/* QLogic qede NIC Driver * Copyright (c) 2015-2017 QLogic Corporation * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and /or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include "qede.h" struct qede_arfs_tuple { union { __be32 src_ipv4; struct in6_addr src_ipv6; }; union { __be32 dst_ipv4; struct in6_addr dst_ipv6; }; __be16 src_port; __be16 dst_port; __be16 eth_proto; u8 ip_proto; }; struct qede_arfs_fltr_node { #define QEDE_FLTR_VALID 0 unsigned long state; /* pointer to aRFS packet buffer */ void *data; /* dma map address of aRFS packet buffer */ dma_addr_t mapping; /* length of aRFS packet buffer */ int buf_len; /* tuples to hold from aRFS packet buffer */ struct qede_arfs_tuple tuple; u32 flow_id; u16 sw_id; u16 rxq_id; u16 next_rxq_id; bool filter_op; bool used; u8 fw_rc; struct hlist_node node; }; struct qede_arfs { #define QEDE_ARFS_BUCKET_HEAD(edev, idx) (&(edev)->arfs->arfs_hl_head[idx]) #define QEDE_ARFS_POLL_COUNT 100 #define QEDE_RFS_FLW_BITSHIFT (4) #define QEDE_RFS_FLW_MASK ((1 << QEDE_RFS_FLW_BITSHIFT) - 1) struct hlist_head arfs_hl_head[1 << QEDE_RFS_FLW_BITSHIFT]; /* lock for filter list access */ spinlock_t arfs_list_lock; unsigned long *arfs_fltr_bmap; int filter_count; bool enable; }; static void qede_configure_arfs_fltr(struct qede_dev *edev, struct qede_arfs_fltr_node *n, u16 rxq_id, bool add_fltr) { const struct qed_eth_ops *op = edev->ops; if (n->used) return; DP_VERBOSE(edev, NETIF_MSG_RX_STATUS, "%s arfs filter flow_id=%d, sw_id=%d, src_port=%d, dst_port=%d, rxq=%d\n", add_fltr ? "Adding" : "Deleting", n->flow_id, n->sw_id, ntohs(n->tuple.src_port), ntohs(n->tuple.dst_port), rxq_id); n->used = true; n->filter_op = add_fltr; op->ntuple_filter_config(edev->cdev, n, n->mapping, n->buf_len, 0, rxq_id, add_fltr); } static void qede_free_arfs_filter(struct qede_dev *edev, struct qede_arfs_fltr_node *fltr) { kfree(fltr->data); clear_bit(fltr->sw_id, edev->arfs->arfs_fltr_bmap); kfree(fltr); } static int qede_enqueue_fltr_and_config_searcher(struct qede_dev *edev, struct qede_arfs_fltr_node *fltr, u16 bucket_idx) { fltr->mapping = dma_map_single(&edev->pdev->dev, fltr->data, fltr->buf_len, DMA_TO_DEVICE); if (dma_mapping_error(&edev->pdev->dev, fltr->mapping)) { DP_NOTICE(edev, "Failed to map DMA memory for rule\n"); qede_free_arfs_filter(edev, fltr); return -ENOMEM; } INIT_HLIST_NODE(&fltr->node); hlist_add_head(&fltr->node, QEDE_ARFS_BUCKET_HEAD(edev, bucket_idx)); edev->arfs->filter_count++; if (edev->arfs->filter_count == 1 && !edev->arfs->enable) { edev->ops->configure_arfs_searcher(edev->cdev, true); edev->arfs->enable = true; } return 0; } static void qede_dequeue_fltr_and_config_searcher(struct qede_dev *edev, struct qede_arfs_fltr_node *fltr) { hlist_del(&fltr->node); dma_unmap_single(&edev->pdev->dev, fltr->mapping, fltr->buf_len, DMA_TO_DEVICE); qede_free_arfs_filter(edev, fltr); edev->arfs->filter_count--; if (!edev->arfs->filter_count && edev->arfs->enable) { edev->arfs->enable = false; edev->ops->configure_arfs_searcher(edev->cdev, false); } } void qede_arfs_filter_op(void *dev, void *filter, u8 fw_rc) { struct qede_arfs_fltr_node *fltr = filter; struct qede_dev *edev = dev; fltr->fw_rc = fw_rc; if (fw_rc) { DP_NOTICE(edev, "Failed arfs filter configuration fw_rc=%d, flow_id=%d, sw_id=%d, src_port=%d, dst_port=%d, rxq=%d\n", fw_rc, fltr->flow_id, fltr->sw_id, ntohs(fltr->tuple.src_port), ntohs(fltr->tuple.dst_port), fltr->rxq_id); spin_lock_bh(&edev->arfs->arfs_list_lock); fltr->used = false; clear_bit(QEDE_FLTR_VALID, &fltr->state); spin_unlock_bh(&edev->arfs->arfs_list_lock); return; } spin_lock_bh(&edev->arfs->arfs_list_lock); fltr->used = false; if (fltr->filter_op) { set_bit(QEDE_FLTR_VALID, &fltr->state); if (fltr->rxq_id != fltr->next_rxq_id) qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false); } else { clear_bit(QEDE_FLTR_VALID, &fltr->state); if (fltr->rxq_id != fltr->next_rxq_id) { fltr->rxq_id = fltr->next_rxq_id; qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, true); } } spin_unlock_bh(&edev->arfs->arfs_list_lock); } /* Should be called while qede_lock is held */ void qede_process_arfs_filters(struct qede_dev *edev, bool free_fltr) { int i; for (i = 0; i <= QEDE_RFS_FLW_MASK; i++) { struct hlist_node *temp; struct hlist_head *head; struct qede_arfs_fltr_node *fltr; head = &edev->arfs->arfs_hl_head[i]; hlist_for_each_entry_safe(fltr, temp, head, node) { bool del = false; if (edev->state != QEDE_STATE_OPEN) del = true; spin_lock_bh(&edev->arfs->arfs_list_lock); if ((!test_bit(QEDE_FLTR_VALID, &fltr->state) && !fltr->used) || free_fltr) { qede_dequeue_fltr_and_config_searcher(edev, fltr); } else { bool flow_exp = false; #ifdef CONFIG_RFS_ACCEL flow_exp = rps_may_expire_flow(edev->ndev, fltr->rxq_id, fltr->flow_id, fltr->sw_id); #endif if ((flow_exp || del) && !free_fltr) qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false); } spin_unlock_bh(&edev->arfs->arfs_list_lock); } } spin_lock_bh(&edev->arfs->arfs_list_lock); if (!edev->arfs->filter_count) { if (edev->arfs->enable) { edev->arfs->enable = false; edev->ops->configure_arfs_searcher(edev->cdev, false); } #ifdef CONFIG_RFS_ACCEL } else { set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, QEDE_SP_TASK_POLL_DELAY); #endif } spin_unlock_bh(&edev->arfs->arfs_list_lock); } /* This function waits until all aRFS filters get deleted and freed. * On timeout it frees all filters forcefully. */ void qede_poll_for_freeing_arfs_filters(struct qede_dev *edev) { int count = QEDE_ARFS_POLL_COUNT; while (count) { qede_process_arfs_filters(edev, false); if (!edev->arfs->filter_count) break; msleep(100); count--; } if (!count) { DP_NOTICE(edev, "Timeout in polling for arfs filter free\n"); /* Something is terribly wrong, free forcefully */ qede_process_arfs_filters(edev, true); } } int qede_alloc_arfs(struct qede_dev *edev) { int i; edev->arfs = vzalloc(sizeof(*edev->arfs)); if (!edev->arfs) return -ENOMEM; spin_lock_init(&edev->arfs->arfs_list_lock); for (i = 0; i <= QEDE_RFS_FLW_MASK; i++) INIT_HLIST_HEAD(QEDE_ARFS_BUCKET_HEAD(edev, i)); edev->arfs->arfs_fltr_bmap = vzalloc(BITS_TO_LONGS(QEDE_RFS_MAX_FLTR) * sizeof(long)); if (!edev->arfs->arfs_fltr_bmap) { vfree(edev->arfs); edev->arfs = NULL; return -ENOMEM; } #ifdef CONFIG_RFS_ACCEL edev->ndev->rx_cpu_rmap = alloc_irq_cpu_rmap(QEDE_RSS_COUNT(edev)); if (!edev->ndev->rx_cpu_rmap) { vfree(edev->arfs->arfs_fltr_bmap); edev->arfs->arfs_fltr_bmap = NULL; vfree(edev->arfs); edev->arfs = NULL; return -ENOMEM; } #endif return 0; } void qede_free_arfs(struct qede_dev *edev) { if (!edev->arfs) return; #ifdef CONFIG_RFS_ACCEL if (edev->ndev->rx_cpu_rmap) free_irq_cpu_rmap(edev->ndev->rx_cpu_rmap); edev->ndev->rx_cpu_rmap = NULL; #endif vfree(edev->arfs->arfs_fltr_bmap); edev->arfs->arfs_fltr_bmap = NULL; vfree(edev->arfs); edev->arfs = NULL; } #ifdef CONFIG_RFS_ACCEL static bool qede_compare_ip_addr(struct qede_arfs_fltr_node *tpos, const struct sk_buff *skb) { if (skb->protocol == htons(ETH_P_IP)) { if (tpos->tuple.src_ipv4 == ip_hdr(skb)->saddr && tpos->tuple.dst_ipv4 == ip_hdr(skb)->daddr) return true; else return false; } else { struct in6_addr *src = &tpos->tuple.src_ipv6; u8 size = sizeof(struct in6_addr); if (!memcmp(src, &ipv6_hdr(skb)->saddr, size) && !memcmp(&tpos->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr, size)) return true; else return false; } } static struct qede_arfs_fltr_node * qede_arfs_htbl_key_search(struct hlist_head *h, const struct sk_buff *skb, __be16 src_port, __be16 dst_port, u8 ip_proto) { struct qede_arfs_fltr_node *tpos; hlist_for_each_entry(tpos, h, node) if (tpos->tuple.ip_proto == ip_proto && tpos->tuple.eth_proto == skb->protocol && qede_compare_ip_addr(tpos, skb) && tpos->tuple.src_port == src_port && tpos->tuple.dst_port == dst_port) return tpos; return NULL; } static struct qede_arfs_fltr_node * qede_alloc_filter(struct qede_dev *edev, int min_hlen) { struct qede_arfs_fltr_node *n; int bit_id; bit_id = find_first_zero_bit(edev->arfs->arfs_fltr_bmap, QEDE_RFS_MAX_FLTR); if (bit_id >= QEDE_RFS_MAX_FLTR) return NULL; n = kzalloc(sizeof(*n), GFP_ATOMIC); if (!n) return NULL; n->data = kzalloc(min_hlen, GFP_ATOMIC); if (!n->data) { kfree(n); return NULL; } n->sw_id = (u16)bit_id; set_bit(bit_id, edev->arfs->arfs_fltr_bmap); return n; } int qede_rx_flow_steer(struct net_device *dev, const struct sk_buff *skb, u16 rxq_index, u32 flow_id) { struct qede_dev *edev = netdev_priv(dev); struct qede_arfs_fltr_node *n; int min_hlen, rc, tp_offset; struct ethhdr *eth; __be16 *ports; u16 tbl_idx; u8 ip_proto; if (skb->encapsulation) return -EPROTONOSUPPORT; if (skb->protocol != htons(ETH_P_IP) && skb->protocol != htons(ETH_P_IPV6)) return -EPROTONOSUPPORT; if (skb->protocol == htons(ETH_P_IP)) { ip_proto = ip_hdr(skb)->protocol; tp_offset = sizeof(struct iphdr); } else { ip_proto = ipv6_hdr(skb)->nexthdr; tp_offset = sizeof(struct ipv6hdr); } if (ip_proto != IPPROTO_TCP && ip_proto != IPPROTO_UDP) return -EPROTONOSUPPORT; ports = (__be16 *)(skb->data + tp_offset); tbl_idx = skb_get_hash_raw(skb) & QEDE_RFS_FLW_MASK; spin_lock_bh(&edev->arfs->arfs_list_lock); n = qede_arfs_htbl_key_search(QEDE_ARFS_BUCKET_HEAD(edev, tbl_idx), skb, ports[0], ports[1], ip_proto); if (n) { /* Filter match */ n->next_rxq_id = rxq_index; if (test_bit(QEDE_FLTR_VALID, &n->state)) { if (n->rxq_id != rxq_index) qede_configure_arfs_fltr(edev, n, n->rxq_id, false); } else { if (!n->used) { n->rxq_id = rxq_index; qede_configure_arfs_fltr(edev, n, n->rxq_id, true); } } rc = n->sw_id; goto ret_unlock; } min_hlen = ETH_HLEN + skb_headlen(skb); n = qede_alloc_filter(edev, min_hlen); if (!n) { rc = -ENOMEM; goto ret_unlock; } n->buf_len = min_hlen; n->rxq_id = rxq_index; n->next_rxq_id = rxq_index; n->tuple.src_port = ports[0]; n->tuple.dst_port = ports[1]; n->flow_id = flow_id; if (skb->protocol == htons(ETH_P_IP)) { n->tuple.src_ipv4 = ip_hdr(skb)->saddr; n->tuple.dst_ipv4 = ip_hdr(skb)->daddr; } else { memcpy(&n->tuple.src_ipv6, &ipv6_hdr(skb)->saddr, sizeof(struct in6_addr)); memcpy(&n->tuple.dst_ipv6, &ipv6_hdr(skb)->daddr, sizeof(struct in6_addr)); } eth = (struct ethhdr *)n->data; eth->h_proto = skb->protocol; n->tuple.eth_proto = skb->protocol; n->tuple.ip_proto = ip_proto; memcpy(n->data + ETH_HLEN, skb->data, skb_headlen(skb)); rc = qede_enqueue_fltr_and_config_searcher(edev, n, tbl_idx); if (rc) goto ret_unlock; qede_configure_arfs_fltr(edev, n, n->rxq_id, true); spin_unlock_bh(&edev->arfs->arfs_list_lock); set_bit(QEDE_SP_ARFS_CONFIG, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); return n->sw_id; ret_unlock: spin_unlock_bh(&edev->arfs->arfs_list_lock); return rc; } #endif void qede_udp_ports_update(void *dev, u16 vxlan_port, u16 geneve_port) { struct qede_dev *edev = dev; if (edev->vxlan_dst_port != vxlan_port) edev->vxlan_dst_port = 0; if (edev->geneve_dst_port != geneve_port) edev->geneve_dst_port = 0; } void qede_force_mac(void *dev, u8 *mac, bool forced) { struct qede_dev *edev = dev; __qede_lock(edev); /* MAC hints take effect only if we haven't set one already */ if (is_valid_ether_addr(edev->ndev->dev_addr) && !forced) { __qede_unlock(edev); return; } ether_addr_copy(edev->ndev->dev_addr, mac); __qede_unlock(edev); } void qede_fill_rss_params(struct qede_dev *edev, struct qed_update_vport_rss_params *rss, u8 *update) { bool need_reset = false; int i; if (QEDE_RSS_COUNT(edev) <= 1) { memset(rss, 0, sizeof(*rss)); *update = 0; return; } /* Need to validate current RSS config uses valid entries */ for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { if (edev->rss_ind_table[i] >= QEDE_RSS_COUNT(edev)) { need_reset = true; break; } } if (!(edev->rss_params_inited & QEDE_RSS_INDIR_INITED) || need_reset) { for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { u16 indir_val, val; val = QEDE_RSS_COUNT(edev); indir_val = ethtool_rxfh_indir_default(i, val); edev->rss_ind_table[i] = indir_val; } edev->rss_params_inited |= QEDE_RSS_INDIR_INITED; } /* Now that we have the queue-indirection, prepare the handles */ for (i = 0; i < QED_RSS_IND_TABLE_SIZE; i++) { u16 idx = QEDE_RX_QUEUE_IDX(edev, edev->rss_ind_table[i]); rss->rss_ind_table[i] = edev->fp_array[idx].rxq->handle; } if (!(edev->rss_params_inited & QEDE_RSS_KEY_INITED)) { netdev_rss_key_fill(edev->rss_key, sizeof(edev->rss_key)); edev->rss_params_inited |= QEDE_RSS_KEY_INITED; } memcpy(rss->rss_key, edev->rss_key, sizeof(rss->rss_key)); if (!(edev->rss_params_inited & QEDE_RSS_CAPS_INITED)) { edev->rss_caps = QED_RSS_IPV4 | QED_RSS_IPV6 | QED_RSS_IPV4_TCP | QED_RSS_IPV6_TCP; edev->rss_params_inited |= QEDE_RSS_CAPS_INITED; } rss->rss_caps = edev->rss_caps; *update = 1; } static int qede_set_ucast_rx_mac(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, unsigned char mac[ETH_ALEN]) { struct qed_filter_params filter_cmd; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_UCAST; filter_cmd.filter.ucast.type = opcode; filter_cmd.filter.ucast.mac_valid = 1; ether_addr_copy(filter_cmd.filter.ucast.mac, mac); return edev->ops->filter_config(edev->cdev, &filter_cmd); } static int qede_set_ucast_rx_vlan(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, u16 vid) { struct qed_filter_params filter_cmd; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_UCAST; filter_cmd.filter.ucast.type = opcode; filter_cmd.filter.ucast.vlan_valid = 1; filter_cmd.filter.ucast.vlan = vid; return edev->ops->filter_config(edev->cdev, &filter_cmd); } static int qede_config_accept_any_vlan(struct qede_dev *edev, bool action) { struct qed_update_vport_params *params; int rc; /* Proceed only if action actually needs to be performed */ if (edev->accept_any_vlan == action) return 0; params = vzalloc(sizeof(*params)); if (!params) return -ENOMEM; params->vport_id = 0; params->accept_any_vlan = action; params->update_accept_any_vlan_flg = 1; rc = edev->ops->vport_update(edev->cdev, params); if (rc) { DP_ERR(edev, "Failed to %s accept-any-vlan\n", action ? "enable" : "disable"); } else { DP_INFO(edev, "%s accept-any-vlan\n", action ? "enabled" : "disabled"); edev->accept_any_vlan = action; } vfree(params); return 0; } int qede_vlan_rx_add_vid(struct net_device *dev, __be16 proto, u16 vid) { struct qede_dev *edev = netdev_priv(dev); struct qede_vlan *vlan, *tmp; int rc = 0; DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan 0x%04x\n", vid); vlan = kzalloc(sizeof(*vlan), GFP_KERNEL); if (!vlan) { DP_INFO(edev, "Failed to allocate struct for vlan\n"); return -ENOMEM; } INIT_LIST_HEAD(&vlan->list); vlan->vid = vid; vlan->configured = false; /* Verify vlan isn't already configured */ list_for_each_entry(tmp, &edev->vlan_list, list) { if (tmp->vid == vlan->vid) { DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), "vlan already configured\n"); kfree(vlan); return -EEXIST; } } /* If interface is down, cache this VLAN ID and return */ __qede_lock(edev); if (edev->state != QEDE_STATE_OPEN) { DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Interface is down, VLAN %d will be configured when interface is up\n", vid); if (vid != 0) edev->non_configured_vlans++; list_add(&vlan->list, &edev->vlan_list); goto out; } /* Check for the filter limit. * Note - vlan0 has a reserved filter and can be added without * worrying about quota */ if ((edev->configured_vlans < edev->dev_info.num_vlan_filters) || (vlan->vid == 0)) { rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, vlan->vid); if (rc) { DP_ERR(edev, "Failed to configure VLAN %d\n", vlan->vid); kfree(vlan); goto out; } vlan->configured = true; /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) edev->configured_vlans++; } else { /* Out of quota; Activate accept-any-VLAN mode */ if (!edev->non_configured_vlans) { rc = qede_config_accept_any_vlan(edev, true); if (rc) { kfree(vlan); goto out; } } edev->non_configured_vlans++; } list_add(&vlan->list, &edev->vlan_list); out: __qede_unlock(edev); return rc; } static void qede_del_vlan_from_list(struct qede_dev *edev, struct qede_vlan *vlan) { /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) { if (vlan->configured) edev->configured_vlans--; else edev->non_configured_vlans--; } list_del(&vlan->list); kfree(vlan); } int qede_configure_vlan_filters(struct qede_dev *edev) { int rc = 0, real_rc = 0, accept_any_vlan = 0; struct qed_dev_eth_info *dev_info; struct qede_vlan *vlan = NULL; if (list_empty(&edev->vlan_list)) return 0; dev_info = &edev->dev_info; /* Configure non-configured vlans */ list_for_each_entry(vlan, &edev->vlan_list, list) { if (vlan->configured) continue; /* We have used all our credits, now enable accept_any_vlan */ if ((vlan->vid != 0) && (edev->configured_vlans == dev_info->num_vlan_filters)) { accept_any_vlan = 1; continue; } DP_VERBOSE(edev, NETIF_MSG_IFUP, "Adding vlan %d\n", vlan->vid); rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_ADD, vlan->vid); if (rc) { DP_ERR(edev, "Failed to configure VLAN %u\n", vlan->vid); real_rc = rc; continue; } vlan->configured = true; /* vlan0 filter doesn't consume our VLAN filter's quota */ if (vlan->vid != 0) { edev->non_configured_vlans--; edev->configured_vlans++; } } /* enable accept_any_vlan mode if we have more VLANs than credits, * or remove accept_any_vlan mode if we've actually removed * a non-configured vlan, and all remaining vlans are truly configured. */ if (accept_any_vlan) rc = qede_config_accept_any_vlan(edev, true); else if (!edev->non_configured_vlans) rc = qede_config_accept_any_vlan(edev, false); if (rc && !real_rc) real_rc = rc; return real_rc; } int qede_vlan_rx_kill_vid(struct net_device *dev, __be16 proto, u16 vid) { struct qede_dev *edev = netdev_priv(dev); struct qede_vlan *vlan = NULL; int rc = 0; DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Removing vlan 0x%04x\n", vid); /* Find whether entry exists */ __qede_lock(edev); list_for_each_entry(vlan, &edev->vlan_list, list) if (vlan->vid == vid) break; if (!vlan || (vlan->vid != vid)) { DP_VERBOSE(edev, (NETIF_MSG_IFUP | NETIF_MSG_IFDOWN), "Vlan isn't configured\n"); goto out; } if (edev->state != QEDE_STATE_OPEN) { /* As interface is already down, we don't have a VPORT * instance to remove vlan filter. So just update vlan list */ DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "Interface is down, removing VLAN from list only\n"); qede_del_vlan_from_list(edev, vlan); goto out; } /* Remove vlan */ if (vlan->configured) { rc = qede_set_ucast_rx_vlan(edev, QED_FILTER_XCAST_TYPE_DEL, vid); if (rc) { DP_ERR(edev, "Failed to remove VLAN %d\n", vid); goto out; } } qede_del_vlan_from_list(edev, vlan); /* We have removed a VLAN - try to see if we can * configure non-configured VLAN from the list. */ rc = qede_configure_vlan_filters(edev); out: __qede_unlock(edev); return rc; } void qede_vlan_mark_nonconfigured(struct qede_dev *edev) { struct qede_vlan *vlan = NULL; if (list_empty(&edev->vlan_list)) return; list_for_each_entry(vlan, &edev->vlan_list, list) { if (!vlan->configured) continue; vlan->configured = false; /* vlan0 filter isn't consuming out of our quota */ if (vlan->vid != 0) { edev->non_configured_vlans++; edev->configured_vlans--; } DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "marked vlan %d as non-configured\n", vlan->vid); } edev->accept_any_vlan = false; } static void qede_set_features_reload(struct qede_dev *edev, struct qede_reload_args *args) { edev->ndev->features = args->u.features; } int qede_set_features(struct net_device *dev, netdev_features_t features) { struct qede_dev *edev = netdev_priv(dev); netdev_features_t changes = features ^ dev->features; bool need_reload = false; /* No action needed if hardware GRO is disabled during driver load */ if (changes & NETIF_F_GRO) { if (dev->features & NETIF_F_GRO) need_reload = !edev->gro_disable; else need_reload = edev->gro_disable; } if (need_reload) { struct qede_reload_args args; args.u.features = features; args.func = &qede_set_features_reload; /* Make sure that we definitely need to reload. * In case of an eBPF attached program, there will be no FW * aggregations, so no need to actually reload. */ __qede_lock(edev); if (edev->xdp_prog) args.func(edev, &args); else qede_reload(edev, &args, true); __qede_unlock(edev); return 1; } return 0; } void qede_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) { struct qede_dev *edev = netdev_priv(dev); struct qed_tunn_params tunn_params; u16 t_port = ntohs(ti->port); int rc; memset(&tunn_params, 0, sizeof(tunn_params)); switch (ti->type) { case UDP_TUNNEL_TYPE_VXLAN: if (!edev->dev_info.common.vxlan_enable) return; if (edev->vxlan_dst_port) return; tunn_params.update_vxlan_port = 1; tunn_params.vxlan_port = t_port; __qede_lock(edev); rc = edev->ops->tunn_config(edev->cdev, &tunn_params); __qede_unlock(edev); if (!rc) { edev->vxlan_dst_port = t_port; DP_VERBOSE(edev, QED_MSG_DEBUG, "Added vxlan port=%d\n", t_port); } else { DP_NOTICE(edev, "Failed to add vxlan UDP port=%d\n", t_port); } break; case UDP_TUNNEL_TYPE_GENEVE: if (!edev->dev_info.common.geneve_enable) return; if (edev->geneve_dst_port) return; tunn_params.update_geneve_port = 1; tunn_params.geneve_port = t_port; __qede_lock(edev); rc = edev->ops->tunn_config(edev->cdev, &tunn_params); __qede_unlock(edev); if (!rc) { edev->geneve_dst_port = t_port; DP_VERBOSE(edev, QED_MSG_DEBUG, "Added geneve port=%d\n", t_port); } else { DP_NOTICE(edev, "Failed to add geneve UDP port=%d\n", t_port); } break; default: return; } } void qede_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) { struct qede_dev *edev = netdev_priv(dev); struct qed_tunn_params tunn_params; u16 t_port = ntohs(ti->port); memset(&tunn_params, 0, sizeof(tunn_params)); switch (ti->type) { case UDP_TUNNEL_TYPE_VXLAN: if (t_port != edev->vxlan_dst_port) return; tunn_params.update_vxlan_port = 1; tunn_params.vxlan_port = 0; __qede_lock(edev); edev->ops->tunn_config(edev->cdev, &tunn_params); __qede_unlock(edev); edev->vxlan_dst_port = 0; DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted vxlan port=%d\n", t_port); break; case UDP_TUNNEL_TYPE_GENEVE: if (t_port != edev->geneve_dst_port) return; tunn_params.update_geneve_port = 1; tunn_params.geneve_port = 0; __qede_lock(edev); edev->ops->tunn_config(edev->cdev, &tunn_params); __qede_unlock(edev); edev->geneve_dst_port = 0; DP_VERBOSE(edev, QED_MSG_DEBUG, "Deleted geneve port=%d\n", t_port); break; default: return; } } static void qede_xdp_reload_func(struct qede_dev *edev, struct qede_reload_args *args) { struct bpf_prog *old; old = xchg(&edev->xdp_prog, args->u.new_prog); if (old) bpf_prog_put(old); } static int qede_xdp_set(struct qede_dev *edev, struct bpf_prog *prog) { struct qede_reload_args args; /* If we're called, there was already a bpf reference increment */ args.func = &qede_xdp_reload_func; args.u.new_prog = prog; qede_reload(edev, &args, false); return 0; } int qede_xdp(struct net_device *dev, struct netdev_xdp *xdp) { struct qede_dev *edev = netdev_priv(dev); switch (xdp->command) { case XDP_SETUP_PROG: return qede_xdp_set(edev, xdp->prog); case XDP_QUERY_PROG: xdp->prog_attached = !!edev->xdp_prog; xdp->prog_id = edev->xdp_prog ? edev->xdp_prog->aux->id : 0; return 0; default: return -EINVAL; } } static int qede_set_mcast_rx_mac(struct qede_dev *edev, enum qed_filter_xcast_params_type opcode, unsigned char *mac, int num_macs) { struct qed_filter_params filter_cmd; int i; memset(&filter_cmd, 0, sizeof(filter_cmd)); filter_cmd.type = QED_FILTER_TYPE_MCAST; filter_cmd.filter.mcast.type = opcode; filter_cmd.filter.mcast.num = num_macs; for (i = 0; i < num_macs; i++, mac += ETH_ALEN) ether_addr_copy(filter_cmd.filter.mcast.mac[i], mac); return edev->ops->filter_config(edev->cdev, &filter_cmd); } int qede_set_mac_addr(struct net_device *ndev, void *p) { struct qede_dev *edev = netdev_priv(ndev); struct sockaddr *addr = p; int rc = 0; /* Make sure the state doesn't transition while changing the MAC. * Also, all flows accessing the dev_addr field are doing that under * this lock. */ __qede_lock(edev); if (!is_valid_ether_addr(addr->sa_data)) { DP_NOTICE(edev, "The MAC address is not valid\n"); rc = -EFAULT; goto out; } if (!edev->ops->check_mac(edev->cdev, addr->sa_data)) { DP_NOTICE(edev, "qed prevents setting MAC %pM\n", addr->sa_data); rc = -EINVAL; goto out; } if (edev->state == QEDE_STATE_OPEN) { /* Remove the previous primary mac */ rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, ndev->dev_addr); if (rc) goto out; } ether_addr_copy(ndev->dev_addr, addr->sa_data); DP_INFO(edev, "Setting device MAC to %pM\n", addr->sa_data); if (edev->state != QEDE_STATE_OPEN) { DP_VERBOSE(edev, NETIF_MSG_IFDOWN, "The device is currently down\n"); goto out; } edev->ops->common->update_mac(edev->cdev, ndev->dev_addr); rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, ndev->dev_addr); out: __qede_unlock(edev); return rc; } static int qede_configure_mcast_filtering(struct net_device *ndev, enum qed_filter_rx_mode_type *accept_flags) { struct qede_dev *edev = netdev_priv(ndev); unsigned char *mc_macs, *temp; struct netdev_hw_addr *ha; int rc = 0, mc_count; size_t size; size = 64 * ETH_ALEN; mc_macs = kzalloc(size, GFP_KERNEL); if (!mc_macs) { DP_NOTICE(edev, "Failed to allocate memory for multicast MACs\n"); rc = -ENOMEM; goto exit; } temp = mc_macs; /* Remove all previously configured MAC filters */ rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_DEL, mc_macs, 1); if (rc) goto exit; netif_addr_lock_bh(ndev); mc_count = netdev_mc_count(ndev); if (mc_count <= 64) { netdev_for_each_mc_addr(ha, ndev) { ether_addr_copy(temp, ha->addr); temp += ETH_ALEN; } } netif_addr_unlock_bh(ndev); /* Check for all multicast @@@TBD resource allocation */ if ((ndev->flags & IFF_ALLMULTI) || (mc_count > 64)) { if (*accept_flags == QED_FILTER_RX_MODE_TYPE_REGULAR) *accept_flags = QED_FILTER_RX_MODE_TYPE_MULTI_PROMISC; } else { /* Add all multicast MAC filters */ rc = qede_set_mcast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, mc_macs, mc_count); } exit: kfree(mc_macs); return rc; } void qede_set_rx_mode(struct net_device *ndev) { struct qede_dev *edev = netdev_priv(ndev); set_bit(QEDE_SP_RX_MODE, &edev->sp_flags); schedule_delayed_work(&edev->sp_task, 0); } /* Must be called with qede_lock held */ void qede_config_rx_mode(struct net_device *ndev) { enum qed_filter_rx_mode_type accept_flags; struct qede_dev *edev = netdev_priv(ndev); struct qed_filter_params rx_mode; unsigned char *uc_macs, *temp; struct netdev_hw_addr *ha; int rc, uc_count; size_t size; netif_addr_lock_bh(ndev); uc_count = netdev_uc_count(ndev); size = uc_count * ETH_ALEN; uc_macs = kzalloc(size, GFP_ATOMIC); if (!uc_macs) { DP_NOTICE(edev, "Failed to allocate memory for unicast MACs\n"); netif_addr_unlock_bh(ndev); return; } temp = uc_macs; netdev_for_each_uc_addr(ha, ndev) { ether_addr_copy(temp, ha->addr); temp += ETH_ALEN; } netif_addr_unlock_bh(ndev); /* Configure the struct for the Rx mode */ memset(&rx_mode, 0, sizeof(struct qed_filter_params)); rx_mode.type = QED_FILTER_TYPE_RX_MODE; /* Remove all previous unicast secondary macs and multicast macs * (configrue / leave the primary mac) */ rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_REPLACE, edev->ndev->dev_addr); if (rc) goto out; /* Check for promiscuous */ if (ndev->flags & IFF_PROMISC) accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; else accept_flags = QED_FILTER_RX_MODE_TYPE_REGULAR; /* Configure all filters regardless, in case promisc is rejected */ if (uc_count < edev->dev_info.num_mac_filters) { int i; temp = uc_macs; for (i = 0; i < uc_count; i++) { rc = qede_set_ucast_rx_mac(edev, QED_FILTER_XCAST_TYPE_ADD, temp); if (rc) goto out; temp += ETH_ALEN; } } else { accept_flags = QED_FILTER_RX_MODE_TYPE_PROMISC; } rc = qede_configure_mcast_filtering(ndev, &accept_flags); if (rc) goto out; /* take care of VLAN mode */ if (ndev->flags & IFF_PROMISC) { qede_config_accept_any_vlan(edev, true); } else if (!edev->non_configured_vlans) { /* It's possible that accept_any_vlan mode is set due to a * previous setting of IFF_PROMISC. If vlan credits are * sufficient, disable accept_any_vlan. */ qede_config_accept_any_vlan(edev, false); } rx_mode.filter.accept_flags = accept_flags; edev->ops->filter_config(edev->cdev, &rx_mode); out: kfree(uc_macs); } static struct qede_arfs_fltr_node * qede_get_arfs_fltr_by_loc(struct hlist_head *head, u32 location) { struct qede_arfs_fltr_node *fltr; hlist_for_each_entry(fltr, head, node) if (location == fltr->sw_id) return fltr; return NULL; } static bool qede_compare_user_flow_ips(struct qede_arfs_fltr_node *tpos, struct ethtool_rx_flow_spec *fsp, __be16 proto) { if (proto == htons(ETH_P_IP)) { struct ethtool_tcpip4_spec *ip; ip = &fsp->h_u.tcp_ip4_spec; if (tpos->tuple.src_ipv4 == ip->ip4src && tpos->tuple.dst_ipv4 == ip->ip4dst) return true; else return false; } else { struct ethtool_tcpip6_spec *ip6; struct in6_addr *src; ip6 = &fsp->h_u.tcp_ip6_spec; src = &tpos->tuple.src_ipv6; if (!memcmp(src, &ip6->ip6src, sizeof(struct in6_addr)) && !memcmp(&tpos->tuple.dst_ipv6, &ip6->ip6dst, sizeof(struct in6_addr))) return true; else return false; } return false; } int qede_get_cls_rule_all(struct qede_dev *edev, struct ethtool_rxnfc *info, u32 *rule_locs) { struct qede_arfs_fltr_node *fltr; struct hlist_head *head; int cnt = 0, rc = 0; info->data = QEDE_RFS_MAX_FLTR; __qede_lock(edev); if (!edev->arfs) { rc = -EPERM; goto unlock; } head = QEDE_ARFS_BUCKET_HEAD(edev, 0); hlist_for_each_entry(fltr, head, node) { if (cnt == info->rule_cnt) { rc = -EMSGSIZE; goto unlock; } rule_locs[cnt] = fltr->sw_id; cnt++; } info->rule_cnt = cnt; unlock: __qede_unlock(edev); return rc; } int qede_get_cls_rule_entry(struct qede_dev *edev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = &cmd->fs; struct qede_arfs_fltr_node *fltr = NULL; int rc = 0; cmd->data = QEDE_RFS_MAX_FLTR; __qede_lock(edev); if (!edev->arfs) { rc = -EPERM; goto unlock; } fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0), fsp->location); if (!fltr) { DP_NOTICE(edev, "Rule not found - location=0x%x\n", fsp->location); rc = -EINVAL; goto unlock; } if (fltr->tuple.eth_proto == htons(ETH_P_IP)) { if (fltr->tuple.ip_proto == IPPROTO_TCP) fsp->flow_type = TCP_V4_FLOW; else fsp->flow_type = UDP_V4_FLOW; fsp->h_u.tcp_ip4_spec.psrc = fltr->tuple.src_port; fsp->h_u.tcp_ip4_spec.pdst = fltr->tuple.dst_port; fsp->h_u.tcp_ip4_spec.ip4src = fltr->tuple.src_ipv4; fsp->h_u.tcp_ip4_spec.ip4dst = fltr->tuple.dst_ipv4; } else { if (fltr->tuple.ip_proto == IPPROTO_TCP) fsp->flow_type = TCP_V6_FLOW; else fsp->flow_type = UDP_V6_FLOW; fsp->h_u.tcp_ip6_spec.psrc = fltr->tuple.src_port; fsp->h_u.tcp_ip6_spec.pdst = fltr->tuple.dst_port; memcpy(&fsp->h_u.tcp_ip6_spec.ip6src, &fltr->tuple.src_ipv6, sizeof(struct in6_addr)); memcpy(&fsp->h_u.tcp_ip6_spec.ip6dst, &fltr->tuple.dst_ipv6, sizeof(struct in6_addr)); } fsp->ring_cookie = fltr->rxq_id; unlock: __qede_unlock(edev); return rc; } static int qede_validate_and_check_flow_exist(struct qede_dev *edev, struct ethtool_rx_flow_spec *fsp, int *min_hlen) { __be16 src_port = 0x0, dst_port = 0x0; struct qede_arfs_fltr_node *fltr; struct hlist_node *temp; struct hlist_head *head; __be16 eth_proto; u8 ip_proto; if (fsp->location >= QEDE_RFS_MAX_FLTR || fsp->ring_cookie >= QEDE_RSS_COUNT(edev)) return -EINVAL; if (fsp->flow_type == TCP_V4_FLOW) { *min_hlen += sizeof(struct iphdr) + sizeof(struct tcphdr); eth_proto = htons(ETH_P_IP); ip_proto = IPPROTO_TCP; } else if (fsp->flow_type == UDP_V4_FLOW) { *min_hlen += sizeof(struct iphdr) + sizeof(struct udphdr); eth_proto = htons(ETH_P_IP); ip_proto = IPPROTO_UDP; } else if (fsp->flow_type == TCP_V6_FLOW) { *min_hlen += sizeof(struct ipv6hdr) + sizeof(struct tcphdr); eth_proto = htons(ETH_P_IPV6); ip_proto = IPPROTO_TCP; } else if (fsp->flow_type == UDP_V6_FLOW) { *min_hlen += sizeof(struct ipv6hdr) + sizeof(struct udphdr); eth_proto = htons(ETH_P_IPV6); ip_proto = IPPROTO_UDP; } else { DP_NOTICE(edev, "Unsupported flow type = 0x%x\n", fsp->flow_type); return -EPROTONOSUPPORT; } if (eth_proto == htons(ETH_P_IP)) { src_port = fsp->h_u.tcp_ip4_spec.psrc; dst_port = fsp->h_u.tcp_ip4_spec.pdst; } else { src_port = fsp->h_u.tcp_ip6_spec.psrc; dst_port = fsp->h_u.tcp_ip6_spec.pdst; } head = QEDE_ARFS_BUCKET_HEAD(edev, 0); hlist_for_each_entry_safe(fltr, temp, head, node) { if ((fltr->tuple.ip_proto == ip_proto && fltr->tuple.eth_proto == eth_proto && qede_compare_user_flow_ips(fltr, fsp, eth_proto) && fltr->tuple.src_port == src_port && fltr->tuple.dst_port == dst_port) || fltr->sw_id == fsp->location) return -EEXIST; } return 0; } static int qede_poll_arfs_filter_config(struct qede_dev *edev, struct qede_arfs_fltr_node *fltr) { int count = QEDE_ARFS_POLL_COUNT; while (fltr->used && count) { msleep(20); count--; } if (count == 0 || fltr->fw_rc) { qede_dequeue_fltr_and_config_searcher(edev, fltr); return -EIO; } return fltr->fw_rc; } int qede_add_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info) { struct ethtool_rx_flow_spec *fsp = &info->fs; struct qede_arfs_fltr_node *n; int min_hlen = ETH_HLEN, rc; struct ethhdr *eth; struct iphdr *ip; __be16 *ports; __qede_lock(edev); if (!edev->arfs) { rc = -EPERM; goto unlock; } rc = qede_validate_and_check_flow_exist(edev, fsp, &min_hlen); if (rc) goto unlock; n = kzalloc(sizeof(*n), GFP_KERNEL); if (!n) { rc = -ENOMEM; goto unlock; } n->data = kzalloc(min_hlen, GFP_KERNEL); if (!n->data) { kfree(n); rc = -ENOMEM; goto unlock; } n->sw_id = fsp->location; set_bit(n->sw_id, edev->arfs->arfs_fltr_bmap); n->buf_len = min_hlen; n->rxq_id = fsp->ring_cookie; n->next_rxq_id = n->rxq_id; eth = (struct ethhdr *)n->data; if (info->fs.flow_type == TCP_V4_FLOW || info->fs.flow_type == UDP_V4_FLOW) { ports = (__be16 *)(n->data + ETH_HLEN + sizeof(struct iphdr)); eth->h_proto = htons(ETH_P_IP); n->tuple.eth_proto = htons(ETH_P_IP); n->tuple.src_ipv4 = info->fs.h_u.tcp_ip4_spec.ip4src; n->tuple.dst_ipv4 = info->fs.h_u.tcp_ip4_spec.ip4dst; n->tuple.src_port = info->fs.h_u.tcp_ip4_spec.psrc; n->tuple.dst_port = info->fs.h_u.tcp_ip4_spec.pdst; ports[0] = n->tuple.src_port; ports[1] = n->tuple.dst_port; ip = (struct iphdr *)(n->data + ETH_HLEN); ip->saddr = info->fs.h_u.tcp_ip4_spec.ip4src; ip->daddr = info->fs.h_u.tcp_ip4_spec.ip4dst; ip->version = 0x4; ip->ihl = 0x5; if (info->fs.flow_type == TCP_V4_FLOW) { n->tuple.ip_proto = IPPROTO_TCP; ip->protocol = IPPROTO_TCP; } else { n->tuple.ip_proto = IPPROTO_UDP; ip->protocol = IPPROTO_UDP; } ip->tot_len = cpu_to_be16(min_hlen - ETH_HLEN); } else { struct ipv6hdr *ip6; ip6 = (struct ipv6hdr *)(n->data + ETH_HLEN); ports = (__be16 *)(n->data + ETH_HLEN + sizeof(struct ipv6hdr)); eth->h_proto = htons(ETH_P_IPV6); n->tuple.eth_proto = htons(ETH_P_IPV6); memcpy(&n->tuple.src_ipv6, &info->fs.h_u.tcp_ip6_spec.ip6src, sizeof(struct in6_addr)); memcpy(&n->tuple.dst_ipv6, &info->fs.h_u.tcp_ip6_spec.ip6dst, sizeof(struct in6_addr)); n->tuple.src_port = info->fs.h_u.tcp_ip6_spec.psrc; n->tuple.dst_port = info->fs.h_u.tcp_ip6_spec.pdst; ports[0] = n->tuple.src_port; ports[1] = n->tuple.dst_port; memcpy(&ip6->saddr, &n->tuple.src_ipv6, sizeof(struct in6_addr)); memcpy(&ip6->daddr, &n->tuple.dst_ipv6, sizeof(struct in6_addr)); ip6->version = 0x6; if (info->fs.flow_type == TCP_V6_FLOW) { n->tuple.ip_proto = IPPROTO_TCP; ip6->nexthdr = NEXTHDR_TCP; ip6->payload_len = cpu_to_be16(sizeof(struct tcphdr)); } else { n->tuple.ip_proto = IPPROTO_UDP; ip6->nexthdr = NEXTHDR_UDP; ip6->payload_len = cpu_to_be16(sizeof(struct udphdr)); } } rc = qede_enqueue_fltr_and_config_searcher(edev, n, 0); if (rc) goto unlock; qede_configure_arfs_fltr(edev, n, n->rxq_id, true); rc = qede_poll_arfs_filter_config(edev, n); unlock: __qede_unlock(edev); return rc; } int qede_del_cls_rule(struct qede_dev *edev, struct ethtool_rxnfc *info) { struct ethtool_rx_flow_spec *fsp = &info->fs; struct qede_arfs_fltr_node *fltr = NULL; int rc = -EPERM; __qede_lock(edev); if (!edev->arfs) goto unlock; fltr = qede_get_arfs_fltr_by_loc(QEDE_ARFS_BUCKET_HEAD(edev, 0), fsp->location); if (!fltr) goto unlock; qede_configure_arfs_fltr(edev, fltr, fltr->rxq_id, false); rc = qede_poll_arfs_filter_config(edev, fltr); if (rc == 0) qede_dequeue_fltr_and_config_searcher(edev, fltr); unlock: __qede_unlock(edev); return rc; } int qede_get_arfs_filter_count(struct qede_dev *edev) { int count = 0; __qede_lock(edev); if (!edev->arfs) goto unlock; count = edev->arfs->filter_count; unlock: __qede_unlock(edev); return count; }