// SPDX-License-Identifier: GPL-2.0-only /* * Set up the VMAs to tell the VM about the vDSO. * Copyright 2007 Andi Kleen, SUSE Labs. */ /* * Copyright (c) 2017 Oracle and/or its affiliates. All rights reserved. */ #include #include #include #include #include #include #include #include #include #include #include #include #include unsigned int __read_mostly vdso_enabled = 1; static struct vm_special_mapping vvar_mapping = { .name = "[vvar]" }; #ifdef CONFIG_SPARC64 static struct vm_special_mapping vdso_mapping64 = { .name = "[vdso]" }; #endif #ifdef CONFIG_COMPAT static struct vm_special_mapping vdso_mapping32 = { .name = "[vdso]" }; #endif struct vvar_data *vvar_data; struct vdso_elfinfo32 { Elf32_Ehdr *hdr; Elf32_Sym *dynsym; unsigned long dynsymsize; const char *dynstr; unsigned long text; }; struct vdso_elfinfo64 { Elf64_Ehdr *hdr; Elf64_Sym *dynsym; unsigned long dynsymsize; const char *dynstr; unsigned long text; }; struct vdso_elfinfo { union { struct vdso_elfinfo32 elf32; struct vdso_elfinfo64 elf64; } u; }; static void *one_section64(struct vdso_elfinfo64 *e, const char *name, unsigned long *size) { const char *snames; Elf64_Shdr *shdrs; unsigned int i; shdrs = (void *)e->hdr + e->hdr->e_shoff; snames = (void *)e->hdr + shdrs[e->hdr->e_shstrndx].sh_offset; for (i = 1; i < e->hdr->e_shnum; i++) { if (!strcmp(snames+shdrs[i].sh_name, name)) { if (size) *size = shdrs[i].sh_size; return (void *)e->hdr + shdrs[i].sh_offset; } } return NULL; } static int find_sections64(const struct vdso_image *image, struct vdso_elfinfo *_e) { struct vdso_elfinfo64 *e = &_e->u.elf64; e->hdr = image->data; e->dynsym = one_section64(e, ".dynsym", &e->dynsymsize); e->dynstr = one_section64(e, ".dynstr", NULL); if (!e->dynsym || !e->dynstr) { pr_err("VDSO64: Missing symbol sections.\n"); return -ENODEV; } return 0; } static Elf64_Sym *find_sym64(const struct vdso_elfinfo64 *e, const char *name) { unsigned int i; for (i = 0; i < (e->dynsymsize / sizeof(Elf64_Sym)); i++) { Elf64_Sym *s = &e->dynsym[i]; if (s->st_name == 0) continue; if (!strcmp(e->dynstr + s->st_name, name)) return s; } return NULL; } static int patchsym64(struct vdso_elfinfo *_e, const char *orig, const char *new) { struct vdso_elfinfo64 *e = &_e->u.elf64; Elf64_Sym *osym = find_sym64(e, orig); Elf64_Sym *nsym = find_sym64(e, new); if (!nsym || !osym) { pr_err("VDSO64: Missing symbols.\n"); return -ENODEV; } osym->st_value = nsym->st_value; osym->st_size = nsym->st_size; osym->st_info = nsym->st_info; osym->st_other = nsym->st_other; osym->st_shndx = nsym->st_shndx; return 0; } static void *one_section32(struct vdso_elfinfo32 *e, const char *name, unsigned long *size) { const char *snames; Elf32_Shdr *shdrs; unsigned int i; shdrs = (void *)e->hdr + e->hdr->e_shoff; snames = (void *)e->hdr + shdrs[e->hdr->e_shstrndx].sh_offset; for (i = 1; i < e->hdr->e_shnum; i++) { if (!strcmp(snames+shdrs[i].sh_name, name)) { if (size) *size = shdrs[i].sh_size; return (void *)e->hdr + shdrs[i].sh_offset; } } return NULL; } static int find_sections32(const struct vdso_image *image, struct vdso_elfinfo *_e) { struct vdso_elfinfo32 *e = &_e->u.elf32; e->hdr = image->data; e->dynsym = one_section32(e, ".dynsym", &e->dynsymsize); e->dynstr = one_section32(e, ".dynstr", NULL); if (!e->dynsym || !e->dynstr) { pr_err("VDSO32: Missing symbol sections.\n"); return -ENODEV; } return 0; } static Elf32_Sym *find_sym32(const struct vdso_elfinfo32 *e, const char *name) { unsigned int i; for (i = 0; i < (e->dynsymsize / sizeof(Elf32_Sym)); i++) { Elf32_Sym *s = &e->dynsym[i]; if (s->st_name == 0) continue; if (!strcmp(e->dynstr + s->st_name, name)) return s; } return NULL; } static int patchsym32(struct vdso_elfinfo *_e, const char *orig, const char *new) { struct vdso_elfinfo32 *e = &_e->u.elf32; Elf32_Sym *osym = find_sym32(e, orig); Elf32_Sym *nsym = find_sym32(e, new); if (!nsym || !osym) { pr_err("VDSO32: Missing symbols.\n"); return -ENODEV; } osym->st_value = nsym->st_value; osym->st_size = nsym->st_size; osym->st_info = nsym->st_info; osym->st_other = nsym->st_other; osym->st_shndx = nsym->st_shndx; return 0; } static int find_sections(const struct vdso_image *image, struct vdso_elfinfo *e, bool elf64) { if (elf64) return find_sections64(image, e); else return find_sections32(image, e); } static int patch_one_symbol(struct vdso_elfinfo *e, const char *orig, const char *new_target, bool elf64) { if (elf64) return patchsym64(e, orig, new_target); else return patchsym32(e, orig, new_target); } static int stick_patch(const struct vdso_image *image, struct vdso_elfinfo *e, bool elf64) { int err; err = find_sections(image, e, elf64); if (err) return err; err = patch_one_symbol(e, "__vdso_gettimeofday", "__vdso_gettimeofday_stick", elf64); if (err) return err; return patch_one_symbol(e, "__vdso_clock_gettime", "__vdso_clock_gettime_stick", elf64); return 0; } /* * Allocate pages for the vdso and vvar, and copy in the vdso text from the * kernel image. */ int __init init_vdso_image(const struct vdso_image *image, struct vm_special_mapping *vdso_mapping, bool elf64) { int cnpages = (image->size) / PAGE_SIZE; struct page *dp, **dpp = NULL; struct page *cp, **cpp = NULL; struct vdso_elfinfo ei; int i, dnpages = 0; if (tlb_type != spitfire) { int err = stick_patch(image, &ei, elf64); if (err) return err; } /* * First, the vdso text. This is initialied data, an integral number of * pages long. */ if (WARN_ON(image->size % PAGE_SIZE != 0)) goto oom; cpp = kcalloc(cnpages, sizeof(struct page *), GFP_KERNEL); vdso_mapping->pages = cpp; if (!cpp) goto oom; for (i = 0; i < cnpages; i++) { cp = alloc_page(GFP_KERNEL); if (!cp) goto oom; cpp[i] = cp; copy_page(page_address(cp), image->data + i * PAGE_SIZE); } /* * Now the vvar page. This is uninitialized data. */ if (vvar_data == NULL) { dnpages = (sizeof(struct vvar_data) / PAGE_SIZE) + 1; if (WARN_ON(dnpages != 1)) goto oom; dpp = kcalloc(dnpages, sizeof(struct page *), GFP_KERNEL); vvar_mapping.pages = dpp; if (!dpp) goto oom; dp = alloc_page(GFP_KERNEL); if (!dp) goto oom; dpp[0] = dp; vvar_data = page_address(dp); memset(vvar_data, 0, PAGE_SIZE); vvar_data->seq = 0; } return 0; oom: if (cpp != NULL) { for (i = 0; i < cnpages; i++) { if (cpp[i] != NULL) __free_page(cpp[i]); } kfree(cpp); vdso_mapping->pages = NULL; } if (dpp != NULL) { for (i = 0; i < dnpages; i++) { if (dpp[i] != NULL) __free_page(dpp[i]); } kfree(dpp); vvar_mapping.pages = NULL; } pr_warn("Cannot allocate vdso\n"); vdso_enabled = 0; return -ENOMEM; } static int __init init_vdso(void) { int err = 0; #ifdef CONFIG_SPARC64 err = init_vdso_image(&vdso_image_64_builtin, &vdso_mapping64, true); if (err) return err; #endif #ifdef CONFIG_COMPAT err = init_vdso_image(&vdso_image_32_builtin, &vdso_mapping32, false); #endif return err; } subsys_initcall(init_vdso); struct linux_binprm; /* Shuffle the vdso up a bit, randomly. */ static unsigned long vdso_addr(unsigned long start, unsigned int len) { unsigned int offset; /* This loses some more bits than a modulo, but is cheaper */ offset = get_random_int() & (PTRS_PER_PTE - 1); return start + (offset << PAGE_SHIFT); } static int map_vdso(const struct vdso_image *image, struct vm_special_mapping *vdso_mapping) { struct mm_struct *mm = current->mm; struct vm_area_struct *vma; unsigned long text_start, addr = 0; int ret = 0; mmap_write_lock(mm); /* * First, get an unmapped region: then randomize it, and make sure that * region is free. */ if (current->flags & PF_RANDOMIZE) { addr = get_unmapped_area(NULL, 0, image->size - image->sym_vvar_start, 0, 0); if (IS_ERR_VALUE(addr)) { ret = addr; goto up_fail; } addr = vdso_addr(addr, image->size - image->sym_vvar_start); } addr = get_unmapped_area(NULL, addr, image->size - image->sym_vvar_start, 0, 0); if (IS_ERR_VALUE(addr)) { ret = addr; goto up_fail; } text_start = addr - image->sym_vvar_start; current->mm->context.vdso = (void __user *)text_start; /* * MAYWRITE to allow gdb to COW and set breakpoints */ vma = _install_special_mapping(mm, text_start, image->size, VM_READ|VM_EXEC| VM_MAYREAD|VM_MAYWRITE|VM_MAYEXEC, vdso_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); goto up_fail; } vma = _install_special_mapping(mm, addr, -image->sym_vvar_start, VM_READ|VM_MAYREAD, &vvar_mapping); if (IS_ERR(vma)) { ret = PTR_ERR(vma); do_munmap(mm, text_start, image->size, NULL); } up_fail: if (ret) current->mm->context.vdso = NULL; mmap_write_unlock(mm); return ret; } int arch_setup_additional_pages(struct linux_binprm *bprm, int uses_interp) { if (!vdso_enabled) return 0; #if defined CONFIG_COMPAT if (!(is_32bit_task())) return map_vdso(&vdso_image_64_builtin, &vdso_mapping64); else return map_vdso(&vdso_image_32_builtin, &vdso_mapping32); #else return map_vdso(&vdso_image_64_builtin, &vdso_mapping64); #endif } static __init int vdso_setup(char *s) { int err; unsigned long val; err = kstrtoul(s, 10, &val); if (err) return err; vdso_enabled = val; return 0; } __setup("vdso=", vdso_setup);