/* SPDX-License-Identifier: GPL-2.0 */ /* Copyright (c) 2018, Intel Corporation. */ #ifndef _ICE_TXRX_H_ #define _ICE_TXRX_H_ #include "ice_type.h" #define ICE_DFLT_IRQ_WORK 256 #define ICE_RXBUF_3072 3072 #define ICE_RXBUF_2048 2048 #define ICE_RXBUF_1536 1536 #define ICE_MAX_CHAINED_RX_BUFS 5 #define ICE_MAX_BUF_TXD 8 #define ICE_MIN_TX_LEN 17 /* The size limit for a transmit buffer in a descriptor is (16K - 1). * In order to align with the read requests we will align the value to * the nearest 4K which represents our maximum read request size. */ #define ICE_MAX_READ_REQ_SIZE 4096 #define ICE_MAX_DATA_PER_TXD (16 * 1024 - 1) #define ICE_MAX_DATA_PER_TXD_ALIGNED \ (~(ICE_MAX_READ_REQ_SIZE - 1) & ICE_MAX_DATA_PER_TXD) #define ICE_RX_BUF_WRITE 16 /* Must be power of 2 */ #define ICE_MAX_TXQ_PER_TXQG 128 /* Attempt to maximize the headroom available for incoming frames. We use a 2K * buffer for MTUs <= 1500 and need 1536/1534 to store the data for the frame. * This leaves us with 512 bytes of room. From that we need to deduct the * space needed for the shared info and the padding needed to IP align the * frame. * * Note: For cache line sizes 256 or larger this value is going to end * up negative. In these cases we should fall back to the legacy * receive path. */ #if (PAGE_SIZE < 8192) #define ICE_2K_TOO_SMALL_WITH_PADDING \ ((unsigned int)(NET_SKB_PAD + ICE_RXBUF_1536) > \ SKB_WITH_OVERHEAD(ICE_RXBUF_2048)) /** * ice_compute_pad - compute the padding * @rx_buf_len: buffer length * * Figure out the size of half page based on given buffer length and * then subtract the skb_shared_info followed by subtraction of the * actual buffer length; this in turn results in the actual space that * is left for padding usage */ static inline int ice_compute_pad(int rx_buf_len) { int half_page_size; half_page_size = ALIGN(rx_buf_len, PAGE_SIZE / 2); return SKB_WITH_OVERHEAD(half_page_size) - rx_buf_len; } /** * ice_skb_pad - determine the padding that we can supply * * Figure out the right Rx buffer size and based on that calculate the * padding */ static inline int ice_skb_pad(void) { int rx_buf_len; /* If a 2K buffer cannot handle a standard Ethernet frame then * optimize padding for a 3K buffer instead of a 1.5K buffer. * * For a 3K buffer we need to add enough padding to allow for * tailroom due to NET_IP_ALIGN possibly shifting us out of * cache-line alignment. */ if (ICE_2K_TOO_SMALL_WITH_PADDING) rx_buf_len = ICE_RXBUF_3072 + SKB_DATA_ALIGN(NET_IP_ALIGN); else rx_buf_len = ICE_RXBUF_1536; /* if needed make room for NET_IP_ALIGN */ rx_buf_len -= NET_IP_ALIGN; return ice_compute_pad(rx_buf_len); } #define ICE_SKB_PAD ice_skb_pad() #else #define ICE_2K_TOO_SMALL_WITH_PADDING false #define ICE_SKB_PAD (NET_SKB_PAD + NET_IP_ALIGN) #endif /* We are assuming that the cache line is always 64 Bytes here for ice. * In order to make sure that is a correct assumption there is a check in probe * to print a warning if the read from GLPCI_CNF2 tells us that the cache line * size is 128 bytes. We do it this way because we do not want to read the * GLPCI_CNF2 register or a variable containing the value on every pass through * the Tx path. */ #define ICE_CACHE_LINE_BYTES 64 #define ICE_DESCS_PER_CACHE_LINE (ICE_CACHE_LINE_BYTES / \ sizeof(struct ice_tx_desc)) #define ICE_DESCS_FOR_CTX_DESC 1 #define ICE_DESCS_FOR_SKB_DATA_PTR 1 /* Tx descriptors needed, worst case */ #define DESC_NEEDED (MAX_SKB_FRAGS + ICE_DESCS_FOR_CTX_DESC + \ ICE_DESCS_PER_CACHE_LINE + ICE_DESCS_FOR_SKB_DATA_PTR) #define ICE_DESC_UNUSED(R) \ (u16)((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \ (R)->next_to_clean - (R)->next_to_use - 1) #define ICE_TX_FLAGS_TSO BIT(0) #define ICE_TX_FLAGS_HW_VLAN BIT(1) #define ICE_TX_FLAGS_SW_VLAN BIT(2) /* ICE_TX_FLAGS_DUMMY_PKT is used to mark dummy packets that should be * freed instead of returned like skb packets. */ #define ICE_TX_FLAGS_DUMMY_PKT BIT(3) #define ICE_TX_FLAGS_IPV4 BIT(5) #define ICE_TX_FLAGS_IPV6 BIT(6) #define ICE_TX_FLAGS_TUNNEL BIT(7) #define ICE_TX_FLAGS_VLAN_M 0xffff0000 #define ICE_TX_FLAGS_VLAN_PR_M 0xe0000000 #define ICE_TX_FLAGS_VLAN_PR_S 29 #define ICE_TX_FLAGS_VLAN_S 16 #define ICE_XDP_PASS 0 #define ICE_XDP_CONSUMED BIT(0) #define ICE_XDP_TX BIT(1) #define ICE_XDP_REDIR BIT(2) #define ICE_RX_DMA_ATTR \ (DMA_ATTR_SKIP_CPU_SYNC | DMA_ATTR_WEAK_ORDERING) #define ICE_ETH_PKT_HDR_PAD (ETH_HLEN + ETH_FCS_LEN + (VLAN_HLEN * 2)) #define ICE_TXD_LAST_DESC_CMD (ICE_TX_DESC_CMD_EOP | ICE_TX_DESC_CMD_RS) struct ice_tx_buf { struct ice_tx_desc *next_to_watch; union { struct sk_buff *skb; void *raw_buf; /* used for XDP */ }; unsigned int bytecount; unsigned short gso_segs; u32 tx_flags; DEFINE_DMA_UNMAP_LEN(len); DEFINE_DMA_UNMAP_ADDR(dma); }; struct ice_tx_offload_params { u64 cd_qw1; struct ice_ring *tx_ring; u32 td_cmd; u32 td_offset; u32 td_l2tag1; u32 cd_tunnel_params; u16 cd_l2tag2; u8 header_len; }; struct ice_rx_buf { union { struct { dma_addr_t dma; struct page *page; unsigned int page_offset; u16 pagecnt_bias; }; struct { struct xdp_buff *xdp; }; }; }; struct ice_q_stats { u64 pkts; u64 bytes; }; struct ice_txq_stats { u64 restart_q; u64 tx_busy; u64 tx_linearize; int prev_pkt; /* negative if no pending Tx descriptors */ }; struct ice_rxq_stats { u64 non_eop_descs; u64 alloc_page_failed; u64 alloc_buf_failed; u64 gro_dropped; /* GRO returned dropped */ }; /* this enum matches hardware bits and is meant to be used by DYN_CTLN * registers and QINT registers or more generally anywhere in the manual * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any * register but instead is a special value meaning "don't update" ITR0/1/2. */ enum ice_dyn_idx_t { ICE_IDX_ITR0 = 0, ICE_IDX_ITR1 = 1, ICE_IDX_ITR2 = 2, ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */ }; /* Header split modes defined by DTYPE field of Rx RLAN context */ enum ice_rx_dtype { ICE_RX_DTYPE_NO_SPLIT = 0, ICE_RX_DTYPE_HEADER_SPLIT = 1, ICE_RX_DTYPE_SPLIT_ALWAYS = 2, }; /* indices into GLINT_ITR registers */ #define ICE_RX_ITR ICE_IDX_ITR0 #define ICE_TX_ITR ICE_IDX_ITR1 #define ICE_ITR_8K 124 #define ICE_ITR_20K 50 #define ICE_ITR_MAX 8160 #define ICE_DFLT_TX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) #define ICE_DFLT_RX_ITR (ICE_ITR_20K | ICE_ITR_DYNAMIC) #define ICE_ITR_DYNAMIC 0x8000 /* used as flag for itr_setting */ #define ITR_IS_DYNAMIC(setting) (!!((setting) & ICE_ITR_DYNAMIC)) #define ITR_TO_REG(setting) ((setting) & ~ICE_ITR_DYNAMIC) #define ICE_ITR_GRAN_S 1 /* ITR granularity is always 2us */ #define ICE_ITR_GRAN_US BIT(ICE_ITR_GRAN_S) #define ICE_ITR_MASK 0x1FFE /* ITR register value alignment mask */ #define ITR_REG_ALIGN(setting) ((setting) & ICE_ITR_MASK) #define ICE_ITR_ADAPTIVE_MIN_INC 0x0002 #define ICE_ITR_ADAPTIVE_MIN_USECS 0x0002 #define ICE_ITR_ADAPTIVE_MAX_USECS 0x00FA #define ICE_ITR_ADAPTIVE_LATENCY 0x8000 #define ICE_ITR_ADAPTIVE_BULK 0x0000 #define ICE_DFLT_INTRL 0 #define ICE_MAX_INTRL 236 #define ICE_IN_WB_ON_ITR_MODE 255 /* Sets WB_ON_ITR and assumes INTENA bit is already cleared, which allows * setting the MSK_M bit to tell hardware to ignore the INTENA_M bit. Also, * set the write-back latency to the usecs passed in. */ #define ICE_GLINT_DYN_CTL_WB_ON_ITR(usecs, itr_idx) \ ((((usecs) << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S)) & \ GLINT_DYN_CTL_INTERVAL_M) | \ (((itr_idx) << GLINT_DYN_CTL_ITR_INDX_S) & \ GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M | \ GLINT_DYN_CTL_WB_ON_ITR_M) /* Legacy or Advanced Mode Queue */ #define ICE_TX_ADVANCED 0 #define ICE_TX_LEGACY 1 /* descriptor ring, associated with a VSI */ struct ice_ring { /* CL1 - 1st cacheline starts here */ struct ice_ring *next; /* pointer to next ring in q_vector */ void *desc; /* Descriptor ring memory */ struct device *dev; /* Used for DMA mapping */ struct net_device *netdev; /* netdev ring maps to */ struct ice_vsi *vsi; /* Backreference to associated VSI */ struct ice_q_vector *q_vector; /* Backreference to associated vector */ u8 __iomem *tail; union { struct ice_tx_buf *tx_buf; struct ice_rx_buf *rx_buf; }; /* CL2 - 2nd cacheline starts here */ u16 q_index; /* Queue number of ring */ u16 q_handle; /* Queue handle per TC */ u8 ring_active:1; /* is ring online or not */ u16 count; /* Number of descriptors */ u16 reg_idx; /* HW register index of the ring */ /* used in interrupt processing */ u16 next_to_use; u16 next_to_clean; u16 next_to_alloc; /* stats structs */ struct ice_q_stats stats; struct u64_stats_sync syncp; union { struct ice_txq_stats tx_stats; struct ice_rxq_stats rx_stats; }; struct rcu_head rcu; /* to avoid race on free */ struct bpf_prog *xdp_prog; struct xsk_buff_pool *xsk_pool; u16 rx_offset; /* CL3 - 3rd cacheline starts here */ struct xdp_rxq_info xdp_rxq; struct sk_buff *skb; /* CLX - the below items are only accessed infrequently and should be * in their own cache line if possible */ #define ICE_TX_FLAGS_RING_XDP BIT(0) #define ICE_RX_FLAGS_RING_BUILD_SKB BIT(1) u8 flags; dma_addr_t dma; /* physical address of ring */ unsigned int size; /* length of descriptor ring in bytes */ u32 txq_teid; /* Added Tx queue TEID */ u16 rx_buf_len; u8 dcb_tc; /* Traffic class of ring */ } ____cacheline_internodealigned_in_smp; static inline bool ice_ring_uses_build_skb(struct ice_ring *ring) { return !!(ring->flags & ICE_RX_FLAGS_RING_BUILD_SKB); } static inline void ice_set_ring_build_skb_ena(struct ice_ring *ring) { ring->flags |= ICE_RX_FLAGS_RING_BUILD_SKB; } static inline void ice_clear_ring_build_skb_ena(struct ice_ring *ring) { ring->flags &= ~ICE_RX_FLAGS_RING_BUILD_SKB; } static inline bool ice_ring_is_xdp(struct ice_ring *ring) { return !!(ring->flags & ICE_TX_FLAGS_RING_XDP); } struct ice_ring_container { /* head of linked-list of rings */ struct ice_ring *ring; unsigned long next_update; /* jiffies value of next queue update */ unsigned int total_bytes; /* total bytes processed this int */ unsigned int total_pkts; /* total packets processed this int */ u16 itr_idx; /* index in the interrupt vector */ u16 target_itr; /* value in usecs divided by the hw->itr_gran */ u16 current_itr; /* value in usecs divided by the hw->itr_gran */ /* high bit set means dynamic ITR, rest is used to store user * readable ITR value in usecs and must be converted before programming * to a register. */ u16 itr_setting; }; struct ice_coalesce_stored { u16 itr_tx; u16 itr_rx; u8 intrl; }; /* iterator for handling rings in ring container */ #define ice_for_each_ring(pos, head) \ for (pos = (head).ring; pos; pos = pos->next) static inline unsigned int ice_rx_pg_order(struct ice_ring *ring) { #if (PAGE_SIZE < 8192) if (ring->rx_buf_len > (PAGE_SIZE / 2)) return 1; #endif return 0; } #define ice_rx_pg_size(_ring) (PAGE_SIZE << ice_rx_pg_order(_ring)) union ice_32b_rx_flex_desc; bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count); netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev); void ice_clean_tx_ring(struct ice_ring *tx_ring); void ice_clean_rx_ring(struct ice_ring *rx_ring); int ice_setup_tx_ring(struct ice_ring *tx_ring); int ice_setup_rx_ring(struct ice_ring *rx_ring); void ice_free_tx_ring(struct ice_ring *tx_ring); void ice_free_rx_ring(struct ice_ring *rx_ring); int ice_napi_poll(struct napi_struct *napi, int budget); int ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc, u8 *raw_packet); int ice_clean_rx_irq(struct ice_ring *rx_ring, int budget); void ice_clean_ctrl_tx_irq(struct ice_ring *tx_ring); #endif /* _ICE_TXRX_H_ */