// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) STMicroelectronics SA 2017 * Author: Fabien Dessenne */ #include #include #include #include #include #include #include #include #include #define DRIVER_NAME "stm32-crc32" #define CHKSUM_DIGEST_SIZE 4 #define CHKSUM_BLOCK_SIZE 1 /* Registers */ #define CRC_DR 0x00000000 #define CRC_CR 0x00000008 #define CRC_INIT 0x00000010 #define CRC_POL 0x00000014 /* Registers values */ #define CRC_CR_RESET BIT(0) #define CRC_CR_REV_IN_WORD (BIT(6) | BIT(5)) #define CRC_CR_REV_IN_BYTE BIT(5) #define CRC_CR_REV_OUT BIT(7) #define CRC32C_INIT_DEFAULT 0xFFFFFFFF #define CRC_AUTOSUSPEND_DELAY 50 struct stm32_crc { struct list_head list; struct device *dev; void __iomem *regs; struct clk *clk; }; struct stm32_crc_list { struct list_head dev_list; spinlock_t lock; /* protect dev_list */ }; static struct stm32_crc_list crc_list = { .dev_list = LIST_HEAD_INIT(crc_list.dev_list), .lock = __SPIN_LOCK_UNLOCKED(crc_list.lock), }; struct stm32_crc_ctx { u32 key; u32 poly; }; struct stm32_crc_desc_ctx { u32 partial; /* crc32c: partial in first 4 bytes of that struct */ }; static int stm32_crc32_cra_init(struct crypto_tfm *tfm) { struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm); mctx->key = 0; mctx->poly = CRC32_POLY_LE; return 0; } static int stm32_crc32c_cra_init(struct crypto_tfm *tfm) { struct stm32_crc_ctx *mctx = crypto_tfm_ctx(tfm); mctx->key = CRC32C_INIT_DEFAULT; mctx->poly = CRC32C_POLY_LE; return 0; } static int stm32_crc_setkey(struct crypto_shash *tfm, const u8 *key, unsigned int keylen) { struct stm32_crc_ctx *mctx = crypto_shash_ctx(tfm); if (keylen != sizeof(u32)) { crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); return -EINVAL; } mctx->key = get_unaligned_le32(key); return 0; } static struct stm32_crc *stm32_crc_get_next_crc(void) { struct stm32_crc *crc; spin_lock_bh(&crc_list.lock); crc = list_first_entry(&crc_list.dev_list, struct stm32_crc, list); if (crc) list_move_tail(&crc->list, &crc_list.dev_list); spin_unlock_bh(&crc_list.lock); return crc; } static int stm32_crc_init(struct shash_desc *desc) { struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc); struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm); struct stm32_crc *crc; crc = stm32_crc_get_next_crc(); if (!crc) return -ENODEV; pm_runtime_get_sync(crc->dev); /* Reset, set key, poly and configure in bit reverse mode */ writel_relaxed(bitrev32(mctx->key), crc->regs + CRC_INIT); writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL); writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT, crc->regs + CRC_CR); /* Store partial result */ ctx->partial = readl_relaxed(crc->regs + CRC_DR); pm_runtime_mark_last_busy(crc->dev); pm_runtime_put_autosuspend(crc->dev); return 0; } static int stm32_crc_update(struct shash_desc *desc, const u8 *d8, unsigned int length) { struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc); struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm); struct stm32_crc *crc; crc = stm32_crc_get_next_crc(); if (!crc) return -ENODEV; pm_runtime_get_sync(crc->dev); /* * Restore previously calculated CRC for this context as init value * Restore polynomial configuration * Configure in register for word input data, * Configure out register in reversed bit mode data. */ writel_relaxed(bitrev32(ctx->partial), crc->regs + CRC_INIT); writel_relaxed(bitrev32(mctx->poly), crc->regs + CRC_POL); writel_relaxed(CRC_CR_RESET | CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT, crc->regs + CRC_CR); if (d8 != PTR_ALIGN(d8, sizeof(u32))) { /* Configure for byte data */ writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT, crc->regs + CRC_CR); while (d8 != PTR_ALIGN(d8, sizeof(u32)) && length) { writeb_relaxed(*d8++, crc->regs + CRC_DR); length--; } /* Configure for word data */ writel_relaxed(CRC_CR_REV_IN_WORD | CRC_CR_REV_OUT, crc->regs + CRC_CR); } for (; length >= sizeof(u32); d8 += sizeof(u32), length -= sizeof(u32)) writel_relaxed(*((u32 *)d8), crc->regs + CRC_DR); if (length) { /* Configure for byte data */ writel_relaxed(CRC_CR_REV_IN_BYTE | CRC_CR_REV_OUT, crc->regs + CRC_CR); while (length--) writeb_relaxed(*d8++, crc->regs + CRC_DR); } /* Store partial result */ ctx->partial = readl_relaxed(crc->regs + CRC_DR); pm_runtime_mark_last_busy(crc->dev); pm_runtime_put_autosuspend(crc->dev); return 0; } static int stm32_crc_final(struct shash_desc *desc, u8 *out) { struct stm32_crc_desc_ctx *ctx = shash_desc_ctx(desc); struct stm32_crc_ctx *mctx = crypto_shash_ctx(desc->tfm); /* Send computed CRC */ put_unaligned_le32(mctx->poly == CRC32C_POLY_LE ? ~ctx->partial : ctx->partial, out); return 0; } static int stm32_crc_finup(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { return stm32_crc_update(desc, data, length) ?: stm32_crc_final(desc, out); } static int stm32_crc_digest(struct shash_desc *desc, const u8 *data, unsigned int length, u8 *out) { return stm32_crc_init(desc) ?: stm32_crc_finup(desc, data, length, out); } static unsigned int refcnt; static DEFINE_MUTEX(refcnt_lock); static struct shash_alg algs[] = { /* CRC-32 */ { .setkey = stm32_crc_setkey, .init = stm32_crc_init, .update = stm32_crc_update, .final = stm32_crc_final, .finup = stm32_crc_finup, .digest = stm32_crc_digest, .descsize = sizeof(struct stm32_crc_desc_ctx), .digestsize = CHKSUM_DIGEST_SIZE, .base = { .cra_name = "crc32", .cra_driver_name = "stm32-crc32-crc32", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_alignmask = 3, .cra_ctxsize = sizeof(struct stm32_crc_ctx), .cra_module = THIS_MODULE, .cra_init = stm32_crc32_cra_init, } }, /* CRC-32Castagnoli */ { .setkey = stm32_crc_setkey, .init = stm32_crc_init, .update = stm32_crc_update, .final = stm32_crc_final, .finup = stm32_crc_finup, .digest = stm32_crc_digest, .descsize = sizeof(struct stm32_crc_desc_ctx), .digestsize = CHKSUM_DIGEST_SIZE, .base = { .cra_name = "crc32c", .cra_driver_name = "stm32-crc32-crc32c", .cra_priority = 200, .cra_flags = CRYPTO_ALG_OPTIONAL_KEY, .cra_blocksize = CHKSUM_BLOCK_SIZE, .cra_alignmask = 3, .cra_ctxsize = sizeof(struct stm32_crc_ctx), .cra_module = THIS_MODULE, .cra_init = stm32_crc32c_cra_init, } } }; static int stm32_crc_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct stm32_crc *crc; int ret; crc = devm_kzalloc(dev, sizeof(*crc), GFP_KERNEL); if (!crc) return -ENOMEM; crc->dev = dev; crc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(crc->regs)) { dev_err(dev, "Cannot map CRC IO\n"); return PTR_ERR(crc->regs); } crc->clk = devm_clk_get(dev, NULL); if (IS_ERR(crc->clk)) { dev_err(dev, "Could not get clock\n"); return PTR_ERR(crc->clk); } ret = clk_prepare_enable(crc->clk); if (ret) { dev_err(crc->dev, "Failed to enable clock\n"); return ret; } pm_runtime_set_autosuspend_delay(dev, CRC_AUTOSUSPEND_DELAY); pm_runtime_use_autosuspend(dev); pm_runtime_get_noresume(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); platform_set_drvdata(pdev, crc); spin_lock(&crc_list.lock); list_add(&crc->list, &crc_list.dev_list); spin_unlock(&crc_list.lock); mutex_lock(&refcnt_lock); if (!refcnt) { ret = crypto_register_shashes(algs, ARRAY_SIZE(algs)); if (ret) { mutex_unlock(&refcnt_lock); dev_err(dev, "Failed to register\n"); clk_disable_unprepare(crc->clk); return ret; } } refcnt++; mutex_unlock(&refcnt_lock); dev_info(dev, "Initialized\n"); pm_runtime_put_sync(dev); return 0; } static int stm32_crc_remove(struct platform_device *pdev) { struct stm32_crc *crc = platform_get_drvdata(pdev); int ret = pm_runtime_get_sync(crc->dev); if (ret < 0) return ret; spin_lock(&crc_list.lock); list_del(&crc->list); spin_unlock(&crc_list.lock); mutex_lock(&refcnt_lock); if (!--refcnt) crypto_unregister_shashes(algs, ARRAY_SIZE(algs)); mutex_unlock(&refcnt_lock); pm_runtime_disable(crc->dev); pm_runtime_put_noidle(crc->dev); clk_disable_unprepare(crc->clk); return 0; } #ifdef CONFIG_PM static int stm32_crc_runtime_suspend(struct device *dev) { struct stm32_crc *crc = dev_get_drvdata(dev); clk_disable_unprepare(crc->clk); return 0; } static int stm32_crc_runtime_resume(struct device *dev) { struct stm32_crc *crc = dev_get_drvdata(dev); int ret; ret = clk_prepare_enable(crc->clk); if (ret) { dev_err(crc->dev, "Failed to prepare_enable clock\n"); return ret; } return 0; } #endif static const struct dev_pm_ops stm32_crc_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(stm32_crc_runtime_suspend, stm32_crc_runtime_resume, NULL) }; static const struct of_device_id stm32_dt_ids[] = { { .compatible = "st,stm32f7-crc", }, {}, }; MODULE_DEVICE_TABLE(of, stm32_dt_ids); static struct platform_driver stm32_crc_driver = { .probe = stm32_crc_probe, .remove = stm32_crc_remove, .driver = { .name = DRIVER_NAME, .pm = &stm32_crc_pm_ops, .of_match_table = stm32_dt_ids, }, }; module_platform_driver(stm32_crc_driver); MODULE_AUTHOR("Fabien Dessenne "); MODULE_DESCRIPTION("STMicrolectronics STM32 CRC32 hardware driver"); MODULE_LICENSE("GPL");