without data ----------------------------------------- */ /* To reduce the number of error checks in the code, we record the first error * in atusb->err and reject all subsequent requests until the error is cleared. */ static int atusb_control_msg(struct atusb *atusb, unsigned int pipe, __u8 request, __u8 requesttype, __u16 value, __u16 index, void *data, __u16 size, int timeout) { struct usb_device *usb_dev = atusb->usb_dev; int ret; if (atusb->err) return atusb->err; ret = usb_control_msg(usb_dev, pipe, request, requesttype, value, index, data, size, timeout); if (ret < size) { ret = ret < 0 ? ret : -ENODATA; atusb->err = ret; dev_err(&usb_dev->dev, "atusb_control_msg: req 0x%02x val 0x%x idx 0x%x, error %d\n", request, value, index, ret); } return ret; } static int atusb_command(struct atusb *atusb, uint8_t cmd, uint8_t arg) { struct usb_device *usb_dev = atusb->usb_dev; dev_dbg(&usb_dev->dev, "atusb_command: cmd = 0x%x\n", cmd); return atusb_control_msg(atusb, usb_sndctrlpipe(usb_dev, 0), cmd, ATUSB_REQ_TO_DEV, arg, 0, NULL, 0, 1000); } static int atusb_write_reg(struct atusb *atusb, uint8_t reg, uint8_t value) { struct usb_device *usb_dev = atusb->usb_dev; dev_dbg(&usb_dev->dev, "atusb_write_reg: 0x%02x <- 0x%02x\n", reg, value); return atusb_control_msg(atusb, usb_sndctrlpipe(usb_dev, 0), ATUSB_REG_WRITE, ATUSB_REQ_TO_DEV, value, reg, NULL, 0, 1000); } static int atusb_read_reg(struct atusb *atusb, uint8_t reg) { struct usb_device *usb_dev = atusb->usb_dev; int ret; uint8_t *buffer; uint8_t value; buffer = kmalloc(1, GFP_KERNEL); if (!buffer) return -ENOMEM; dev_dbg(&usb_dev->dev, "atusb: reg = 0x%x\n", reg); ret = atusb_control_msg(atusb, usb_rcvctrlpipe(usb_dev, 0), ATUSB_REG_READ, ATUSB_REQ_FROM_DEV, 0, reg, buffer, 1, 1000); if (ret >= 0) { value = buffer[0]; kfree(buffer); return value; } else { kfree(buffer); return ret; } } static int atusb_write_subreg(struct atusb *atusb, uint8_t reg, uint8_t mask, uint8_t shift, uint8_t value) { struct usb_device *usb_dev = atusb->usb_dev; uint8_t orig, tmp; int ret = 0; dev_dbg(&usb_dev->dev, "atusb_write_subreg: 0x%02x <- 0x%02x\n", reg, value); orig = atusb_read_reg(atusb, reg); /* Write the value only into that part of the register which is allowed * by the mask. All other bits stay as before. */ tmp = orig & ~mask; tmp |= (value << shift) & mask; if (tmp != orig) ret = atusb_write_reg(atusb, reg, tmp); return ret; } static int atusb_get_and_clear_error(struct atusb *atusb) { int err = atusb->err; atusb->err = 0; return err; } /* ----- skb allocation ---------------------------------------------------- */ #define MAX_PSDU 127 #define MAX_RX_XFER (1 + MAX_PSDU + 2 + 1) /* PHR+PSDU+CRC+LQI */ #define SKB_ATUSB(skb) (*(struct atusb **)(skb)->cb) static void atusb_in(struct urb *urb); static int atusb_submit_rx_urb(struct atusb *atusb, struct urb *urb) { struct usb_device *usb_dev = atusb->usb_dev; struct sk_buff *skb = urb->context; int ret; if (!skb) { skb = alloc_skb(MAX_RX_XFER, GFP_KERNEL); if (!skb) { dev_warn_ratelimited(&usb_dev->dev, "atusb_in: can't allocate skb\n"); return -ENOMEM; } skb_put(skb, MAX_RX_XFER); SKB_ATUSB(skb) = atusb; } usb_fill_bulk_urb(urb, usb_dev, usb_rcvbulkpipe(usb_dev, 1), skb->data, MAX_RX_XFER, atusb_in, skb); usb_anchor_urb(urb, &atusb->rx_urbs); ret = usb_submit_urb(urb, GFP_KERNEL); if (ret) { usb_unanchor_urb(urb); kfree_skb(skb); urb->context = NULL; } return ret; } static void atusb_work_urbs(struct work_struct *work) { struct atusb *atusb = container_of(to_delayed_work(work), struct atusb, work); struct usb_device *usb_dev = atusb->usb_dev; struct urb *urb; int ret; if (atusb->shutdown) return; do { urb = usb_get_from_anchor(&atusb->idle_urbs); if (!urb) return; ret = atusb_submit_rx_urb(atusb, urb); } while (!ret); usb_anchor_urb(urb, &atusb->idle_urbs); dev_warn_ratelimited(&usb_dev->dev, "atusb_in: can't allocate/submit URB (%d)\n", ret); schedule_delayed_work(&atusb->work, msecs_to_jiffies(ATUSB_ALLOC_DELAY_MS) + 1); } /* ----- Asynchronous USB -------------------------------------------------- */ static void atusb_tx_done(struct atusb *atusb, uint8_t seq) { struct usb_device *usb_dev = atusb->usb_dev; uint8_t expect = atusb->tx_ack_seq; dev_dbg(&usb_dev->dev, "atusb_tx_done (0x%02x/0x%02x)\n", seq, expect); if (seq == expect) { /* TODO check for ifs handling in firmware */ ieee802154_xmit_complete(atusb->hw, atusb->tx_skb, false); } else { /* TODO I experience this case when atusb has a tx complete * irq before probing, we should fix the firmware it's an * unlikely case now that seq == expect is then true, but can * happen and fail with a tx_skb = NULL; */ ieee802154_wake_queue(atusb->hw); if (atusb->tx_skb) dev_kfree_skb_irq(atusb->tx_skb); } } static void atusb_in_good(struct urb *urb) { struct usb_device *usb_dev = urb->dev; struct sk_buff *skb = urb->context; struct atusb *atusb = SKB_ATUSB(skb); uint8_t len, lqi; if (!urb->actual_length) { dev_dbg(&usb_dev->dev, "atusb_in: zero-sized URB ?\n"); return; } len = *skb->data; if (urb->actual_length == 1) { atusb_tx_done(atusb, len); return; } if (len + 1 > urb->actual_length - 1) { dev_dbg(&usb_dev->dev, "atusb_in: frame len %d+1 > URB %u-1\n", len, urb->actual_length); return; } if (!ieee802154_is_valid_psdu_len(len)) { dev_dbg(&usb_dev->dev, "atusb_in: frame corrupted\n"); return; } lqi = skb->data[len + 1]; dev_dbg(&usb_dev->dev, "atusb_in: rx len %d lqi 0x%02x\n", len, lqi); skb_pull(skb, 1); /* remove PHR */ skb_trim(skb, len); /* get payload only */ ieee802154_rx_irqsafe(atusb->hw, skb, lqi); urb->context = NULL; /* skb is gone */ } static void atusb_in(struct urb *urb) { struct usb_device *usb_dev = urb->dev; struct sk_buff *skb = urb->context; struct atusb *atusb = SKB_ATUSB(skb); dev_dbg(&usb_dev->dev, "atusb_in: status %d len %d\n", urb->status, urb->actual_length); if (urb->status) { if (urb->status == -ENOENT) { /* being killed */ kfree_skb(skb); urb->context = NULL; return; } dev_dbg(&usb_dev->dev, "atusb_in: URB error %d\n", urb->status); } else { atusb_in_good(urb); } usb_anchor_urb(urb, &atusb->idle_urbs); if (!atusb->shutdown) schedule_delayed_work(&atusb->work, 0); } /* ----- URB allocation/deallocation --------------------------------------- */ static void atusb_free_urbs(struct atusb *atusb) { struct urb *urb; while (1) { urb = usb_get_from_anchor(&atusb->idle_urbs); if (!urb) break; kfree_skb(urb->context); usb_free_urb(urb); } } static int atusb_alloc_urbs(struct atusb *atusb, int n) { struct urb *urb; while (n) { urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) { atusb_free_urbs(atusb); return -ENOMEM; } usb_anchor_urb(urb, &atusb->idle_urbs); usb_free_urb(urb); n--; } return 0; } /* ----- IEEE 802.15.4 interface operations -------------------------------- */ static void atusb_xmit_complete(struct urb *urb) { dev_dbg(&urb->dev->dev, "atusb_xmit urb completed"); } static int atusb_xmit(struct ieee802154_hw *hw, struct sk_buff *skb) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; int ret; dev_dbg(&usb_dev->dev, "atusb_xmit (%d)\n", skb->len); atusb->tx_skb = skb; atusb->tx_ack_seq++; atusb->tx_dr.wIndex = cpu_to_le16(atusb->tx_ack_seq); atusb->tx_dr.wLength = cpu_to_le16(skb->len); usb_fill_control_urb(atusb->tx_urb, usb_dev, usb_sndctrlpipe(usb_dev, 0), (unsigned char *)&atusb->tx_dr, skb->data, skb->len, atusb_xmit_complete, NULL); ret = usb_submit_urb(atusb->tx_urb, GFP_ATOMIC); dev_dbg(&usb_dev->dev, "atusb_xmit done (%d)\n", ret); return ret; } static int atusb_channel(struct ieee802154_hw *hw, u8 page, u8 channel) { struct atusb *atusb = hw->priv; int ret; ret = atusb_write_subreg(atusb, SR_CHANNEL, channel); if (ret < 0) return ret; msleep(1); /* @@@ ugly synchronization */ return 0; } static int atusb_ed(struct ieee802154_hw *hw, u8 *level) { BUG_ON(!level); *level = 0xbe; return 0; } static int atusb_set_hw_addr_filt(struct ieee802154_hw *hw, struct ieee802154_hw_addr_filt *filt, unsigned long changed) { struct atusb *atusb = hw->priv; struct device *dev = &atusb->usb_dev->dev; if (changed & IEEE802154_AFILT_SADDR_CHANGED) { u16 addr = le16_to_cpu(filt->short_addr); dev_vdbg(dev, "atusb_set_hw_addr_filt called for saddr\n"); atusb_write_reg(atusb, RG_SHORT_ADDR_0, addr); atusb_write_reg(atusb, RG_SHORT_ADDR_1, addr >> 8); } if (changed & IEEE802154_AFILT_PANID_CHANGED) { u16 pan = le16_to_cpu(filt->pan_id); dev_vdbg(dev, "atusb_set_hw_addr_filt called for pan id\n"); atusb_write_reg(atusb, RG_PAN_ID_0, pan); atusb_write_reg(atusb, RG_PAN_ID_1, pan >> 8); } if (changed & IEEE802154_AFILT_IEEEADDR_CHANGED) { u8 i, addr[IEEE802154_EXTENDED_ADDR_LEN]; memcpy(addr, &filt->ieee_addr, IEEE802154_EXTENDED_ADDR_LEN); dev_vdbg(dev, "atusb_set_hw_addr_filt called for IEEE addr\n"); for (i = 0; i < 8; i++) atusb_write_reg(atusb, RG_IEEE_ADDR_0 + i, addr[i]); } if (changed & IEEE802154_AFILT_PANC_CHANGED) { dev_vdbg(dev, "atusb_set_hw_addr_filt called for panc change\n"); if (filt->pan_coord) atusb_write_subreg(atusb, SR_AACK_I_AM_COORD, 1); else atusb_write_subreg(atusb, SR_AACK_I_AM_COORD, 0); } return atusb_get_and_clear_error(atusb); } static int atusb_start(struct ieee802154_hw *hw) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; int ret; dev_dbg(&usb_dev->dev, "atusb_start\n"); schedule_delayed_work(&atusb->work, 0); atusb_command(atusb, ATUSB_RX_MODE, 1); ret = atusb_get_and_clear_error(atusb); if (ret < 0) usb_kill_anchored_urbs(&atusb->idle_urbs); return ret; } static void atusb_stop(struct ieee802154_hw *hw) { struct atusb *atusb = hw->priv; struct usb_device *usb_dev = atusb->usb_dev; dev_dbg(&usb_dev->dev, "atusb_stop\n"); usb_kill_anchored_urbs(&atusb->idle_urbs); atusb_command(atusb, ATUSB_RX_MODE, 0); atusb_get_and_clear_error(atusb); } #define ATUSB_MAX_TX_POWERS 0xF static const s32 atusb_powers[ATUSB_MAX_TX_POWERS + 1] = { 300, 280, 230, 180, 130, 70, 0, -100, -200, -300, -400, -500, -700, -900, -1200, -1700, }; static int atusb_set_txpower(struct ieee802154_hw *hw, s32 mbm) { struct atusb *atusb = hw->priv; u32 i; for (i = 0; i < hw->phy->supported.tx_powers_size; i++) { if (hw->phy->supported.tx_powers[i] == mbm) return atusb_write_subreg(atusb, SR_TX_PWR_23X, i); } return -EINVAL; } #define ATUSB_MAX_ED_LEVELS 0xF static const s32 atusb_ed_levels[ATUSB_MAX_ED_LEVELS + 1] = { -9100, -8900, -8700, -8500, -8300, -8100, -7900, -7700, -7500, -7300, -7100, -6900, -6700, -6500, -6300, -6100, }; static int atusb_set_cca_mode(struct ieee802154_hw *hw, const struct wpan_phy_cca *cca) { struct atusb *atusb = hw->priv; u8 val; /* mapping 802.15.4 to driver spec */ switch (cca->mode) { case NL802154_CCA_ENERGY: val = 1; break; case NL802154_CCA_CARRIER: val = 2; break; case NL802154_CCA_ENERGY_CARRIER: switch (cca->opt) { case NL802154_CCA_OPT_ENERGY_CARRIER_AND: val = 3; break; case NL802154_CCA_OPT_ENERGY_CARRIER_OR: val = 0; break; default: return -EINVAL; } break; default: return -EINVAL; } return atusb_write_subreg(atusb, SR_CCA_MODE, val); } static int atusb_set_cca_ed_level(struct ieee802154_hw *hw, s32 mbm) { struct atusb *atusb = hw->priv; u32 i; for (i = 0; i < hw->phy->supported.cca_ed_levels_size; i++) { if (hw->phy->supported.cca_ed_levels[i] == mbm) return atusb_write_subreg(atusb, SR_CCA_ED_THRES, i); } return -EINVAL; } static int atusb_set_csma_params(struct ieee802154_hw *hw, u8 min_be, u8 max_be, u8 retries) { struct atusb *atusb = hw->priv; int ret; ret = atusb_write_subreg(atusb, SR_MIN_BE, min_be); if (ret) return ret; ret = atusb_write_subreg(atusb, SR_MAX_BE, max_be); if (ret) return ret; return atusb_write_subreg(atusb, SR_MAX_CSMA_RETRIES, retries); } static int atusb_set_frame_retries(struct ieee802154_hw *hw, s8 retries) { struct atusb *atusb = hw->priv; return atusb_write_subreg(atusb, SR_MAX_FRAME_RETRIES, retries); } static int atusb_set_promiscuous_mode(struct ieee802154_hw *hw, const bool on) { struct atusb *atusb = hw->priv; int ret; if (on) { ret = atusb_write_subreg(atusb, SR_AACK_DIS_ACK, 1); if (ret < 0) return ret; ret = atusb_write_subreg(atusb, SR_AACK_PROM_MODE, 1); if (ret < 0) return ret; } else { ret = atusb_write_subreg(atusb, SR_AACK_PROM_MODE, 0); if (ret < 0) return ret; ret = atusb_write_subreg(atusb, SR_AACK_DIS_ACK, 0); if (ret < 0) return ret; } return 0; } static const struct ieee802154_ops atusb_ops = { .owner = THIS_MODULE, .xmit_async = atusb_xmit, .ed = atusb_ed, .set_channel = atusb_channel, .start = atusb_start, .stop = atusb_stop, .set_hw_addr_filt = atusb_set_hw_addr_filt, .set_txpower = atusb_set_txpower, .set_cca_mode = atusb_set_cca_mode, .set_cca_ed_level = atusb_set_cca_ed_level, .set_csma_params = atusb_set_csma_params, .set_frame_retries = atusb_set_frame_retries, .set_promiscuous_mode = atusb_set_promiscuous_mode, }; /* ----- Firmware and chip version information ----------------------------- */ static int atusb_get_and_show_revision(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; unsigned char *buffer; int ret; buffer = kmalloc(3, GFP_KERNEL); if (!buffer) return -ENOMEM; /* Get a couple of the ATMega Firmware values */ ret = atusb_control_msg(atusb, usb_rcvctrlpipe(usb_dev, 0), ATUSB_ID, ATUSB_REQ_FROM_DEV, 0, 0, buffer, 3, 1000); if (ret >= 0) { atusb->fw_ver_maj = buffer[0]; atusb->fw_ver_min = buffer[1]; atusb->fw_hw_type = buffer[2]; dev_info(&usb_dev->dev, "Firmware: major: %u, minor: %u, hardware type: %u\n", atusb->fw_ver_maj, atusb->fw_ver_min, atusb->fw_hw_type); } if (atusb->fw_ver_maj == 0 && atusb->fw_ver_min < 2) { dev_info(&usb_dev->dev, "Firmware version (%u.%u) predates our first public release.", atusb->fw_ver_maj, atusb->fw_ver_min); dev_info(&usb_dev->dev, "Please update to version 0.2 or newer"); } kfree(buffer); return ret; } static int atusb_get_and_show_build(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; char *build; int ret; build = kmalloc(ATUSB_BUILD_SIZE + 1, GFP_KERNEL); if (!build) return -ENOMEM; /* We cannot call atusb_control_msg() here, since this request may read various length data */ ret = usb_control_msg(atusb->usb_dev, usb_rcvctrlpipe(usb_dev, 0), ATUSB_BUILD, ATUSB_REQ_FROM_DEV, 0, 0, build, ATUSB_BUILD_SIZE, 1000); if (ret >= 0) { build[ret] = 0; dev_info(&usb_dev->dev, "Firmware: build %s\n", build); } kfree(build); return ret; } static int atusb_get_and_show_chip(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; uint8_t man_id_0, man_id_1, part_num, version_num; const char *chip; man_id_0 = atusb_read_reg(atusb, RG_MAN_ID_0); man_id_1 = atusb_read_reg(atusb, RG_MAN_ID_1); part_num = atusb_read_reg(atusb, RG_PART_NUM); version_num = atusb_read_reg(atusb, RG_VERSION_NUM); if (atusb->err) return atusb->err; if ((man_id_1 << 8 | man_id_0) != ATUSB_JEDEC_ATMEL) { dev_err(&usb_dev->dev, "non-Atmel transceiver xxxx%02x%02x\n", man_id_1, man_id_0); goto fail; } switch (part_num) { case 2: chip = "AT86RF230"; break; case 3: chip = "AT86RF231"; break; default: dev_err(&usb_dev->dev, "unexpected transceiver, part 0x%02x version 0x%02x\n", part_num, version_num); goto fail; } dev_info(&usb_dev->dev, "ATUSB: %s version %d\n", chip, version_num); return 0; fail: atusb->err = -ENODEV; return -ENODEV; } static int atusb_set_extended_addr(struct atusb *atusb) { struct usb_device *usb_dev = atusb->usb_dev; unsigned char *buffer; __le64 extended_addr; u64 addr; int ret; /* Firmware versions before 0.3 do not support the EUI64_READ command. * Just use a random address and be done */ if (atusb->fw_ver_maj == 0 && atusb->fw_ver_min < 3) { ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); return 0; } buffer = kmalloc(IEEE802154_EXTENDED_ADDR_LEN, GFP_KERNEL); if (!buffer) return -ENOMEM; /* Firmware is new enough so we fetch the address from EEPROM */ ret = atusb_control_msg(atusb, usb_rcvctrlpipe(usb_dev, 0), ATUSB_EUI64_READ, ATUSB_REQ_FROM_DEV, 0, 0, buffer, IEEE802154_EXTENDED_ADDR_LEN, 1000); if (ret < 0) { dev_err(&usb_dev->dev, "failed to fetch extended address, random address set\n"); ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); kfree(buffer); return ret; } memcpy(&extended_addr, buffer, IEEE802154_EXTENDED_ADDR_LEN); /* Check if read address is not empty and the unicast bit is set correctly */ if (!ieee802154_is_valid_extended_unicast_addr(extended_addr)) { dev_info(&usb_dev->dev, "no permanent extended address found, random address set\n"); ieee802154_random_extended_addr(&atusb->hw->phy->perm_extended_addr); } else { atusb->hw->phy->perm_extended_addr = extended_addr; addr = swab64((__force u64)atusb->hw->phy->perm_extended_addr); dev_info(&usb_dev->dev, "Read permanent extended address %8phC from device\n", &addr); } kfree(buffer); return ret; } /* ----- Setup ------------------------------------------------------------- */ static int atusb_probe(struct usb_interface *interface, const struct usb_device_id *id) { struct usb_device *usb_dev = interface_to_usbdev(interface); struct ieee802154_hw *hw; struct atusb *atusb = NULL; int ret = -ENOMEM; hw = ieee802154_alloc_hw(sizeof(struct atusb), &atusb_ops); if (!hw) return -ENOMEM; atusb = hw->priv; atusb->hw = hw; atusb->usb_dev = usb_get_dev(usb_dev); usb_set_intfdata(interface, atusb); atusb->shutdown = 0; atusb->err = 0; INIT_DELAYED_WORK(&atusb->work, atusb_work_urbs); init_usb_anchor(&atusb->idle_urbs); init_usb_anchor(&atusb->rx_urbs); if (atusb_alloc_urbs(atusb, ATUSB_NUM_RX_URBS)) goto fail; atusb->tx_dr.bRequestType = ATUSB_REQ_TO_DEV; atusb->tx_dr.bRequest = ATUSB_TX; atusb->tx_dr.wValue = cpu_to_le16(0); atusb->tx_urb = usb_alloc_urb(0, GFP_ATOMIC); if (!atusb->tx_urb) goto fail; hw->parent = &usb_dev->dev; hw->flags = IEEE802154_HW_TX_OMIT_CKSUM | IEEE802154_HW_AFILT | IEEE802154_HW_PROMISCUOUS | IEEE802154_HW_CSMA_PARAMS; hw->phy->flags = WPAN_PHY_FLAG_TXPOWER | WPAN_PHY_FLAG_CCA_ED_LEVEL | WPAN_PHY_FLAG_CCA_MODE; hw->phy->supported.cca_modes = BIT(NL802154_CCA_ENERGY) | BIT(NL802154_CCA_CARRIER) | BIT(NL802154_CCA_ENERGY_CARRIER); hw->phy->supported.cca_opts = BIT(NL802154_CCA_OPT_ENERGY_CARRIER_AND) | BIT(NL802154_CCA_OPT_ENERGY_CARRIER_OR); hw->phy->supported.cca_ed_levels = atusb_ed_levels; hw->phy->supported.cca_ed_levels_size = ARRAY_SIZE(atusb_ed_levels); hw->phy->cca.mode = NL802154_CCA_ENERGY; hw->phy->current_page = 0; hw->phy->current_channel = 11; /* reset default */ hw->phy->supported.channels[0] = 0x7FFF800; hw->phy->supported.tx_powers = atusb_powers; hw->phy->supported.tx_powers_size = ARRAY_SIZE(atusb_powers); hw->phy->transmit_power = hw->phy->supported.tx_powers[0]; hw->phy->cca_ed_level = hw->phy->supported.cca_ed_levels[7]; atusb_command(atusb, ATUSB_RF_RESET, 0); atusb_get_and_show_chip(atusb); atusb_get_and_show_revision(atusb); atusb_get_and_show_build(atusb); atusb_set_extended_addr(atusb); if (atusb->fw_ver_maj >= 0 && atusb->fw_ver_min >= 3) hw->flags |= IEEE802154_HW_FRAME_RETRIES; ret = atusb_get_and_clear_error(atusb); if (ret) { dev_err(&atusb->usb_dev->dev, "%s: initialization failed, error = %d\n", __func__, ret); goto fail; } ret = ieee802154_register_hw(hw); if (ret) goto fail; /* If we just powered on, we're now in P_ON and need to enter TRX_OFF * explicitly. Any resets after that will send us straight to TRX_OFF, * making the command below redundant. */ atusb_write_reg(atusb, RG_TRX_STATE, STATE_FORCE_TRX_OFF); msleep(1); /* reset => TRX_OFF, tTR13 = 37 us */ #if 0 /* Calculating the maximum time available to empty the frame buffer * on reception: * * According to [1], the inter-frame gap is * R * 20 * 16 us + 128 us * where R is a random number from 0 to 7. Furthermore, we have 20 bit * times (80 us at 250 kbps) of SHR of the next frame before the * transceiver begins storing data in the frame buffer. * * This yields a minimum time of 208 us between the last data of a * frame and the first data of the next frame. This time is further * reduced by interrupt latency in the atusb firmware. * * atusb currently needs about 500 us to retrieve a maximum-sized * frame. We therefore have to allow reception of a new frame to begin * while we retrieve the previous frame. * * [1] "JN-AN-1035 Calculating data rates in an IEEE 802.15.4-based * network", Jennic 2006. * http://www.jennic.com/download_file.php?supportFile=JN-AN-1035%20Calculating%20802-15-4%20Data%20Rates-1v0.pdf */ atusb_write_subreg(atusb, SR_RX_SAFE_MODE, 1); #endif atusb_write_reg(atusb, RG_IRQ_MASK, 0xff); ret = atusb_get_and_clear_error(atusb); if (!ret) return 0; dev_err(&atusb->usb_dev->dev, "%s: setup failed, error = %d\n", __func__, ret); ieee802154_unregister_hw(hw); fail: atusb_free_urbs(atusb); usb_kill_urb(atusb->tx_urb); usb_free_urb(atusb->tx_urb); usb_put_dev(usb_dev); ieee802154_free_hw(hw); return ret; } static void atusb_disconnect(struct usb_interface *interface) { struct atusb *atusb = usb_get_intfdata(interface); dev_dbg(&atusb->usb_dev->dev, "atusb_disconnect\n"); atusb->shutdown = 1; cancel_delayed_work_sync(&atusb->work); usb_kill_anchored_urbs(&atusb->rx_urbs); atusb_free_urbs(atusb); usb_kill_urb(atusb->tx_urb); usb_free_urb(atusb->tx_urb); ieee802154_unregister_hw(atusb->hw); usb_put_dev(atusb->usb_dev); ieee802154_free_hw(atusb->hw); usb_set_intfdata(interface, NULL); pr_debug("atusb_disconnect done\n"); } /* The devices we work with */ static const struct usb_device_id atusb_device_table[] = { { .match_flags = USB_DEVICE_ID_MATCH_DEVICE | USB_DEVICE_ID_MATCH_INT_INFO, .idVendor = ATUSB_VENDOR_ID, .idProduct = ATUSB_PRODUCT_ID, .bInterfaceClass = USB_CLASS_VENDOR_SPEC }, /* end with null element */ {} }; MODULE_DEVICE_TABLE(usb, atusb_device_table); static struct usb_driver atusb_driver = { .name = "atusb", .probe = atusb_probe, .disconnect = atusb_disconnect, .id_table = atusb_device_table, }; module_usb_driver(atusb_driver); MODULE_AUTHOR("Alexander Aring "); MODULE_AUTHOR("Richard Sharpe "); MODULE_AUTHOR("Stefan Schmidt "); MODULE_AUTHOR("Werner Almesberger "); MODULE_DESCRIPTION("ATUSB IEEE 802.15.4 Driver"); MODULE_LICENSE("GPL");