// SPDX-License-Identifier: GPL-2.0-or-later /* drbd_nl.c This file is part of DRBD by Philipp Reisner and Lars Ellenberg. Copyright (C) 2001-2008, LINBIT Information Technologies GmbH. Copyright (C) 1999-2008, Philipp Reisner . Copyright (C) 2002-2008, Lars Ellenberg . */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include "drbd_int.h" #include "drbd_protocol.h" #include "drbd_req.h" #include "drbd_state_change.h" #include #include #include #include /* .doit */ // int drbd_adm_create_resource(struct sk_buff *skb, struct genl_info *info); // int drbd_adm_delete_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_del_minor(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info); int drbd_adm_down(struct sk_buff *skb, struct genl_info *info); int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info); int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info); int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info); int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info); int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info); int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info); int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info); int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info); int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info); int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info); int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info); /* .dumpit */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb); int drbd_adm_dump_resources(struct sk_buff *skb, struct netlink_callback *cb); int drbd_adm_dump_devices(struct sk_buff *skb, struct netlink_callback *cb); int drbd_adm_dump_devices_done(struct netlink_callback *cb); int drbd_adm_dump_connections(struct sk_buff *skb, struct netlink_callback *cb); int drbd_adm_dump_connections_done(struct netlink_callback *cb); int drbd_adm_dump_peer_devices(struct sk_buff *skb, struct netlink_callback *cb); int drbd_adm_dump_peer_devices_done(struct netlink_callback *cb); int drbd_adm_get_initial_state(struct sk_buff *skb, struct netlink_callback *cb); #include #include "drbd_nla.h" #include static atomic_t drbd_genl_seq = ATOMIC_INIT(2); /* two. */ static atomic_t notify_genl_seq = ATOMIC_INIT(2); /* two. */ DEFINE_MUTEX(notification_mutex); /* used blkdev_get_by_path, to claim our meta data device(s) */ static char *drbd_m_holder = "Hands off! this is DRBD's meta data device."; static void drbd_adm_send_reply(struct sk_buff *skb, struct genl_info *info) { genlmsg_end(skb, genlmsg_data(nlmsg_data(nlmsg_hdr(skb)))); if (genlmsg_reply(skb, info)) pr_err("error sending genl reply\n"); } /* Used on a fresh "drbd_adm_prepare"d reply_skb, this cannot fail: The only * reason it could fail was no space in skb, and there are 4k available. */ static int drbd_msg_put_info(struct sk_buff *skb, const char *info) { struct nlattr *nla; int err = -EMSGSIZE; if (!info || !info[0]) return 0; nla = nla_nest_start_noflag(skb, DRBD_NLA_CFG_REPLY); if (!nla) return err; err = nla_put_string(skb, T_info_text, info); if (err) { nla_nest_cancel(skb, nla); return err; } else nla_nest_end(skb, nla); return 0; } __printf(2, 3) static int drbd_msg_sprintf_info(struct sk_buff *skb, const char *fmt, ...) { va_list args; struct nlattr *nla, *txt; int err = -EMSGSIZE; int len; nla = nla_nest_start_noflag(skb, DRBD_NLA_CFG_REPLY); if (!nla) return err; txt = nla_reserve(skb, T_info_text, 256); if (!txt) { nla_nest_cancel(skb, nla); return err; } va_start(args, fmt); len = vscnprintf(nla_data(txt), 256, fmt, args); va_end(args); /* maybe: retry with larger reserve, if truncated */ txt->nla_len = nla_attr_size(len+1); nlmsg_trim(skb, (char*)txt + NLA_ALIGN(txt->nla_len)); nla_nest_end(skb, nla); return 0; } /* This would be a good candidate for a "pre_doit" hook, * and per-family private info->pointers. * But we need to stay compatible with older kernels. * If it returns successfully, adm_ctx members are valid. * * At this point, we still rely on the global genl_lock(). * If we want to avoid that, and allow "genl_family.parallel_ops", we may need * to add additional synchronization against object destruction/modification. */ #define DRBD_ADM_NEED_MINOR 1 #define DRBD_ADM_NEED_RESOURCE 2 #define DRBD_ADM_NEED_CONNECTION 4 static int drbd_adm_prepare(struct drbd_config_context *adm_ctx, struct sk_buff *skb, struct genl_info *info, unsigned flags) { struct drbd_genlmsghdr *d_in = info->userhdr; const u8 cmd = info->genlhdr->cmd; int err; memset(adm_ctx, 0, sizeof(*adm_ctx)); /* genl_rcv_msg only checks for CAP_NET_ADMIN on "GENL_ADMIN_PERM" :( */ if (cmd != DRBD_ADM_GET_STATUS && !capable(CAP_NET_ADMIN)) return -EPERM; adm_ctx->reply_skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL); if (!adm_ctx->reply_skb) { err = -ENOMEM; goto fail; } adm_ctx->reply_dh = genlmsg_put_reply(adm_ctx->reply_skb, info, &drbd_genl_family, 0, cmd); /* put of a few bytes into a fresh skb of >= 4k will always succeed. * but anyways */ if (!adm_ctx->reply_dh) { err = -ENOMEM; goto fail; } adm_ctx->reply_dh->minor = d_in->minor; adm_ctx->reply_dh->ret_code = NO_ERROR; adm_ctx->volume = VOLUME_UNSPECIFIED; if (info->attrs[DRBD_NLA_CFG_CONTEXT]) { struct nlattr *nla; /* parse and validate only */ err = drbd_cfg_context_from_attrs(NULL, info); if (err) goto fail; /* It was present, and valid, * copy it over to the reply skb. */ err = nla_put_nohdr(adm_ctx->reply_skb, info->attrs[DRBD_NLA_CFG_CONTEXT]->nla_len, info->attrs[DRBD_NLA_CFG_CONTEXT]); if (err) goto fail; /* and assign stuff to the adm_ctx */ nla = nested_attr_tb[__nla_type(T_ctx_volume)]; if (nla) adm_ctx->volume = nla_get_u32(nla); nla = nested_attr_tb[__nla_type(T_ctx_resource_name)]; if (nla) adm_ctx->resource_name = nla_data(nla); adm_ctx->my_addr = nested_attr_tb[__nla_type(T_ctx_my_addr)]; adm_ctx->peer_addr = nested_attr_tb[__nla_type(T_ctx_peer_addr)]; if ((adm_ctx->my_addr && nla_len(adm_ctx->my_addr) > sizeof(adm_ctx->connection->my_addr)) || (adm_ctx->peer_addr && nla_len(adm_ctx->peer_addr) > sizeof(adm_ctx->connection->peer_addr))) { err = -EINVAL; goto fail; } } adm_ctx->minor = d_in->minor; adm_ctx->device = minor_to_device(d_in->minor); /* We are protected by the global genl_lock(). * But we may explicitly drop it/retake it in drbd_adm_set_role(), * so make sure this object stays around. */ if (adm_ctx->device) kref_get(&adm_ctx->device->kref); if (adm_ctx->resource_name) { adm_ctx->resource = drbd_find_resource(adm_ctx->resource_name); } if (!adm_ctx->device && (flags & DRBD_ADM_NEED_MINOR)) { drbd_msg_put_info(adm_ctx->reply_skb, "unknown minor"); return ERR_MINOR_INVALID; } if (!adm_ctx->resource && (flags & DRBD_ADM_NEED_RESOURCE)) { drbd_msg_put_info(adm_ctx->reply_skb, "unknown resource"); if (adm_ctx->resource_name) return ERR_RES_NOT_KNOWN; return ERR_INVALID_REQUEST; } if (flags & DRBD_ADM_NEED_CONNECTION) { if (adm_ctx->resource) { drbd_msg_put_info(adm_ctx->reply_skb, "no resource name expected"); return ERR_INVALID_REQUEST; } if (adm_ctx->device) { drbd_msg_put_info(adm_ctx->reply_skb, "no minor number expected"); return ERR_INVALID_REQUEST; } if (adm_ctx->my_addr && adm_ctx->peer_addr) adm_ctx->connection = conn_get_by_addrs(nla_data(adm_ctx->my_addr), nla_len(adm_ctx->my_addr), nla_data(adm_ctx->peer_addr), nla_len(adm_ctx->peer_addr)); if (!adm_ctx->connection) { drbd_msg_put_info(adm_ctx->reply_skb, "unknown connection"); return ERR_INVALID_REQUEST; } } /* some more paranoia, if the request was over-determined */ if (adm_ctx->device && adm_ctx->resource && adm_ctx->device->resource != adm_ctx->resource) { pr_warning("request: minor=%u, resource=%s; but that minor belongs to resource %s\n", adm_ctx->minor, adm_ctx->resource->name, adm_ctx->device->resource->name); drbd_msg_put_info(adm_ctx->reply_skb, "minor exists in different resource"); return ERR_INVALID_REQUEST; } if (adm_ctx->device && adm_ctx->volume != VOLUME_UNSPECIFIED && adm_ctx->volume != adm_ctx->device->vnr) { pr_warning("request: minor=%u, volume=%u; but that minor is volume %u in %s\n", adm_ctx->minor, adm_ctx->volume, adm_ctx->device->vnr, adm_ctx->device->resource->name); drbd_msg_put_info(adm_ctx->reply_skb, "minor exists as different volume"); return ERR_INVALID_REQUEST; } /* still, provide adm_ctx->resource always, if possible. */ if (!adm_ctx->resource) { adm_ctx->resource = adm_ctx->device ? adm_ctx->device->resource : adm_ctx->connection ? adm_ctx->connection->resource : NULL; if (adm_ctx->resource) kref_get(&adm_ctx->resource->kref); } return NO_ERROR; fail: nlmsg_free(adm_ctx->reply_skb); adm_ctx->reply_skb = NULL; return err; } static int drbd_adm_finish(struct drbd_config_context *adm_ctx, struct genl_info *info, int retcode) { if (adm_ctx->device) { kref_put(&adm_ctx->device->kref, drbd_destroy_device); adm_ctx->device = NULL; } if (adm_ctx->connection) { kref_put(&adm_ctx->connection->kref, &drbd_destroy_connection); adm_ctx->connection = NULL; } if (adm_ctx->resource) { kref_put(&adm_ctx->resource->kref, drbd_destroy_resource); adm_ctx->resource = NULL; } if (!adm_ctx->reply_skb) return -ENOMEM; adm_ctx->reply_dh->ret_code = retcode; drbd_adm_send_reply(adm_ctx->reply_skb, info); return 0; } static void setup_khelper_env(struct drbd_connection *connection, char **envp) { char *afs; /* FIXME: A future version will not allow this case. */ if (connection->my_addr_len == 0 || connection->peer_addr_len == 0) return; switch (((struct sockaddr *)&connection->peer_addr)->sa_family) { case AF_INET6: afs = "ipv6"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI6", &((struct sockaddr_in6 *)&connection->peer_addr)->sin6_addr); break; case AF_INET: afs = "ipv4"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)&connection->peer_addr)->sin_addr); break; default: afs = "ssocks"; snprintf(envp[4], 60, "DRBD_PEER_ADDRESS=%pI4", &((struct sockaddr_in *)&connection->peer_addr)->sin_addr); } snprintf(envp[3], 20, "DRBD_PEER_AF=%s", afs); } int drbd_khelper(struct drbd_device *device, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char mb[14]; char *argv[] = {drbd_usermode_helper, cmd, mb, NULL }; struct drbd_connection *connection = first_peer_device(device)->connection; struct sib_info sib; int ret; if (current == connection->worker.task) set_bit(CALLBACK_PENDING, &connection->flags); snprintf(mb, 14, "minor-%d", device_to_minor(device)); setup_khelper_env(connection, envp); /* The helper may take some time. * write out any unsynced meta data changes now */ drbd_md_sync(device); drbd_info(device, "helper command: %s %s %s\n", drbd_usermode_helper, cmd, mb); sib.sib_reason = SIB_HELPER_PRE; sib.helper_name = cmd; drbd_bcast_event(device, &sib); notify_helper(NOTIFY_CALL, device, connection, cmd, 0); ret = call_usermodehelper(drbd_usermode_helper, argv, envp, UMH_WAIT_PROC); if (ret) drbd_warn(device, "helper command: %s %s %s exit code %u (0x%x)\n", drbd_usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); else drbd_info(device, "helper command: %s %s %s exit code %u (0x%x)\n", drbd_usermode_helper, cmd, mb, (ret >> 8) & 0xff, ret); sib.sib_reason = SIB_HELPER_POST; sib.helper_exit_code = ret; drbd_bcast_event(device, &sib); notify_helper(NOTIFY_RESPONSE, device, connection, cmd, ret); if (current == connection->worker.task) clear_bit(CALLBACK_PENDING, &connection->flags); if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } enum drbd_peer_state conn_khelper(struct drbd_connection *connection, char *cmd) { char *envp[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", (char[20]) { }, /* address family */ (char[60]) { }, /* address */ NULL }; char *resource_name = connection->resource->name; char *argv[] = {drbd_usermode_helper, cmd, resource_name, NULL }; int ret; setup_khelper_env(connection, envp); conn_md_sync(connection); drbd_info(connection, "helper command: %s %s %s\n", drbd_usermode_helper, cmd, resource_name); /* TODO: conn_bcast_event() ?? */ notify_helper(NOTIFY_CALL, NULL, connection, cmd, 0); ret = call_usermodehelper(drbd_usermode_helper, argv, envp, UMH_WAIT_PROC); if (ret) drbd_warn(connection, "helper command: %s %s %s exit code %u (0x%x)\n", drbd_usermode_helper, cmd, resource_name, (ret >> 8) & 0xff, ret); else drbd_info(connection, "helper command: %s %s %s exit code %u (0x%x)\n", drbd_usermode_helper, cmd, resource_name, (ret >> 8) & 0xff, ret); /* TODO: conn_bcast_event() ?? */ notify_helper(NOTIFY_RESPONSE, NULL, connection, cmd, ret); if (ret < 0) /* Ignore any ERRNOs we got. */ ret = 0; return ret; } static enum drbd_fencing_p highest_fencing_policy(struct drbd_connection *connection) { enum drbd_fencing_p fp = FP_NOT_AVAIL; struct drbd_peer_device *peer_device; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (get_ldev_if_state(device, D_CONSISTENT)) { struct disk_conf *disk_conf = rcu_dereference(peer_device->device->ldev->disk_conf); fp = max_t(enum drbd_fencing_p, fp, disk_conf->fencing); put_ldev(device); } } rcu_read_unlock(); return fp; } static bool resource_is_supended(struct drbd_resource *resource) { return resource->susp || resource->susp_fen || resource->susp_nod; } bool conn_try_outdate_peer(struct drbd_connection *connection) { struct drbd_resource * const resource = connection->resource; unsigned int connect_cnt; union drbd_state mask = { }; union drbd_state val = { }; enum drbd_fencing_p fp; char *ex_to_string; int r; spin_lock_irq(&resource->req_lock); if (connection->cstate >= C_WF_REPORT_PARAMS) { drbd_err(connection, "Expected cstate < C_WF_REPORT_PARAMS\n"); spin_unlock_irq(&resource->req_lock); return false; } connect_cnt = connection->connect_cnt; spin_unlock_irq(&resource->req_lock); fp = highest_fencing_policy(connection); switch (fp) { case FP_NOT_AVAIL: drbd_warn(connection, "Not fencing peer, I'm not even Consistent myself.\n"); spin_lock_irq(&resource->req_lock); if (connection->cstate < C_WF_REPORT_PARAMS) { _conn_request_state(connection, (union drbd_state) { { .susp_fen = 1 } }, (union drbd_state) { { .susp_fen = 0 } }, CS_VERBOSE | CS_HARD | CS_DC_SUSP); /* We are no longer suspended due to the fencing policy. * We may still be suspended due to the on-no-data-accessible policy. * If that was OND_IO_ERROR, fail pending requests. */ if (!resource_is_supended(resource)) _tl_restart(connection, CONNECTION_LOST_WHILE_PENDING); } /* Else: in case we raced with a connection handshake, * let the handshake figure out if we maybe can RESEND, * and do not resume/fail pending requests here. * Worst case is we stay suspended for now, which may be * resolved by either re-establishing the replication link, or * the next link failure, or eventually the administrator. */ spin_unlock_irq(&resource->req_lock); return false; case FP_DONT_CARE: return true; default: ; } r = conn_khelper(connection, "fence-peer"); switch ((r>>8) & 0xff) { case P_INCONSISTENT: /* peer is inconsistent */ ex_to_string = "peer is inconsistent or worse"; mask.pdsk = D_MASK; val.pdsk = D_INCONSISTENT; break; case P_OUTDATED: /* peer got outdated, or was already outdated */ ex_to_string = "peer was fenced"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; case P_DOWN: /* peer was down */ if (conn_highest_disk(connection) == D_UP_TO_DATE) { /* we will(have) create(d) a new UUID anyways... */ ex_to_string = "peer is unreachable, assumed to be dead"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } else { ex_to_string = "peer unreachable, doing nothing since disk != UpToDate"; } break; case P_PRIMARY: /* Peer is primary, voluntarily outdate myself. * This is useful when an unconnected R_SECONDARY is asked to * become R_PRIMARY, but finds the other peer being active. */ ex_to_string = "peer is active"; drbd_warn(connection, "Peer is primary, outdating myself.\n"); mask.disk = D_MASK; val.disk = D_OUTDATED; break; case P_FENCING: /* THINK: do we need to handle this * like case 4, or more like case 5? */ if (fp != FP_STONITH) drbd_err(connection, "fence-peer() = 7 && fencing != Stonith !!!\n"); ex_to_string = "peer was stonithed"; mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; break; default: /* The script is broken ... */ drbd_err(connection, "fence-peer helper broken, returned %d\n", (r>>8)&0xff); return false; /* Eventually leave IO frozen */ } drbd_info(connection, "fence-peer helper returned %d (%s)\n", (r>>8) & 0xff, ex_to_string); /* Not using conn_request_state(connection, mask, val, CS_VERBOSE); here, because we might were able to re-establish the connection in the meantime. */ spin_lock_irq(&resource->req_lock); if (connection->cstate < C_WF_REPORT_PARAMS && !test_bit(STATE_SENT, &connection->flags)) { if (connection->connect_cnt != connect_cnt) /* In case the connection was established and droped while the fence-peer handler was running, ignore it */ drbd_info(connection, "Ignoring fence-peer exit code\n"); else _conn_request_state(connection, mask, val, CS_VERBOSE); } spin_unlock_irq(&resource->req_lock); return conn_highest_pdsk(connection) <= D_OUTDATED; } static int _try_outdate_peer_async(void *data) { struct drbd_connection *connection = (struct drbd_connection *)data; conn_try_outdate_peer(connection); kref_put(&connection->kref, drbd_destroy_connection); return 0; } void conn_try_outdate_peer_async(struct drbd_connection *connection) { struct task_struct *opa; kref_get(&connection->kref); /* We may have just sent a signal to this thread * to get it out of some blocking network function. * Clear signals; otherwise kthread_run(), which internally uses * wait_on_completion_killable(), will mistake our pending signal * for a new fatal signal and fail. */ flush_signals(current); opa = kthread_run(_try_outdate_peer_async, connection, "drbd_async_h"); if (IS_ERR(opa)) { drbd_err(connection, "out of mem, failed to invoke fence-peer helper\n"); kref_put(&connection->kref, drbd_destroy_connection); } } enum drbd_state_rv drbd_set_role(struct drbd_device *const device, enum drbd_role new_role, int force) { struct drbd_peer_device *const peer_device = first_peer_device(device); struct drbd_connection *const connection = peer_device ? peer_device->connection : NULL; const int max_tries = 4; enum drbd_state_rv rv = SS_UNKNOWN_ERROR; struct net_conf *nc; int try = 0; int forced = 0; union drbd_state mask, val; if (new_role == R_PRIMARY) { struct drbd_connection *connection; /* Detect dead peers as soon as possible. */ rcu_read_lock(); for_each_connection(connection, device->resource) request_ping(connection); rcu_read_unlock(); } mutex_lock(device->state_mutex); mask.i = 0; mask.role = R_MASK; val.i = 0; val.role = new_role; while (try++ < max_tries) { rv = _drbd_request_state_holding_state_mutex(device, mask, val, CS_WAIT_COMPLETE); /* in case we first succeeded to outdate, * but now suddenly could establish a connection */ if (rv == SS_CW_FAILED_BY_PEER && mask.pdsk != 0) { val.pdsk = 0; mask.pdsk = 0; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && force && (device->state.disk < D_UP_TO_DATE && device->state.disk >= D_INCONSISTENT)) { mask.disk = D_MASK; val.disk = D_UP_TO_DATE; forced = 1; continue; } if (rv == SS_NO_UP_TO_DATE_DISK && device->state.disk == D_CONSISTENT && mask.pdsk == 0) { D_ASSERT(device, device->state.pdsk == D_UNKNOWN); if (conn_try_outdate_peer(connection)) { val.disk = D_UP_TO_DATE; mask.disk = D_MASK; } continue; } if (rv == SS_NOTHING_TO_DO) goto out; if (rv == SS_PRIMARY_NOP && mask.pdsk == 0) { if (!conn_try_outdate_peer(connection) && force) { drbd_warn(device, "Forced into split brain situation!\n"); mask.pdsk = D_MASK; val.pdsk = D_OUTDATED; } continue; } if (rv == SS_TWO_PRIMARIES) { /* Maybe the peer is detected as dead very soon... retry at most once more in this case. */ if (try < max_tries) { int timeo; try = max_tries - 1; rcu_read_lock(); nc = rcu_dereference(connection->net_conf); timeo = nc ? (nc->ping_timeo + 1) * HZ / 10 : 1; rcu_read_unlock(); schedule_timeout_interruptible(timeo); } continue; } if (rv < SS_SUCCESS) { rv = _drbd_request_state(device, mask, val, CS_VERBOSE + CS_WAIT_COMPLETE); if (rv < SS_SUCCESS) goto out; } break; } if (rv < SS_SUCCESS) goto out; if (forced) drbd_warn(device, "Forced to consider local data as UpToDate!\n"); /* Wait until nothing is on the fly :) */ wait_event(device->misc_wait, atomic_read(&device->ap_pending_cnt) == 0); /* FIXME also wait for all pending P_BARRIER_ACK? */ if (new_role == R_SECONDARY) { if (get_ldev(device)) { device->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; put_ldev(device); } } else { mutex_lock(&device->resource->conf_update); nc = connection->net_conf; if (nc) nc->discard_my_data = 0; /* without copy; single bit op is atomic */ mutex_unlock(&device->resource->conf_update); if (get_ldev(device)) { if (((device->state.conn < C_CONNECTED || device->state.pdsk <= D_FAILED) && device->ldev->md.uuid[UI_BITMAP] == 0) || forced) drbd_uuid_new_current(device); device->ldev->md.uuid[UI_CURRENT] |= (u64)1; put_ldev(device); } } /* writeout of activity log covered areas of the bitmap * to stable storage done in after state change already */ if (device->state.conn >= C_WF_REPORT_PARAMS) { /* if this was forced, we should consider sync */ if (forced) drbd_send_uuids(peer_device); drbd_send_current_state(peer_device); } drbd_md_sync(device); set_disk_ro(device->vdisk, new_role == R_SECONDARY); kobject_uevent(&disk_to_dev(device->vdisk)->kobj, KOBJ_CHANGE); out: mutex_unlock(device->state_mutex); return rv; } static const char *from_attrs_err_to_txt(int err) { return err == -ENOMSG ? "required attribute missing" : err == -EOPNOTSUPP ? "unknown mandatory attribute" : err == -EEXIST ? "can not change invariant setting" : "invalid attribute value"; } int drbd_adm_set_role(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct set_role_parms parms; int err; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_SET_ROLE_PARMS]) { err = set_role_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto out; } } genl_unlock(); mutex_lock(&adm_ctx.resource->adm_mutex); if (info->genlhdr->cmd == DRBD_ADM_PRIMARY) retcode = drbd_set_role(adm_ctx.device, R_PRIMARY, parms.assume_uptodate); else retcode = drbd_set_role(adm_ctx.device, R_SECONDARY, 0); mutex_unlock(&adm_ctx.resource->adm_mutex); genl_lock(); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } /* Initializes the md.*_offset members, so we are able to find * the on disk meta data. * * We currently have two possible layouts: * external: * |----------- md_size_sect ------------------| * [ 4k superblock ][ activity log ][ Bitmap ] * | al_offset == 8 | * | bm_offset = al_offset + X | * ==> bitmap sectors = md_size_sect - bm_offset * * internal: * |----------- md_size_sect ------------------| * [data.....][ Bitmap ][ activity log ][ 4k superblock ] * | al_offset < 0 | * | bm_offset = al_offset - Y | * ==> bitmap sectors = Y = al_offset - bm_offset * * Activity log size used to be fixed 32kB, * but is about to become configurable. */ static void drbd_md_set_sector_offsets(struct drbd_device *device, struct drbd_backing_dev *bdev) { sector_t md_size_sect = 0; unsigned int al_size_sect = bdev->md.al_size_4k * 8; bdev->md.md_offset = drbd_md_ss(bdev); switch (bdev->md.meta_dev_idx) { default: /* v07 style fixed size indexed meta data */ bdev->md.md_size_sect = MD_128MB_SECT; bdev->md.al_offset = MD_4kB_SECT; bdev->md.bm_offset = MD_4kB_SECT + al_size_sect; break; case DRBD_MD_INDEX_FLEX_EXT: /* just occupy the full device; unit: sectors */ bdev->md.md_size_sect = drbd_get_capacity(bdev->md_bdev); bdev->md.al_offset = MD_4kB_SECT; bdev->md.bm_offset = MD_4kB_SECT + al_size_sect; break; case DRBD_MD_INDEX_INTERNAL: case DRBD_MD_INDEX_FLEX_INT: /* al size is still fixed */ bdev->md.al_offset = -al_size_sect; /* we need (slightly less than) ~ this much bitmap sectors: */ md_size_sect = drbd_get_capacity(bdev->backing_bdev); md_size_sect = ALIGN(md_size_sect, BM_SECT_PER_EXT); md_size_sect = BM_SECT_TO_EXT(md_size_sect); md_size_sect = ALIGN(md_size_sect, 8); /* plus the "drbd meta data super block", * and the activity log; */ md_size_sect += MD_4kB_SECT + al_size_sect; bdev->md.md_size_sect = md_size_sect; /* bitmap offset is adjusted by 'super' block size */ bdev->md.bm_offset = -md_size_sect + MD_4kB_SECT; break; } } /* input size is expected to be in KB */ char *ppsize(char *buf, unsigned long long size) { /* Needs 9 bytes at max including trailing NUL: * -1ULL ==> "16384 EB" */ static char units[] = { 'K', 'M', 'G', 'T', 'P', 'E' }; int base = 0; while (size >= 10000 && base < sizeof(units)-1) { /* shift + round */ size = (size >> 10) + !!(size & (1<<9)); base++; } sprintf(buf, "%u %cB", (unsigned)size, units[base]); return buf; } /* there is still a theoretical deadlock when called from receiver * on an D_INCONSISTENT R_PRIMARY: * remote READ does inc_ap_bio, receiver would need to receive answer * packet from remote to dec_ap_bio again. * receiver receive_sizes(), comes here, * waits for ap_bio_cnt == 0. -> deadlock. * but this cannot happen, actually, because: * R_PRIMARY D_INCONSISTENT, and peer's disk is unreachable * (not connected, or bad/no disk on peer): * see drbd_fail_request_early, ap_bio_cnt is zero. * R_PRIMARY D_INCONSISTENT, and C_SYNC_TARGET: * peer may not initiate a resize. */ /* Note these are not to be confused with * drbd_adm_suspend_io/drbd_adm_resume_io, * which are (sub) state changes triggered by admin (drbdsetup), * and can be long lived. * This changes an device->flag, is triggered by drbd internals, * and should be short-lived. */ /* It needs to be a counter, since multiple threads might independently suspend and resume IO. */ void drbd_suspend_io(struct drbd_device *device) { atomic_inc(&device->suspend_cnt); if (drbd_suspended(device)) return; wait_event(device->misc_wait, !atomic_read(&device->ap_bio_cnt)); } void drbd_resume_io(struct drbd_device *device) { if (atomic_dec_and_test(&device->suspend_cnt)) wake_up(&device->misc_wait); } /** * drbd_determine_dev_size() - Sets the right device size obeying all constraints * @device: DRBD device. * * Returns 0 on success, negative return values indicate errors. * You should call drbd_md_sync() after calling this function. */ enum determine_dev_size drbd_determine_dev_size(struct drbd_device *device, enum dds_flags flags, struct resize_parms *rs) __must_hold(local) { struct md_offsets_and_sizes { u64 last_agreed_sect; u64 md_offset; s32 al_offset; s32 bm_offset; u32 md_size_sect; u32 al_stripes; u32 al_stripe_size_4k; } prev; sector_t u_size, size; struct drbd_md *md = &device->ldev->md; void *buffer; int md_moved, la_size_changed; enum determine_dev_size rv = DS_UNCHANGED; /* We may change the on-disk offsets of our meta data below. Lock out * anything that may cause meta data IO, to avoid acting on incomplete * layout changes or scribbling over meta data that is in the process * of being moved. * * Move is not exactly correct, btw, currently we have all our meta * data in core memory, to "move" it we just write it all out, there * are no reads. */ drbd_suspend_io(device); buffer = drbd_md_get_buffer(device, __func__); /* Lock meta-data IO */ if (!buffer) { drbd_resume_io(device); return DS_ERROR; } /* remember current offset and sizes */ prev.last_agreed_sect = md->la_size_sect; prev.md_offset = md->md_offset; prev.al_offset = md->al_offset; prev.bm_offset = md->bm_offset; prev.md_size_sect = md->md_size_sect; prev.al_stripes = md->al_stripes; prev.al_stripe_size_4k = md->al_stripe_size_4k; if (rs) { /* rs is non NULL if we should change the AL layout only */ md->al_stripes = rs->al_stripes; md->al_stripe_size_4k = rs->al_stripe_size / 4; md->al_size_4k = (u64)rs->al_stripes * rs->al_stripe_size / 4; } drbd_md_set_sector_offsets(device, device->ldev); rcu_read_lock(); u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; rcu_read_unlock(); size = drbd_new_dev_size(device, device->ldev, u_size, flags & DDSF_FORCED); if (size < prev.last_agreed_sect) { if (rs && u_size == 0) { /* Remove "rs &&" later. This check should always be active, but right now the receiver expects the permissive behavior */ drbd_warn(device, "Implicit shrink not allowed. " "Use --size=%llus for explicit shrink.\n", (unsigned long long)size); rv = DS_ERROR_SHRINK; } if (u_size > size) rv = DS_ERROR_SPACE_MD; if (rv != DS_UNCHANGED) goto err_out; } if (drbd_get_capacity(device->this_bdev) != size || drbd_bm_capacity(device) != size) { int err; err = drbd_bm_resize(device, size, !(flags & DDSF_NO_RESYNC)); if (unlikely(err)) { /* currently there is only one error: ENOMEM! */ size = drbd_bm_capacity(device); if (size == 0) { drbd_err(device, "OUT OF MEMORY! " "Could not allocate bitmap!\n"); } else { drbd_err(device, "BM resizing failed. " "Leaving size unchanged\n"); } rv = DS_ERROR; } /* racy, see comments above. */ drbd_set_my_capacity(device, size); md->la_size_sect = size; } if (rv <= DS_ERROR) goto err_out; la_size_changed = (prev.last_agreed_sect != md->la_size_sect); md_moved = prev.md_offset != md->md_offset || prev.md_size_sect != md->md_size_sect; if (la_size_changed || md_moved || rs) { u32 prev_flags; /* We do some synchronous IO below, which may take some time. * Clear the timer, to avoid scary "timer expired!" messages, * "Superblock" is written out at least twice below, anyways. */ del_timer(&device->md_sync_timer); /* We won't change the "al-extents" setting, we just may need * to move the on-disk location of the activity log ringbuffer. * Lock for transaction is good enough, it may well be "dirty" * or even "starving". */ wait_event(device->al_wait, lc_try_lock_for_transaction(device->act_log)); /* mark current on-disk bitmap and activity log as unreliable */ prev_flags = md->flags; md->flags |= MDF_FULL_SYNC | MDF_AL_DISABLED; drbd_md_write(device, buffer); drbd_al_initialize(device, buffer); drbd_info(device, "Writing the whole bitmap, %s\n", la_size_changed && md_moved ? "size changed and md moved" : la_size_changed ? "size changed" : "md moved"); /* next line implicitly does drbd_suspend_io()+drbd_resume_io() */ drbd_bitmap_io(device, md_moved ? &drbd_bm_write_all : &drbd_bm_write, "size changed", BM_LOCKED_MASK); /* on-disk bitmap and activity log is authoritative again * (unless there was an IO error meanwhile...) */ md->flags = prev_flags; drbd_md_write(device, buffer); if (rs) drbd_info(device, "Changed AL layout to al-stripes = %d, al-stripe-size-kB = %d\n", md->al_stripes, md->al_stripe_size_4k * 4); } if (size > prev.last_agreed_sect) rv = prev.last_agreed_sect ? DS_GREW : DS_GREW_FROM_ZERO; if (size < prev.last_agreed_sect) rv = DS_SHRUNK; if (0) { err_out: /* restore previous offset and sizes */ md->la_size_sect = prev.last_agreed_sect; md->md_offset = prev.md_offset; md->al_offset = prev.al_offset; md->bm_offset = prev.bm_offset; md->md_size_sect = prev.md_size_sect; md->al_stripes = prev.al_stripes; md->al_stripe_size_4k = prev.al_stripe_size_4k; md->al_size_4k = (u64)prev.al_stripes * prev.al_stripe_size_4k; } lc_unlock(device->act_log); wake_up(&device->al_wait); drbd_md_put_buffer(device); drbd_resume_io(device); return rv; } sector_t drbd_new_dev_size(struct drbd_device *device, struct drbd_backing_dev *bdev, sector_t u_size, int assume_peer_has_space) { sector_t p_size = device->p_size; /* partner's disk size. */ sector_t la_size_sect = bdev->md.la_size_sect; /* last agreed size. */ sector_t m_size; /* my size */ sector_t size = 0; m_size = drbd_get_max_capacity(bdev); if (device->state.conn < C_CONNECTED && assume_peer_has_space) { drbd_warn(device, "Resize while not connected was forced by the user!\n"); p_size = m_size; } if (p_size && m_size) { size = min_t(sector_t, p_size, m_size); } else { if (la_size_sect) { size = la_size_sect; if (m_size && m_size < size) size = m_size; if (p_size && p_size < size) size = p_size; } else { if (m_size) size = m_size; if (p_size) size = p_size; } } if (size == 0) drbd_err(device, "Both nodes diskless!\n"); if (u_size) { if (u_size > size) drbd_err(device, "Requested disk size is too big (%lu > %lu)\n", (unsigned long)u_size>>1, (unsigned long)size>>1); else size = u_size; } return size; } /** * drbd_check_al_size() - Ensures that the AL is of the right size * @device: DRBD device. * * Returns -EBUSY if current al lru is still used, -ENOMEM when allocation * failed, and 0 on success. You should call drbd_md_sync() after you called * this function. */ static int drbd_check_al_size(struct drbd_device *device, struct disk_conf *dc) { struct lru_cache *n, *t; struct lc_element *e; unsigned int in_use; int i; if (device->act_log && device->act_log->nr_elements == dc->al_extents) return 0; in_use = 0; t = device->act_log; n = lc_create("act_log", drbd_al_ext_cache, AL_UPDATES_PER_TRANSACTION, dc->al_extents, sizeof(struct lc_element), 0); if (n == NULL) { drbd_err(device, "Cannot allocate act_log lru!\n"); return -ENOMEM; } spin_lock_irq(&device->al_lock); if (t) { for (i = 0; i < t->nr_elements; i++) { e = lc_element_by_index(t, i); if (e->refcnt) drbd_err(device, "refcnt(%d)==%d\n", e->lc_number, e->refcnt); in_use += e->refcnt; } } if (!in_use) device->act_log = n; spin_unlock_irq(&device->al_lock); if (in_use) { drbd_err(device, "Activity log still in use!\n"); lc_destroy(n); return -EBUSY; } else { lc_destroy(t); } drbd_md_mark_dirty(device); /* we changed device->act_log->nr_elemens */ return 0; } static void blk_queue_discard_granularity(struct request_queue *q, unsigned int granularity) { q->limits.discard_granularity = granularity; } static unsigned int drbd_max_discard_sectors(struct drbd_connection *connection) { /* when we introduced REQ_WRITE_SAME support, we also bumped * our maximum supported batch bio size used for discards. */ if (connection->agreed_features & DRBD_FF_WSAME) return DRBD_MAX_BBIO_SECTORS; /* before, with DRBD <= 8.4.6, we only allowed up to one AL_EXTENT_SIZE. */ return AL_EXTENT_SIZE >> 9; } static void decide_on_discard_support(struct drbd_device *device, struct request_queue *q, struct request_queue *b, bool discard_zeroes_if_aligned) { /* q = drbd device queue (device->rq_queue) * b = backing device queue (device->ldev->backing_bdev->bd_disk->queue), * or NULL if diskless */ struct drbd_connection *connection = first_peer_device(device)->connection; bool can_do = b ? blk_queue_discard(b) : true; if (can_do && connection->cstate >= C_CONNECTED && !(connection->agreed_features & DRBD_FF_TRIM)) { can_do = false; drbd_info(connection, "peer DRBD too old, does not support TRIM: disabling discards\n"); } if (can_do) { /* We don't care for the granularity, really. * Stacking limits below should fix it for the local * device. Whether or not it is a suitable granularity * on the remote device is not our problem, really. If * you care, you need to use devices with similar * topology on all peers. */ blk_queue_discard_granularity(q, 512); q->limits.max_discard_sectors = drbd_max_discard_sectors(connection); blk_queue_flag_set(QUEUE_FLAG_DISCARD, q); q->limits.max_write_zeroes_sectors = drbd_max_discard_sectors(connection); } else { blk_queue_flag_clear(QUEUE_FLAG_DISCARD, q); blk_queue_discard_granularity(q, 0); q->limits.max_discard_sectors = 0; q->limits.max_write_zeroes_sectors = 0; } } static void fixup_discard_if_not_supported(struct request_queue *q) { /* To avoid confusion, if this queue does not support discard, clear * max_discard_sectors, which is what lsblk -D reports to the user. * Older kernels got this wrong in "stack limits". * */ if (!blk_queue_discard(q)) { blk_queue_max_discard_sectors(q, 0); blk_queue_discard_granularity(q, 0); } } static void fixup_write_zeroes(struct drbd_device *device, struct request_queue *q) { /* Fixup max_write_zeroes_sectors after blk_queue_stack_limits(): * if we can handle "zeroes" efficiently on the protocol, * we want to do that, even if our backend does not announce * max_write_zeroes_sectors itself. */ struct drbd_connection *connection = first_peer_device(device)->connection; /* If the peer announces WZEROES support, use it. Otherwise, rather * send explicit zeroes than rely on some discard-zeroes-data magic. */ if (connection->agreed_features & DRBD_FF_WZEROES) q->limits.max_write_zeroes_sectors = DRBD_MAX_BBIO_SECTORS; else q->limits.max_write_zeroes_sectors = 0; } static void decide_on_write_same_support(struct drbd_device *device, struct request_queue *q, struct request_queue *b, struct o_qlim *o, bool disable_write_same) { struct drbd_peer_device *peer_device = first_peer_device(device); struct drbd_connection *connection = peer_device->connection; bool can_do = b ? b->limits.max_write_same_sectors : true; if (can_do && disable_write_same) { can_do = false; drbd_info(peer_device, "WRITE_SAME disabled by config\n"); } if (can_do && connection->cstate >= C_CONNECTED && !(connection->agreed_features & DRBD_FF_WSAME)) { can_do = false; drbd_info(peer_device, "peer does not support WRITE_SAME\n"); } if (o) { /* logical block size; queue_logical_block_size(NULL) is 512 */ unsigned int peer_lbs = be32_to_cpu(o->logical_block_size); unsigned int me_lbs_b = queue_logical_block_size(b); unsigned int me_lbs = queue_logical_block_size(q); if (me_lbs_b != me_lbs) { drbd_warn(device, "logical block size of local backend does not match (drbd:%u, backend:%u); was this a late attach?\n", me_lbs, me_lbs_b); /* rather disable write same than trigger some BUG_ON later in the scsi layer. */ can_do = false; } if (me_lbs_b != peer_lbs) { drbd_warn(peer_device, "logical block sizes do not match (me:%u, peer:%u); this may cause problems.\n", me_lbs, peer_lbs); if (can_do) { drbd_dbg(peer_device, "logical block size mismatch: WRITE_SAME disabled.\n"); can_do = false; } me_lbs = max(me_lbs, me_lbs_b); /* We cannot change the logical block size of an in-use queue. * We can only hope that access happens to be properly aligned. * If not, the peer will likely produce an IO error, and detach. */ if (peer_lbs > me_lbs) { if (device->state.role != R_PRIMARY) { blk_queue_logical_block_size(q, peer_lbs); drbd_warn(peer_device, "logical block size set to %u\n", peer_lbs); } else { drbd_warn(peer_device, "current Primary must NOT adjust logical block size (%u -> %u); hope for the best.\n", me_lbs, peer_lbs); } } } if (can_do && !o->write_same_capable) { /* If we introduce an open-coded write-same loop on the receiving side, * the peer would present itself as "capable". */ drbd_dbg(peer_device, "WRITE_SAME disabled (peer device not capable)\n"); can_do = false; } } blk_queue_max_write_same_sectors(q, can_do ? DRBD_MAX_BBIO_SECTORS : 0); } static void drbd_setup_queue_param(struct drbd_device *device, struct drbd_backing_dev *bdev, unsigned int max_bio_size, struct o_qlim *o) { struct request_queue * const q = device->rq_queue; unsigned int max_hw_sectors = max_bio_size >> 9; unsigned int max_segments = 0; struct request_queue *b = NULL; struct disk_conf *dc; bool discard_zeroes_if_aligned = true; bool disable_write_same = false; if (bdev) { b = bdev->backing_bdev->bd_disk->queue; max_hw_sectors = min(queue_max_hw_sectors(b), max_bio_size >> 9); rcu_read_lock(); dc = rcu_dereference(device->ldev->disk_conf); max_segments = dc->max_bio_bvecs; discard_zeroes_if_aligned = dc->discard_zeroes_if_aligned; disable_write_same = dc->disable_write_same; rcu_read_unlock(); blk_set_stacking_limits(&q->limits); } blk_queue_max_hw_sectors(q, max_hw_sectors); /* This is the workaround for "bio would need to, but cannot, be split" */ blk_queue_max_segments(q, max_segments ? max_segments : BLK_MAX_SEGMENTS); blk_queue_segment_boundary(q, PAGE_SIZE-1); decide_on_discard_support(device, q, b, discard_zeroes_if_aligned); decide_on_write_same_support(device, q, b, o, disable_write_same); if (b) { blk_queue_stack_limits(q, b); if (q->backing_dev_info->ra_pages != b->backing_dev_info->ra_pages) { drbd_info(device, "Adjusting my ra_pages to backing device's (%lu -> %lu)\n", q->backing_dev_info->ra_pages, b->backing_dev_info->ra_pages); q->backing_dev_info->ra_pages = b->backing_dev_info->ra_pages; } } fixup_discard_if_not_supported(q); fixup_write_zeroes(device, q); } void drbd_reconsider_queue_parameters(struct drbd_device *device, struct drbd_backing_dev *bdev, struct o_qlim *o) { unsigned int now, new, local, peer; now = queue_max_hw_sectors(device->rq_queue) << 9; local = device->local_max_bio_size; /* Eventually last known value, from volatile memory */ peer = device->peer_max_bio_size; /* Eventually last known value, from meta data */ if (bdev) { local = queue_max_hw_sectors(bdev->backing_bdev->bd_disk->queue) << 9; device->local_max_bio_size = local; } local = min(local, DRBD_MAX_BIO_SIZE); /* We may ignore peer limits if the peer is modern enough. Because new from 8.3.8 onwards the peer can use multiple BIOs for a single peer_request */ if (device->state.conn >= C_WF_REPORT_PARAMS) { if (first_peer_device(device)->connection->agreed_pro_version < 94) peer = min(device->peer_max_bio_size, DRBD_MAX_SIZE_H80_PACKET); /* Correct old drbd (up to 8.3.7) if it believes it can do more than 32KiB */ else if (first_peer_device(device)->connection->agreed_pro_version == 94) peer = DRBD_MAX_SIZE_H80_PACKET; else if (first_peer_device(device)->connection->agreed_pro_version < 100) peer = DRBD_MAX_BIO_SIZE_P95; /* drbd 8.3.8 onwards, before 8.4.0 */ else peer = DRBD_MAX_BIO_SIZE; /* We may later detach and re-attach on a disconnected Primary. * Avoid this setting to jump back in that case. * We want to store what we know the peer DRBD can handle, * not what the peer IO backend can handle. */ if (peer > device->peer_max_bio_size) device->peer_max_bio_size = peer; } new = min(local, peer); if (device->state.role == R_PRIMARY && new < now) drbd_err(device, "ASSERT FAILED new < now; (%u < %u)\n", new, now); if (new != now) drbd_info(device, "max BIO size = %u\n", new); drbd_setup_queue_param(device, bdev, new, o); } /* Starts the worker thread */ static void conn_reconfig_start(struct drbd_connection *connection) { drbd_thread_start(&connection->worker); drbd_flush_workqueue(&connection->sender_work); } /* if still unconfigured, stops worker again. */ static void conn_reconfig_done(struct drbd_connection *connection) { bool stop_threads; spin_lock_irq(&connection->resource->req_lock); stop_threads = conn_all_vols_unconf(connection) && connection->cstate == C_STANDALONE; spin_unlock_irq(&connection->resource->req_lock); if (stop_threads) { /* ack_receiver thread and ack_sender workqueue are implicitly * stopped by receiver in conn_disconnect() */ drbd_thread_stop(&connection->receiver); drbd_thread_stop(&connection->worker); } } /* Make sure IO is suspended before calling this function(). */ static void drbd_suspend_al(struct drbd_device *device) { int s = 0; if (!lc_try_lock(device->act_log)) { drbd_warn(device, "Failed to lock al in drbd_suspend_al()\n"); return; } drbd_al_shrink(device); spin_lock_irq(&device->resource->req_lock); if (device->state.conn < C_CONNECTED) s = !test_and_set_bit(AL_SUSPENDED, &device->flags); spin_unlock_irq(&device->resource->req_lock); lc_unlock(device->act_log); if (s) drbd_info(device, "Suspended AL updates\n"); } static bool should_set_defaults(struct genl_info *info) { unsigned flags = ((struct drbd_genlmsghdr*)info->userhdr)->flags; return 0 != (flags & DRBD_GENL_F_SET_DEFAULTS); } static unsigned int drbd_al_extents_max(struct drbd_backing_dev *bdev) { /* This is limited by 16 bit "slot" numbers, * and by available on-disk context storage. * * Also (u16)~0 is special (denotes a "free" extent). * * One transaction occupies one 4kB on-disk block, * we have n such blocks in the on disk ring buffer, * the "current" transaction may fail (n-1), * and there is 919 slot numbers context information per transaction. * * 72 transaction blocks amounts to more than 2**16 context slots, * so cap there first. */ const unsigned int max_al_nr = DRBD_AL_EXTENTS_MAX; const unsigned int sufficient_on_disk = (max_al_nr + AL_CONTEXT_PER_TRANSACTION -1) /AL_CONTEXT_PER_TRANSACTION; unsigned int al_size_4k = bdev->md.al_size_4k; if (al_size_4k > sufficient_on_disk) return max_al_nr; return (al_size_4k - 1) * AL_CONTEXT_PER_TRANSACTION; } static bool write_ordering_changed(struct disk_conf *a, struct disk_conf *b) { return a->disk_barrier != b->disk_barrier || a->disk_flushes != b->disk_flushes || a->disk_drain != b->disk_drain; } static void sanitize_disk_conf(struct drbd_device *device, struct disk_conf *disk_conf, struct drbd_backing_dev *nbc) { struct request_queue * const q = nbc->backing_bdev->bd_disk->queue; if (disk_conf->al_extents < DRBD_AL_EXTENTS_MIN) disk_conf->al_extents = DRBD_AL_EXTENTS_MIN; if (disk_conf->al_extents > drbd_al_extents_max(nbc)) disk_conf->al_extents = drbd_al_extents_max(nbc); if (!blk_queue_discard(q)) { if (disk_conf->rs_discard_granularity) { disk_conf->rs_discard_granularity = 0; /* disable feature */ drbd_info(device, "rs_discard_granularity feature disabled\n"); } } if (disk_conf->rs_discard_granularity) { int orig_value = disk_conf->rs_discard_granularity; int remainder; if (q->limits.discard_granularity > disk_conf->rs_discard_granularity) disk_conf->rs_discard_granularity = q->limits.discard_granularity; remainder = disk_conf->rs_discard_granularity % q->limits.discard_granularity; disk_conf->rs_discard_granularity += remainder; if (disk_conf->rs_discard_granularity > q->limits.max_discard_sectors << 9) disk_conf->rs_discard_granularity = q->limits.max_discard_sectors << 9; if (disk_conf->rs_discard_granularity != orig_value) drbd_info(device, "rs_discard_granularity changed to %d\n", disk_conf->rs_discard_granularity); } } static int disk_opts_check_al_size(struct drbd_device *device, struct disk_conf *dc) { int err = -EBUSY; if (device->act_log && device->act_log->nr_elements == dc->al_extents) return 0; drbd_suspend_io(device); /* If IO completion is currently blocked, we would likely wait * "forever" for the activity log to become unused. So we don't. */ if (atomic_read(&device->ap_bio_cnt)) goto out; wait_event(device->al_wait, lc_try_lock(device->act_log)); drbd_al_shrink(device); err = drbd_check_al_size(device, dc); lc_unlock(device->act_log); wake_up(&device->al_wait); out: drbd_resume_io(device); return err; } int drbd_adm_disk_opts(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct drbd_device *device; struct disk_conf *new_disk_conf, *old_disk_conf; struct fifo_buffer *old_plan = NULL, *new_plan = NULL; int err, fifo_size; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; device = adm_ctx.device; mutex_lock(&adm_ctx.resource->adm_mutex); /* we also need a disk * to change the options on */ if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail; } mutex_lock(&device->resource->conf_update); old_disk_conf = device->ldev->disk_conf; *new_disk_conf = *old_disk_conf; if (should_set_defaults(info)) set_disk_conf_defaults(new_disk_conf); err = disk_conf_from_attrs_for_change(new_disk_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail_unlock; } if (!expect(new_disk_conf->resync_rate >= 1)) new_disk_conf->resync_rate = 1; sanitize_disk_conf(device, new_disk_conf, device->ldev); if (new_disk_conf->c_plan_ahead > DRBD_C_PLAN_AHEAD_MAX) new_disk_conf->c_plan_ahead = DRBD_C_PLAN_AHEAD_MAX; fifo_size = (new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ; if (fifo_size != device->rs_plan_s->size) { new_plan = fifo_alloc(fifo_size); if (!new_plan) { drbd_err(device, "kmalloc of fifo_buffer failed"); retcode = ERR_NOMEM; goto fail_unlock; } } err = disk_opts_check_al_size(device, new_disk_conf); if (err) { /* Could be just "busy". Ignore? * Introduce dedicated error code? */ drbd_msg_put_info(adm_ctx.reply_skb, "Try again without changing current al-extents setting"); retcode = ERR_NOMEM; goto fail_unlock; } lock_all_resources(); retcode = drbd_resync_after_valid(device, new_disk_conf->resync_after); if (retcode == NO_ERROR) { rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); drbd_resync_after_changed(device); } unlock_all_resources(); if (retcode != NO_ERROR) goto fail_unlock; if (new_plan) { old_plan = device->rs_plan_s; rcu_assign_pointer(device->rs_plan_s, new_plan); } mutex_unlock(&device->resource->conf_update); if (new_disk_conf->al_updates) device->ldev->md.flags &= ~MDF_AL_DISABLED; else device->ldev->md.flags |= MDF_AL_DISABLED; if (new_disk_conf->md_flushes) clear_bit(MD_NO_FUA, &device->flags); else set_bit(MD_NO_FUA, &device->flags); if (write_ordering_changed(old_disk_conf, new_disk_conf)) drbd_bump_write_ordering(device->resource, NULL, WO_BDEV_FLUSH); if (old_disk_conf->discard_zeroes_if_aligned != new_disk_conf->discard_zeroes_if_aligned || old_disk_conf->disable_write_same != new_disk_conf->disable_write_same) drbd_reconsider_queue_parameters(device, device->ldev, NULL); drbd_md_sync(device); if (device->state.conn >= C_CONNECTED) { struct drbd_peer_device *peer_device; for_each_peer_device(peer_device, device) drbd_send_sync_param(peer_device); } synchronize_rcu(); kfree(old_disk_conf); kfree(old_plan); mod_timer(&device->request_timer, jiffies + HZ); goto success; fail_unlock: mutex_unlock(&device->resource->conf_update); fail: kfree(new_disk_conf); kfree(new_plan); success: put_ldev(device); out: mutex_unlock(&adm_ctx.resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static struct block_device *open_backing_dev(struct drbd_device *device, const char *bdev_path, void *claim_ptr, bool do_bd_link) { struct block_device *bdev; int err = 0; bdev = blkdev_get_by_path(bdev_path, FMODE_READ | FMODE_WRITE | FMODE_EXCL, claim_ptr); if (IS_ERR(bdev)) { drbd_err(device, "open(\"%s\") failed with %ld\n", bdev_path, PTR_ERR(bdev)); return bdev; } if (!do_bd_link) return bdev; err = bd_link_disk_holder(bdev, device->vdisk); if (err) { blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); drbd_err(device, "bd_link_disk_holder(\"%s\", ...) failed with %d\n", bdev_path, err); bdev = ERR_PTR(err); } return bdev; } static int open_backing_devices(struct drbd_device *device, struct disk_conf *new_disk_conf, struct drbd_backing_dev *nbc) { struct block_device *bdev; bdev = open_backing_dev(device, new_disk_conf->backing_dev, device, true); if (IS_ERR(bdev)) return ERR_OPEN_DISK; nbc->backing_bdev = bdev; /* * meta_dev_idx >= 0: external fixed size, possibly multiple * drbd sharing one meta device. TODO in that case, paranoia * check that [md_bdev, meta_dev_idx] is not yet used by some * other drbd minor! (if you use drbd.conf + drbdadm, that * should check it for you already; but if you don't, or * someone fooled it, we need to double check here) */ bdev = open_backing_dev(device, new_disk_conf->meta_dev, /* claim ptr: device, if claimed exclusively; shared drbd_m_holder, * if potentially shared with other drbd minors */ (new_disk_conf->meta_dev_idx < 0) ? (void*)device : (void*)drbd_m_holder, /* avoid double bd_claim_by_disk() for the same (source,target) tuple, * as would happen with internal metadata. */ (new_disk_conf->meta_dev_idx != DRBD_MD_INDEX_FLEX_INT && new_disk_conf->meta_dev_idx != DRBD_MD_INDEX_INTERNAL)); if (IS_ERR(bdev)) return ERR_OPEN_MD_DISK; nbc->md_bdev = bdev; return NO_ERROR; } static void close_backing_dev(struct drbd_device *device, struct block_device *bdev, bool do_bd_unlink) { if (!bdev) return; if (do_bd_unlink) bd_unlink_disk_holder(bdev, device->vdisk); blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL); } void drbd_backing_dev_free(struct drbd_device *device, struct drbd_backing_dev *ldev) { if (ldev == NULL) return; close_backing_dev(device, ldev->md_bdev, ldev->md_bdev != ldev->backing_bdev); close_backing_dev(device, ldev->backing_bdev, true); kfree(ldev->disk_conf); kfree(ldev); } int drbd_adm_attach(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_device *device; struct drbd_peer_device *peer_device; struct drbd_connection *connection; int err; enum drbd_ret_code retcode; enum determine_dev_size dd; sector_t max_possible_sectors; sector_t min_md_device_sectors; struct drbd_backing_dev *nbc = NULL; /* new_backing_conf */ struct disk_conf *new_disk_conf = NULL; struct lru_cache *resync_lru = NULL; struct fifo_buffer *new_plan = NULL; union drbd_state ns, os; enum drbd_state_rv rv; struct net_conf *nc; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; device = adm_ctx.device; mutex_lock(&adm_ctx.resource->adm_mutex); peer_device = first_peer_device(device); connection = peer_device->connection; conn_reconfig_start(connection); /* if you want to reconfigure, please tear down first */ if (device->state.disk > D_DISKLESS) { retcode = ERR_DISK_CONFIGURED; goto fail; } /* It may just now have detached because of IO error. Make sure * drbd_ldev_destroy is done already, we may end up here very fast, * e.g. if someone calls attach from the on-io-error handler, * to realize a "hot spare" feature (not that I'd recommend that) */ wait_event(device->misc_wait, !test_bit(GOING_DISKLESS, &device->flags)); /* make sure there is no leftover from previous force-detach attempts */ clear_bit(FORCE_DETACH, &device->flags); clear_bit(WAS_IO_ERROR, &device->flags); clear_bit(WAS_READ_ERROR, &device->flags); /* and no leftover from previously aborted resync or verify, either */ device->rs_total = 0; device->rs_failed = 0; atomic_set(&device->rs_pending_cnt, 0); /* allocation not in the IO path, drbdsetup context */ nbc = kzalloc(sizeof(struct drbd_backing_dev), GFP_KERNEL); if (!nbc) { retcode = ERR_NOMEM; goto fail; } spin_lock_init(&nbc->md.uuid_lock); new_disk_conf = kzalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail; } nbc->disk_conf = new_disk_conf; set_disk_conf_defaults(new_disk_conf); err = disk_conf_from_attrs(new_disk_conf, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail; } if (new_disk_conf->c_plan_ahead > DRBD_C_PLAN_AHEAD_MAX) new_disk_conf->c_plan_ahead = DRBD_C_PLAN_AHEAD_MAX; new_plan = fifo_alloc((new_disk_conf->c_plan_ahead * 10 * SLEEP_TIME) / HZ); if (!new_plan) { retcode = ERR_NOMEM; goto fail; } if (new_disk_conf->meta_dev_idx < DRBD_MD_INDEX_FLEX_INT) { retcode = ERR_MD_IDX_INVALID; goto fail; } rcu_read_lock(); nc = rcu_dereference(connection->net_conf); if (nc) { if (new_disk_conf->fencing == FP_STONITH && nc->wire_protocol == DRBD_PROT_A) { rcu_read_unlock(); retcode = ERR_STONITH_AND_PROT_A; goto fail; } } rcu_read_unlock(); retcode = open_backing_devices(device, new_disk_conf, nbc); if (retcode != NO_ERROR) goto fail; if ((nbc->backing_bdev == nbc->md_bdev) != (new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_INTERNAL || new_disk_conf->meta_dev_idx == DRBD_MD_INDEX_FLEX_INT)) { retcode = ERR_MD_IDX_INVALID; goto fail; } resync_lru = lc_create("resync", drbd_bm_ext_cache, 1, 61, sizeof(struct bm_extent), offsetof(struct bm_extent, lce)); if (!resync_lru) { retcode = ERR_NOMEM; goto fail; } /* Read our meta data super block early. * This also sets other on-disk offsets. */ retcode = drbd_md_read(device, nbc); if (retcode != NO_ERROR) goto fail; sanitize_disk_conf(device, new_disk_conf, nbc); if (drbd_get_max_capacity(nbc) < new_disk_conf->disk_size) { drbd_err(device, "max capacity %llu smaller than disk size %llu\n", (unsigned long long) drbd_get_max_capacity(nbc), (unsigned long long) new_disk_conf->disk_size); retcode = ERR_DISK_TOO_SMALL; goto fail; } if (new_disk_conf->meta_dev_idx < 0) { max_possible_sectors = DRBD_MAX_SECTORS_FLEX; /* at least one MB, otherwise it does not make sense */ min_md_device_sectors = (2<<10); } else { max_possible_sectors = DRBD_MAX_SECTORS; min_md_device_sectors = MD_128MB_SECT * (new_disk_conf->meta_dev_idx + 1); } if (drbd_get_capacity(nbc->md_bdev) < min_md_device_sectors) { retcode = ERR_MD_DISK_TOO_SMALL; drbd_warn(device, "refusing attach: md-device too small, " "at least %llu sectors needed for this meta-disk type\n", (unsigned long long) min_md_device_sectors); goto fail; } /* Make sure the new disk is big enough * (we may currently be R_PRIMARY with no local disk...) */ if (drbd_get_max_capacity(nbc) < drbd_get_capacity(device->this_bdev)) { retcode = ERR_DISK_TOO_SMALL; goto fail; } nbc->known_size = drbd_get_capacity(nbc->backing_bdev); if (nbc->known_size > max_possible_sectors) { drbd_warn(device, "==> truncating very big lower level device " "to currently maximum possible %llu sectors <==\n", (unsigned long long) max_possible_sectors); if (new_disk_conf->meta_dev_idx >= 0) drbd_warn(device, "==>> using internal or flexible " "meta data may help <<==\n"); } drbd_suspend_io(device); /* also wait for the last barrier ack. */ /* FIXME see also https://daiquiri.linbit/cgi-bin/bugzilla/show_bug.cgi?id=171 * We need a way to either ignore barrier acks for barriers sent before a device * was attached, or a way to wait for all pending barrier acks to come in. * As barriers are counted per resource, * we'd need to suspend io on all devices of a resource. */ wait_event(device->misc_wait, !atomic_read(&device->ap_pending_cnt) || drbd_suspended(device)); /* and for any other previously queued work */ drbd_flush_workqueue(&connection->sender_work); rv = _drbd_request_state(device, NS(disk, D_ATTACHING), CS_VERBOSE); retcode = rv; /* FIXME: Type mismatch. */ drbd_resume_io(device); if (rv < SS_SUCCESS) goto fail; if (!get_ldev_if_state(device, D_ATTACHING)) goto force_diskless; if (!device->bitmap) { if (drbd_bm_init(device)) { retcode = ERR_NOMEM; goto force_diskless_dec; } } if (device->state.pdsk != D_UP_TO_DATE && device->ed_uuid && (device->state.role == R_PRIMARY || device->state.peer == R_PRIMARY) && (device->ed_uuid & ~((u64)1)) != (nbc->md.uuid[UI_CURRENT] & ~((u64)1))) { drbd_err(device, "Can only attach to data with current UUID=%016llX\n", (unsigned long long)device->ed_uuid); retcode = ERR_DATA_NOT_CURRENT; goto force_diskless_dec; } /* Since we are diskless, fix the activity log first... */ if (drbd_check_al_size(device, new_disk_conf)) { retcode = ERR_NOMEM; goto force_diskless_dec; } /* Prevent shrinking of consistent devices ! */ { unsigned long long nsz = drbd_new_dev_size(device, nbc, nbc->disk_conf->disk_size, 0); unsigned long long eff = nbc->md.la_size_sect; if (drbd_md_test_flag(nbc, MDF_CONSISTENT) && nsz < eff) { if (nsz == nbc->disk_conf->disk_size) { drbd_warn(device, "truncating a consistent device during attach (%llu < %llu)\n", nsz, eff); } else { drbd_warn(device, "refusing to truncate a consistent device (%llu < %llu)\n", nsz, eff); drbd_msg_sprintf_info(adm_ctx.reply_skb, "To-be-attached device has last effective > current size, and is consistent\n" "(%llu > %llu sectors). Refusing to attach.", eff, nsz); retcode = ERR_IMPLICIT_SHRINK; goto force_diskless_dec; } } } lock_all_resources(); retcode = drbd_resync_after_valid(device, new_disk_conf->resync_after); if (retcode != NO_ERROR) { unlock_all_resources(); goto force_diskless_dec; } /* Reset the "barriers don't work" bits here, then force meta data to * be written, to ensure we determine if barriers are supported. */ if (new_disk_conf->md_flushes) clear_bit(MD_NO_FUA, &device->flags); else set_bit(MD_NO_FUA, &device->flags); /* Point of no return reached. * Devices and memory are no longer released by error cleanup below. * now device takes over responsibility, and the state engine should * clean it up somewhere. */ D_ASSERT(device, device->ldev == NULL); device->ldev = nbc; device->resync = resync_lru; device->rs_plan_s = new_plan; nbc = NULL; resync_lru = NULL; new_disk_conf = NULL; new_plan = NULL; drbd_resync_after_changed(device); drbd_bump_write_ordering(device->resource, device->ldev, WO_BDEV_FLUSH); unlock_all_resources(); if (drbd_md_test_flag(device->ldev, MDF_CRASHED_PRIMARY)) set_bit(CRASHED_PRIMARY, &device->flags); else clear_bit(CRASHED_PRIMARY, &device->flags); if (drbd_md_test_flag(device->ldev, MDF_PRIMARY_IND) && !(device->state.role == R_PRIMARY && device->resource->susp_nod)) set_bit(CRASHED_PRIMARY, &device->flags); device->send_cnt = 0; device->recv_cnt = 0; device->read_cnt = 0; device->writ_cnt = 0; drbd_reconsider_queue_parameters(device, device->ldev, NULL); /* If I am currently not R_PRIMARY, * but meta data primary indicator is set, * I just now recover from a hard crash, * and have been R_PRIMARY before that crash. * * Now, if I had no connection before that crash * (have been degraded R_PRIMARY), chances are that * I won't find my peer now either. * * In that case, and _only_ in that case, * we use the degr-wfc-timeout instead of the default, * so we can automatically recover from a crash of a * degraded but active "cluster" after a certain timeout. */ clear_bit(USE_DEGR_WFC_T, &device->flags); if (device->state.role != R_PRIMARY && drbd_md_test_flag(device->ldev, MDF_PRIMARY_IND) && !drbd_md_test_flag(device->ldev, MDF_CONNECTED_IND)) set_bit(USE_DEGR_WFC_T, &device->flags); dd = drbd_determine_dev_size(device, 0, NULL); if (dd <= DS_ERROR) { retcode = ERR_NOMEM_BITMAP; goto force_diskless_dec; } else if (dd == DS_GREW) set_bit(RESYNC_AFTER_NEG, &device->flags); if (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC) || (test_bit(CRASHED_PRIMARY, &device->flags) && drbd_md_test_flag(device->ldev, MDF_AL_DISABLED))) { drbd_info(device, "Assuming that all blocks are out of sync " "(aka FullSync)\n"); if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } else { if (drbd_bitmap_io(device, &drbd_bm_read, "read from attaching", BM_LOCKED_MASK)) { retcode = ERR_IO_MD_DISK; goto force_diskless_dec; } } if (_drbd_bm_total_weight(device) == drbd_bm_bits(device)) drbd_suspend_al(device); /* IO is still suspended here... */ spin_lock_irq(&device->resource->req_lock); os = drbd_read_state(device); ns = os; /* If MDF_CONSISTENT is not set go into inconsistent state, otherwise investigate MDF_WasUpToDate... If MDF_WAS_UP_TO_DATE is not set go into D_OUTDATED disk state, otherwise into D_CONSISTENT state. */ if (drbd_md_test_flag(device->ldev, MDF_CONSISTENT)) { if (drbd_md_test_flag(device->ldev, MDF_WAS_UP_TO_DATE)) ns.disk = D_CONSISTENT; else ns.disk = D_OUTDATED; } else { ns.disk = D_INCONSISTENT; } if (drbd_md_test_flag(device->ldev, MDF_PEER_OUT_DATED)) ns.pdsk = D_OUTDATED; rcu_read_lock(); if (ns.disk == D_CONSISTENT && (ns.pdsk == D_OUTDATED || rcu_dereference(device->ldev->disk_conf)->fencing == FP_DONT_CARE)) ns.disk = D_UP_TO_DATE; /* All tests on MDF_PRIMARY_IND, MDF_CONNECTED_IND, MDF_CONSISTENT and MDF_WAS_UP_TO_DATE must happen before this point, because drbd_request_state() modifies these flags. */ if (rcu_dereference(device->ldev->disk_conf)->al_updates) device->ldev->md.flags &= ~MDF_AL_DISABLED; else device->ldev->md.flags |= MDF_AL_DISABLED; rcu_read_unlock(); /* In case we are C_CONNECTED postpone any decision on the new disk state after the negotiation phase. */ if (device->state.conn == C_CONNECTED) { device->new_state_tmp.i = ns.i; ns.i = os.i; ns.disk = D_NEGOTIATING; /* We expect to receive up-to-date UUIDs soon. To avoid a race in receive_state, free p_uuid while holding req_lock. I.e. atomic with the state change */ kfree(device->p_uuid); device->p_uuid = NULL; } rv = _drbd_set_state(device, ns, CS_VERBOSE, NULL); spin_unlock_irq(&device->resource->req_lock); if (rv < SS_SUCCESS) goto force_diskless_dec; mod_timer(&device->request_timer, jiffies + HZ); if (device->state.role == R_PRIMARY) device->ldev->md.uuid[UI_CURRENT] |= (u64)1; else device->ldev->md.uuid[UI_CURRENT] &= ~(u64)1; drbd_md_mark_dirty(device); drbd_md_sync(device); kobject_uevent(&disk_to_dev(device->vdisk)->kobj, KOBJ_CHANGE); put_ldev(device); conn_reconfig_done(connection); mutex_unlock(&adm_ctx.resource->adm_mutex); drbd_adm_finish(&adm_ctx, info, retcode); return 0; force_diskless_dec: put_ldev(device); force_diskless: drbd_force_state(device, NS(disk, D_DISKLESS)); drbd_md_sync(device); fail: conn_reconfig_done(connection); if (nbc) { close_backing_dev(device, nbc->md_bdev, nbc->md_bdev != nbc->backing_bdev); close_backing_dev(device, nbc->backing_bdev, true); kfree(nbc); } kfree(new_disk_conf); lc_destroy(resync_lru); kfree(new_plan); mutex_unlock(&adm_ctx.resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static int adm_detach(struct drbd_device *device, int force) { if (force) { set_bit(FORCE_DETACH, &device->flags); drbd_force_state(device, NS(disk, D_FAILED)); return SS_SUCCESS; } return drbd_request_detach_interruptible(device); } /* Detaching the disk is a process in multiple stages. First we need to lock * out application IO, in-flight IO, IO stuck in drbd_al_begin_io. * Then we transition to D_DISKLESS, and wait for put_ldev() to return all * internal references as well. * Only then we have finally detached. */ int drbd_adm_detach(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct detach_parms parms = { }; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (info->attrs[DRBD_NLA_DETACH_PARMS]) { err = detach_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto out; } } mutex_lock(&adm_ctx.resource->adm_mutex); retcode = adm_detach(adm_ctx.device, parms.force_detach); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static bool conn_resync_running(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (device->state.conn == C_SYNC_SOURCE || device->state.conn == C_SYNC_TARGET || device->state.conn == C_PAUSED_SYNC_S || device->state.conn == C_PAUSED_SYNC_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static bool conn_ov_running(struct drbd_connection *connection) { struct drbd_peer_device *peer_device; bool rv = false; int vnr; rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, vnr) { struct drbd_device *device = peer_device->device; if (device->state.conn == C_VERIFY_S || device->state.conn == C_VERIFY_T) { rv = true; break; } } rcu_read_unlock(); return rv; } static enum drbd_ret_code _check_net_options(struct drbd_connection *connection, struct net_conf *old_net_conf, struct net_conf *new_net_conf) { struct drbd_peer_device *peer_device; int i; if (old_net_conf && connection->cstate == C_WF_REPORT_PARAMS && connection->agreed_pro_version < 100) { if (new_net_conf->wire_protocol != old_net_conf->wire_protocol) return ERR_NEED_APV_100; if (new_net_conf->two_primaries != old_net_conf->two_primaries) return ERR_NEED_APV_100; if (strcmp(new_net_conf->integrity_alg, old_net_conf->integrity_alg)) return ERR_NEED_APV_100; } if (!new_net_conf->two_primaries && conn_highest_role(connection) == R_PRIMARY && conn_highest_peer(connection) == R_PRIMARY) return ERR_NEED_ALLOW_TWO_PRI; if (new_net_conf->two_primaries && (new_net_conf->wire_protocol != DRBD_PROT_C)) return ERR_NOT_PROTO_C; idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; if (get_ldev(device)) { enum drbd_fencing_p fp = rcu_dereference(device->ldev->disk_conf)->fencing; put_ldev(device); if (new_net_conf->wire_protocol == DRBD_PROT_A && fp == FP_STONITH) return ERR_STONITH_AND_PROT_A; } if (device->state.role == R_PRIMARY && new_net_conf->discard_my_data) return ERR_DISCARD_IMPOSSIBLE; } if (new_net_conf->on_congestion != OC_BLOCK && new_net_conf->wire_protocol != DRBD_PROT_A) return ERR_CONG_NOT_PROTO_A; return NO_ERROR; } static enum drbd_ret_code check_net_options(struct drbd_connection *connection, struct net_conf *new_net_conf) { enum drbd_ret_code rv; struct drbd_peer_device *peer_device; int i; rcu_read_lock(); rv = _check_net_options(connection, rcu_dereference(connection->net_conf), new_net_conf); rcu_read_unlock(); /* connection->peer_devices protected by genl_lock() here */ idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; if (!device->bitmap) { if (drbd_bm_init(device)) return ERR_NOMEM; } } return rv; } struct crypto { struct crypto_shash *verify_tfm; struct crypto_shash *csums_tfm; struct crypto_shash *cram_hmac_tfm; struct crypto_shash *integrity_tfm; }; static int alloc_shash(struct crypto_shash **tfm, char *tfm_name, int err_alg) { if (!tfm_name[0]) return NO_ERROR; *tfm = crypto_alloc_shash(tfm_name, 0, 0); if (IS_ERR(*tfm)) { *tfm = NULL; return err_alg; } return NO_ERROR; } static enum drbd_ret_code alloc_crypto(struct crypto *crypto, struct net_conf *new_net_conf) { char hmac_name[CRYPTO_MAX_ALG_NAME]; enum drbd_ret_code rv; rv = alloc_shash(&crypto->csums_tfm, new_net_conf->csums_alg, ERR_CSUMS_ALG); if (rv != NO_ERROR) return rv; rv = alloc_shash(&crypto->verify_tfm, new_net_conf->verify_alg, ERR_VERIFY_ALG); if (rv != NO_ERROR) return rv; rv = alloc_shash(&crypto->integrity_tfm, new_net_conf->integrity_alg, ERR_INTEGRITY_ALG); if (rv != NO_ERROR) return rv; if (new_net_conf->cram_hmac_alg[0] != 0) { snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)", new_net_conf->cram_hmac_alg); rv = alloc_shash(&crypto->cram_hmac_tfm, hmac_name, ERR_AUTH_ALG); } return rv; } static void free_crypto(struct crypto *crypto) { crypto_free_shash(crypto->cram_hmac_tfm); crypto_free_shash(crypto->integrity_tfm); crypto_free_shash(crypto->csums_tfm); crypto_free_shash(crypto->verify_tfm); } int drbd_adm_net_opts(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct drbd_connection *connection; struct net_conf *old_net_conf, *new_net_conf = NULL; int err; int ovr; /* online verify running */ int rsr; /* re-sync running */ struct crypto crypto = { }; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_CONNECTION); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; connection = adm_ctx.connection; mutex_lock(&adm_ctx.resource->adm_mutex); new_net_conf = kzalloc(sizeof(struct net_conf), GFP_KERNEL); if (!new_net_conf) { retcode = ERR_NOMEM; goto out; } conn_reconfig_start(connection); mutex_lock(&connection->data.mutex); mutex_lock(&connection->resource->conf_update); old_net_conf = connection->net_conf; if (!old_net_conf) { drbd_msg_put_info(adm_ctx.reply_skb, "net conf missing, try connect"); retcode = ERR_INVALID_REQUEST; goto fail; } *new_net_conf = *old_net_conf; if (should_set_defaults(info)) set_net_conf_defaults(new_net_conf); err = net_conf_from_attrs_for_change(new_net_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(connection, new_net_conf); if (retcode != NO_ERROR) goto fail; /* re-sync running */ rsr = conn_resync_running(connection); if (rsr && strcmp(new_net_conf->csums_alg, old_net_conf->csums_alg)) { retcode = ERR_CSUMS_RESYNC_RUNNING; goto fail; } /* online verify running */ ovr = conn_ov_running(connection); if (ovr && strcmp(new_net_conf->verify_alg, old_net_conf->verify_alg)) { retcode = ERR_VERIFY_RUNNING; goto fail; } retcode = alloc_crypto(&crypto, new_net_conf); if (retcode != NO_ERROR) goto fail; rcu_assign_pointer(connection->net_conf, new_net_conf); if (!rsr) { crypto_free_shash(connection->csums_tfm); connection->csums_tfm = crypto.csums_tfm; crypto.csums_tfm = NULL; } if (!ovr) { crypto_free_shash(connection->verify_tfm); connection->verify_tfm = crypto.verify_tfm; crypto.verify_tfm = NULL; } crypto_free_shash(connection->integrity_tfm); connection->integrity_tfm = crypto.integrity_tfm; if (connection->cstate >= C_WF_REPORT_PARAMS && connection->agreed_pro_version >= 100) /* Do this without trying to take connection->data.mutex again. */ __drbd_send_protocol(connection, P_PROTOCOL_UPDATE); crypto_free_shash(connection->cram_hmac_tfm); connection->cram_hmac_tfm = crypto.cram_hmac_tfm; mutex_unlock(&connection->resource->conf_update); mutex_unlock(&connection->data.mutex); synchronize_rcu(); kfree(old_net_conf); if (connection->cstate >= C_WF_REPORT_PARAMS) { struct drbd_peer_device *peer_device; int vnr; idr_for_each_entry(&connection->peer_devices, peer_device, vnr) drbd_send_sync_param(peer_device); } goto done; fail: mutex_unlock(&connection->resource->conf_update); mutex_unlock(&connection->data.mutex); free_crypto(&crypto); kfree(new_net_conf); done: conn_reconfig_done(connection); out: mutex_unlock(&adm_ctx.resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static void connection_to_info(struct connection_info *info, struct drbd_connection *connection) { info->conn_connection_state = connection->cstate; info->conn_role = conn_highest_peer(connection); } static void peer_device_to_info(struct peer_device_info *info, struct drbd_peer_device *peer_device) { struct drbd_device *device = peer_device->device; info->peer_repl_state = max_t(enum drbd_conns, C_WF_REPORT_PARAMS, device->state.conn); info->peer_disk_state = device->state.pdsk; info->peer_resync_susp_user = device->state.user_isp; info->peer_resync_susp_peer = device->state.peer_isp; info->peer_resync_susp_dependency = device->state.aftr_isp; } int drbd_adm_connect(struct sk_buff *skb, struct genl_info *info) { struct connection_info connection_info; enum drbd_notification_type flags; unsigned int peer_devices = 0; struct drbd_config_context adm_ctx; struct drbd_peer_device *peer_device; struct net_conf *old_net_conf, *new_net_conf = NULL; struct crypto crypto = { }; struct drbd_resource *resource; struct drbd_connection *connection; enum drbd_ret_code retcode; int i; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (!(adm_ctx.my_addr && adm_ctx.peer_addr)) { drbd_msg_put_info(adm_ctx.reply_skb, "connection endpoint(s) missing"); retcode = ERR_INVALID_REQUEST; goto out; } /* No need for _rcu here. All reconfiguration is * strictly serialized on genl_lock(). We are protected against * concurrent reconfiguration/addition/deletion */ for_each_resource(resource, &drbd_resources) { for_each_connection(connection, resource) { if (nla_len(adm_ctx.my_addr) == connection->my_addr_len && !memcmp(nla_data(adm_ctx.my_addr), &connection->my_addr, connection->my_addr_len)) { retcode = ERR_LOCAL_ADDR; goto out; } if (nla_len(adm_ctx.peer_addr) == connection->peer_addr_len && !memcmp(nla_data(adm_ctx.peer_addr), &connection->peer_addr, connection->peer_addr_len)) { retcode = ERR_PEER_ADDR; goto out; } } } mutex_lock(&adm_ctx.resource->adm_mutex); connection = first_connection(adm_ctx.resource); conn_reconfig_start(connection); if (connection->cstate > C_STANDALONE) { retcode = ERR_NET_CONFIGURED; goto fail; } /* allocation not in the IO path, drbdsetup / netlink process context */ new_net_conf = kzalloc(sizeof(*new_net_conf), GFP_KERNEL); if (!new_net_conf) { retcode = ERR_NOMEM; goto fail; } set_net_conf_defaults(new_net_conf); err = net_conf_from_attrs(new_net_conf, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail; } retcode = check_net_options(connection, new_net_conf); if (retcode != NO_ERROR) goto fail; retcode = alloc_crypto(&crypto, new_net_conf); if (retcode != NO_ERROR) goto fail; ((char *)new_net_conf->shared_secret)[SHARED_SECRET_MAX-1] = 0; drbd_flush_workqueue(&connection->sender_work); mutex_lock(&adm_ctx.resource->conf_update); old_net_conf = connection->net_conf; if (old_net_conf) { retcode = ERR_NET_CONFIGURED; mutex_unlock(&adm_ctx.resource->conf_update); goto fail; } rcu_assign_pointer(connection->net_conf, new_net_conf); conn_free_crypto(connection); connection->cram_hmac_tfm = crypto.cram_hmac_tfm; connection->integrity_tfm = crypto.integrity_tfm; connection->csums_tfm = crypto.csums_tfm; connection->verify_tfm = crypto.verify_tfm; connection->my_addr_len = nla_len(adm_ctx.my_addr); memcpy(&connection->my_addr, nla_data(adm_ctx.my_addr), connection->my_addr_len); connection->peer_addr_len = nla_len(adm_ctx.peer_addr); memcpy(&connection->peer_addr, nla_data(adm_ctx.peer_addr), connection->peer_addr_len); idr_for_each_entry(&connection->peer_devices, peer_device, i) { peer_devices++; } connection_to_info(&connection_info, connection); flags = (peer_devices--) ? NOTIFY_CONTINUES : 0; mutex_lock(¬ification_mutex); notify_connection_state(NULL, 0, connection, &connection_info, NOTIFY_CREATE | flags); idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct peer_device_info peer_device_info; peer_device_to_info(&peer_device_info, peer_device); flags = (peer_devices--) ? NOTIFY_CONTINUES : 0; notify_peer_device_state(NULL, 0, peer_device, &peer_device_info, NOTIFY_CREATE | flags); } mutex_unlock(¬ification_mutex); mutex_unlock(&adm_ctx.resource->conf_update); rcu_read_lock(); idr_for_each_entry(&connection->peer_devices, peer_device, i) { struct drbd_device *device = peer_device->device; device->send_cnt = 0; device->recv_cnt = 0; } rcu_read_unlock(); retcode = conn_request_state(connection, NS(conn, C_UNCONNECTED), CS_VERBOSE); conn_reconfig_done(connection); mutex_unlock(&adm_ctx.resource->adm_mutex); drbd_adm_finish(&adm_ctx, info, retcode); return 0; fail: free_crypto(&crypto); kfree(new_net_conf); conn_reconfig_done(connection); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static enum drbd_state_rv conn_try_disconnect(struct drbd_connection *connection, bool force) { enum drbd_conns cstate; enum drbd_state_rv rv; repeat: rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), force ? CS_HARD : 0); switch (rv) { case SS_NOTHING_TO_DO: break; case SS_ALREADY_STANDALONE: return SS_SUCCESS; case SS_PRIMARY_NOP: /* Our state checking code wants to see the peer outdated. */ rv = conn_request_state(connection, NS2(conn, C_DISCONNECTING, pdsk, D_OUTDATED), 0); if (rv == SS_OUTDATE_WO_CONN) /* lost connection before graceful disconnect succeeded */ rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_VERBOSE); break; case SS_CW_FAILED_BY_PEER: spin_lock_irq(&connection->resource->req_lock); cstate = connection->cstate; spin_unlock_irq(&connection->resource->req_lock); if (cstate <= C_WF_CONNECTION) goto repeat; /* The peer probably wants to see us outdated. */ rv = conn_request_state(connection, NS2(conn, C_DISCONNECTING, disk, D_OUTDATED), 0); if (rv == SS_IS_DISKLESS || rv == SS_LOWER_THAN_OUTDATED) { rv = conn_request_state(connection, NS(conn, C_DISCONNECTING), CS_HARD); } break; default:; /* no special handling necessary */ } if (rv >= SS_SUCCESS) { enum drbd_state_rv rv2; /* No one else can reconfigure the network while I am here. * The state handling only uses drbd_thread_stop_nowait(), * we want to really wait here until the receiver is no more. */ drbd_thread_stop(&connection->receiver); /* Race breaker. This additional state change request may be * necessary, if this was a forced disconnect during a receiver * restart. We may have "killed" the receiver thread just * after drbd_receiver() returned. Typically, we should be * C_STANDALONE already, now, and this becomes a no-op. */ rv2 = conn_request_state(connection, NS(conn, C_STANDALONE), CS_VERBOSE | CS_HARD); if (rv2 < SS_SUCCESS) drbd_err(connection, "unexpected rv2=%d in conn_try_disconnect()\n", rv2); /* Unlike in DRBD 9, the state engine has generated * NOTIFY_DESTROY events before clearing connection->net_conf. */ } return rv; } int drbd_adm_disconnect(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct disconnect_parms parms; struct drbd_connection *connection; enum drbd_state_rv rv; enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_CONNECTION); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; connection = adm_ctx.connection; memset(&parms, 0, sizeof(parms)); if (info->attrs[DRBD_NLA_DISCONNECT_PARMS]) { err = disconnect_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail; } } mutex_lock(&adm_ctx.resource->adm_mutex); rv = conn_try_disconnect(connection, parms.force_disconnect); if (rv < SS_SUCCESS) retcode = rv; /* FIXME: Type mismatch. */ else retcode = NO_ERROR; mutex_unlock(&adm_ctx.resource->adm_mutex); fail: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } void resync_after_online_grow(struct drbd_device *device) { int iass; /* I am sync source */ drbd_info(device, "Resync of new storage after online grow\n"); if (device->state.role != device->state.peer) iass = (device->state.role == R_PRIMARY); else iass = test_bit(RESOLVE_CONFLICTS, &first_peer_device(device)->connection->flags); if (iass) drbd_start_resync(device, C_SYNC_SOURCE); else _drbd_request_state(device, NS(conn, C_WF_SYNC_UUID), CS_VERBOSE + CS_SERIALIZE); } int drbd_adm_resize(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct disk_conf *old_disk_conf, *new_disk_conf = NULL; struct resize_parms rs; struct drbd_device *device; enum drbd_ret_code retcode; enum determine_dev_size dd; bool change_al_layout = false; enum dds_flags ddsf; sector_t u_size; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; mutex_lock(&adm_ctx.resource->adm_mutex); device = adm_ctx.device; if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto fail; } memset(&rs, 0, sizeof(struct resize_parms)); rs.al_stripes = device->ldev->md.al_stripes; rs.al_stripe_size = device->ldev->md.al_stripe_size_4k * 4; if (info->attrs[DRBD_NLA_RESIZE_PARMS]) { err = resize_parms_from_attrs(&rs, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail_ldev; } } if (device->state.conn > C_CONNECTED) { retcode = ERR_RESIZE_RESYNC; goto fail_ldev; } if (device->state.role == R_SECONDARY && device->state.peer == R_SECONDARY) { retcode = ERR_NO_PRIMARY; goto fail_ldev; } if (rs.no_resync && first_peer_device(device)->connection->agreed_pro_version < 93) { retcode = ERR_NEED_APV_93; goto fail_ldev; } rcu_read_lock(); u_size = rcu_dereference(device->ldev->disk_conf)->disk_size; rcu_read_unlock(); if (u_size != (sector_t)rs.resize_size) { new_disk_conf = kmalloc(sizeof(struct disk_conf), GFP_KERNEL); if (!new_disk_conf) { retcode = ERR_NOMEM; goto fail_ldev; } } if (device->ldev->md.al_stripes != rs.al_stripes || device->ldev->md.al_stripe_size_4k != rs.al_stripe_size / 4) { u32 al_size_k = rs.al_stripes * rs.al_stripe_size; if (al_size_k > (16 * 1024 * 1024)) { retcode = ERR_MD_LAYOUT_TOO_BIG; goto fail_ldev; } if (al_size_k < MD_32kB_SECT/2) { retcode = ERR_MD_LAYOUT_TOO_SMALL; goto fail_ldev; } if (device->state.conn != C_CONNECTED && !rs.resize_force) { retcode = ERR_MD_LAYOUT_CONNECTED; goto fail_ldev; } change_al_layout = true; } if (device->ldev->known_size != drbd_get_capacity(device->ldev->backing_bdev)) device->ldev->known_size = drbd_get_capacity(device->ldev->backing_bdev); if (new_disk_conf) { mutex_lock(&device->resource->conf_update); old_disk_conf = device->ldev->disk_conf; *new_disk_conf = *old_disk_conf; new_disk_conf->disk_size = (sector_t)rs.resize_size; rcu_assign_pointer(device->ldev->disk_conf, new_disk_conf); mutex_unlock(&device->resource->conf_update); synchronize_rcu(); kfree(old_disk_conf); new_disk_conf = NULL; } ddsf = (rs.resize_force ? DDSF_FORCED : 0) | (rs.no_resync ? DDSF_NO_RESYNC : 0); dd = drbd_determine_dev_size(device, ddsf, change_al_layout ? &rs : NULL); drbd_md_sync(device); put_ldev(device); if (dd == DS_ERROR) { retcode = ERR_NOMEM_BITMAP; goto fail; } else if (dd == DS_ERROR_SPACE_MD) { retcode = ERR_MD_LAYOUT_NO_FIT; goto fail; } else if (dd == DS_ERROR_SHRINK) { retcode = ERR_IMPLICIT_SHRINK; goto fail; } if (device->state.conn == C_CONNECTED) { if (dd == DS_GREW) set_bit(RESIZE_PENDING, &device->flags); drbd_send_uuids(first_peer_device(device)); drbd_send_sizes(first_peer_device(device), 1, ddsf); } fail: mutex_unlock(&adm_ctx.resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; fail_ldev: put_ldev(device); kfree(new_disk_conf); goto fail; } int drbd_adm_resource_opts(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct res_opts res_opts; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto fail; res_opts = adm_ctx.resource->res_opts; if (should_set_defaults(info)) set_res_opts_defaults(&res_opts); err = res_opts_from_attrs(&res_opts, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto fail; } mutex_lock(&adm_ctx.resource->adm_mutex); err = set_resource_options(adm_ctx.resource, &res_opts); if (err) { retcode = ERR_INVALID_REQUEST; if (err == -ENOMEM) retcode = ERR_NOMEM; } mutex_unlock(&adm_ctx.resource->adm_mutex); fail: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_invalidate(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_device *device; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } mutex_lock(&adm_ctx.resource->adm_mutex); /* If there is still bitmap IO pending, probably because of a previous * resync just being finished, wait for it before requesting a new resync. * Also wait for it's after_state_ch(). */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); drbd_flush_workqueue(&first_peer_device(device)->connection->sender_work); /* If we happen to be C_STANDALONE R_SECONDARY, just change to * D_INCONSISTENT, and set all bits in the bitmap. Otherwise, * try to start a resync handshake as sync target for full sync. */ if (device->state.conn == C_STANDALONE && device->state.role == R_SECONDARY) { retcode = drbd_request_state(device, NS(disk, D_INCONSISTENT)); if (retcode >= SS_SUCCESS) { if (drbd_bitmap_io(device, &drbd_bmio_set_n_write, "set_n_write from invalidate", BM_LOCKED_MASK)) retcode = ERR_IO_MD_DISK; } } else retcode = drbd_request_state(device, NS(conn, C_STARTING_SYNC_T)); drbd_resume_io(device); mutex_unlock(&adm_ctx.resource->adm_mutex); put_ldev(device); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static int drbd_adm_simple_request_state(struct sk_buff *skb, struct genl_info *info, union drbd_state mask, union drbd_state val) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mutex_lock(&adm_ctx.resource->adm_mutex); retcode = drbd_request_state(adm_ctx.device, mask, val); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static int drbd_bmio_set_susp_al(struct drbd_device *device) __must_hold(local) { int rv; rv = drbd_bmio_set_n_write(device); drbd_suspend_al(device); return rv; } int drbd_adm_invalidate_peer(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; int retcode; /* drbd_ret_code, drbd_state_rv */ struct drbd_device *device; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } mutex_lock(&adm_ctx.resource->adm_mutex); /* If there is still bitmap IO pending, probably because of a previous * resync just being finished, wait for it before requesting a new resync. * Also wait for it's after_state_ch(). */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); drbd_flush_workqueue(&first_peer_device(device)->connection->sender_work); /* If we happen to be C_STANDALONE R_PRIMARY, just set all bits * in the bitmap. Otherwise, try to start a resync handshake * as sync source for full sync. */ if (device->state.conn == C_STANDALONE && device->state.role == R_PRIMARY) { /* The peer will get a resync upon connect anyways. Just make that into a full resync. */ retcode = drbd_request_state(device, NS(pdsk, D_INCONSISTENT)); if (retcode >= SS_SUCCESS) { if (drbd_bitmap_io(device, &drbd_bmio_set_susp_al, "set_n_write from invalidate_peer", BM_LOCKED_SET_ALLOWED)) retcode = ERR_IO_MD_DISK; } } else retcode = drbd_request_state(device, NS(conn, C_STARTING_SYNC_S)); drbd_resume_io(device); mutex_unlock(&adm_ctx.resource->adm_mutex); put_ldev(device); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_pause_sync(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mutex_lock(&adm_ctx.resource->adm_mutex); if (drbd_request_state(adm_ctx.device, NS(user_isp, 1)) == SS_NOTHING_TO_DO) retcode = ERR_PAUSE_IS_SET; mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_resume_sync(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; union drbd_dev_state s; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mutex_lock(&adm_ctx.resource->adm_mutex); if (drbd_request_state(adm_ctx.device, NS(user_isp, 0)) == SS_NOTHING_TO_DO) { s = adm_ctx.device->state; if (s.conn == C_PAUSED_SYNC_S || s.conn == C_PAUSED_SYNC_T) { retcode = s.aftr_isp ? ERR_PIC_AFTER_DEP : s.peer_isp ? ERR_PIC_PEER_DEP : ERR_PAUSE_IS_CLEAR; } else { retcode = ERR_PAUSE_IS_CLEAR; } } mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_suspend_io(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(susp, 1)); } int drbd_adm_resume_io(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_device *device; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mutex_lock(&adm_ctx.resource->adm_mutex); device = adm_ctx.device; if (test_bit(NEW_CUR_UUID, &device->flags)) { if (get_ldev_if_state(device, D_ATTACHING)) { drbd_uuid_new_current(device); put_ldev(device); } else { /* This is effectively a multi-stage "forced down". * The NEW_CUR_UUID bit is supposedly only set, if we * lost the replication connection, and are configured * to freeze IO and wait for some fence-peer handler. * So we still don't have a replication connection. * And now we don't have a local disk either. After * resume, we will fail all pending and new IO, because * we don't have any data anymore. Which means we will * eventually be able to terminate all users of this * device, and then take it down. By bumping the * "effective" data uuid, we make sure that you really * need to tear down before you reconfigure, we will * the refuse to re-connect or re-attach (because no * matching real data uuid exists). */ u64 val; get_random_bytes(&val, sizeof(u64)); drbd_set_ed_uuid(device, val); drbd_warn(device, "Resumed without access to data; please tear down before attempting to re-configure.\n"); } clear_bit(NEW_CUR_UUID, &device->flags); } drbd_suspend_io(device); retcode = drbd_request_state(device, NS3(susp, 0, susp_nod, 0, susp_fen, 0)); if (retcode == SS_SUCCESS) { if (device->state.conn < C_CONNECTED) tl_clear(first_peer_device(device)->connection); if (device->state.disk == D_DISKLESS || device->state.disk == D_FAILED) tl_restart(first_peer_device(device)->connection, FAIL_FROZEN_DISK_IO); } drbd_resume_io(device); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_outdate(struct sk_buff *skb, struct genl_info *info) { return drbd_adm_simple_request_state(skb, info, NS(disk, D_OUTDATED)); } static int nla_put_drbd_cfg_context(struct sk_buff *skb, struct drbd_resource *resource, struct drbd_connection *connection, struct drbd_device *device) { struct nlattr *nla; nla = nla_nest_start_noflag(skb, DRBD_NLA_CFG_CONTEXT); if (!nla) goto nla_put_failure; if (device && nla_put_u32(skb, T_ctx_volume, device->vnr)) goto nla_put_failure; if (nla_put_string(skb, T_ctx_resource_name, resource->name)) goto nla_put_failure; if (connection) { if (connection->my_addr_len && nla_put(skb, T_ctx_my_addr, connection->my_addr_len, &connection->my_addr)) goto nla_put_failure; if (connection->peer_addr_len && nla_put(skb, T_ctx_peer_addr, connection->peer_addr_len, &connection->peer_addr)) goto nla_put_failure; } nla_nest_end(skb, nla); return 0; nla_put_failure: if (nla) nla_nest_cancel(skb, nla); return -EMSGSIZE; } /* * The generic netlink dump callbacks are called outside the genl_lock(), so * they cannot use the simple attribute parsing code which uses global * attribute tables. */ static struct nlattr *find_cfg_context_attr(const struct nlmsghdr *nlh, int attr) { const unsigned hdrlen = GENL_HDRLEN + GENL_MAGIC_FAMILY_HDRSZ; const int maxtype = ARRAY_SIZE(drbd_cfg_context_nl_policy) - 1; struct nlattr *nla; nla = nla_find(nlmsg_attrdata(nlh, hdrlen), nlmsg_attrlen(nlh, hdrlen), DRBD_NLA_CFG_CONTEXT); if (!nla) return NULL; return drbd_nla_find_nested(maxtype, nla, __nla_type(attr)); } static void resource_to_info(struct resource_info *, struct drbd_resource *); int drbd_adm_dump_resources(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_genlmsghdr *dh; struct drbd_resource *resource; struct resource_info resource_info; struct resource_statistics resource_statistics; int err; rcu_read_lock(); if (cb->args[0]) { for_each_resource_rcu(resource, &drbd_resources) if (resource == (struct drbd_resource *)cb->args[0]) goto found_resource; err = 0; /* resource was probably deleted */ goto out; } resource = list_entry(&drbd_resources, struct drbd_resource, resources); found_resource: list_for_each_entry_continue_rcu(resource, &drbd_resources, resources) { goto put_result; } err = 0; goto out; put_result: dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_RESOURCES); err = -ENOMEM; if (!dh) goto out; dh->minor = -1U; dh->ret_code = NO_ERROR; err = nla_put_drbd_cfg_context(skb, resource, NULL, NULL); if (err) goto out; err = res_opts_to_skb(skb, &resource->res_opts, !capable(CAP_SYS_ADMIN)); if (err) goto out; resource_to_info(&resource_info, resource); err = resource_info_to_skb(skb, &resource_info, !capable(CAP_SYS_ADMIN)); if (err) goto out; resource_statistics.res_stat_write_ordering = resource->write_ordering; err = resource_statistics_to_skb(skb, &resource_statistics, !capable(CAP_SYS_ADMIN)); if (err) goto out; cb->args[0] = (long)resource; genlmsg_end(skb, dh); err = 0; out: rcu_read_unlock(); if (err) return err; return skb->len; } static void device_to_statistics(struct device_statistics *s, struct drbd_device *device) { memset(s, 0, sizeof(*s)); s->dev_upper_blocked = !may_inc_ap_bio(device); if (get_ldev(device)) { struct drbd_md *md = &device->ldev->md; u64 *history_uuids = (u64 *)s->history_uuids; struct request_queue *q; int n; spin_lock_irq(&md->uuid_lock); s->dev_current_uuid = md->uuid[UI_CURRENT]; BUILD_BUG_ON(sizeof(s->history_uuids) < UI_HISTORY_END - UI_HISTORY_START + 1); for (n = 0; n < UI_HISTORY_END - UI_HISTORY_START + 1; n++) history_uuids[n] = md->uuid[UI_HISTORY_START + n]; for (; n < HISTORY_UUIDS; n++) history_uuids[n] = 0; s->history_uuids_len = HISTORY_UUIDS; spin_unlock_irq(&md->uuid_lock); s->dev_disk_flags = md->flags; q = bdev_get_queue(device->ldev->backing_bdev); s->dev_lower_blocked = bdi_congested(q->backing_dev_info, (1 << WB_async_congested) | (1 << WB_sync_congested)); put_ldev(device); } s->dev_size = drbd_get_capacity(device->this_bdev); s->dev_read = device->read_cnt; s->dev_write = device->writ_cnt; s->dev_al_writes = device->al_writ_cnt; s->dev_bm_writes = device->bm_writ_cnt; s->dev_upper_pending = atomic_read(&device->ap_bio_cnt); s->dev_lower_pending = atomic_read(&device->local_cnt); s->dev_al_suspended = test_bit(AL_SUSPENDED, &device->flags); s->dev_exposed_data_uuid = device->ed_uuid; } static int put_resource_in_arg0(struct netlink_callback *cb, int holder_nr) { if (cb->args[0]) { struct drbd_resource *resource = (struct drbd_resource *)cb->args[0]; kref_put(&resource->kref, drbd_destroy_resource); } return 0; } int drbd_adm_dump_devices_done(struct netlink_callback *cb) { return put_resource_in_arg0(cb, 7); } static void device_to_info(struct device_info *, struct drbd_device *); int drbd_adm_dump_devices(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *resource_filter; struct drbd_resource *resource; struct drbd_device *uninitialized_var(device); int minor, err, retcode; struct drbd_genlmsghdr *dh; struct device_info device_info; struct device_statistics device_statistics; struct idr *idr_to_search; resource = (struct drbd_resource *)cb->args[0]; if (!cb->args[0] && !cb->args[1]) { resource_filter = find_cfg_context_attr(cb->nlh, T_ctx_resource_name); if (resource_filter) { retcode = ERR_RES_NOT_KNOWN; resource = drbd_find_resource(nla_data(resource_filter)); if (!resource) goto put_result; cb->args[0] = (long)resource; } } rcu_read_lock(); minor = cb->args[1]; idr_to_search = resource ? &resource->devices : &drbd_devices; device = idr_get_next(idr_to_search, &minor); if (!device) { err = 0; goto out; } idr_for_each_entry_continue(idr_to_search, device, minor) { retcode = NO_ERROR; goto put_result; /* only one iteration */ } err = 0; goto out; /* no more devices */ put_result: dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_DEVICES); err = -ENOMEM; if (!dh) goto out; dh->ret_code = retcode; dh->minor = -1U; if (retcode == NO_ERROR) { dh->minor = device->minor; err = nla_put_drbd_cfg_context(skb, device->resource, NULL, device); if (err) goto out; if (get_ldev(device)) { struct disk_conf *disk_conf = rcu_dereference(device->ldev->disk_conf); err = disk_conf_to_skb(skb, disk_conf, !capable(CAP_SYS_ADMIN)); put_ldev(device); if (err) goto out; } device_to_info(&device_info, device); err = device_info_to_skb(skb, &device_info, !capable(CAP_SYS_ADMIN)); if (err) goto out; device_to_statistics(&device_statistics, device); err = device_statistics_to_skb(skb, &device_statistics, !capable(CAP_SYS_ADMIN)); if (err) goto out; cb->args[1] = minor + 1; } genlmsg_end(skb, dh); err = 0; out: rcu_read_unlock(); if (err) return err; return skb->len; } int drbd_adm_dump_connections_done(struct netlink_callback *cb) { return put_resource_in_arg0(cb, 6); } enum { SINGLE_RESOURCE, ITERATE_RESOURCES }; int drbd_adm_dump_connections(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *resource_filter; struct drbd_resource *resource = NULL, *next_resource; struct drbd_connection *uninitialized_var(connection); int err = 0, retcode; struct drbd_genlmsghdr *dh; struct connection_info connection_info; struct connection_statistics connection_statistics; rcu_read_lock(); resource = (struct drbd_resource *)cb->args[0]; if (!cb->args[0]) { resource_filter = find_cfg_context_attr(cb->nlh, T_ctx_resource_name); if (resource_filter) { retcode = ERR_RES_NOT_KNOWN; resource = drbd_find_resource(nla_data(resource_filter)); if (!resource) goto put_result; cb->args[0] = (long)resource; cb->args[1] = SINGLE_RESOURCE; } } if (!resource) { if (list_empty(&drbd_resources)) goto out; resource = list_first_entry(&drbd_resources, struct drbd_resource, resources); kref_get(&resource->kref); cb->args[0] = (long)resource; cb->args[1] = ITERATE_RESOURCES; } next_resource: rcu_read_unlock(); mutex_lock(&resource->conf_update); rcu_read_lock(); if (cb->args[2]) { for_each_connection_rcu(connection, resource) if (connection == (struct drbd_connection *)cb->args[2]) goto found_connection; /* connection was probably deleted */ goto no_more_connections; } connection = list_entry(&resource->connections, struct drbd_connection, connections); found_connection: list_for_each_entry_continue_rcu(connection, &resource->connections, connections) { if (!has_net_conf(connection)) continue; retcode = NO_ERROR; goto put_result; /* only one iteration */ } no_more_connections: if (cb->args[1] == ITERATE_RESOURCES) { for_each_resource_rcu(next_resource, &drbd_resources) { if (next_resource == resource) goto found_resource; } /* resource was probably deleted */ } goto out; found_resource: list_for_each_entry_continue_rcu(next_resource, &drbd_resources, resources) { mutex_unlock(&resource->conf_update); kref_put(&resource->kref, drbd_destroy_resource); resource = next_resource; kref_get(&resource->kref); cb->args[0] = (long)resource; cb->args[2] = 0; goto next_resource; } goto out; /* no more resources */ put_result: dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_CONNECTIONS); err = -ENOMEM; if (!dh) goto out; dh->ret_code = retcode; dh->minor = -1U; if (retcode == NO_ERROR) { struct net_conf *net_conf; err = nla_put_drbd_cfg_context(skb, resource, connection, NULL); if (err) goto out; net_conf = rcu_dereference(connection->net_conf); if (net_conf) { err = net_conf_to_skb(skb, net_conf, !capable(CAP_SYS_ADMIN)); if (err) goto out; } connection_to_info(&connection_info, connection); err = connection_info_to_skb(skb, &connection_info, !capable(CAP_SYS_ADMIN)); if (err) goto out; connection_statistics.conn_congested = test_bit(NET_CONGESTED, &connection->flags); err = connection_statistics_to_skb(skb, &connection_statistics, !capable(CAP_SYS_ADMIN)); if (err) goto out; cb->args[2] = (long)connection; } genlmsg_end(skb, dh); err = 0; out: rcu_read_unlock(); if (resource) mutex_unlock(&resource->conf_update); if (err) return err; return skb->len; } enum mdf_peer_flag { MDF_PEER_CONNECTED = 1 << 0, MDF_PEER_OUTDATED = 1 << 1, MDF_PEER_FENCING = 1 << 2, MDF_PEER_FULL_SYNC = 1 << 3, }; static void peer_device_to_statistics(struct peer_device_statistics *s, struct drbd_peer_device *peer_device) { struct drbd_device *device = peer_device->device; memset(s, 0, sizeof(*s)); s->peer_dev_received = device->recv_cnt; s->peer_dev_sent = device->send_cnt; s->peer_dev_pending = atomic_read(&device->ap_pending_cnt) + atomic_read(&device->rs_pending_cnt); s->peer_dev_unacked = atomic_read(&device->unacked_cnt); s->peer_dev_out_of_sync = drbd_bm_total_weight(device) << (BM_BLOCK_SHIFT - 9); s->peer_dev_resync_failed = device->rs_failed << (BM_BLOCK_SHIFT - 9); if (get_ldev(device)) { struct drbd_md *md = &device->ldev->md; spin_lock_irq(&md->uuid_lock); s->peer_dev_bitmap_uuid = md->uuid[UI_BITMAP]; spin_unlock_irq(&md->uuid_lock); s->peer_dev_flags = (drbd_md_test_flag(device->ldev, MDF_CONNECTED_IND) ? MDF_PEER_CONNECTED : 0) + (drbd_md_test_flag(device->ldev, MDF_CONSISTENT) && !drbd_md_test_flag(device->ldev, MDF_WAS_UP_TO_DATE) ? MDF_PEER_OUTDATED : 0) + /* FIXME: MDF_PEER_FENCING? */ (drbd_md_test_flag(device->ldev, MDF_FULL_SYNC) ? MDF_PEER_FULL_SYNC : 0); put_ldev(device); } } int drbd_adm_dump_peer_devices_done(struct netlink_callback *cb) { return put_resource_in_arg0(cb, 9); } int drbd_adm_dump_peer_devices(struct sk_buff *skb, struct netlink_callback *cb) { struct nlattr *resource_filter; struct drbd_resource *resource; struct drbd_device *uninitialized_var(device); struct drbd_peer_device *peer_device = NULL; int minor, err, retcode; struct drbd_genlmsghdr *dh; struct idr *idr_to_search; resource = (struct drbd_resource *)cb->args[0]; if (!cb->args[0] && !cb->args[1]) { resource_filter = find_cfg_context_attr(cb->nlh, T_ctx_resource_name); if (resource_filter) { retcode = ERR_RES_NOT_KNOWN; resource = drbd_find_resource(nla_data(resource_filter)); if (!resource) goto put_result; } cb->args[0] = (long)resource; } rcu_read_lock(); minor = cb->args[1]; idr_to_search = resource ? &resource->devices : &drbd_devices; device = idr_find(idr_to_search, minor); if (!device) { next_device: minor++; cb->args[2] = 0; device = idr_get_next(idr_to_search, &minor); if (!device) { err = 0; goto out; } } if (cb->args[2]) { for_each_peer_device(peer_device, device) if (peer_device == (struct drbd_peer_device *)cb->args[2]) goto found_peer_device; /* peer device was probably deleted */ goto next_device; } /* Make peer_device point to the list head (not the first entry). */ peer_device = list_entry(&device->peer_devices, struct drbd_peer_device, peer_devices); found_peer_device: list_for_each_entry_continue_rcu(peer_device, &device->peer_devices, peer_devices) { if (!has_net_conf(peer_device->connection)) continue; retcode = NO_ERROR; goto put_result; /* only one iteration */ } goto next_device; put_result: dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_PEER_DEVICES); err = -ENOMEM; if (!dh) goto out; dh->ret_code = retcode; dh->minor = -1U; if (retcode == NO_ERROR) { struct peer_device_info peer_device_info; struct peer_device_statistics peer_device_statistics; dh->minor = minor; err = nla_put_drbd_cfg_context(skb, device->resource, peer_device->connection, device); if (err) goto out; peer_device_to_info(&peer_device_info, peer_device); err = peer_device_info_to_skb(skb, &peer_device_info, !capable(CAP_SYS_ADMIN)); if (err) goto out; peer_device_to_statistics(&peer_device_statistics, peer_device); err = peer_device_statistics_to_skb(skb, &peer_device_statistics, !capable(CAP_SYS_ADMIN)); if (err) goto out; cb->args[1] = minor; cb->args[2] = (long)peer_device; } genlmsg_end(skb, dh); err = 0; out: rcu_read_unlock(); if (err) return err; return skb->len; } /* * Return the connection of @resource if @resource has exactly one connection. */ static struct drbd_connection *the_only_connection(struct drbd_resource *resource) { struct list_head *connections = &resource->connections; if (list_empty(connections) || connections->next->next != connections) return NULL; return list_first_entry(&resource->connections, struct drbd_connection, connections); } static int nla_put_status_info(struct sk_buff *skb, struct drbd_device *device, const struct sib_info *sib) { struct drbd_resource *resource = device->resource; struct state_info *si = NULL; /* for sizeof(si->member); */ struct nlattr *nla; int got_ldev; int err = 0; int exclude_sensitive; /* If sib != NULL, this is drbd_bcast_event, which anyone can listen * to. So we better exclude_sensitive information. * * If sib == NULL, this is drbd_adm_get_status, executed synchronously * in the context of the requesting user process. Exclude sensitive * information, unless current has superuser. * * NOTE: for drbd_adm_get_status_all(), this is a netlink dump, and * relies on the current implementation of netlink_dump(), which * executes the dump callback successively from netlink_recvmsg(), * always in the context of the receiving process */ exclude_sensitive = sib || !capable(CAP_SYS_ADMIN); got_ldev = get_ldev(device); /* We need to add connection name and volume number information still. * Minor number is in drbd_genlmsghdr. */ if (nla_put_drbd_cfg_context(skb, resource, the_only_connection(resource), device)) goto nla_put_failure; if (res_opts_to_skb(skb, &device->resource->res_opts, exclude_sensitive)) goto nla_put_failure; rcu_read_lock(); if (got_ldev) { struct disk_conf *disk_conf; disk_conf = rcu_dereference(device->ldev->disk_conf); err = disk_conf_to_skb(skb, disk_conf, exclude_sensitive); } if (!err) { struct net_conf *nc; nc = rcu_dereference(first_peer_device(device)->connection->net_conf); if (nc) err = net_conf_to_skb(skb, nc, exclude_sensitive); } rcu_read_unlock(); if (err) goto nla_put_failure; nla = nla_nest_start_noflag(skb, DRBD_NLA_STATE_INFO); if (!nla) goto nla_put_failure; if (nla_put_u32(skb, T_sib_reason, sib ? sib->sib_reason : SIB_GET_STATUS_REPLY) || nla_put_u32(skb, T_current_state, device->state.i) || nla_put_u64_0pad(skb, T_ed_uuid, device->ed_uuid) || nla_put_u64_0pad(skb, T_capacity, drbd_get_capacity(device->this_bdev)) || nla_put_u64_0pad(skb, T_send_cnt, device->send_cnt) || nla_put_u64_0pad(skb, T_recv_cnt, device->recv_cnt) || nla_put_u64_0pad(skb, T_read_cnt, device->read_cnt) || nla_put_u64_0pad(skb, T_writ_cnt, device->writ_cnt) || nla_put_u64_0pad(skb, T_al_writ_cnt, device->al_writ_cnt) || nla_put_u64_0pad(skb, T_bm_writ_cnt, device->bm_writ_cnt) || nla_put_u32(skb, T_ap_bio_cnt, atomic_read(&device->ap_bio_cnt)) || nla_put_u32(skb, T_ap_pending_cnt, atomic_read(&device->ap_pending_cnt)) || nla_put_u32(skb, T_rs_pending_cnt, atomic_read(&device->rs_pending_cnt))) goto nla_put_failure; if (got_ldev) { int err; spin_lock_irq(&device->ldev->md.uuid_lock); err = nla_put(skb, T_uuids, sizeof(si->uuids), device->ldev->md.uuid); spin_unlock_irq(&device->ldev->md.uuid_lock); if (err) goto nla_put_failure; if (nla_put_u32(skb, T_disk_flags, device->ldev->md.flags) || nla_put_u64_0pad(skb, T_bits_total, drbd_bm_bits(device)) || nla_put_u64_0pad(skb, T_bits_oos, drbd_bm_total_weight(device))) goto nla_put_failure; if (C_SYNC_SOURCE <= device->state.conn && C_PAUSED_SYNC_T >= device->state.conn) { if (nla_put_u64_0pad(skb, T_bits_rs_total, device->rs_total) || nla_put_u64_0pad(skb, T_bits_rs_failed, device->rs_failed)) goto nla_put_failure; } } if (sib) { switch(sib->sib_reason) { case SIB_SYNC_PROGRESS: case SIB_GET_STATUS_REPLY: break; case SIB_STATE_CHANGE: if (nla_put_u32(skb, T_prev_state, sib->os.i) || nla_put_u32(skb, T_new_state, sib->ns.i)) goto nla_put_failure; break; case SIB_HELPER_POST: if (nla_put_u32(skb, T_helper_exit_code, sib->helper_exit_code)) goto nla_put_failure; /* fall through */ case SIB_HELPER_PRE: if (nla_put_string(skb, T_helper, sib->helper_name)) goto nla_put_failure; break; } } nla_nest_end(skb, nla); if (0) nla_put_failure: err = -EMSGSIZE; if (got_ldev) put_ldev(device); return err; } int drbd_adm_get_status(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; err = nla_put_status_info(adm_ctx.reply_skb, adm_ctx.device, NULL); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static int get_one_status(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_device *device; struct drbd_genlmsghdr *dh; struct drbd_resource *pos = (struct drbd_resource *)cb->args[0]; struct drbd_resource *resource = NULL; struct drbd_resource *tmp; unsigned volume = cb->args[1]; /* Open coded, deferred, iteration: * for_each_resource_safe(resource, tmp, &drbd_resources) { * connection = "first connection of resource or undefined"; * idr_for_each_entry(&resource->devices, device, i) { * ... * } * } * where resource is cb->args[0]; * and i is cb->args[1]; * * cb->args[2] indicates if we shall loop over all resources, * or just dump all volumes of a single resource. * * This may miss entries inserted after this dump started, * or entries deleted before they are reached. * * We need to make sure the device won't disappear while * we are looking at it, and revalidate our iterators * on each iteration. */ /* synchronize with conn_create()/drbd_destroy_connection() */ rcu_read_lock(); /* revalidate iterator position */ for_each_resource_rcu(tmp, &drbd_resources) { if (pos == NULL) { /* first iteration */ pos = tmp; resource = pos; break; } if (tmp == pos) { resource = pos; break; } } if (resource) { next_resource: device = idr_get_next(&resource->devices, &volume); if (!device) { /* No more volumes to dump on this resource. * Advance resource iterator. */ pos = list_entry_rcu(resource->resources.next, struct drbd_resource, resources); /* Did we dump any volume of this resource yet? */ if (volume != 0) { /* If we reached the end of the list, * or only a single resource dump was requested, * we are done. */ if (&pos->resources == &drbd_resources || cb->args[2]) goto out; volume = 0; resource = pos; goto next_resource; } } dh = genlmsg_put(skb, NETLINK_CB(cb->skb).portid, cb->nlh->nlmsg_seq, &drbd_genl_family, NLM_F_MULTI, DRBD_ADM_GET_STATUS); if (!dh) goto out; if (!device) { /* This is a connection without a single volume. * Suprisingly enough, it may have a network * configuration. */ struct drbd_connection *connection; dh->minor = -1U; dh->ret_code = NO_ERROR; connection = the_only_connection(resource); if (nla_put_drbd_cfg_context(skb, resource, connection, NULL)) goto cancel; if (connection) { struct net_conf *nc; nc = rcu_dereference(connection->net_conf); if (nc && net_conf_to_skb(skb, nc, 1) != 0) goto cancel; } goto done; } D_ASSERT(device, device->vnr == volume); D_ASSERT(device, device->resource == resource); dh->minor = device_to_minor(device); dh->ret_code = NO_ERROR; if (nla_put_status_info(skb, device, NULL)) { cancel: genlmsg_cancel(skb, dh); goto out; } done: genlmsg_end(skb, dh); } out: rcu_read_unlock(); /* where to start the next iteration */ cb->args[0] = (long)pos; cb->args[1] = (pos == resource) ? volume + 1 : 0; /* No more resources/volumes/minors found results in an empty skb. * Which will terminate the dump. */ return skb->len; } /* * Request status of all resources, or of all volumes within a single resource. * * This is a dump, as the answer may not fit in a single reply skb otherwise. * Which means we cannot use the family->attrbuf or other such members, because * dump is NOT protected by the genl_lock(). During dump, we only have access * to the incoming skb, and need to opencode "parsing" of the nlattr payload. * * Once things are setup properly, we call into get_one_status(). */ int drbd_adm_get_status_all(struct sk_buff *skb, struct netlink_callback *cb) { const unsigned hdrlen = GENL_HDRLEN + GENL_MAGIC_FAMILY_HDRSZ; struct nlattr *nla; const char *resource_name; struct drbd_resource *resource; int maxtype; /* Is this a followup call? */ if (cb->args[0]) { /* ... of a single resource dump, * and the resource iterator has been advanced already? */ if (cb->args[2] && cb->args[2] != cb->args[0]) return 0; /* DONE. */ goto dump; } /* First call (from netlink_dump_start). We need to figure out * which resource(s) the user wants us to dump. */ nla = nla_find(nlmsg_attrdata(cb->nlh, hdrlen), nlmsg_attrlen(cb->nlh, hdrlen), DRBD_NLA_CFG_CONTEXT); /* No explicit context given. Dump all. */ if (!nla) goto dump; maxtype = ARRAY_SIZE(drbd_cfg_context_nl_policy) - 1; nla = drbd_nla_find_nested(maxtype, nla, __nla_type(T_ctx_resource_name)); if (IS_ERR(nla)) return PTR_ERR(nla); /* context given, but no name present? */ if (!nla) return -EINVAL; resource_name = nla_data(nla); if (!*resource_name) return -ENODEV; resource = drbd_find_resource(resource_name); if (!resource) return -ENODEV; kref_put(&resource->kref, drbd_destroy_resource); /* get_one_status() revalidates the resource */ /* prime iterators, and set "filter" mode mark: * only dump this connection. */ cb->args[0] = (long)resource; /* cb->args[1] = 0; passed in this way. */ cb->args[2] = (long)resource; dump: return get_one_status(skb, cb); } int drbd_adm_get_timeout_type(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct timeout_parms tp; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; tp.timeout_type = adm_ctx.device->state.pdsk == D_OUTDATED ? UT_PEER_OUTDATED : test_bit(USE_DEGR_WFC_T, &adm_ctx.device->flags) ? UT_DEGRADED : UT_DEFAULT; err = timeout_parms_to_priv_skb(adm_ctx.reply_skb, &tp); if (err) { nlmsg_free(adm_ctx.reply_skb); return err; } out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_start_ov(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_device *device; enum drbd_ret_code retcode; struct start_ov_parms parms; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; device = adm_ctx.device; /* resume from last known position, if possible */ parms.ov_start_sector = device->ov_start_sector; parms.ov_stop_sector = ULLONG_MAX; if (info->attrs[DRBD_NLA_START_OV_PARMS]) { int err = start_ov_parms_from_attrs(&parms, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto out; } } mutex_lock(&adm_ctx.resource->adm_mutex); /* w_make_ov_request expects position to be aligned */ device->ov_start_sector = parms.ov_start_sector & ~(BM_SECT_PER_BIT-1); device->ov_stop_sector = parms.ov_stop_sector; /* If there is still bitmap IO pending, e.g. previous resync or verify * just being finished, wait for it before requesting a new resync. */ drbd_suspend_io(device); wait_event(device->misc_wait, !test_bit(BITMAP_IO, &device->flags)); retcode = drbd_request_state(device, NS(conn, C_VERIFY_S)); drbd_resume_io(device); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_new_c_uuid(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_device *device; enum drbd_ret_code retcode; int skip_initial_sync = 0; int err; struct new_c_uuid_parms args; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out_nolock; device = adm_ctx.device; memset(&args, 0, sizeof(args)); if (info->attrs[DRBD_NLA_NEW_C_UUID_PARMS]) { err = new_c_uuid_parms_from_attrs(&args, info); if (err) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto out_nolock; } } mutex_lock(&adm_ctx.resource->adm_mutex); mutex_lock(device->state_mutex); /* Protects us against serialized state changes. */ if (!get_ldev(device)) { retcode = ERR_NO_DISK; goto out; } /* this is "skip initial sync", assume to be clean */ if (device->state.conn == C_CONNECTED && first_peer_device(device)->connection->agreed_pro_version >= 90 && device->ldev->md.uuid[UI_CURRENT] == UUID_JUST_CREATED && args.clear_bm) { drbd_info(device, "Preparing to skip initial sync\n"); skip_initial_sync = 1; } else if (device->state.conn != C_STANDALONE) { retcode = ERR_CONNECTED; goto out_dec; } drbd_uuid_set(device, UI_BITMAP, 0); /* Rotate UI_BITMAP to History 1, etc... */ drbd_uuid_new_current(device); /* New current, previous to UI_BITMAP */ if (args.clear_bm) { err = drbd_bitmap_io(device, &drbd_bmio_clear_n_write, "clear_n_write from new_c_uuid", BM_LOCKED_MASK); if (err) { drbd_err(device, "Writing bitmap failed with %d\n", err); retcode = ERR_IO_MD_DISK; } if (skip_initial_sync) { drbd_send_uuids_skip_initial_sync(first_peer_device(device)); _drbd_uuid_set(device, UI_BITMAP, 0); drbd_print_uuids(device, "cleared bitmap UUID"); spin_lock_irq(&device->resource->req_lock); _drbd_set_state(_NS2(device, disk, D_UP_TO_DATE, pdsk, D_UP_TO_DATE), CS_VERBOSE, NULL); spin_unlock_irq(&device->resource->req_lock); } } drbd_md_sync(device); out_dec: put_ldev(device); out: mutex_unlock(device->state_mutex); mutex_unlock(&adm_ctx.resource->adm_mutex); out_nolock: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static enum drbd_ret_code drbd_check_resource_name(struct drbd_config_context *adm_ctx) { const char *name = adm_ctx->resource_name; if (!name || !name[0]) { drbd_msg_put_info(adm_ctx->reply_skb, "resource name missing"); return ERR_MANDATORY_TAG; } /* if we want to use these in sysfs/configfs/debugfs some day, * we must not allow slashes */ if (strchr(name, '/')) { drbd_msg_put_info(adm_ctx->reply_skb, "invalid resource name"); return ERR_INVALID_REQUEST; } return NO_ERROR; } static void resource_to_info(struct resource_info *info, struct drbd_resource *resource) { info->res_role = conn_highest_role(first_connection(resource)); info->res_susp = resource->susp; info->res_susp_nod = resource->susp_nod; info->res_susp_fen = resource->susp_fen; } int drbd_adm_new_resource(struct sk_buff *skb, struct genl_info *info) { struct drbd_connection *connection; struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; struct res_opts res_opts; int err; retcode = drbd_adm_prepare(&adm_ctx, skb, info, 0); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; set_res_opts_defaults(&res_opts); err = res_opts_from_attrs(&res_opts, info); if (err && err != -ENOMSG) { retcode = ERR_MANDATORY_TAG; drbd_msg_put_info(adm_ctx.reply_skb, from_attrs_err_to_txt(err)); goto out; } retcode = drbd_check_resource_name(&adm_ctx); if (retcode != NO_ERROR) goto out; if (adm_ctx.resource) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) { retcode = ERR_INVALID_REQUEST; drbd_msg_put_info(adm_ctx.reply_skb, "resource exists"); } /* else: still NO_ERROR */ goto out; } /* not yet safe for genl_family.parallel_ops */ mutex_lock(&resources_mutex); connection = conn_create(adm_ctx.resource_name, &res_opts); mutex_unlock(&resources_mutex); if (connection) { struct resource_info resource_info; mutex_lock(¬ification_mutex); resource_to_info(&resource_info, connection->resource); notify_resource_state(NULL, 0, connection->resource, &resource_info, NOTIFY_CREATE); mutex_unlock(¬ification_mutex); } else retcode = ERR_NOMEM; out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static void device_to_info(struct device_info *info, struct drbd_device *device) { info->dev_disk_state = device->state.disk; } int drbd_adm_new_minor(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_genlmsghdr *dh = info->userhdr; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; if (dh->minor > MINORMASK) { drbd_msg_put_info(adm_ctx.reply_skb, "requested minor out of range"); retcode = ERR_INVALID_REQUEST; goto out; } if (adm_ctx.volume > DRBD_VOLUME_MAX) { drbd_msg_put_info(adm_ctx.reply_skb, "requested volume id out of range"); retcode = ERR_INVALID_REQUEST; goto out; } /* drbd_adm_prepare made sure already * that first_peer_device(device)->connection and device->vnr match the request. */ if (adm_ctx.device) { if (info->nlhdr->nlmsg_flags & NLM_F_EXCL) retcode = ERR_MINOR_OR_VOLUME_EXISTS; /* else: still NO_ERROR */ goto out; } mutex_lock(&adm_ctx.resource->adm_mutex); retcode = drbd_create_device(&adm_ctx, dh->minor); if (retcode == NO_ERROR) { struct drbd_device *device; struct drbd_peer_device *peer_device; struct device_info info; unsigned int peer_devices = 0; enum drbd_notification_type flags; device = minor_to_device(dh->minor); for_each_peer_device(peer_device, device) { if (!has_net_conf(peer_device->connection)) continue; peer_devices++; } device_to_info(&info, device); mutex_lock(¬ification_mutex); flags = (peer_devices--) ? NOTIFY_CONTINUES : 0; notify_device_state(NULL, 0, device, &info, NOTIFY_CREATE | flags); for_each_peer_device(peer_device, device) { struct peer_device_info peer_device_info; if (!has_net_conf(peer_device->connection)) continue; peer_device_to_info(&peer_device_info, peer_device); flags = (peer_devices--) ? NOTIFY_CONTINUES : 0; notify_peer_device_state(NULL, 0, peer_device, &peer_device_info, NOTIFY_CREATE | flags); } mutex_unlock(¬ification_mutex); } mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static enum drbd_ret_code adm_del_minor(struct drbd_device *device) { struct drbd_peer_device *peer_device; if (device->state.disk == D_DISKLESS && /* no need to be device->state.conn == C_STANDALONE && * we may want to delete a minor from a live replication group. */ device->state.role == R_SECONDARY) { struct drbd_connection *connection = first_connection(device->resource); _drbd_request_state(device, NS(conn, C_WF_REPORT_PARAMS), CS_VERBOSE + CS_WAIT_COMPLETE); /* If the state engine hasn't stopped the sender thread yet, we * need to flush the sender work queue before generating the * DESTROY events here. */ if (get_t_state(&connection->worker) == RUNNING) drbd_flush_workqueue(&connection->sender_work); mutex_lock(¬ification_mutex); for_each_peer_device(peer_device, device) { if (!has_net_conf(peer_device->connection)) continue; notify_peer_device_state(NULL, 0, peer_device, NULL, NOTIFY_DESTROY | NOTIFY_CONTINUES); } notify_device_state(NULL, 0, device, NULL, NOTIFY_DESTROY); mutex_unlock(¬ification_mutex); drbd_delete_device(device); return NO_ERROR; } else return ERR_MINOR_CONFIGURED; } int drbd_adm_del_minor(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_MINOR); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto out; mutex_lock(&adm_ctx.resource->adm_mutex); retcode = adm_del_minor(adm_ctx.device); mutex_unlock(&adm_ctx.resource->adm_mutex); out: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } static int adm_del_resource(struct drbd_resource *resource) { struct drbd_connection *connection; for_each_connection(connection, resource) { if (connection->cstate > C_STANDALONE) return ERR_NET_CONFIGURED; } if (!idr_is_empty(&resource->devices)) return ERR_RES_IN_USE; /* The state engine has stopped the sender thread, so we don't * need to flush the sender work queue before generating the * DESTROY event here. */ mutex_lock(¬ification_mutex); notify_resource_state(NULL, 0, resource, NULL, NOTIFY_DESTROY); mutex_unlock(¬ification_mutex); mutex_lock(&resources_mutex); list_del_rcu(&resource->resources); mutex_unlock(&resources_mutex); /* Make sure all threads have actually stopped: state handling only * does drbd_thread_stop_nowait(). */ list_for_each_entry(connection, &resource->connections, connections) drbd_thread_stop(&connection->worker); synchronize_rcu(); drbd_free_resource(resource); return NO_ERROR; } int drbd_adm_down(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_resource *resource; struct drbd_connection *connection; struct drbd_device *device; int retcode; /* enum drbd_ret_code rsp. enum drbd_state_rv */ unsigned i; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; resource = adm_ctx.resource; mutex_lock(&resource->adm_mutex); /* demote */ for_each_connection(connection, resource) { struct drbd_peer_device *peer_device; idr_for_each_entry(&connection->peer_devices, peer_device, i) { retcode = drbd_set_role(peer_device->device, R_SECONDARY, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info(adm_ctx.reply_skb, "failed to demote"); goto out; } } retcode = conn_try_disconnect(connection, 0); if (retcode < SS_SUCCESS) { drbd_msg_put_info(adm_ctx.reply_skb, "failed to disconnect"); goto out; } } /* detach */ idr_for_each_entry(&resource->devices, device, i) { retcode = adm_detach(device, 0); if (retcode < SS_SUCCESS || retcode > NO_ERROR) { drbd_msg_put_info(adm_ctx.reply_skb, "failed to detach"); goto out; } } /* delete volumes */ idr_for_each_entry(&resource->devices, device, i) { retcode = adm_del_minor(device); if (retcode != NO_ERROR) { /* "can not happen" */ drbd_msg_put_info(adm_ctx.reply_skb, "failed to delete volume"); goto out; } } retcode = adm_del_resource(resource); out: mutex_unlock(&resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } int drbd_adm_del_resource(struct sk_buff *skb, struct genl_info *info) { struct drbd_config_context adm_ctx; struct drbd_resource *resource; enum drbd_ret_code retcode; retcode = drbd_adm_prepare(&adm_ctx, skb, info, DRBD_ADM_NEED_RESOURCE); if (!adm_ctx.reply_skb) return retcode; if (retcode != NO_ERROR) goto finish; resource = adm_ctx.resource; mutex_lock(&resource->adm_mutex); retcode = adm_del_resource(resource); mutex_unlock(&resource->adm_mutex); finish: drbd_adm_finish(&adm_ctx, info, retcode); return 0; } void drbd_bcast_event(struct drbd_device *device, const struct sib_info *sib) { struct sk_buff *msg; struct drbd_genlmsghdr *d_out; unsigned seq; int err = -ENOMEM; seq = atomic_inc_return(&drbd_genl_seq); msg = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); if (!msg) goto failed; err = -EMSGSIZE; d_out = genlmsg_put(msg, 0, seq, &drbd_genl_family, 0, DRBD_EVENT); if (!d_out) /* cannot happen, but anyways. */ goto nla_put_failure; d_out->minor = device_to_minor(device); d_out->ret_code = NO_ERROR; if (nla_put_status_info(msg, device, sib)) goto nla_put_failure; genlmsg_end(msg, d_out); err = drbd_genl_multicast_events(msg, GFP_NOWAIT); /* msg has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; return; nla_put_failure: nlmsg_free(msg); failed: drbd_err(device, "Error %d while broadcasting event. " "Event seq:%u sib_reason:%u\n", err, seq, sib->sib_reason); } static int nla_put_notification_header(struct sk_buff *msg, enum drbd_notification_type type) { struct drbd_notification_header nh = { .nh_type = type, }; return drbd_notification_header_to_skb(msg, &nh, true); } int notify_resource_state(struct sk_buff *skb, unsigned int seq, struct drbd_resource *resource, struct resource_info *resource_info, enum drbd_notification_type type) { struct resource_statistics resource_statistics; struct drbd_genlmsghdr *dh; bool multicast = false; int err; if (!skb) { seq = atomic_inc_return(¬ify_genl_seq); skb = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); err = -ENOMEM; if (!skb) goto failed; multicast = true; } err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_RESOURCE_STATE); if (!dh) goto nla_put_failure; dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, resource, NULL, NULL) || nla_put_notification_header(skb, type) || ((type & ~NOTIFY_FLAGS) != NOTIFY_DESTROY && resource_info_to_skb(skb, resource_info, true))) goto nla_put_failure; resource_statistics.res_stat_write_ordering = resource->write_ordering; err = resource_statistics_to_skb(skb, &resource_statistics, !capable(CAP_SYS_ADMIN)); if (err) goto nla_put_failure; genlmsg_end(skb, dh); if (multicast) { err = drbd_genl_multicast_events(skb, GFP_NOWAIT); /* skb has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; } return 0; nla_put_failure: nlmsg_free(skb); failed: drbd_err(resource, "Error %d while broadcasting event. Event seq:%u\n", err, seq); return err; } int notify_device_state(struct sk_buff *skb, unsigned int seq, struct drbd_device *device, struct device_info *device_info, enum drbd_notification_type type) { struct device_statistics device_statistics; struct drbd_genlmsghdr *dh; bool multicast = false; int err; if (!skb) { seq = atomic_inc_return(¬ify_genl_seq); skb = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); err = -ENOMEM; if (!skb) goto failed; multicast = true; } err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_DEVICE_STATE); if (!dh) goto nla_put_failure; dh->minor = device->minor; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, device->resource, NULL, device) || nla_put_notification_header(skb, type) || ((type & ~NOTIFY_FLAGS) != NOTIFY_DESTROY && device_info_to_skb(skb, device_info, true))) goto nla_put_failure; device_to_statistics(&device_statistics, device); device_statistics_to_skb(skb, &device_statistics, !capable(CAP_SYS_ADMIN)); genlmsg_end(skb, dh); if (multicast) { err = drbd_genl_multicast_events(skb, GFP_NOWAIT); /* skb has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; } return 0; nla_put_failure: nlmsg_free(skb); failed: drbd_err(device, "Error %d while broadcasting event. Event seq:%u\n", err, seq); return err; } int notify_connection_state(struct sk_buff *skb, unsigned int seq, struct drbd_connection *connection, struct connection_info *connection_info, enum drbd_notification_type type) { struct connection_statistics connection_statistics; struct drbd_genlmsghdr *dh; bool multicast = false; int err; if (!skb) { seq = atomic_inc_return(¬ify_genl_seq); skb = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); err = -ENOMEM; if (!skb) goto failed; multicast = true; } err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_CONNECTION_STATE); if (!dh) goto nla_put_failure; dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, connection->resource, connection, NULL) || nla_put_notification_header(skb, type) || ((type & ~NOTIFY_FLAGS) != NOTIFY_DESTROY && connection_info_to_skb(skb, connection_info, true))) goto nla_put_failure; connection_statistics.conn_congested = test_bit(NET_CONGESTED, &connection->flags); connection_statistics_to_skb(skb, &connection_statistics, !capable(CAP_SYS_ADMIN)); genlmsg_end(skb, dh); if (multicast) { err = drbd_genl_multicast_events(skb, GFP_NOWAIT); /* skb has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; } return 0; nla_put_failure: nlmsg_free(skb); failed: drbd_err(connection, "Error %d while broadcasting event. Event seq:%u\n", err, seq); return err; } int notify_peer_device_state(struct sk_buff *skb, unsigned int seq, struct drbd_peer_device *peer_device, struct peer_device_info *peer_device_info, enum drbd_notification_type type) { struct peer_device_statistics peer_device_statistics; struct drbd_resource *resource = peer_device->device->resource; struct drbd_genlmsghdr *dh; bool multicast = false; int err; if (!skb) { seq = atomic_inc_return(¬ify_genl_seq); skb = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); err = -ENOMEM; if (!skb) goto failed; multicast = true; } err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_PEER_DEVICE_STATE); if (!dh) goto nla_put_failure; dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_drbd_cfg_context(skb, resource, peer_device->connection, peer_device->device) || nla_put_notification_header(skb, type) || ((type & ~NOTIFY_FLAGS) != NOTIFY_DESTROY && peer_device_info_to_skb(skb, peer_device_info, true))) goto nla_put_failure; peer_device_to_statistics(&peer_device_statistics, peer_device); peer_device_statistics_to_skb(skb, &peer_device_statistics, !capable(CAP_SYS_ADMIN)); genlmsg_end(skb, dh); if (multicast) { err = drbd_genl_multicast_events(skb, GFP_NOWAIT); /* skb has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto failed; } return 0; nla_put_failure: nlmsg_free(skb); failed: drbd_err(peer_device, "Error %d while broadcasting event. Event seq:%u\n", err, seq); return err; } void notify_helper(enum drbd_notification_type type, struct drbd_device *device, struct drbd_connection *connection, const char *name, int status) { struct drbd_resource *resource = device ? device->resource : connection->resource; struct drbd_helper_info helper_info; unsigned int seq = atomic_inc_return(¬ify_genl_seq); struct sk_buff *skb = NULL; struct drbd_genlmsghdr *dh; int err; strlcpy(helper_info.helper_name, name, sizeof(helper_info.helper_name)); helper_info.helper_name_len = min(strlen(name), sizeof(helper_info.helper_name)); helper_info.helper_status = status; skb = genlmsg_new(NLMSG_GOODSIZE, GFP_NOIO); err = -ENOMEM; if (!skb) goto fail; err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_HELPER); if (!dh) goto fail; dh->minor = device ? device->minor : -1; dh->ret_code = NO_ERROR; mutex_lock(¬ification_mutex); if (nla_put_drbd_cfg_context(skb, resource, connection, device) || nla_put_notification_header(skb, type) || drbd_helper_info_to_skb(skb, &helper_info, true)) goto unlock_fail; genlmsg_end(skb, dh); err = drbd_genl_multicast_events(skb, GFP_NOWAIT); skb = NULL; /* skb has been consumed or freed in netlink_broadcast() */ if (err && err != -ESRCH) goto unlock_fail; mutex_unlock(¬ification_mutex); return; unlock_fail: mutex_unlock(¬ification_mutex); fail: nlmsg_free(skb); drbd_err(resource, "Error %d while broadcasting event. Event seq:%u\n", err, seq); } static int notify_initial_state_done(struct sk_buff *skb, unsigned int seq) { struct drbd_genlmsghdr *dh; int err; err = -EMSGSIZE; dh = genlmsg_put(skb, 0, seq, &drbd_genl_family, 0, DRBD_INITIAL_STATE_DONE); if (!dh) goto nla_put_failure; dh->minor = -1U; dh->ret_code = NO_ERROR; if (nla_put_notification_header(skb, NOTIFY_EXISTS)) goto nla_put_failure; genlmsg_end(skb, dh); return 0; nla_put_failure: nlmsg_free(skb); pr_err("Error %d sending event. Event seq:%u\n", err, seq); return err; } static void free_state_changes(struct list_head *list) { while (!list_empty(list)) { struct drbd_state_change *state_change = list_first_entry(list, struct drbd_state_change, list); list_del(&state_change->list); forget_state_change(state_change); } } static unsigned int notifications_for_state_change(struct drbd_state_change *state_change) { return 1 + state_change->n_connections + state_change->n_devices + state_change->n_devices * state_change->n_connections; } static int get_initial_state(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_state_change *state_change = (struct drbd_state_change *)cb->args[0]; unsigned int seq = cb->args[2]; unsigned int n; enum drbd_notification_type flags = 0; int err = 0; /* There is no need for taking notification_mutex here: it doesn't matter if the initial state events mix with later state chage events; we can always tell the events apart by the NOTIFY_EXISTS flag. */ cb->args[5]--; if (cb->args[5] == 1) { err = notify_initial_state_done(skb, seq); goto out; } n = cb->args[4]++; if (cb->args[4] < cb->args[3]) flags |= NOTIFY_CONTINUES; if (n < 1) { err = notify_resource_state_change(skb, seq, state_change->resource, NOTIFY_EXISTS | flags); goto next; } n--; if (n < state_change->n_connections) { err = notify_connection_state_change(skb, seq, &state_change->connections[n], NOTIFY_EXISTS | flags); goto next; } n -= state_change->n_connections; if (n < state_change->n_devices) { err = notify_device_state_change(skb, seq, &state_change->devices[n], NOTIFY_EXISTS | flags); goto next; } n -= state_change->n_devices; if (n < state_change->n_devices * state_change->n_connections) { err = notify_peer_device_state_change(skb, seq, &state_change->peer_devices[n], NOTIFY_EXISTS | flags); goto next; } next: if (cb->args[4] == cb->args[3]) { struct drbd_state_change *next_state_change = list_entry(state_change->list.next, struct drbd_state_change, list); cb->args[0] = (long)next_state_change; cb->args[3] = notifications_for_state_change(next_state_change); cb->args[4] = 0; } out: if (err) return err; else return skb->len; } int drbd_adm_get_initial_state(struct sk_buff *skb, struct netlink_callback *cb) { struct drbd_resource *resource; LIST_HEAD(head); if (cb->args[5] >= 1) { if (cb->args[5] > 1) return get_initial_state(skb, cb); if (cb->args[0]) { struct drbd_state_change *state_change = (struct drbd_state_change *)cb->args[0]; /* connect list to head */ list_add(&head, &state_change->list); free_state_changes(&head); } return 0; } cb->args[5] = 2; /* number of iterations */ mutex_lock(&resources_mutex); for_each_resource(resource, &drbd_resources) { struct drbd_state_change *state_change; state_change = remember_old_state(resource, GFP_KERNEL); if (!state_change) { if (!list_empty(&head)) free_state_changes(&head); mutex_unlock(&resources_mutex); return -ENOMEM; } copy_old_to_new_state_change(state_change); list_add_tail(&state_change->list, &head); cb->args[5] += notifications_for_state_change(state_change); } mutex_unlock(&resources_mutex); if (!list_empty(&head)) { struct drbd_state_change *state_change = list_entry(head.next, struct drbd_state_change, list); cb->args[0] = (long)state_change; cb->args[3] = notifications_for_state_change(state_change); list_del(&head); /* detach list from head */ } cb->args[2] = cb->nlh->nlmsg_seq; return get_initial_state(skb, cb); }