/* SPDX-License-Identifier: GPL-2.0 */ #ifndef _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ #define _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ #include #ifndef __ASSEMBLY__ #include #include #endif /* * Common bits between hash and Radix page table */ #define _PAGE_BIT_SWAP_TYPE 0 #define _PAGE_RO 0 #define _PAGE_SHARED 0 #define _PAGE_EXEC 0x00001 /* execute permission */ #define _PAGE_WRITE 0x00002 /* write access allowed */ #define _PAGE_READ 0x00004 /* read access allowed */ #define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) #define _PAGE_RWX (_PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) #define _PAGE_PRIVILEGED 0x00008 /* kernel access only */ #define _PAGE_SAO 0x00010 /* Strong access order */ #define _PAGE_NON_IDEMPOTENT 0x00020 /* non idempotent memory */ #define _PAGE_TOLERANT 0x00030 /* tolerant memory, cache inhibited */ #define _PAGE_DIRTY 0x00080 /* C: page changed */ #define _PAGE_ACCESSED 0x00100 /* R: page referenced */ /* * Software bits */ #define _RPAGE_SW0 0x2000000000000000UL #define _RPAGE_SW1 0x00800 #define _RPAGE_SW2 0x00400 #define _RPAGE_SW3 0x00200 #define _RPAGE_RSV1 0x1000000000000000UL #define _RPAGE_RSV2 0x0800000000000000UL #define _RPAGE_RSV3 0x0400000000000000UL #define _RPAGE_RSV4 0x0200000000000000UL #define _PAGE_PTE 0x4000000000000000UL /* distinguishes PTEs from pointers */ #define _PAGE_PRESENT 0x8000000000000000UL /* pte contains a translation */ /* * Top and bottom bits of RPN which can be used by hash * translation mode, because we expect them to be zero * otherwise. */ #define _RPAGE_RPN0 0x01000 #define _RPAGE_RPN1 0x02000 #define _RPAGE_RPN44 0x0100000000000000UL #define _RPAGE_RPN43 0x0080000000000000UL #define _RPAGE_RPN42 0x0040000000000000UL #define _RPAGE_RPN41 0x0020000000000000UL /* Max physical address bit as per radix table */ #define _RPAGE_PA_MAX 57 /* * Max physical address bit we will use for now. * * This is mostly a hardware limitation and for now Power9 has * a 51 bit limit. * * This is different from the number of physical bit required to address * the last byte of memory. That is defined by MAX_PHYSMEM_BITS. * MAX_PHYSMEM_BITS is a linux limitation imposed by the maximum * number of sections we can support (SECTIONS_SHIFT). * * This is different from Radix page table limitation above and * should always be less than that. The limit is done such that * we can overload the bits between _RPAGE_PA_MAX and _PAGE_PA_MAX * for hash linux page table specific bits. * * In order to be compatible with future hardware generations we keep * some offsets and limit this for now to 53 */ #define _PAGE_PA_MAX 53 #define _PAGE_SOFT_DIRTY _RPAGE_SW3 /* software: software dirty tracking */ #define _PAGE_SPECIAL _RPAGE_SW2 /* software: special page */ #define _PAGE_DEVMAP _RPAGE_SW1 /* software: ZONE_DEVICE page */ #define __HAVE_ARCH_PTE_DEVMAP /* * Drivers request for cache inhibited pte mapping using _PAGE_NO_CACHE * Instead of fixing all of them, add an alternate define which * maps CI pte mapping. */ #define _PAGE_NO_CACHE _PAGE_TOLERANT /* * We support _RPAGE_PA_MAX bit real address in pte. On the linux side * we are limited by _PAGE_PA_MAX. Clear everything above _PAGE_PA_MAX * and every thing below PAGE_SHIFT; */ #define PTE_RPN_MASK (((1UL << _PAGE_PA_MAX) - 1) & (PAGE_MASK)) /* * set of bits not changed in pmd_modify. Even though we have hash specific bits * in here, on radix we expect them to be zero. */ #define _HPAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ _PAGE_ACCESSED | H_PAGE_THP_HUGE | _PAGE_PTE | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) /* * user access blocked by key */ #define _PAGE_KERNEL_RW (_PAGE_PRIVILEGED | _PAGE_RW | _PAGE_DIRTY) #define _PAGE_KERNEL_RO (_PAGE_PRIVILEGED | _PAGE_READ) #define _PAGE_KERNEL_RWX (_PAGE_PRIVILEGED | _PAGE_DIRTY | \ _PAGE_RW | _PAGE_EXEC) /* * No page size encoding in the linux PTE */ #define _PAGE_PSIZE 0 /* * _PAGE_CHG_MASK masks of bits that are to be preserved across * pgprot changes */ #define _PAGE_CHG_MASK (PTE_RPN_MASK | _PAGE_HPTEFLAGS | _PAGE_DIRTY | \ _PAGE_ACCESSED | _PAGE_SPECIAL | _PAGE_PTE | \ _PAGE_SOFT_DIRTY | _PAGE_DEVMAP) /* * Mask of bits returned by pte_pgprot() */ #define PAGE_PROT_BITS (_PAGE_SAO | _PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT | \ H_PAGE_4K_PFN | _PAGE_PRIVILEGED | _PAGE_ACCESSED | \ _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_EXEC | \ _PAGE_SOFT_DIRTY) /* * We define 2 sets of base prot bits, one for basic pages (ie, * cacheable kernel and user pages) and one for non cacheable * pages. We always set _PAGE_COHERENT when SMP is enabled or * the processor might need it for DMA coherency. */ #define _PAGE_BASE_NC (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_PSIZE) #define _PAGE_BASE (_PAGE_BASE_NC) /* Permission masks used to generate the __P and __S table, * * Note:__pgprot is defined in arch/powerpc/include/asm/page.h * * Write permissions imply read permissions for now (we could make write-only * pages on BookE but we don't bother for now). Execute permission control is * possible on platforms that define _PAGE_EXEC * * Note due to the way vm flags are laid out, the bits are XWR */ #define PAGE_NONE __pgprot(_PAGE_BASE | _PAGE_PRIVILEGED) #define PAGE_SHARED __pgprot(_PAGE_BASE | _PAGE_RW) #define PAGE_SHARED_X __pgprot(_PAGE_BASE | _PAGE_RW | _PAGE_EXEC) #define PAGE_COPY __pgprot(_PAGE_BASE | _PAGE_READ) #define PAGE_COPY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) #define PAGE_READONLY __pgprot(_PAGE_BASE | _PAGE_READ) #define PAGE_READONLY_X __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) #define __P000 PAGE_NONE #define __P001 PAGE_READONLY #define __P010 PAGE_COPY #define __P011 PAGE_COPY #define __P100 PAGE_READONLY_X #define __P101 PAGE_READONLY_X #define __P110 PAGE_COPY_X #define __P111 PAGE_COPY_X #define __S000 PAGE_NONE #define __S001 PAGE_READONLY #define __S010 PAGE_SHARED #define __S011 PAGE_SHARED #define __S100 PAGE_READONLY_X #define __S101 PAGE_READONLY_X #define __S110 PAGE_SHARED_X #define __S111 PAGE_SHARED_X /* Permission masks used for kernel mappings */ #define PAGE_KERNEL __pgprot(_PAGE_BASE | _PAGE_KERNEL_RW) #define PAGE_KERNEL_NC __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ _PAGE_TOLERANT) #define PAGE_KERNEL_NCG __pgprot(_PAGE_BASE_NC | _PAGE_KERNEL_RW | \ _PAGE_NON_IDEMPOTENT) #define PAGE_KERNEL_X __pgprot(_PAGE_BASE | _PAGE_KERNEL_RWX) #define PAGE_KERNEL_RO __pgprot(_PAGE_BASE | _PAGE_KERNEL_RO) #define PAGE_KERNEL_ROX __pgprot(_PAGE_BASE | _PAGE_KERNEL_ROX) /* * Protection used for kernel text. We want the debuggers to be able to * set breakpoints anywhere, so don't write protect the kernel text * on platforms where such control is possible. */ #if defined(CONFIG_KGDB) || defined(CONFIG_XMON) || defined(CONFIG_BDI_SWITCH) || \ defined(CONFIG_KPROBES) || defined(CONFIG_DYNAMIC_FTRACE) #define PAGE_KERNEL_TEXT PAGE_KERNEL_X #else #define PAGE_KERNEL_TEXT PAGE_KERNEL_ROX #endif /* Make modules code happy. We don't set RO yet */ #define PAGE_KERNEL_EXEC PAGE_KERNEL_X #define PAGE_AGP (PAGE_KERNEL_NC) #ifndef __ASSEMBLY__ /* * page table defines */ extern unsigned long __pte_index_size; extern unsigned long __pmd_index_size; extern unsigned long __pud_index_size; extern unsigned long __pgd_index_size; extern unsigned long __pmd_cache_index; #define PTE_INDEX_SIZE __pte_index_size #define PMD_INDEX_SIZE __pmd_index_size #define PUD_INDEX_SIZE __pud_index_size #define PGD_INDEX_SIZE __pgd_index_size #define PMD_CACHE_INDEX __pmd_cache_index /* * Because of use of pte fragments and THP, size of page table * are not always derived out of index size above. */ extern unsigned long __pte_table_size; extern unsigned long __pmd_table_size; extern unsigned long __pud_table_size; extern unsigned long __pgd_table_size; #define PTE_TABLE_SIZE __pte_table_size #define PMD_TABLE_SIZE __pmd_table_size #define PUD_TABLE_SIZE __pud_table_size #define PGD_TABLE_SIZE __pgd_table_size extern unsigned long __pmd_val_bits; extern unsigned long __pud_val_bits; extern unsigned long __pgd_val_bits; #define PMD_VAL_BITS __pmd_val_bits #define PUD_VAL_BITS __pud_val_bits #define PGD_VAL_BITS __pgd_val_bits extern unsigned long __pte_frag_nr; #define PTE_FRAG_NR __pte_frag_nr extern unsigned long __pte_frag_size_shift; #define PTE_FRAG_SIZE_SHIFT __pte_frag_size_shift #define PTE_FRAG_SIZE (1UL << PTE_FRAG_SIZE_SHIFT) #define PTRS_PER_PTE (1 << PTE_INDEX_SIZE) #define PTRS_PER_PMD (1 << PMD_INDEX_SIZE) #define PTRS_PER_PUD (1 << PUD_INDEX_SIZE) #define PTRS_PER_PGD (1 << PGD_INDEX_SIZE) /* PMD_SHIFT determines what a second-level page table entry can map */ #define PMD_SHIFT (PAGE_SHIFT + PTE_INDEX_SIZE) #define PMD_SIZE (1UL << PMD_SHIFT) #define PMD_MASK (~(PMD_SIZE-1)) /* PUD_SHIFT determines what a third-level page table entry can map */ #define PUD_SHIFT (PMD_SHIFT + PMD_INDEX_SIZE) #define PUD_SIZE (1UL << PUD_SHIFT) #define PUD_MASK (~(PUD_SIZE-1)) /* PGDIR_SHIFT determines what a fourth-level page table entry can map */ #define PGDIR_SHIFT (PUD_SHIFT + PUD_INDEX_SIZE) #define PGDIR_SIZE (1UL << PGDIR_SHIFT) #define PGDIR_MASK (~(PGDIR_SIZE-1)) /* Bits to mask out from a PMD to get to the PTE page */ #define PMD_MASKED_BITS 0xc0000000000000ffUL /* Bits to mask out from a PUD to get to the PMD page */ #define PUD_MASKED_BITS 0xc0000000000000ffUL /* Bits to mask out from a PGD to get to the PUD page */ #define PGD_MASKED_BITS 0xc0000000000000ffUL extern unsigned long __vmalloc_start; extern unsigned long __vmalloc_end; #define VMALLOC_START __vmalloc_start #define VMALLOC_END __vmalloc_end extern unsigned long __kernel_virt_start; extern unsigned long __kernel_virt_size; extern unsigned long __kernel_io_start; #define KERN_VIRT_START __kernel_virt_start #define KERN_VIRT_SIZE __kernel_virt_size #define KERN_IO_START __kernel_io_start extern struct page *vmemmap; extern unsigned long ioremap_bot; extern unsigned long pci_io_base; #endif /* __ASSEMBLY__ */ #include #include #ifdef CONFIG_PPC_64K_PAGES #include #else #include #endif #include /* * The second half of the kernel virtual space is used for IO mappings, * it's itself carved into the PIO region (ISA and PHB IO space) and * the ioremap space * * ISA_IO_BASE = KERN_IO_START, 64K reserved area * PHB_IO_BASE = ISA_IO_BASE + 64K to ISA_IO_BASE + 2G, PHB IO spaces * IOREMAP_BASE = ISA_IO_BASE + 2G to VMALLOC_START + PGTABLE_RANGE */ #define FULL_IO_SIZE 0x80000000ul #define ISA_IO_BASE (KERN_IO_START) #define ISA_IO_END (KERN_IO_START + 0x10000ul) #define PHB_IO_BASE (ISA_IO_END) #define PHB_IO_END (KERN_IO_START + FULL_IO_SIZE) #define IOREMAP_BASE (PHB_IO_END) #define IOREMAP_END (KERN_VIRT_START + KERN_VIRT_SIZE) /* Advertise special mapping type for AGP */ #define HAVE_PAGE_AGP /* Advertise support for _PAGE_SPECIAL */ #define __HAVE_ARCH_PTE_SPECIAL #ifndef __ASSEMBLY__ /* * This is the default implementation of various PTE accessors, it's * used in all cases except Book3S with 64K pages where we have a * concept of sub-pages */ #ifndef __real_pte #define __real_pte(e,p) ((real_pte_t){(e)}) #define __rpte_to_pte(r) ((r).pte) #define __rpte_to_hidx(r,index) (pte_val(__rpte_to_pte(r)) >> H_PAGE_F_GIX_SHIFT) #define pte_iterate_hashed_subpages(rpte, psize, va, index, shift) \ do { \ index = 0; \ shift = mmu_psize_defs[psize].shift; \ #define pte_iterate_hashed_end() } while(0) /* * We expect this to be called only for user addresses or kernel virtual * addresses other than the linear mapping. */ #define pte_pagesize_index(mm, addr, pte) MMU_PAGE_4K #endif /* __real_pte */ static inline unsigned long pte_update(struct mm_struct *mm, unsigned long addr, pte_t *ptep, unsigned long clr, unsigned long set, int huge) { if (radix_enabled()) return radix__pte_update(mm, addr, ptep, clr, set, huge); return hash__pte_update(mm, addr, ptep, clr, set, huge); } /* * For hash even if we have _PAGE_ACCESSED = 0, we do a pte_update. * We currently remove entries from the hashtable regardless of whether * the entry was young or dirty. * * We should be more intelligent about this but for the moment we override * these functions and force a tlb flush unconditionally * For radix: H_PAGE_HASHPTE should be zero. Hence we can use the same * function for both hash and radix. */ static inline int __ptep_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old; if ((pte_raw(*ptep) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) return 0; old = pte_update(mm, addr, ptep, _PAGE_ACCESSED, 0, 0); return (old & _PAGE_ACCESSED) != 0; } #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG #define ptep_test_and_clear_young(__vma, __addr, __ptep) \ ({ \ int __r; \ __r = __ptep_test_and_clear_young((__vma)->vm_mm, __addr, __ptep); \ __r; \ }) static inline int __pte_write(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_WRITE)); } #ifdef CONFIG_NUMA_BALANCING #define pte_savedwrite pte_savedwrite static inline bool pte_savedwrite(pte_t pte) { /* * Saved write ptes are prot none ptes that doesn't have * privileged bit sit. We mark prot none as one which has * present and pviliged bit set and RWX cleared. To mark * protnone which used to have _PAGE_WRITE set we clear * the privileged bit. */ return !(pte_raw(pte) & cpu_to_be64(_PAGE_RWX | _PAGE_PRIVILEGED)); } #else #define pte_savedwrite pte_savedwrite static inline bool pte_savedwrite(pte_t pte) { return false; } #endif static inline int pte_write(pte_t pte) { return __pte_write(pte) || pte_savedwrite(pte); } static inline int pte_read(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_READ)); } #define __HAVE_ARCH_PTEP_SET_WRPROTECT static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { if (__pte_write(*ptep)) pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 0); else if (unlikely(pte_savedwrite(*ptep))) pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 0); } static inline void huge_ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { /* * We should not find protnone for hugetlb, but this complete the * interface. */ if (__pte_write(*ptep)) pte_update(mm, addr, ptep, _PAGE_WRITE, 0, 1); else if (unlikely(pte_savedwrite(*ptep))) pte_update(mm, addr, ptep, 0, _PAGE_PRIVILEGED, 1); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) { unsigned long old = pte_update(mm, addr, ptep, ~0UL, 0, 0); return __pte(old); } #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, unsigned long addr, pte_t *ptep, int full) { if (full && radix_enabled()) { /* * Let's skip the DD1 style pte update here. We know that * this is a full mm pte clear and hence can be sure there is * no parallel set_pte. */ return radix__ptep_get_and_clear_full(mm, addr, ptep, full); } return ptep_get_and_clear(mm, addr, ptep); } static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t * ptep) { pte_update(mm, addr, ptep, ~0UL, 0, 0); } static inline int pte_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_DIRTY)); } static inline int pte_young(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_ACCESSED)); } static inline int pte_special(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SPECIAL)); } static inline pgprot_t pte_pgprot(pte_t pte) { return __pgprot(pte_val(pte) & PAGE_PROT_BITS); } #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline bool pte_soft_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SOFT_DIRTY)); } static inline pte_t pte_mksoft_dirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SOFT_DIRTY); } static inline pte_t pte_clear_soft_dirty(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ #ifdef CONFIG_NUMA_BALANCING static inline int pte_protnone(pte_t pte) { return (pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE | _PAGE_RWX)) == cpu_to_be64(_PAGE_PRESENT | _PAGE_PTE); } #define pte_mk_savedwrite pte_mk_savedwrite static inline pte_t pte_mk_savedwrite(pte_t pte) { /* * Used by Autonuma subsystem to preserve the write bit * while marking the pte PROT_NONE. Only allow this * on PROT_NONE pte */ VM_BUG_ON((pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT | _PAGE_RWX | _PAGE_PRIVILEGED)) != cpu_to_be64(_PAGE_PRESENT | _PAGE_PRIVILEGED)); return __pte(pte_val(pte) & ~_PAGE_PRIVILEGED); } #define pte_clear_savedwrite pte_clear_savedwrite static inline pte_t pte_clear_savedwrite(pte_t pte) { /* * Used by KSM subsystem to make a protnone pte readonly. */ VM_BUG_ON(!pte_protnone(pte)); return __pte(pte_val(pte) | _PAGE_PRIVILEGED); } #else #define pte_clear_savedwrite pte_clear_savedwrite static inline pte_t pte_clear_savedwrite(pte_t pte) { VM_WARN_ON(1); return __pte(pte_val(pte) & ~_PAGE_WRITE); } #endif /* CONFIG_NUMA_BALANCING */ static inline int pte_present(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_PRESENT)); } /* * Conversion functions: convert a page and protection to a page entry, * and a page entry and page directory to the page they refer to. * * Even if PTEs can be unsigned long long, a PFN is always an unsigned * long for now. */ static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) { return __pte((((pte_basic_t)(pfn) << PAGE_SHIFT) & PTE_RPN_MASK) | pgprot_val(pgprot)); } static inline unsigned long pte_pfn(pte_t pte) { return (pte_val(pte) & PTE_RPN_MASK) >> PAGE_SHIFT; } /* Generic modifiers for PTE bits */ static inline pte_t pte_wrprotect(pte_t pte) { if (unlikely(pte_savedwrite(pte))) return pte_clear_savedwrite(pte); return __pte(pte_val(pte) & ~_PAGE_WRITE); } static inline pte_t pte_mkclean(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_DIRTY); } static inline pte_t pte_mkold(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_ACCESSED); } static inline pte_t pte_mkwrite(pte_t pte) { /* * write implies read, hence set both */ return __pte(pte_val(pte) | _PAGE_RW); } static inline pte_t pte_mkdirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_DIRTY | _PAGE_SOFT_DIRTY); } static inline pte_t pte_mkyoung(pte_t pte) { return __pte(pte_val(pte) | _PAGE_ACCESSED); } static inline pte_t pte_mkspecial(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL); } static inline pte_t pte_mkhuge(pte_t pte) { return pte; } static inline pte_t pte_mkdevmap(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SPECIAL|_PAGE_DEVMAP); } /* * This is potentially called with a pmd as the argument, in which case it's not * safe to check _PAGE_DEVMAP unless we also confirm that _PAGE_PTE is set. * That's because the bit we use for _PAGE_DEVMAP is not reserved for software * use in page directory entries (ie. non-ptes). */ static inline int pte_devmap(pte_t pte) { u64 mask = cpu_to_be64(_PAGE_DEVMAP | _PAGE_PTE); return (pte_raw(pte) & mask) == mask; } static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) { /* FIXME!! check whether this need to be a conditional */ return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot)); } static inline bool pte_user(pte_t pte) { return !(pte_raw(pte) & cpu_to_be64(_PAGE_PRIVILEGED)); } /* Encode and de-code a swap entry */ #define MAX_SWAPFILES_CHECK() do { \ BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS); \ /* \ * Don't have overlapping bits with _PAGE_HPTEFLAGS \ * We filter HPTEFLAGS on set_pte. \ */ \ BUILD_BUG_ON(_PAGE_HPTEFLAGS & (0x1f << _PAGE_BIT_SWAP_TYPE)); \ BUILD_BUG_ON(_PAGE_HPTEFLAGS & _PAGE_SWP_SOFT_DIRTY); \ } while (0) /* * on pte we don't need handle RADIX_TREE_EXCEPTIONAL_SHIFT; */ #define SWP_TYPE_BITS 5 #define __swp_type(x) (((x).val >> _PAGE_BIT_SWAP_TYPE) \ & ((1UL << SWP_TYPE_BITS) - 1)) #define __swp_offset(x) (((x).val & PTE_RPN_MASK) >> PAGE_SHIFT) #define __swp_entry(type, offset) ((swp_entry_t) { \ ((type) << _PAGE_BIT_SWAP_TYPE) \ | (((offset) << PAGE_SHIFT) & PTE_RPN_MASK)}) /* * swp_entry_t must be independent of pte bits. We build a swp_entry_t from * swap type and offset we get from swap and convert that to pte to find a * matching pte in linux page table. * Clear bits not found in swap entries here. */ #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val((pte)) & ~_PAGE_PTE }) #define __swp_entry_to_pte(x) __pte((x).val | _PAGE_PTE) #ifdef CONFIG_MEM_SOFT_DIRTY #define _PAGE_SWP_SOFT_DIRTY (1UL << (SWP_TYPE_BITS + _PAGE_BIT_SWAP_TYPE)) #else #define _PAGE_SWP_SOFT_DIRTY 0UL #endif /* CONFIG_MEM_SOFT_DIRTY */ #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY static inline pte_t pte_swp_mksoft_dirty(pte_t pte) { return __pte(pte_val(pte) | _PAGE_SWP_SOFT_DIRTY); } static inline bool pte_swp_soft_dirty(pte_t pte) { return !!(pte_raw(pte) & cpu_to_be64(_PAGE_SWP_SOFT_DIRTY)); } static inline pte_t pte_swp_clear_soft_dirty(pte_t pte) { return __pte(pte_val(pte) & ~_PAGE_SWP_SOFT_DIRTY); } #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ static inline bool check_pte_access(unsigned long access, unsigned long ptev) { /* * This check for _PAGE_RWX and _PAGE_PRESENT bits */ if (access & ~ptev) return false; /* * This check for access to privilege space */ if ((access & _PAGE_PRIVILEGED) != (ptev & _PAGE_PRIVILEGED)) return false; return true; } /* * Generic functions with hash/radix callbacks */ static inline void __ptep_set_access_flags(struct mm_struct *mm, pte_t *ptep, pte_t entry, unsigned long address) { if (radix_enabled()) return radix__ptep_set_access_flags(mm, ptep, entry, address); return hash__ptep_set_access_flags(ptep, entry); } #define __HAVE_ARCH_PTE_SAME static inline int pte_same(pte_t pte_a, pte_t pte_b) { if (radix_enabled()) return radix__pte_same(pte_a, pte_b); return hash__pte_same(pte_a, pte_b); } static inline int pte_none(pte_t pte) { if (radix_enabled()) return radix__pte_none(pte); return hash__pte_none(pte); } static inline void __set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pte, int percpu) { if (radix_enabled()) return radix__set_pte_at(mm, addr, ptep, pte, percpu); return hash__set_pte_at(mm, addr, ptep, pte, percpu); } #define _PAGE_CACHE_CTL (_PAGE_NON_IDEMPOTENT | _PAGE_TOLERANT) #define pgprot_noncached pgprot_noncached static inline pgprot_t pgprot_noncached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_NON_IDEMPOTENT); } #define pgprot_noncached_wc pgprot_noncached_wc static inline pgprot_t pgprot_noncached_wc(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL) | _PAGE_TOLERANT); } #define pgprot_cached pgprot_cached static inline pgprot_t pgprot_cached(pgprot_t prot) { return __pgprot((pgprot_val(prot) & ~_PAGE_CACHE_CTL)); } #define pgprot_writecombine pgprot_writecombine static inline pgprot_t pgprot_writecombine(pgprot_t prot) { return pgprot_noncached_wc(prot); } /* * check a pte mapping have cache inhibited property */ static inline bool pte_ci(pte_t pte) { unsigned long pte_v = pte_val(pte); if (((pte_v & _PAGE_CACHE_CTL) == _PAGE_TOLERANT) || ((pte_v & _PAGE_CACHE_CTL) == _PAGE_NON_IDEMPOTENT)) return true; return false; } static inline void pmd_set(pmd_t *pmdp, unsigned long val) { *pmdp = __pmd(val); } static inline void pmd_clear(pmd_t *pmdp) { *pmdp = __pmd(0); } static inline int pmd_none(pmd_t pmd) { return !pmd_raw(pmd); } static inline int pmd_present(pmd_t pmd) { return !pmd_none(pmd); } static inline int pmd_bad(pmd_t pmd) { if (radix_enabled()) return radix__pmd_bad(pmd); return hash__pmd_bad(pmd); } static inline void pud_set(pud_t *pudp, unsigned long val) { *pudp = __pud(val); } static inline void pud_clear(pud_t *pudp) { *pudp = __pud(0); } static inline int pud_none(pud_t pud) { return !pud_raw(pud); } static inline int pud_present(pud_t pud) { return !pud_none(pud); } extern struct page *pud_page(pud_t pud); extern struct page *pmd_page(pmd_t pmd); static inline pte_t pud_pte(pud_t pud) { return __pte_raw(pud_raw(pud)); } static inline pud_t pte_pud(pte_t pte) { return __pud_raw(pte_raw(pte)); } #define pud_write(pud) pte_write(pud_pte(pud)) static inline int pud_bad(pud_t pud) { if (radix_enabled()) return radix__pud_bad(pud); return hash__pud_bad(pud); } #define pgd_write(pgd) pte_write(pgd_pte(pgd)) static inline void pgd_set(pgd_t *pgdp, unsigned long val) { *pgdp = __pgd(val); } static inline void pgd_clear(pgd_t *pgdp) { *pgdp = __pgd(0); } static inline int pgd_none(pgd_t pgd) { return !pgd_raw(pgd); } static inline int pgd_present(pgd_t pgd) { return !pgd_none(pgd); } static inline pte_t pgd_pte(pgd_t pgd) { return __pte_raw(pgd_raw(pgd)); } static inline pgd_t pte_pgd(pte_t pte) { return __pgd_raw(pte_raw(pte)); } static inline int pgd_bad(pgd_t pgd) { if (radix_enabled()) return radix__pgd_bad(pgd); return hash__pgd_bad(pgd); } extern struct page *pgd_page(pgd_t pgd); /* Pointers in the page table tree are physical addresses */ #define __pgtable_ptr_val(ptr) __pa(ptr) #define pmd_page_vaddr(pmd) __va(pmd_val(pmd) & ~PMD_MASKED_BITS) #define pud_page_vaddr(pud) __va(pud_val(pud) & ~PUD_MASKED_BITS) #define pgd_page_vaddr(pgd) __va(pgd_val(pgd) & ~PGD_MASKED_BITS) static inline unsigned long pgd_index(unsigned long address) { return (address >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1); } static inline unsigned long pud_index(unsigned long address) { return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1); } static inline unsigned long pmd_index(unsigned long address) { return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1); } static inline unsigned long pte_index(unsigned long address) { return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1); } /* * Find an entry in a page-table-directory. We combine the address region * (the high order N bits) and the pgd portion of the address. */ #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address)) #define pud_offset(pgdp, addr) \ (((pud_t *) pgd_page_vaddr(*(pgdp))) + pud_index(addr)) #define pmd_offset(pudp,addr) \ (((pmd_t *) pud_page_vaddr(*(pudp))) + pmd_index(addr)) #define pte_offset_kernel(dir,addr) \ (((pte_t *) pmd_page_vaddr(*(dir))) + pte_index(addr)) #define pte_offset_map(dir,addr) pte_offset_kernel((dir), (addr)) #define pte_unmap(pte) do { } while(0) /* to find an entry in a kernel page-table-directory */ /* This now only contains the vmalloc pages */ #define pgd_offset_k(address) pgd_offset(&init_mm, address) #define pte_ERROR(e) \ pr_err("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) #define pmd_ERROR(e) \ pr_err("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e)) #define pud_ERROR(e) \ pr_err("%s:%d: bad pud %08lx.\n", __FILE__, __LINE__, pud_val(e)) #define pgd_ERROR(e) \ pr_err("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e)) static inline int map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags) { if (radix_enabled()) { #if defined(CONFIG_PPC_RADIX_MMU) && defined(DEBUG_VM) unsigned long page_size = 1 << mmu_psize_defs[mmu_io_psize].shift; WARN((page_size != PAGE_SIZE), "I/O page size != PAGE_SIZE"); #endif return radix__map_kernel_page(ea, pa, __pgprot(flags), PAGE_SIZE); } return hash__map_kernel_page(ea, pa, flags); } static inline int __meminit vmemmap_create_mapping(unsigned long start, unsigned long page_size, unsigned long phys) { if (radix_enabled()) return radix__vmemmap_create_mapping(start, page_size, phys); return hash__vmemmap_create_mapping(start, page_size, phys); } #ifdef CONFIG_MEMORY_HOTPLUG static inline void vmemmap_remove_mapping(unsigned long start, unsigned long page_size) { if (radix_enabled()) return radix__vmemmap_remove_mapping(start, page_size); return hash__vmemmap_remove_mapping(start, page_size); } #endif struct page *realmode_pfn_to_page(unsigned long pfn); static inline pte_t pmd_pte(pmd_t pmd) { return __pte_raw(pmd_raw(pmd)); } static inline pmd_t pte_pmd(pte_t pte) { return __pmd_raw(pte_raw(pte)); } static inline pte_t *pmdp_ptep(pmd_t *pmd) { return (pte_t *)pmd; } #define pmd_pfn(pmd) pte_pfn(pmd_pte(pmd)) #define pmd_dirty(pmd) pte_dirty(pmd_pte(pmd)) #define pmd_young(pmd) pte_young(pmd_pte(pmd)) #define pmd_mkold(pmd) pte_pmd(pte_mkold(pmd_pte(pmd))) #define pmd_wrprotect(pmd) pte_pmd(pte_wrprotect(pmd_pte(pmd))) #define pmd_mkdirty(pmd) pte_pmd(pte_mkdirty(pmd_pte(pmd))) #define pmd_mkclean(pmd) pte_pmd(pte_mkclean(pmd_pte(pmd))) #define pmd_mkyoung(pmd) pte_pmd(pte_mkyoung(pmd_pte(pmd))) #define pmd_mkwrite(pmd) pte_pmd(pte_mkwrite(pmd_pte(pmd))) #define pmd_mk_savedwrite(pmd) pte_pmd(pte_mk_savedwrite(pmd_pte(pmd))) #define pmd_clear_savedwrite(pmd) pte_pmd(pte_clear_savedwrite(pmd_pte(pmd))) #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY #define pmd_soft_dirty(pmd) pte_soft_dirty(pmd_pte(pmd)) #define pmd_mksoft_dirty(pmd) pte_pmd(pte_mksoft_dirty(pmd_pte(pmd))) #define pmd_clear_soft_dirty(pmd) pte_pmd(pte_clear_soft_dirty(pmd_pte(pmd))) #endif /* CONFIG_HAVE_ARCH_SOFT_DIRTY */ #ifdef CONFIG_NUMA_BALANCING static inline int pmd_protnone(pmd_t pmd) { return pte_protnone(pmd_pte(pmd)); } #endif /* CONFIG_NUMA_BALANCING */ #define __HAVE_ARCH_PMD_WRITE #define pmd_write(pmd) pte_write(pmd_pte(pmd)) #define __pmd_write(pmd) __pte_write(pmd_pte(pmd)) #define pmd_savedwrite(pmd) pte_savedwrite(pmd_pte(pmd)) #ifdef CONFIG_TRANSPARENT_HUGEPAGE extern pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot); extern pmd_t mk_pmd(struct page *page, pgprot_t pgprot); extern pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot); extern void set_pmd_at(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, pmd_t pmd); extern void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr, pmd_t *pmd); extern int hash__has_transparent_hugepage(void); static inline int has_transparent_hugepage(void) { if (radix_enabled()) return radix__has_transparent_hugepage(); return hash__has_transparent_hugepage(); } #define has_transparent_hugepage has_transparent_hugepage static inline unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp, unsigned long clr, unsigned long set) { if (radix_enabled()) return radix__pmd_hugepage_update(mm, addr, pmdp, clr, set); return hash__pmd_hugepage_update(mm, addr, pmdp, clr, set); } static inline int pmd_large(pmd_t pmd) { return !!(pmd_raw(pmd) & cpu_to_be64(_PAGE_PTE)); } static inline pmd_t pmd_mknotpresent(pmd_t pmd) { return __pmd(pmd_val(pmd) & ~_PAGE_PRESENT); } /* * For radix we should always find H_PAGE_HASHPTE zero. Hence * the below will work for radix too */ static inline int __pmdp_test_and_clear_young(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { unsigned long old; if ((pmd_raw(*pmdp) & cpu_to_be64(_PAGE_ACCESSED | H_PAGE_HASHPTE)) == 0) return 0; old = pmd_hugepage_update(mm, addr, pmdp, _PAGE_ACCESSED, 0); return ((old & _PAGE_ACCESSED) != 0); } #define __HAVE_ARCH_PMDP_SET_WRPROTECT static inline void pmdp_set_wrprotect(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if (__pmd_write((*pmdp))) pmd_hugepage_update(mm, addr, pmdp, _PAGE_WRITE, 0); else if (unlikely(pmd_savedwrite(*pmdp))) pmd_hugepage_update(mm, addr, pmdp, 0, _PAGE_PRIVILEGED); } static inline int pmd_trans_huge(pmd_t pmd) { if (radix_enabled()) return radix__pmd_trans_huge(pmd); return hash__pmd_trans_huge(pmd); } #define __HAVE_ARCH_PMD_SAME static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b) { if (radix_enabled()) return radix__pmd_same(pmd_a, pmd_b); return hash__pmd_same(pmd_a, pmd_b); } static inline pmd_t pmd_mkhuge(pmd_t pmd) { if (radix_enabled()) return radix__pmd_mkhuge(pmd); return hash__pmd_mkhuge(pmd); } #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS extern int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp, pmd_t entry, int dirty); #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG extern int pmdp_test_and_clear_young(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, unsigned long addr, pmd_t *pmdp) { if (radix_enabled()) return radix__pmdp_huge_get_and_clear(mm, addr, pmdp); return hash__pmdp_huge_get_and_clear(mm, addr, pmdp); } static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { if (radix_enabled()) return radix__pmdp_collapse_flush(vma, address, pmdp); return hash__pmdp_collapse_flush(vma, address, pmdp); } #define pmdp_collapse_flush pmdp_collapse_flush #define __HAVE_ARCH_PGTABLE_DEPOSIT static inline void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, pgtable_t pgtable) { if (radix_enabled()) return radix__pgtable_trans_huge_deposit(mm, pmdp, pgtable); return hash__pgtable_trans_huge_deposit(mm, pmdp, pgtable); } #define __HAVE_ARCH_PGTABLE_WITHDRAW static inline pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp) { if (radix_enabled()) return radix__pgtable_trans_huge_withdraw(mm, pmdp); return hash__pgtable_trans_huge_withdraw(mm, pmdp); } #define __HAVE_ARCH_PMDP_INVALIDATE extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp); #define __HAVE_ARCH_PMDP_HUGE_SPLIT_PREPARE static inline void pmdp_huge_split_prepare(struct vm_area_struct *vma, unsigned long address, pmd_t *pmdp) { if (radix_enabled()) return radix__pmdp_huge_split_prepare(vma, address, pmdp); return hash__pmdp_huge_split_prepare(vma, address, pmdp); } #define pmd_move_must_withdraw pmd_move_must_withdraw struct spinlock; static inline int pmd_move_must_withdraw(struct spinlock *new_pmd_ptl, struct spinlock *old_pmd_ptl, struct vm_area_struct *vma) { if (radix_enabled()) return false; /* * Archs like ppc64 use pgtable to store per pmd * specific information. So when we switch the pmd, * we should also withdraw and deposit the pgtable */ return true; } #define arch_needs_pgtable_deposit arch_needs_pgtable_deposit static inline bool arch_needs_pgtable_deposit(void) { if (radix_enabled()) return false; return true; } extern void serialize_against_pte_lookup(struct mm_struct *mm); static inline pmd_t pmd_mkdevmap(pmd_t pmd) { if (radix_enabled()) return radix__pmd_mkdevmap(pmd); return hash__pmd_mkdevmap(pmd); } static inline int pmd_devmap(pmd_t pmd) { return pte_devmap(pmd_pte(pmd)); } static inline int pud_devmap(pud_t pud) { return 0; } static inline int pgd_devmap(pgd_t pgd) { return 0; } #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ static inline const int pud_pfn(pud_t pud) { /* * Currently all calls to pud_pfn() are gated around a pud_devmap() * check so this should never be used. If it grows another user we * want to know about it. */ BUILD_BUG(); return 0; } #endif /* __ASSEMBLY__ */ #endif /* _ASM_POWERPC_BOOK3S_64_PGTABLE_H_ */