// SPDX-License-Identifier: GPL-2.0 /* Copyright(c) 2019 Intel Corporation. All rights rsvd. */ #include #include #include #include #include #include #include #include "../dmaengine.h" #include "idxd.h" #include "registers.h" void idxd_device_wqs_clear_state(struct idxd_device *idxd) { int i; lockdep_assert_held(&idxd->dev_lock); for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = &idxd->wqs[i]; wq->state = IDXD_WQ_DISABLED; } } static int idxd_restart(struct idxd_device *idxd) { int i, rc; lockdep_assert_held(&idxd->dev_lock); rc = __idxd_device_reset(idxd); if (rc < 0) goto out; rc = idxd_device_config(idxd); if (rc < 0) goto out; rc = idxd_device_enable(idxd); if (rc < 0) goto out; for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = &idxd->wqs[i]; if (wq->state == IDXD_WQ_ENABLED) { rc = idxd_wq_enable(wq); if (rc < 0) { dev_warn(&idxd->pdev->dev, "Unable to re-enable wq %s\n", dev_name(&wq->conf_dev)); } } } return 0; out: idxd_device_wqs_clear_state(idxd); idxd->state = IDXD_DEV_HALTED; return rc; } irqreturn_t idxd_irq_handler(int vec, void *data) { struct idxd_irq_entry *irq_entry = data; struct idxd_device *idxd = irq_entry->idxd; idxd_mask_msix_vector(idxd, irq_entry->id); return IRQ_WAKE_THREAD; } irqreturn_t idxd_misc_thread(int vec, void *data) { struct idxd_irq_entry *irq_entry = data; struct idxd_device *idxd = irq_entry->idxd; struct device *dev = &idxd->pdev->dev; union gensts_reg gensts; u32 cause, val = 0; int i, rc; bool err = false; cause = ioread32(idxd->reg_base + IDXD_INTCAUSE_OFFSET); if (cause & IDXD_INTC_ERR) { spin_lock_bh(&idxd->dev_lock); for (i = 0; i < 4; i++) idxd->sw_err.bits[i] = ioread64(idxd->reg_base + IDXD_SWERR_OFFSET + i * sizeof(u64)); iowrite64(IDXD_SWERR_ACK, idxd->reg_base + IDXD_SWERR_OFFSET); if (idxd->sw_err.valid && idxd->sw_err.wq_idx_valid) { int id = idxd->sw_err.wq_idx; struct idxd_wq *wq = &idxd->wqs[id]; if (wq->type == IDXD_WQT_USER) wake_up_interruptible(&wq->idxd_cdev.err_queue); } else { int i; for (i = 0; i < idxd->max_wqs; i++) { struct idxd_wq *wq = &idxd->wqs[i]; if (wq->type == IDXD_WQT_USER) wake_up_interruptible(&wq->idxd_cdev.err_queue); } } spin_unlock_bh(&idxd->dev_lock); val |= IDXD_INTC_ERR; for (i = 0; i < 4; i++) dev_warn(dev, "err[%d]: %#16.16llx\n", i, idxd->sw_err.bits[i]); err = true; } if (cause & IDXD_INTC_CMD) { /* Driver does use command interrupts */ val |= IDXD_INTC_CMD; } if (cause & IDXD_INTC_OCCUPY) { /* Driver does not utilize occupancy interrupt */ val |= IDXD_INTC_OCCUPY; } if (cause & IDXD_INTC_PERFMON_OVFL) { /* * Driver does not utilize perfmon counter overflow interrupt * yet. */ val |= IDXD_INTC_PERFMON_OVFL; } val ^= cause; if (val) dev_warn_once(dev, "Unexpected interrupt cause bits set: %#x\n", val); iowrite32(cause, idxd->reg_base + IDXD_INTCAUSE_OFFSET); if (!err) return IRQ_HANDLED; gensts.bits = ioread32(idxd->reg_base + IDXD_GENSTATS_OFFSET); if (gensts.state == IDXD_DEVICE_STATE_HALT) { spin_lock_bh(&idxd->dev_lock); if (gensts.reset_type == IDXD_DEVICE_RESET_SOFTWARE) { rc = idxd_restart(idxd); if (rc < 0) dev_err(&idxd->pdev->dev, "idxd restart failed, device halt."); } else { idxd_device_wqs_clear_state(idxd); idxd->state = IDXD_DEV_HALTED; dev_err(&idxd->pdev->dev, "idxd halted, need %s.\n", gensts.reset_type == IDXD_DEVICE_RESET_FLR ? "FLR" : "system reset"); } spin_unlock_bh(&idxd->dev_lock); } idxd_unmask_msix_vector(idxd, irq_entry->id); return IRQ_HANDLED; } static int irq_process_pending_llist(struct idxd_irq_entry *irq_entry, int *processed) { struct idxd_desc *desc, *t; struct llist_node *head; int queued = 0; head = llist_del_all(&irq_entry->pending_llist); if (!head) return 0; llist_for_each_entry_safe(desc, t, head, llnode) { if (desc->completion->status) { idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL); idxd_free_desc(desc->wq, desc); (*processed)++; } else { list_add_tail(&desc->list, &irq_entry->work_list); queued++; } } return queued; } static int irq_process_work_list(struct idxd_irq_entry *irq_entry, int *processed) { struct list_head *node, *next; int queued = 0; if (list_empty(&irq_entry->work_list)) return 0; list_for_each_safe(node, next, &irq_entry->work_list) { struct idxd_desc *desc = container_of(node, struct idxd_desc, list); if (desc->completion->status) { list_del(&desc->list); /* process and callback */ idxd_dma_complete_txd(desc, IDXD_COMPLETE_NORMAL); idxd_free_desc(desc->wq, desc); (*processed)++; } else { queued++; } } return queued; } irqreturn_t idxd_wq_thread(int irq, void *data) { struct idxd_irq_entry *irq_entry = data; int rc, processed = 0, retry = 0; /* * There are two lists we are processing. The pending_llist is where * submmiter adds all the submitted descriptor after sending it to * the workqueue. It's a lockless singly linked list. The work_list * is the common linux double linked list. We are in a scenario of * multiple producers and a single consumer. The producers are all * the kernel submitters of descriptors, and the consumer is the * kernel irq handler thread for the msix vector when using threaded * irq. To work with the restrictions of llist to remain lockless, * we are doing the following steps: * 1. Iterate through the work_list and process any completed * descriptor. Delete the completed entries during iteration. * 2. llist_del_all() from the pending list. * 3. Iterate through the llist that was deleted from the pending list * and process the completed entries. * 4. If the entry is still waiting on hardware, list_add_tail() to * the work_list. * 5. Repeat until no more descriptors. */ do { rc = irq_process_work_list(irq_entry, &processed); if (rc != 0) { retry++; continue; } rc = irq_process_pending_llist(irq_entry, &processed); } while (rc != 0 && retry != 10); idxd_unmask_msix_vector(irq_entry->idxd, irq_entry->id); if (processed == 0) return IRQ_NONE; return IRQ_HANDLED; }