// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2000 Ani Joshi * Copyright (C) 2000, 2001, 06 Ralf Baechle * swiped from i386, and cloned for MIPS by Geert, polished by Ralf. */ #include #include #include #include #include #include #include #include #ifdef CONFIG_DMA_PERDEV_COHERENT static inline int dev_is_coherent(struct device *dev) { return dev->archdata.dma_coherent; } #else static inline int dev_is_coherent(struct device *dev) { switch (coherentio) { default: case IO_COHERENCE_DEFAULT: return hw_coherentio; case IO_COHERENCE_ENABLED: return 1; case IO_COHERENCE_DISABLED: return 0; } } #endif /* CONFIG_DMA_PERDEV_COHERENT */ /* * The affected CPUs below in 'cpu_needs_post_dma_flush()' can speculatively * fill random cachelines with stale data at any time, requiring an extra * flush post-DMA. * * Warning on the terminology - Linux calls an uncached area coherent; MIPS * terminology calls memory areas with hardware maintained coherency coherent. * * Note that the R14000 and R16000 should also be checked for in this condition. * However this function is only called on non-I/O-coherent systems and only the * R10000 and R12000 are used in such systems, the SGI IP28 Indigo² rsp. * SGI IP32 aka O2. */ static inline bool cpu_needs_post_dma_flush(struct device *dev) { if (dev_is_coherent(dev)) return false; switch (boot_cpu_type()) { case CPU_R10000: case CPU_R12000: case CPU_BMIPS5000: return true; default: /* * Presence of MAARs suggests that the CPU supports * speculatively prefetching data, and therefore requires * the post-DMA flush/invalidate. */ return cpu_has_maar; } } void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) { void *ret; ret = dma_direct_alloc(dev, size, dma_handle, gfp, attrs); if (!ret) return NULL; if (!dev_is_coherent(dev) && !(attrs & DMA_ATTR_NON_CONSISTENT)) { dma_cache_wback_inv((unsigned long) ret, size); ret = (void *)UNCAC_ADDR(ret); } return ret; } void arch_dma_free(struct device *dev, size_t size, void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs) { if (!(attrs & DMA_ATTR_NON_CONSISTENT) && !dev_is_coherent(dev)) cpu_addr = (void *)CAC_ADDR((unsigned long)cpu_addr); dma_direct_free(dev, size, cpu_addr, dma_addr, attrs); } int arch_dma_mmap(struct device *dev, struct vm_area_struct *vma, void *cpu_addr, dma_addr_t dma_addr, size_t size, unsigned long attrs) { unsigned long user_count = vma_pages(vma); unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT; unsigned long addr = (unsigned long)cpu_addr; unsigned long off = vma->vm_pgoff; unsigned long pfn; int ret = -ENXIO; if (!dev_is_coherent(dev)) addr = CAC_ADDR(addr); pfn = page_to_pfn(virt_to_page((void *)addr)); if (attrs & DMA_ATTR_WRITE_COMBINE) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); else vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret)) return ret; if (off < count && user_count <= (count - off)) { ret = remap_pfn_range(vma, vma->vm_start, pfn + off, user_count << PAGE_SHIFT, vma->vm_page_prot); } return ret; } static inline void dma_sync_virt(void *addr, size_t size, enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: dma_cache_wback((unsigned long)addr, size); break; case DMA_FROM_DEVICE: dma_cache_inv((unsigned long)addr, size); break; case DMA_BIDIRECTIONAL: dma_cache_wback_inv((unsigned long)addr, size); break; default: BUG(); } } /* * A single sg entry may refer to multiple physically contiguous pages. But * we still need to process highmem pages individually. If highmem is not * configured then the bulk of this loop gets optimized out. */ static inline void dma_sync_phys(phys_addr_t paddr, size_t size, enum dma_data_direction dir) { struct page *page = pfn_to_page(paddr >> PAGE_SHIFT); unsigned long offset = paddr & ~PAGE_MASK; size_t left = size; do { size_t len = left; if (PageHighMem(page)) { void *addr; if (offset + len > PAGE_SIZE) { if (offset >= PAGE_SIZE) { page += offset >> PAGE_SHIFT; offset &= ~PAGE_MASK; } len = PAGE_SIZE - offset; } addr = kmap_atomic(page); dma_sync_virt(addr + offset, len, dir); kunmap_atomic(addr); } else dma_sync_virt(page_address(page) + offset, size, dir); offset = 0; page++; left -= len; } while (left); } void arch_sync_dma_for_device(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (!dev_is_coherent(dev)) dma_sync_phys(paddr, size, dir); } void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr, size_t size, enum dma_data_direction dir) { if (cpu_needs_post_dma_flush(dev)) dma_sync_phys(paddr, size, dir); } void arch_dma_cache_sync(struct device *dev, void *vaddr, size_t size, enum dma_data_direction direction) { BUG_ON(direction == DMA_NONE); if (!dev_is_coherent(dev)) dma_sync_virt(vaddr, size, direction); }