/* SPDX-License-Identifier: GPL-2.0-or-later */ /* * SM4 Cipher Algorithm, AES-NI/AVX optimized. * as specified in * https://tools.ietf.org/id/draft-ribose-cfrg-sm4-10.html * * Copyright (c) 2021, Alibaba Group. * Copyright (c) 2021 Tianjia Zhang */ #include #include #include #include #include #include #include #include "sm4-avx.h" #define SM4_CRYPT8_BLOCK_SIZE (SM4_BLOCK_SIZE * 8) asmlinkage void sm4_aesni_avx_crypt4(const u32 *rk, u8 *dst, const u8 *src, int nblocks); asmlinkage void sm4_aesni_avx_crypt8(const u32 *rk, u8 *dst, const u8 *src, int nblocks); asmlinkage void sm4_aesni_avx_ctr_enc_blk8(const u32 *rk, u8 *dst, const u8 *src, u8 *iv); asmlinkage void sm4_aesni_avx_cbc_dec_blk8(const u32 *rk, u8 *dst, const u8 *src, u8 *iv); asmlinkage void sm4_aesni_avx_cfb_dec_blk8(const u32 *rk, u8 *dst, const u8 *src, u8 *iv); static int sm4_skcipher_setkey(struct crypto_skcipher *tfm, const u8 *key, unsigned int key_len) { struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return sm4_expandkey(ctx, key, key_len); } static int ecb_do_crypt(struct skcipher_request *req, const u32 *rkey) { struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; kernel_fpu_begin(); while (nbytes >= SM4_CRYPT8_BLOCK_SIZE) { sm4_aesni_avx_crypt8(rkey, dst, src, 8); dst += SM4_CRYPT8_BLOCK_SIZE; src += SM4_CRYPT8_BLOCK_SIZE; nbytes -= SM4_CRYPT8_BLOCK_SIZE; } while (nbytes >= SM4_BLOCK_SIZE) { unsigned int nblocks = min(nbytes >> 4, 4u); sm4_aesni_avx_crypt4(rkey, dst, src, nblocks); dst += nblocks * SM4_BLOCK_SIZE; src += nblocks * SM4_BLOCK_SIZE; nbytes -= nblocks * SM4_BLOCK_SIZE; } kernel_fpu_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } int sm4_avx_ecb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return ecb_do_crypt(req, ctx->rkey_enc); } EXPORT_SYMBOL_GPL(sm4_avx_ecb_encrypt); int sm4_avx_ecb_decrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); return ecb_do_crypt(req, ctx->rkey_dec); } EXPORT_SYMBOL_GPL(sm4_avx_ecb_decrypt); int sm4_cbc_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *iv = walk.iv; const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; while (nbytes >= SM4_BLOCK_SIZE) { crypto_xor_cpy(dst, src, iv, SM4_BLOCK_SIZE); sm4_crypt_block(ctx->rkey_enc, dst, dst); iv = dst; src += SM4_BLOCK_SIZE; dst += SM4_BLOCK_SIZE; nbytes -= SM4_BLOCK_SIZE; } if (iv != walk.iv) memcpy(walk.iv, iv, SM4_BLOCK_SIZE); err = skcipher_walk_done(&walk, nbytes); } return err; } EXPORT_SYMBOL_GPL(sm4_cbc_encrypt); int sm4_avx_cbc_decrypt(struct skcipher_request *req, unsigned int bsize, sm4_crypt_func func) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; kernel_fpu_begin(); while (nbytes >= bsize) { func(ctx->rkey_dec, dst, src, walk.iv); dst += bsize; src += bsize; nbytes -= bsize; } while (nbytes >= SM4_BLOCK_SIZE) { u8 keystream[SM4_BLOCK_SIZE * 8]; u8 iv[SM4_BLOCK_SIZE]; unsigned int nblocks = min(nbytes >> 4, 8u); int i; sm4_aesni_avx_crypt8(ctx->rkey_dec, keystream, src, nblocks); src += ((int)nblocks - 2) * SM4_BLOCK_SIZE; dst += (nblocks - 1) * SM4_BLOCK_SIZE; memcpy(iv, src + SM4_BLOCK_SIZE, SM4_BLOCK_SIZE); for (i = nblocks - 1; i > 0; i--) { crypto_xor_cpy(dst, src, &keystream[i * SM4_BLOCK_SIZE], SM4_BLOCK_SIZE); src -= SM4_BLOCK_SIZE; dst -= SM4_BLOCK_SIZE; } crypto_xor_cpy(dst, walk.iv, keystream, SM4_BLOCK_SIZE); memcpy(walk.iv, iv, SM4_BLOCK_SIZE); dst += nblocks * SM4_BLOCK_SIZE; src += (nblocks + 1) * SM4_BLOCK_SIZE; nbytes -= nblocks * SM4_BLOCK_SIZE; } kernel_fpu_end(); err = skcipher_walk_done(&walk, nbytes); } return err; } EXPORT_SYMBOL_GPL(sm4_avx_cbc_decrypt); static int cbc_decrypt(struct skcipher_request *req) { return sm4_avx_cbc_decrypt(req, SM4_CRYPT8_BLOCK_SIZE, sm4_aesni_avx_cbc_dec_blk8); } int sm4_cfb_encrypt(struct skcipher_request *req) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { u8 keystream[SM4_BLOCK_SIZE]; const u8 *iv = walk.iv; const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; while (nbytes >= SM4_BLOCK_SIZE) { sm4_crypt_block(ctx->rkey_enc, keystream, iv); crypto_xor_cpy(dst, src, keystream, SM4_BLOCK_SIZE); iv = dst; src += SM4_BLOCK_SIZE; dst += SM4_BLOCK_SIZE; nbytes -= SM4_BLOCK_SIZE; } if (iv != walk.iv) memcpy(walk.iv, iv, SM4_BLOCK_SIZE); /* tail */ if (walk.nbytes == walk.total && nbytes > 0) { sm4_crypt_block(ctx->rkey_enc, keystream, walk.iv); crypto_xor_cpy(dst, src, keystream, nbytes); nbytes = 0; } err = skcipher_walk_done(&walk, nbytes); } return err; } EXPORT_SYMBOL_GPL(sm4_cfb_encrypt); int sm4_avx_cfb_decrypt(struct skcipher_request *req, unsigned int bsize, sm4_crypt_func func) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; kernel_fpu_begin(); while (nbytes >= bsize) { func(ctx->rkey_enc, dst, src, walk.iv); dst += bsize; src += bsize; nbytes -= bsize; } while (nbytes >= SM4_BLOCK_SIZE) { u8 keystream[SM4_BLOCK_SIZE * 8]; unsigned int nblocks = min(nbytes >> 4, 8u); memcpy(keystream, walk.iv, SM4_BLOCK_SIZE); if (nblocks > 1) memcpy(&keystream[SM4_BLOCK_SIZE], src, (nblocks - 1) * SM4_BLOCK_SIZE); memcpy(walk.iv, src + (nblocks - 1) * SM4_BLOCK_SIZE, SM4_BLOCK_SIZE); sm4_aesni_avx_crypt8(ctx->rkey_enc, keystream, keystream, nblocks); crypto_xor_cpy(dst, src, keystream, nblocks * SM4_BLOCK_SIZE); dst += nblocks * SM4_BLOCK_SIZE; src += nblocks * SM4_BLOCK_SIZE; nbytes -= nblocks * SM4_BLOCK_SIZE; } kernel_fpu_end(); /* tail */ if (walk.nbytes == walk.total && nbytes > 0) { u8 keystream[SM4_BLOCK_SIZE]; sm4_crypt_block(ctx->rkey_enc, keystream, walk.iv); crypto_xor_cpy(dst, src, keystream, nbytes); nbytes = 0; } err = skcipher_walk_done(&walk, nbytes); } return err; } EXPORT_SYMBOL_GPL(sm4_avx_cfb_decrypt); static int cfb_decrypt(struct skcipher_request *req) { return sm4_avx_cfb_decrypt(req, SM4_CRYPT8_BLOCK_SIZE, sm4_aesni_avx_cfb_dec_blk8); } int sm4_avx_ctr_crypt(struct skcipher_request *req, unsigned int bsize, sm4_crypt_func func) { struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req); struct sm4_ctx *ctx = crypto_skcipher_ctx(tfm); struct skcipher_walk walk; unsigned int nbytes; int err; err = skcipher_walk_virt(&walk, req, false); while ((nbytes = walk.nbytes) > 0) { const u8 *src = walk.src.virt.addr; u8 *dst = walk.dst.virt.addr; kernel_fpu_begin(); while (nbytes >= bsize) { func(ctx->rkey_enc, dst, src, walk.iv); dst += bsize; src += bsize; nbytes -= bsize; } while (nbytes >= SM4_BLOCK_SIZE) { u8 keystream[SM4_BLOCK_SIZE * 8]; unsigned int nblocks = min(nbytes >> 4, 8u); int i; for (i = 0; i < nblocks; i++) { memcpy(&keystream[i * SM4_BLOCK_SIZE], walk.iv, SM4_BLOCK_SIZE); crypto_inc(walk.iv, SM4_BLOCK_SIZE); } sm4_aesni_avx_crypt8(ctx->rkey_enc, keystream, keystream, nblocks); crypto_xor_cpy(dst, src, keystream, nblocks * SM4_BLOCK_SIZE); dst += nblocks * SM4_BLOCK_SIZE; src += nblocks * SM4_BLOCK_SIZE; nbytes -= nblocks * SM4_BLOCK_SIZE; } kernel_fpu_end(); /* tail */ if (walk.nbytes == walk.total && nbytes > 0) { u8 keystream[SM4_BLOCK_SIZE]; memcpy(keystream, walk.iv, SM4_BLOCK_SIZE); crypto_inc(walk.iv, SM4_BLOCK_SIZE); sm4_crypt_block(ctx->rkey_enc, keystream, keystream); crypto_xor_cpy(dst, src, keystream, nbytes); dst += nbytes; src += nbytes; nbytes = 0; } err = skcipher_walk_done(&walk, nbytes); } return err; } EXPORT_SYMBOL_GPL(sm4_avx_ctr_crypt); static int ctr_crypt(struct skcipher_request *req) { return sm4_avx_ctr_crypt(req, SM4_CRYPT8_BLOCK_SIZE, sm4_aesni_avx_ctr_enc_blk8); } static struct skcipher_alg sm4_aesni_avx_skciphers[] = { { .base = { .cra_name = "__ecb(sm4)", .cra_driver_name = "__ecb-sm4-aesni-avx", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .walksize = 8 * SM4_BLOCK_SIZE, .setkey = sm4_skcipher_setkey, .encrypt = sm4_avx_ecb_encrypt, .decrypt = sm4_avx_ecb_decrypt, }, { .base = { .cra_name = "__cbc(sm4)", .cra_driver_name = "__cbc-sm4-aesni-avx", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = SM4_BLOCK_SIZE, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .walksize = 8 * SM4_BLOCK_SIZE, .setkey = sm4_skcipher_setkey, .encrypt = sm4_cbc_encrypt, .decrypt = cbc_decrypt, }, { .base = { .cra_name = "__cfb(sm4)", .cra_driver_name = "__cfb-sm4-aesni-avx", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .chunksize = SM4_BLOCK_SIZE, .walksize = 8 * SM4_BLOCK_SIZE, .setkey = sm4_skcipher_setkey, .encrypt = sm4_cfb_encrypt, .decrypt = cfb_decrypt, }, { .base = { .cra_name = "__ctr(sm4)", .cra_driver_name = "__ctr-sm4-aesni-avx", .cra_priority = 400, .cra_flags = CRYPTO_ALG_INTERNAL, .cra_blocksize = 1, .cra_ctxsize = sizeof(struct sm4_ctx), .cra_module = THIS_MODULE, }, .min_keysize = SM4_KEY_SIZE, .max_keysize = SM4_KEY_SIZE, .ivsize = SM4_BLOCK_SIZE, .chunksize = SM4_BLOCK_SIZE, .walksize = 8 * SM4_BLOCK_SIZE, .setkey = sm4_skcipher_setkey, .encrypt = ctr_crypt, .decrypt = ctr_crypt, } }; static struct simd_skcipher_alg * simd_sm4_aesni_avx_skciphers[ARRAY_SIZE(sm4_aesni_avx_skciphers)]; static int __init sm4_init(void) { const char *feature_name; if (!boot_cpu_has(X86_FEATURE_AVX) || !boot_cpu_has(X86_FEATURE_AES) || !boot_cpu_has(X86_FEATURE_OSXSAVE)) { pr_info("AVX or AES-NI instructions are not detected.\n"); return -ENODEV; } if (!cpu_has_xfeatures(XFEATURE_MASK_SSE | XFEATURE_MASK_YMM, &feature_name)) { pr_info("CPU feature '%s' is not supported.\n", feature_name); return -ENODEV; } return simd_register_skciphers_compat(sm4_aesni_avx_skciphers, ARRAY_SIZE(sm4_aesni_avx_skciphers), simd_sm4_aesni_avx_skciphers); } static void __exit sm4_exit(void) { simd_unregister_skciphers(sm4_aesni_avx_skciphers, ARRAY_SIZE(sm4_aesni_avx_skciphers), simd_sm4_aesni_avx_skciphers); } module_init(sm4_init); module_exit(sm4_exit); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Tianjia Zhang "); MODULE_DESCRIPTION("SM4 Cipher Algorithm, AES-NI/AVX optimized"); MODULE_ALIAS_CRYPTO("sm4"); MODULE_ALIAS_CRYPTO("sm4-aesni-avx");