// SPDX-License-Identifier: GPL-2.0 /* * Copyright(C) 2016 Linaro Limited. All rights reserved. * Author: Mathieu Poirier */ #include #include #include #include #include #include "coresight-catu.h" #include "coresight-priv.h" #include "coresight-tmc.h" struct etr_flat_buf { struct device *dev; dma_addr_t daddr; void *vaddr; size_t size; }; /* * The TMC ETR SG has a page size of 4K. The SG table contains pointers * to 4KB buffers. However, the OS may use a PAGE_SIZE different from * 4K (i.e, 16KB or 64KB). This implies that a single OS page could * contain more than one SG buffer and tables. * * A table entry has the following format: * * ---Bit31------------Bit4-------Bit1-----Bit0-- * | Address[39:12] | SBZ | Entry Type | * ---------------------------------------------- * * Address: Bits [39:12] of a physical page address. Bits [11:0] are * always zero. * * Entry type: * b00 - Reserved. * b01 - Last entry in the tables, points to 4K page buffer. * b10 - Normal entry, points to 4K page buffer. * b11 - Link. The address points to the base of next table. */ typedef u32 sgte_t; #define ETR_SG_PAGE_SHIFT 12 #define ETR_SG_PAGE_SIZE (1UL << ETR_SG_PAGE_SHIFT) #define ETR_SG_PAGES_PER_SYSPAGE (PAGE_SIZE / ETR_SG_PAGE_SIZE) #define ETR_SG_PTRS_PER_PAGE (ETR_SG_PAGE_SIZE / sizeof(sgte_t)) #define ETR_SG_PTRS_PER_SYSPAGE (PAGE_SIZE / sizeof(sgte_t)) #define ETR_SG_ET_MASK 0x3 #define ETR_SG_ET_LAST 0x1 #define ETR_SG_ET_NORMAL 0x2 #define ETR_SG_ET_LINK 0x3 #define ETR_SG_ADDR_SHIFT 4 #define ETR_SG_ENTRY(addr, type) \ (sgte_t)((((addr) >> ETR_SG_PAGE_SHIFT) << ETR_SG_ADDR_SHIFT) | \ (type & ETR_SG_ET_MASK)) #define ETR_SG_ADDR(entry) \ (((dma_addr_t)(entry) >> ETR_SG_ADDR_SHIFT) << ETR_SG_PAGE_SHIFT) #define ETR_SG_ET(entry) ((entry) & ETR_SG_ET_MASK) /* * struct etr_sg_table : ETR SG Table * @sg_table: Generic SG Table holding the data/table pages. * @hwaddr: hwaddress used by the TMC, which is the base * address of the table. */ struct etr_sg_table { struct tmc_sg_table *sg_table; dma_addr_t hwaddr; }; /* * tmc_etr_sg_table_entries: Total number of table entries required to map * @nr_pages system pages. * * We need to map @nr_pages * ETR_SG_PAGES_PER_SYSPAGE data pages. * Each TMC page can map (ETR_SG_PTRS_PER_PAGE - 1) buffer pointers, * with the last entry pointing to another page of table entries. * If we spill over to a new page for mapping 1 entry, we could as * well replace the link entry of the previous page with the last entry. */ static inline unsigned long __attribute_const__ tmc_etr_sg_table_entries(int nr_pages) { unsigned long nr_sgpages = nr_pages * ETR_SG_PAGES_PER_SYSPAGE; unsigned long nr_sglinks = nr_sgpages / (ETR_SG_PTRS_PER_PAGE - 1); /* * If we spill over to a new page for 1 entry, we could as well * make it the LAST entry in the previous page, skipping the Link * address. */ if (nr_sglinks && (nr_sgpages % (ETR_SG_PTRS_PER_PAGE - 1) < 2)) nr_sglinks--; return nr_sgpages + nr_sglinks; } /* * tmc_pages_get_offset: Go through all the pages in the tmc_pages * and map the device address @addr to an offset within the virtual * contiguous buffer. */ static long tmc_pages_get_offset(struct tmc_pages *tmc_pages, dma_addr_t addr) { int i; dma_addr_t page_start; for (i = 0; i < tmc_pages->nr_pages; i++) { page_start = tmc_pages->daddrs[i]; if (addr >= page_start && addr < (page_start + PAGE_SIZE)) return i * PAGE_SIZE + (addr - page_start); } return -EINVAL; } /* * tmc_pages_free : Unmap and free the pages used by tmc_pages. * If the pages were not allocated in tmc_pages_alloc(), we would * simply drop the refcount. */ static void tmc_pages_free(struct tmc_pages *tmc_pages, struct device *dev, enum dma_data_direction dir) { int i; for (i = 0; i < tmc_pages->nr_pages; i++) { if (tmc_pages->daddrs && tmc_pages->daddrs[i]) dma_unmap_page(dev, tmc_pages->daddrs[i], PAGE_SIZE, dir); if (tmc_pages->pages && tmc_pages->pages[i]) __free_page(tmc_pages->pages[i]); } kfree(tmc_pages->pages); kfree(tmc_pages->daddrs); tmc_pages->pages = NULL; tmc_pages->daddrs = NULL; tmc_pages->nr_pages = 0; } /* * tmc_pages_alloc : Allocate and map pages for a given @tmc_pages. * If @pages is not NULL, the list of page virtual addresses are * used as the data pages. The pages are then dma_map'ed for @dev * with dma_direction @dir. * * Returns 0 upon success, else the error number. */ static int tmc_pages_alloc(struct tmc_pages *tmc_pages, struct device *dev, int node, enum dma_data_direction dir, void **pages) { int i, nr_pages; dma_addr_t paddr; struct page *page; nr_pages = tmc_pages->nr_pages; tmc_pages->daddrs = kcalloc(nr_pages, sizeof(*tmc_pages->daddrs), GFP_KERNEL); if (!tmc_pages->daddrs) return -ENOMEM; tmc_pages->pages = kcalloc(nr_pages, sizeof(*tmc_pages->pages), GFP_KERNEL); if (!tmc_pages->pages) { kfree(tmc_pages->daddrs); tmc_pages->daddrs = NULL; return -ENOMEM; } for (i = 0; i < nr_pages; i++) { if (pages && pages[i]) { page = virt_to_page(pages[i]); /* Hold a refcount on the page */ get_page(page); } else { page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0); if (!page) goto err; } paddr = dma_map_page(dev, page, 0, PAGE_SIZE, dir); if (dma_mapping_error(dev, paddr)) goto err; tmc_pages->daddrs[i] = paddr; tmc_pages->pages[i] = page; } return 0; err: tmc_pages_free(tmc_pages, dev, dir); return -ENOMEM; } static inline long tmc_sg_get_data_page_offset(struct tmc_sg_table *sg_table, dma_addr_t addr) { return tmc_pages_get_offset(&sg_table->data_pages, addr); } static inline void tmc_free_table_pages(struct tmc_sg_table *sg_table) { if (sg_table->table_vaddr) vunmap(sg_table->table_vaddr); tmc_pages_free(&sg_table->table_pages, sg_table->dev, DMA_TO_DEVICE); } static void tmc_free_data_pages(struct tmc_sg_table *sg_table) { if (sg_table->data_vaddr) vunmap(sg_table->data_vaddr); tmc_pages_free(&sg_table->data_pages, sg_table->dev, DMA_FROM_DEVICE); } void tmc_free_sg_table(struct tmc_sg_table *sg_table) { tmc_free_table_pages(sg_table); tmc_free_data_pages(sg_table); } /* * Alloc pages for the table. Since this will be used by the device, * allocate the pages closer to the device (i.e, dev_to_node(dev) * rather than the CPU node). */ static int tmc_alloc_table_pages(struct tmc_sg_table *sg_table) { int rc; struct tmc_pages *table_pages = &sg_table->table_pages; rc = tmc_pages_alloc(table_pages, sg_table->dev, dev_to_node(sg_table->dev), DMA_TO_DEVICE, NULL); if (rc) return rc; sg_table->table_vaddr = vmap(table_pages->pages, table_pages->nr_pages, VM_MAP, PAGE_KERNEL); if (!sg_table->table_vaddr) rc = -ENOMEM; else sg_table->table_daddr = table_pages->daddrs[0]; return rc; } static int tmc_alloc_data_pages(struct tmc_sg_table *sg_table, void **pages) { int rc; /* Allocate data pages on the node requested by the caller */ rc = tmc_pages_alloc(&sg_table->data_pages, sg_table->dev, sg_table->node, DMA_FROM_DEVICE, pages); if (!rc) { sg_table->data_vaddr = vmap(sg_table->data_pages.pages, sg_table->data_pages.nr_pages, VM_MAP, PAGE_KERNEL); if (!sg_table->data_vaddr) rc = -ENOMEM; } return rc; } /* * tmc_alloc_sg_table: Allocate and setup dma pages for the TMC SG table * and data buffers. TMC writes to the data buffers and reads from the SG * Table pages. * * @dev - Device to which page should be DMA mapped. * @node - Numa node for mem allocations * @nr_tpages - Number of pages for the table entries. * @nr_dpages - Number of pages for Data buffer. * @pages - Optional list of virtual address of pages. */ struct tmc_sg_table *tmc_alloc_sg_table(struct device *dev, int node, int nr_tpages, int nr_dpages, void **pages) { long rc; struct tmc_sg_table *sg_table; sg_table = kzalloc(sizeof(*sg_table), GFP_KERNEL); if (!sg_table) return ERR_PTR(-ENOMEM); sg_table->data_pages.nr_pages = nr_dpages; sg_table->table_pages.nr_pages = nr_tpages; sg_table->node = node; sg_table->dev = dev; rc = tmc_alloc_data_pages(sg_table, pages); if (!rc) rc = tmc_alloc_table_pages(sg_table); if (rc) { tmc_free_sg_table(sg_table); kfree(sg_table); return ERR_PTR(rc); } return sg_table; } /* * tmc_sg_table_sync_data_range: Sync the data buffer written * by the device from @offset upto a @size bytes. */ void tmc_sg_table_sync_data_range(struct tmc_sg_table *table, u64 offset, u64 size) { int i, index, start; int npages = DIV_ROUND_UP(size, PAGE_SIZE); struct device *dev = table->dev; struct tmc_pages *data = &table->data_pages; start = offset >> PAGE_SHIFT; for (i = start; i < (start + npages); i++) { index = i % data->nr_pages; dma_sync_single_for_cpu(dev, data->daddrs[index], PAGE_SIZE, DMA_FROM_DEVICE); } } /* tmc_sg_sync_table: Sync the page table */ void tmc_sg_table_sync_table(struct tmc_sg_table *sg_table) { int i; struct device *dev = sg_table->dev; struct tmc_pages *table_pages = &sg_table->table_pages; for (i = 0; i < table_pages->nr_pages; i++) dma_sync_single_for_device(dev, table_pages->daddrs[i], PAGE_SIZE, DMA_TO_DEVICE); } /* * tmc_sg_table_get_data: Get the buffer pointer for data @offset * in the SG buffer. The @bufpp is updated to point to the buffer. * Returns : * the length of linear data available at @offset. * or * <= 0 if no data is available. */ ssize_t tmc_sg_table_get_data(struct tmc_sg_table *sg_table, u64 offset, size_t len, char **bufpp) { size_t size; int pg_idx = offset >> PAGE_SHIFT; int pg_offset = offset & (PAGE_SIZE - 1); struct tmc_pages *data_pages = &sg_table->data_pages; size = tmc_sg_table_buf_size(sg_table); if (offset >= size) return -EINVAL; /* Make sure we don't go beyond the end */ len = (len < (size - offset)) ? len : size - offset; /* Respect the page boundaries */ len = (len < (PAGE_SIZE - pg_offset)) ? len : (PAGE_SIZE - pg_offset); if (len > 0) *bufpp = page_address(data_pages->pages[pg_idx]) + pg_offset; return len; } #ifdef ETR_SG_DEBUG /* Map a dma address to virtual address */ static unsigned long tmc_sg_daddr_to_vaddr(struct tmc_sg_table *sg_table, dma_addr_t addr, bool table) { long offset; unsigned long base; struct tmc_pages *tmc_pages; if (table) { tmc_pages = &sg_table->table_pages; base = (unsigned long)sg_table->table_vaddr; } else { tmc_pages = &sg_table->data_pages; base = (unsigned long)sg_table->data_vaddr; } offset = tmc_pages_get_offset(tmc_pages, addr); if (offset < 0) return 0; return base + offset; } /* Dump the given sg_table */ static void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) { sgte_t *ptr; int i = 0; dma_addr_t addr; struct tmc_sg_table *sg_table = etr_table->sg_table; ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, etr_table->hwaddr, true); while (ptr) { addr = ETR_SG_ADDR(*ptr); switch (ETR_SG_ET(*ptr)) { case ETR_SG_ET_NORMAL: dev_dbg(sg_table->dev, "%05d: %p\t:[N] 0x%llx\n", i, ptr, addr); ptr++; break; case ETR_SG_ET_LINK: dev_dbg(sg_table->dev, "%05d: *** %p\t:{L} 0x%llx ***\n", i, ptr, addr); ptr = (sgte_t *)tmc_sg_daddr_to_vaddr(sg_table, addr, true); break; case ETR_SG_ET_LAST: dev_dbg(sg_table->dev, "%05d: ### %p\t:[L] 0x%llx ###\n", i, ptr, addr); return; default: dev_dbg(sg_table->dev, "%05d: xxx %p\t:[INVALID] 0x%llx xxx\n", i, ptr, addr); return; } i++; } dev_dbg(sg_table->dev, "******* End of Table *****\n"); } #else static inline void tmc_etr_sg_table_dump(struct etr_sg_table *etr_table) {} #endif /* * Populate the SG Table page table entries from table/data * pages allocated. Each Data page has ETR_SG_PAGES_PER_SYSPAGE SG pages. * So does a Table page. So we keep track of indices of the tables * in each system page and move the pointers accordingly. */ #define INC_IDX_ROUND(idx, size) ((idx) = ((idx) + 1) % (size)) static void tmc_etr_sg_table_populate(struct etr_sg_table *etr_table) { dma_addr_t paddr; int i, type, nr_entries; int tpidx = 0; /* index to the current system table_page */ int sgtidx = 0; /* index to the sg_table within the current syspage */ int sgtentry = 0; /* the entry within the sg_table */ int dpidx = 0; /* index to the current system data_page */ int spidx = 0; /* index to the SG page within the current data page */ sgte_t *ptr; /* pointer to the table entry to fill */ struct tmc_sg_table *sg_table = etr_table->sg_table; dma_addr_t *table_daddrs = sg_table->table_pages.daddrs; dma_addr_t *data_daddrs = sg_table->data_pages.daddrs; nr_entries = tmc_etr_sg_table_entries(sg_table->data_pages.nr_pages); /* * Use the contiguous virtual address of the table to update entries. */ ptr = sg_table->table_vaddr; /* * Fill all the entries, except the last entry to avoid special * checks within the loop. */ for (i = 0; i < nr_entries - 1; i++) { if (sgtentry == ETR_SG_PTRS_PER_PAGE - 1) { /* * Last entry in a sg_table page is a link address to * the next table page. If this sg_table is the last * one in the system page, it links to the first * sg_table in the next system page. Otherwise, it * links to the next sg_table page within the system * page. */ if (sgtidx == ETR_SG_PAGES_PER_SYSPAGE - 1) { paddr = table_daddrs[tpidx + 1]; } else { paddr = table_daddrs[tpidx] + (ETR_SG_PAGE_SIZE * (sgtidx + 1)); } type = ETR_SG_ET_LINK; } else { /* * Update the indices to the data_pages to point to the * next sg_page in the data buffer. */ type = ETR_SG_ET_NORMAL; paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; if (!INC_IDX_ROUND(spidx, ETR_SG_PAGES_PER_SYSPAGE)) dpidx++; } *ptr++ = ETR_SG_ENTRY(paddr, type); /* * Move to the next table pointer, moving the table page index * if necessary */ if (!INC_IDX_ROUND(sgtentry, ETR_SG_PTRS_PER_PAGE)) { if (!INC_IDX_ROUND(sgtidx, ETR_SG_PAGES_PER_SYSPAGE)) tpidx++; } } /* Set up the last entry, which is always a data pointer */ paddr = data_daddrs[dpidx] + spidx * ETR_SG_PAGE_SIZE; *ptr++ = ETR_SG_ENTRY(paddr, ETR_SG_ET_LAST); } /* * tmc_init_etr_sg_table: Allocate a TMC ETR SG table, data buffer of @size and * populate the table. * * @dev - Device pointer for the TMC * @node - NUMA node where the memory should be allocated * @size - Total size of the data buffer * @pages - Optional list of page virtual address */ static struct etr_sg_table * tmc_init_etr_sg_table(struct device *dev, int node, unsigned long size, void **pages) { int nr_entries, nr_tpages; int nr_dpages = size >> PAGE_SHIFT; struct tmc_sg_table *sg_table; struct etr_sg_table *etr_table; etr_table = kzalloc(sizeof(*etr_table), GFP_KERNEL); if (!etr_table) return ERR_PTR(-ENOMEM); nr_entries = tmc_etr_sg_table_entries(nr_dpages); nr_tpages = DIV_ROUND_UP(nr_entries, ETR_SG_PTRS_PER_SYSPAGE); sg_table = tmc_alloc_sg_table(dev, node, nr_tpages, nr_dpages, pages); if (IS_ERR(sg_table)) { kfree(etr_table); return ERR_CAST(sg_table); } etr_table->sg_table = sg_table; /* TMC should use table base address for DBA */ etr_table->hwaddr = sg_table->table_daddr; tmc_etr_sg_table_populate(etr_table); /* Sync the table pages for the HW */ tmc_sg_table_sync_table(sg_table); tmc_etr_sg_table_dump(etr_table); return etr_table; } /* * tmc_etr_alloc_flat_buf: Allocate a contiguous DMA buffer. */ static int tmc_etr_alloc_flat_buf(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages) { struct etr_flat_buf *flat_buf; /* We cannot reuse existing pages for flat buf */ if (pages) return -EINVAL; flat_buf = kzalloc(sizeof(*flat_buf), GFP_KERNEL); if (!flat_buf) return -ENOMEM; flat_buf->vaddr = dma_alloc_coherent(drvdata->dev, etr_buf->size, &flat_buf->daddr, GFP_KERNEL); if (!flat_buf->vaddr) { kfree(flat_buf); return -ENOMEM; } flat_buf->size = etr_buf->size; flat_buf->dev = drvdata->dev; etr_buf->hwaddr = flat_buf->daddr; etr_buf->mode = ETR_MODE_FLAT; etr_buf->private = flat_buf; return 0; } static void tmc_etr_free_flat_buf(struct etr_buf *etr_buf) { struct etr_flat_buf *flat_buf = etr_buf->private; if (flat_buf && flat_buf->daddr) dma_free_coherent(flat_buf->dev, flat_buf->size, flat_buf->vaddr, flat_buf->daddr); kfree(flat_buf); } static void tmc_etr_sync_flat_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) { /* * Adjust the buffer to point to the beginning of the trace data * and update the available trace data. */ etr_buf->offset = rrp - etr_buf->hwaddr; if (etr_buf->full) etr_buf->len = etr_buf->size; else etr_buf->len = rwp - rrp; } static ssize_t tmc_etr_get_data_flat_buf(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp) { struct etr_flat_buf *flat_buf = etr_buf->private; *bufpp = (char *)flat_buf->vaddr + offset; /* * tmc_etr_buf_get_data already adjusts the length to handle * buffer wrapping around. */ return len; } static const struct etr_buf_operations etr_flat_buf_ops = { .alloc = tmc_etr_alloc_flat_buf, .free = tmc_etr_free_flat_buf, .sync = tmc_etr_sync_flat_buf, .get_data = tmc_etr_get_data_flat_buf, }; /* * tmc_etr_alloc_sg_buf: Allocate an SG buf @etr_buf. Setup the parameters * appropriately. */ static int tmc_etr_alloc_sg_buf(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages) { struct etr_sg_table *etr_table; etr_table = tmc_init_etr_sg_table(drvdata->dev, node, etr_buf->size, pages); if (IS_ERR(etr_table)) return -ENOMEM; etr_buf->hwaddr = etr_table->hwaddr; etr_buf->mode = ETR_MODE_ETR_SG; etr_buf->private = etr_table; return 0; } static void tmc_etr_free_sg_buf(struct etr_buf *etr_buf) { struct etr_sg_table *etr_table = etr_buf->private; if (etr_table) { tmc_free_sg_table(etr_table->sg_table); kfree(etr_table); } } static ssize_t tmc_etr_get_data_sg_buf(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp) { struct etr_sg_table *etr_table = etr_buf->private; return tmc_sg_table_get_data(etr_table->sg_table, offset, len, bufpp); } static void tmc_etr_sync_sg_buf(struct etr_buf *etr_buf, u64 rrp, u64 rwp) { long r_offset, w_offset; struct etr_sg_table *etr_table = etr_buf->private; struct tmc_sg_table *table = etr_table->sg_table; /* Convert hw address to offset in the buffer */ r_offset = tmc_sg_get_data_page_offset(table, rrp); if (r_offset < 0) { dev_warn(table->dev, "Unable to map RRP %llx to offset\n", rrp); etr_buf->len = 0; return; } w_offset = tmc_sg_get_data_page_offset(table, rwp); if (w_offset < 0) { dev_warn(table->dev, "Unable to map RWP %llx to offset\n", rwp); etr_buf->len = 0; return; } etr_buf->offset = r_offset; if (etr_buf->full) etr_buf->len = etr_buf->size; else etr_buf->len = ((w_offset < r_offset) ? etr_buf->size : 0) + w_offset - r_offset; tmc_sg_table_sync_data_range(table, r_offset, etr_buf->len); } static const struct etr_buf_operations etr_sg_buf_ops = { .alloc = tmc_etr_alloc_sg_buf, .free = tmc_etr_free_sg_buf, .sync = tmc_etr_sync_sg_buf, .get_data = tmc_etr_get_data_sg_buf, }; /* * TMC ETR could be connected to a CATU device, which can provide address * translation service. This is represented by the Output port of the TMC * (ETR) connected to the input port of the CATU. * * Returns : coresight_device ptr for the CATU device if a CATU is found. * : NULL otherwise. */ struct coresight_device * tmc_etr_get_catu_device(struct tmc_drvdata *drvdata) { int i; struct coresight_device *tmp, *etr = drvdata->csdev; if (!IS_ENABLED(CONFIG_CORESIGHT_CATU)) return NULL; for (i = 0; i < etr->nr_outport; i++) { tmp = etr->conns[i].child_dev; if (tmp && coresight_is_catu_device(tmp)) return tmp; } return NULL; } static inline void tmc_etr_enable_catu(struct tmc_drvdata *drvdata) { struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); if (catu && helper_ops(catu)->enable) helper_ops(catu)->enable(catu, drvdata->etr_buf); } static inline void tmc_etr_disable_catu(struct tmc_drvdata *drvdata) { struct coresight_device *catu = tmc_etr_get_catu_device(drvdata); if (catu && helper_ops(catu)->disable) helper_ops(catu)->disable(catu, drvdata->etr_buf); } static const struct etr_buf_operations *etr_buf_ops[] = { [ETR_MODE_FLAT] = &etr_flat_buf_ops, [ETR_MODE_ETR_SG] = &etr_sg_buf_ops, [ETR_MODE_CATU] = IS_ENABLED(CONFIG_CORESIGHT_CATU) ? &etr_catu_buf_ops : NULL, }; static inline int tmc_etr_mode_alloc_buf(int mode, struct tmc_drvdata *drvdata, struct etr_buf *etr_buf, int node, void **pages) { int rc = -EINVAL; switch (mode) { case ETR_MODE_FLAT: case ETR_MODE_ETR_SG: case ETR_MODE_CATU: if (etr_buf_ops[mode] && etr_buf_ops[mode]->alloc) rc = etr_buf_ops[mode]->alloc(drvdata, etr_buf, node, pages); if (!rc) etr_buf->ops = etr_buf_ops[mode]; return rc; default: return -EINVAL; } } /* * tmc_alloc_etr_buf: Allocate a buffer use by ETR. * @drvdata : ETR device details. * @size : size of the requested buffer. * @flags : Required properties for the buffer. * @node : Node for memory allocations. * @pages : An optional list of pages. */ static struct etr_buf *tmc_alloc_etr_buf(struct tmc_drvdata *drvdata, ssize_t size, int flags, int node, void **pages) { int rc = -ENOMEM; bool has_etr_sg, has_iommu; bool has_sg, has_catu; struct etr_buf *etr_buf; has_etr_sg = tmc_etr_has_cap(drvdata, TMC_ETR_SG); has_iommu = iommu_get_domain_for_dev(drvdata->dev); has_catu = !!tmc_etr_get_catu_device(drvdata); has_sg = has_catu || has_etr_sg; etr_buf = kzalloc(sizeof(*etr_buf), GFP_KERNEL); if (!etr_buf) return ERR_PTR(-ENOMEM); etr_buf->size = size; /* * If we have to use an existing list of pages, we cannot reliably * use a contiguous DMA memory (even if we have an IOMMU). Otherwise, * we use the contiguous DMA memory if at least one of the following * conditions is true: * a) The ETR cannot use Scatter-Gather. * b) we have a backing IOMMU * c) The requested memory size is smaller (< 1M). * * Fallback to available mechanisms. * */ if (!pages && (!has_sg || has_iommu || size < SZ_1M)) rc = tmc_etr_mode_alloc_buf(ETR_MODE_FLAT, drvdata, etr_buf, node, pages); if (rc && has_etr_sg) rc = tmc_etr_mode_alloc_buf(ETR_MODE_ETR_SG, drvdata, etr_buf, node, pages); if (rc && has_catu) rc = tmc_etr_mode_alloc_buf(ETR_MODE_CATU, drvdata, etr_buf, node, pages); if (rc) { kfree(etr_buf); return ERR_PTR(rc); } dev_dbg(drvdata->dev, "allocated buffer of size %ldKB in mode %d\n", (unsigned long)size >> 10, etr_buf->mode); return etr_buf; } static void tmc_free_etr_buf(struct etr_buf *etr_buf) { WARN_ON(!etr_buf->ops || !etr_buf->ops->free); etr_buf->ops->free(etr_buf); kfree(etr_buf); } /* * tmc_etr_buf_get_data: Get the pointer the trace data at @offset * with a maximum of @len bytes. * Returns: The size of the linear data available @pos, with *bufpp * updated to point to the buffer. */ static ssize_t tmc_etr_buf_get_data(struct etr_buf *etr_buf, u64 offset, size_t len, char **bufpp) { /* Adjust the length to limit this transaction to end of buffer */ len = (len < (etr_buf->size - offset)) ? len : etr_buf->size - offset; return etr_buf->ops->get_data(etr_buf, (u64)offset, len, bufpp); } static inline s64 tmc_etr_buf_insert_barrier_packet(struct etr_buf *etr_buf, u64 offset) { ssize_t len; char *bufp; len = tmc_etr_buf_get_data(etr_buf, offset, CORESIGHT_BARRIER_PKT_SIZE, &bufp); if (WARN_ON(len < 0 || len < CORESIGHT_BARRIER_PKT_SIZE)) return -EINVAL; coresight_insert_barrier_packet(bufp); return offset + CORESIGHT_BARRIER_PKT_SIZE; } /* * tmc_sync_etr_buf: Sync the trace buffer availability with drvdata. * Makes sure the trace data is synced to the memory for consumption. * @etr_buf->offset will hold the offset to the beginning of the trace data * within the buffer, with @etr_buf->len bytes to consume. */ static void tmc_sync_etr_buf(struct tmc_drvdata *drvdata) { struct etr_buf *etr_buf = drvdata->etr_buf; u64 rrp, rwp; u32 status; rrp = tmc_read_rrp(drvdata); rwp = tmc_read_rwp(drvdata); status = readl_relaxed(drvdata->base + TMC_STS); etr_buf->full = status & TMC_STS_FULL; WARN_ON(!etr_buf->ops || !etr_buf->ops->sync); etr_buf->ops->sync(etr_buf, rrp, rwp); /* Insert barrier packets at the beginning, if there was an overflow */ if (etr_buf->full) tmc_etr_buf_insert_barrier_packet(etr_buf, etr_buf->offset); } static void tmc_etr_enable_hw(struct tmc_drvdata *drvdata, struct etr_buf *etr_buf) { u32 axictl, sts; /* Callers should provide an appropriate buffer for use */ if (WARN_ON(!etr_buf || drvdata->etr_buf)) return; drvdata->etr_buf = etr_buf; /* * If this ETR is connected to a CATU, enable it before we turn * this on */ tmc_etr_enable_catu(drvdata); CS_UNLOCK(drvdata->base); /* Wait for TMCSReady bit to be set */ tmc_wait_for_tmcready(drvdata); writel_relaxed(etr_buf->size / 4, drvdata->base + TMC_RSZ); writel_relaxed(TMC_MODE_CIRCULAR_BUFFER, drvdata->base + TMC_MODE); axictl = readl_relaxed(drvdata->base + TMC_AXICTL); axictl &= ~TMC_AXICTL_CLEAR_MASK; axictl |= (TMC_AXICTL_PROT_CTL_B1 | TMC_AXICTL_WR_BURST_16); axictl |= TMC_AXICTL_AXCACHE_OS; if (tmc_etr_has_cap(drvdata, TMC_ETR_AXI_ARCACHE)) { axictl &= ~TMC_AXICTL_ARCACHE_MASK; axictl |= TMC_AXICTL_ARCACHE_OS; } if (etr_buf->mode == ETR_MODE_ETR_SG) { if (WARN_ON(!tmc_etr_has_cap(drvdata, TMC_ETR_SG))) return; axictl |= TMC_AXICTL_SCT_GAT_MODE; } writel_relaxed(axictl, drvdata->base + TMC_AXICTL); tmc_write_dba(drvdata, etr_buf->hwaddr); /* * If the TMC pointers must be programmed before the session, * we have to set it properly (i.e, RRP/RWP to base address and * STS to "not full"). */ if (tmc_etr_has_cap(drvdata, TMC_ETR_SAVE_RESTORE)) { tmc_write_rrp(drvdata, etr_buf->hwaddr); tmc_write_rwp(drvdata, etr_buf->hwaddr); sts = readl_relaxed(drvdata->base + TMC_STS) & ~TMC_STS_FULL; writel_relaxed(sts, drvdata->base + TMC_STS); } writel_relaxed(TMC_FFCR_EN_FMT | TMC_FFCR_EN_TI | TMC_FFCR_FON_FLIN | TMC_FFCR_FON_TRIG_EVT | TMC_FFCR_TRIGON_TRIGIN, drvdata->base + TMC_FFCR); writel_relaxed(drvdata->trigger_cntr, drvdata->base + TMC_TRG); tmc_enable_hw(drvdata); CS_LOCK(drvdata->base); } /* * Return the available trace data in the buffer (starts at etr_buf->offset, * limited by etr_buf->len) from @pos, with a maximum limit of @len, * also updating the @bufpp on where to find it. Since the trace data * starts at anywhere in the buffer, depending on the RRP, we adjust the * @len returned to handle buffer wrapping around. * * We are protected here by drvdata->reading != 0, which ensures the * sysfs_buf stays alive. */ ssize_t tmc_etr_get_sysfs_trace(struct tmc_drvdata *drvdata, loff_t pos, size_t len, char **bufpp) { s64 offset; ssize_t actual = len; struct etr_buf *etr_buf = drvdata->sysfs_buf; if (pos + actual > etr_buf->len) actual = etr_buf->len - pos; if (actual <= 0) return actual; /* Compute the offset from which we read the data */ offset = etr_buf->offset + pos; if (offset >= etr_buf->size) offset -= etr_buf->size; return tmc_etr_buf_get_data(etr_buf, offset, actual, bufpp); } static struct etr_buf * tmc_etr_setup_sysfs_buf(struct tmc_drvdata *drvdata) { return tmc_alloc_etr_buf(drvdata, drvdata->size, 0, cpu_to_node(0), NULL); } static void tmc_etr_free_sysfs_buf(struct etr_buf *buf) { if (buf) tmc_free_etr_buf(buf); } static void tmc_etr_sync_sysfs_buf(struct tmc_drvdata *drvdata) { struct etr_buf *etr_buf = drvdata->etr_buf; if (WARN_ON(drvdata->sysfs_buf != etr_buf)) { tmc_etr_free_sysfs_buf(drvdata->sysfs_buf); drvdata->sysfs_buf = NULL; } else { tmc_sync_etr_buf(drvdata); } } static void tmc_etr_disable_hw(struct tmc_drvdata *drvdata) { CS_UNLOCK(drvdata->base); tmc_flush_and_stop(drvdata); /* * When operating in sysFS mode the content of the buffer needs to be * read before the TMC is disabled. */ if (drvdata->mode == CS_MODE_SYSFS) tmc_etr_sync_sysfs_buf(drvdata); tmc_disable_hw(drvdata); CS_LOCK(drvdata->base); /* Disable CATU device if this ETR is connected to one */ tmc_etr_disable_catu(drvdata); /* Reset the ETR buf used by hardware */ drvdata->etr_buf = NULL; } static int tmc_enable_etr_sink_sysfs(struct coresight_device *csdev) { int ret = 0; unsigned long flags; struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); struct etr_buf *sysfs_buf = NULL, *new_buf = NULL, *free_buf = NULL; /* * If we are enabling the ETR from disabled state, we need to make * sure we have a buffer with the right size. The etr_buf is not reset * immediately after we stop the tracing in SYSFS mode as we wait for * the user to collect the data. We may be able to reuse the existing * buffer, provided the size matches. Any allocation has to be done * with the lock released. */ spin_lock_irqsave(&drvdata->spinlock, flags); sysfs_buf = READ_ONCE(drvdata->sysfs_buf); if (!sysfs_buf || (sysfs_buf->size != drvdata->size)) { spin_unlock_irqrestore(&drvdata->spinlock, flags); /* Allocate memory with the locks released */ free_buf = new_buf = tmc_etr_setup_sysfs_buf(drvdata); if (IS_ERR(new_buf)) return PTR_ERR(new_buf); /* Let's try again */ spin_lock_irqsave(&drvdata->spinlock, flags); } if (drvdata->reading || drvdata->mode == CS_MODE_PERF) { ret = -EBUSY; goto out; } /* * In sysFS mode we can have multiple writers per sink. Since this * sink is already enabled no memory is needed and the HW need not be * touched, even if the buffer size has changed. */ if (drvdata->mode == CS_MODE_SYSFS) goto out; /* * If we don't have a buffer or it doesn't match the requested size, * use the buffer allocated above. Otherwise reuse the existing buffer. */ sysfs_buf = READ_ONCE(drvdata->sysfs_buf); if (!sysfs_buf || (new_buf && sysfs_buf->size != new_buf->size)) { free_buf = sysfs_buf; drvdata->sysfs_buf = new_buf; } drvdata->mode = CS_MODE_SYSFS; tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); out: spin_unlock_irqrestore(&drvdata->spinlock, flags); /* Free memory outside the spinlock if need be */ if (free_buf) tmc_etr_free_sysfs_buf(free_buf); if (!ret) dev_info(drvdata->dev, "TMC-ETR enabled\n"); return ret; } static int tmc_enable_etr_sink_perf(struct coresight_device *csdev) { /* We don't support perf mode yet ! */ return -EINVAL; } static int tmc_enable_etr_sink(struct coresight_device *csdev, u32 mode) { switch (mode) { case CS_MODE_SYSFS: return tmc_enable_etr_sink_sysfs(csdev); case CS_MODE_PERF: return tmc_enable_etr_sink_perf(csdev); } /* We shouldn't be here */ return -EINVAL; } static void tmc_disable_etr_sink(struct coresight_device *csdev) { unsigned long flags; struct tmc_drvdata *drvdata = dev_get_drvdata(csdev->dev.parent); spin_lock_irqsave(&drvdata->spinlock, flags); if (drvdata->reading) { spin_unlock_irqrestore(&drvdata->spinlock, flags); return; } /* Disable the TMC only if it needs to */ if (drvdata->mode != CS_MODE_DISABLED) { tmc_etr_disable_hw(drvdata); drvdata->mode = CS_MODE_DISABLED; } spin_unlock_irqrestore(&drvdata->spinlock, flags); dev_info(drvdata->dev, "TMC-ETR disabled\n"); } static const struct coresight_ops_sink tmc_etr_sink_ops = { .enable = tmc_enable_etr_sink, .disable = tmc_disable_etr_sink, }; const struct coresight_ops tmc_etr_cs_ops = { .sink_ops = &tmc_etr_sink_ops, }; int tmc_read_prepare_etr(struct tmc_drvdata *drvdata) { int ret = 0; unsigned long flags; /* config types are set a boot time and never change */ if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) return -EINVAL; spin_lock_irqsave(&drvdata->spinlock, flags); if (drvdata->reading) { ret = -EBUSY; goto out; } /* Don't interfere if operated from Perf */ if (drvdata->mode == CS_MODE_PERF) { ret = -EINVAL; goto out; } /* If sysfs_buf is NULL the trace data has been read already */ if (!drvdata->sysfs_buf) { ret = -EINVAL; goto out; } /* Disable the TMC if we are trying to read from a running session */ if (drvdata->mode == CS_MODE_SYSFS) tmc_etr_disable_hw(drvdata); drvdata->reading = true; out: spin_unlock_irqrestore(&drvdata->spinlock, flags); return ret; } int tmc_read_unprepare_etr(struct tmc_drvdata *drvdata) { unsigned long flags; struct etr_buf *sysfs_buf = NULL; /* config types are set a boot time and never change */ if (WARN_ON_ONCE(drvdata->config_type != TMC_CONFIG_TYPE_ETR)) return -EINVAL; spin_lock_irqsave(&drvdata->spinlock, flags); /* RE-enable the TMC if need be */ if (drvdata->mode == CS_MODE_SYSFS) { /* * The trace run will continue with the same allocated trace * buffer. Since the tracer is still enabled drvdata::buf can't * be NULL. */ tmc_etr_enable_hw(drvdata, drvdata->sysfs_buf); } else { /* * The ETR is not tracing and the buffer was just read. * As such prepare to free the trace buffer. */ sysfs_buf = drvdata->sysfs_buf; drvdata->sysfs_buf = NULL; } drvdata->reading = false; spin_unlock_irqrestore(&drvdata->spinlock, flags); /* Free allocated memory out side of the spinlock */ if (sysfs_buf) tmc_etr_free_sysfs_buf(sysfs_buf); return 0; }