summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/intel_display.c
blob: 748ed50c55ca9c67683dcbdca233f6fb4aaa6e41 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
/*
 * Copyright © 2006-2007 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
 * DEALINGS IN THE SOFTWARE.
 *
 * Authors:
 *	Eric Anholt <eric@anholt.net>
 */

#include <linux/i2c.h>
#include <linux/kernel.h>
#include "drmP.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "intel_dp.h"

#include "drm_crtc_helper.h"

#define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))

bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
static void intel_update_watermarks(struct drm_device *dev);

typedef struct {
    /* given values */
    int n;
    int m1, m2;
    int p1, p2;
    /* derived values */
    int	dot;
    int	vco;
    int	m;
    int	p;
} intel_clock_t;

typedef struct {
    int	min, max;
} intel_range_t;

typedef struct {
    int	dot_limit;
    int	p2_slow, p2_fast;
} intel_p2_t;

#define INTEL_P2_NUM		      2
typedef struct intel_limit intel_limit_t;
struct intel_limit {
    intel_range_t   dot, vco, n, m, m1, m2, p, p1;
    intel_p2_t	    p2;
    bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
		      int, int, intel_clock_t *);
};

#define I8XX_DOT_MIN		  25000
#define I8XX_DOT_MAX		 350000
#define I8XX_VCO_MIN		 930000
#define I8XX_VCO_MAX		1400000
#define I8XX_N_MIN		      3
#define I8XX_N_MAX		     16
#define I8XX_M_MIN		     96
#define I8XX_M_MAX		    140
#define I8XX_M1_MIN		     18
#define I8XX_M1_MAX		     26
#define I8XX_M2_MIN		      6
#define I8XX_M2_MAX		     16
#define I8XX_P_MIN		      4
#define I8XX_P_MAX		    128
#define I8XX_P1_MIN		      2
#define I8XX_P1_MAX		     33
#define I8XX_P1_LVDS_MIN	      1
#define I8XX_P1_LVDS_MAX	      6
#define I8XX_P2_SLOW		      4
#define I8XX_P2_FAST		      2
#define I8XX_P2_LVDS_SLOW	      14
#define I8XX_P2_LVDS_FAST	      7
#define I8XX_P2_SLOW_LIMIT	 165000

#define I9XX_DOT_MIN		  20000
#define I9XX_DOT_MAX		 400000
#define I9XX_VCO_MIN		1400000
#define I9XX_VCO_MAX		2800000
#define IGD_VCO_MIN		1700000
#define IGD_VCO_MAX		3500000
#define I9XX_N_MIN		      1
#define I9XX_N_MAX		      6
/* IGD's Ncounter is a ring counter */
#define IGD_N_MIN		      3
#define IGD_N_MAX		      6
#define I9XX_M_MIN		     70
#define I9XX_M_MAX		    120
#define IGD_M_MIN		      2
#define IGD_M_MAX		    256
#define I9XX_M1_MIN		     10
#define I9XX_M1_MAX		     22
#define I9XX_M2_MIN		      5
#define I9XX_M2_MAX		      9
/* IGD M1 is reserved, and must be 0 */
#define IGD_M1_MIN		      0
#define IGD_M1_MAX		      0
#define IGD_M2_MIN		      0
#define IGD_M2_MAX		      254
#define I9XX_P_SDVO_DAC_MIN	      5
#define I9XX_P_SDVO_DAC_MAX	     80
#define I9XX_P_LVDS_MIN		      7
#define I9XX_P_LVDS_MAX		     98
#define IGD_P_LVDS_MIN		      7
#define IGD_P_LVDS_MAX		     112
#define I9XX_P1_MIN		      1
#define I9XX_P1_MAX		      8
#define I9XX_P2_SDVO_DAC_SLOW		     10
#define I9XX_P2_SDVO_DAC_FAST		      5
#define I9XX_P2_SDVO_DAC_SLOW_LIMIT	 200000
#define I9XX_P2_LVDS_SLOW		     14
#define I9XX_P2_LVDS_FAST		      7
#define I9XX_P2_LVDS_SLOW_LIMIT		 112000

/*The parameter is for SDVO on G4x platform*/
#define G4X_DOT_SDVO_MIN           25000
#define G4X_DOT_SDVO_MAX           270000
#define G4X_VCO_MIN                1750000
#define G4X_VCO_MAX                3500000
#define G4X_N_SDVO_MIN             1
#define G4X_N_SDVO_MAX             4
#define G4X_M_SDVO_MIN             104
#define G4X_M_SDVO_MAX             138
#define G4X_M1_SDVO_MIN            17
#define G4X_M1_SDVO_MAX            23
#define G4X_M2_SDVO_MIN            5
#define G4X_M2_SDVO_MAX            11
#define G4X_P_SDVO_MIN             10
#define G4X_P_SDVO_MAX             30
#define G4X_P1_SDVO_MIN            1
#define G4X_P1_SDVO_MAX            3
#define G4X_P2_SDVO_SLOW           10
#define G4X_P2_SDVO_FAST           10
#define G4X_P2_SDVO_LIMIT          270000

/*The parameter is for HDMI_DAC on G4x platform*/
#define G4X_DOT_HDMI_DAC_MIN           22000
#define G4X_DOT_HDMI_DAC_MAX           400000
#define G4X_N_HDMI_DAC_MIN             1
#define G4X_N_HDMI_DAC_MAX             4
#define G4X_M_HDMI_DAC_MIN             104
#define G4X_M_HDMI_DAC_MAX             138
#define G4X_M1_HDMI_DAC_MIN            16
#define G4X_M1_HDMI_DAC_MAX            23
#define G4X_M2_HDMI_DAC_MIN            5
#define G4X_M2_HDMI_DAC_MAX            11
#define G4X_P_HDMI_DAC_MIN             5
#define G4X_P_HDMI_DAC_MAX             80
#define G4X_P1_HDMI_DAC_MIN            1
#define G4X_P1_HDMI_DAC_MAX            8
#define G4X_P2_HDMI_DAC_SLOW           10
#define G4X_P2_HDMI_DAC_FAST           5
#define G4X_P2_HDMI_DAC_LIMIT          165000

/*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN           20000
#define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX           115000
#define G4X_N_SINGLE_CHANNEL_LVDS_MIN             1
#define G4X_N_SINGLE_CHANNEL_LVDS_MAX             3
#define G4X_M_SINGLE_CHANNEL_LVDS_MIN             104
#define G4X_M_SINGLE_CHANNEL_LVDS_MAX             138
#define G4X_M1_SINGLE_CHANNEL_LVDS_MIN            17
#define G4X_M1_SINGLE_CHANNEL_LVDS_MAX            23
#define G4X_M2_SINGLE_CHANNEL_LVDS_MIN            5
#define G4X_M2_SINGLE_CHANNEL_LVDS_MAX            11
#define G4X_P_SINGLE_CHANNEL_LVDS_MIN             28
#define G4X_P_SINGLE_CHANNEL_LVDS_MAX             112
#define G4X_P1_SINGLE_CHANNEL_LVDS_MIN            2
#define G4X_P1_SINGLE_CHANNEL_LVDS_MAX            8
#define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW           14
#define G4X_P2_SINGLE_CHANNEL_LVDS_FAST           14
#define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT          0

/*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
#define G4X_DOT_DUAL_CHANNEL_LVDS_MIN           80000
#define G4X_DOT_DUAL_CHANNEL_LVDS_MAX           224000
#define G4X_N_DUAL_CHANNEL_LVDS_MIN             1
#define G4X_N_DUAL_CHANNEL_LVDS_MAX             3
#define G4X_M_DUAL_CHANNEL_LVDS_MIN             104
#define G4X_M_DUAL_CHANNEL_LVDS_MAX             138
#define G4X_M1_DUAL_CHANNEL_LVDS_MIN            17
#define G4X_M1_DUAL_CHANNEL_LVDS_MAX            23
#define G4X_M2_DUAL_CHANNEL_LVDS_MIN            5
#define G4X_M2_DUAL_CHANNEL_LVDS_MAX            11
#define G4X_P_DUAL_CHANNEL_LVDS_MIN             14
#define G4X_P_DUAL_CHANNEL_LVDS_MAX             42
#define G4X_P1_DUAL_CHANNEL_LVDS_MIN            2
#define G4X_P1_DUAL_CHANNEL_LVDS_MAX            6
#define G4X_P2_DUAL_CHANNEL_LVDS_SLOW           7
#define G4X_P2_DUAL_CHANNEL_LVDS_FAST           7
#define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT          0

/*The parameter is for DISPLAY PORT on G4x platform*/
#define G4X_DOT_DISPLAY_PORT_MIN           161670
#define G4X_DOT_DISPLAY_PORT_MAX           227000
#define G4X_N_DISPLAY_PORT_MIN             1
#define G4X_N_DISPLAY_PORT_MAX             2
#define G4X_M_DISPLAY_PORT_MIN             97
#define G4X_M_DISPLAY_PORT_MAX             108
#define G4X_M1_DISPLAY_PORT_MIN            0x10
#define G4X_M1_DISPLAY_PORT_MAX            0x12
#define G4X_M2_DISPLAY_PORT_MIN            0x05
#define G4X_M2_DISPLAY_PORT_MAX            0x06
#define G4X_P_DISPLAY_PORT_MIN             10
#define G4X_P_DISPLAY_PORT_MAX             20
#define G4X_P1_DISPLAY_PORT_MIN            1
#define G4X_P1_DISPLAY_PORT_MAX            2
#define G4X_P2_DISPLAY_PORT_SLOW           10
#define G4X_P2_DISPLAY_PORT_FAST           10
#define G4X_P2_DISPLAY_PORT_LIMIT          0

/* IGDNG */
/* as we calculate clock using (register_value + 2) for
   N/M1/M2, so here the range value for them is (actual_value-2).
 */
#define IGDNG_DOT_MIN         25000
#define IGDNG_DOT_MAX         350000
#define IGDNG_VCO_MIN         1760000
#define IGDNG_VCO_MAX         3510000
#define IGDNG_N_MIN           1
#define IGDNG_N_MAX           5
#define IGDNG_M_MIN           79
#define IGDNG_M_MAX           118
#define IGDNG_M1_MIN          12
#define IGDNG_M1_MAX          23
#define IGDNG_M2_MIN          5
#define IGDNG_M2_MAX          9
#define IGDNG_P_SDVO_DAC_MIN  5
#define IGDNG_P_SDVO_DAC_MAX  80
#define IGDNG_P_LVDS_MIN      28
#define IGDNG_P_LVDS_MAX      112
#define IGDNG_P1_MIN          1
#define IGDNG_P1_MAX          8
#define IGDNG_P2_SDVO_DAC_SLOW 10
#define IGDNG_P2_SDVO_DAC_FAST 5
#define IGDNG_P2_LVDS_SLOW    14 /* single channel */
#define IGDNG_P2_LVDS_FAST    7  /* double channel */
#define IGDNG_P2_DOT_LIMIT    225000 /* 225Mhz */

static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
		    int target, int refclk, intel_clock_t *best_clock);
static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock);
static bool
intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock);

static bool
intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock);
static bool
intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock);

static const intel_limit_t intel_limits_i8xx_dvo = {
        .dot = { .min = I8XX_DOT_MIN,		.max = I8XX_DOT_MAX },
        .vco = { .min = I8XX_VCO_MIN,		.max = I8XX_VCO_MAX },
        .n   = { .min = I8XX_N_MIN,		.max = I8XX_N_MAX },
        .m   = { .min = I8XX_M_MIN,		.max = I8XX_M_MAX },
        .m1  = { .min = I8XX_M1_MIN,		.max = I8XX_M1_MAX },
        .m2  = { .min = I8XX_M2_MIN,		.max = I8XX_M2_MAX },
        .p   = { .min = I8XX_P_MIN,		.max = I8XX_P_MAX },
        .p1  = { .min = I8XX_P1_MIN,		.max = I8XX_P1_MAX },
	.p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
		 .p2_slow = I8XX_P2_SLOW,	.p2_fast = I8XX_P2_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_i8xx_lvds = {
        .dot = { .min = I8XX_DOT_MIN,		.max = I8XX_DOT_MAX },
        .vco = { .min = I8XX_VCO_MIN,		.max = I8XX_VCO_MAX },
        .n   = { .min = I8XX_N_MIN,		.max = I8XX_N_MAX },
        .m   = { .min = I8XX_M_MIN,		.max = I8XX_M_MAX },
        .m1  = { .min = I8XX_M1_MIN,		.max = I8XX_M1_MAX },
        .m2  = { .min = I8XX_M2_MIN,		.max = I8XX_M2_MAX },
        .p   = { .min = I8XX_P_MIN,		.max = I8XX_P_MAX },
        .p1  = { .min = I8XX_P1_LVDS_MIN,	.max = I8XX_P1_LVDS_MAX },
	.p2  = { .dot_limit = I8XX_P2_SLOW_LIMIT,
		 .p2_slow = I8XX_P2_LVDS_SLOW,	.p2_fast = I8XX_P2_LVDS_FAST },
	.find_pll = intel_find_best_PLL,
};
	
static const intel_limit_t intel_limits_i9xx_sdvo = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = I9XX_VCO_MIN,		.max = I9XX_VCO_MAX },
        .n   = { .min = I9XX_N_MIN,		.max = I9XX_N_MAX },
        .m   = { .min = I9XX_M_MIN,		.max = I9XX_M_MAX },
        .m1  = { .min = I9XX_M1_MIN,		.max = I9XX_M1_MAX },
        .m2  = { .min = I9XX_M2_MIN,		.max = I9XX_M2_MAX },
        .p   = { .min = I9XX_P_SDVO_DAC_MIN,	.max = I9XX_P_SDVO_DAC_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	.p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_SDVO_DAC_SLOW,	.p2_fast = I9XX_P2_SDVO_DAC_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_i9xx_lvds = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = I9XX_VCO_MIN,		.max = I9XX_VCO_MAX },
        .n   = { .min = I9XX_N_MIN,		.max = I9XX_N_MAX },
        .m   = { .min = I9XX_M_MIN,		.max = I9XX_M_MAX },
        .m1  = { .min = I9XX_M1_MIN,		.max = I9XX_M1_MAX },
        .m2  = { .min = I9XX_M2_MIN,		.max = I9XX_M2_MAX },
        .p   = { .min = I9XX_P_LVDS_MIN,	.max = I9XX_P_LVDS_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	/* The single-channel range is 25-112Mhz, and dual-channel
	 * is 80-224Mhz.  Prefer single channel as much as possible.
	 */
	.p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_LVDS_SLOW,	.p2_fast = I9XX_P2_LVDS_FAST },
	.find_pll = intel_find_best_PLL,
};

    /* below parameter and function is for G4X Chipset Family*/
static const intel_limit_t intel_limits_g4x_sdvo = {
	.dot = { .min = G4X_DOT_SDVO_MIN,	.max = G4X_DOT_SDVO_MAX },
	.vco = { .min = G4X_VCO_MIN,	        .max = G4X_VCO_MAX},
	.n   = { .min = G4X_N_SDVO_MIN,	        .max = G4X_N_SDVO_MAX },
	.m   = { .min = G4X_M_SDVO_MIN,         .max = G4X_M_SDVO_MAX },
	.m1  = { .min = G4X_M1_SDVO_MIN,	.max = G4X_M1_SDVO_MAX },
	.m2  = { .min = G4X_M2_SDVO_MIN,	.max = G4X_M2_SDVO_MAX },
	.p   = { .min = G4X_P_SDVO_MIN,         .max = G4X_P_SDVO_MAX },
	.p1  = { .min = G4X_P1_SDVO_MIN,	.max = G4X_P1_SDVO_MAX},
	.p2  = { .dot_limit = G4X_P2_SDVO_LIMIT,
		 .p2_slow = G4X_P2_SDVO_SLOW,
		 .p2_fast = G4X_P2_SDVO_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_hdmi = {
	.dot = { .min = G4X_DOT_HDMI_DAC_MIN,	.max = G4X_DOT_HDMI_DAC_MAX },
	.vco = { .min = G4X_VCO_MIN,	        .max = G4X_VCO_MAX},
	.n   = { .min = G4X_N_HDMI_DAC_MIN,	.max = G4X_N_HDMI_DAC_MAX },
	.m   = { .min = G4X_M_HDMI_DAC_MIN,	.max = G4X_M_HDMI_DAC_MAX },
	.m1  = { .min = G4X_M1_HDMI_DAC_MIN,	.max = G4X_M1_HDMI_DAC_MAX },
	.m2  = { .min = G4X_M2_HDMI_DAC_MIN,	.max = G4X_M2_HDMI_DAC_MAX },
	.p   = { .min = G4X_P_HDMI_DAC_MIN,	.max = G4X_P_HDMI_DAC_MAX },
	.p1  = { .min = G4X_P1_HDMI_DAC_MIN,	.max = G4X_P1_HDMI_DAC_MAX},
	.p2  = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
		 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
		 .p2_fast = G4X_P2_HDMI_DAC_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
	.dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
	.vco = { .min = G4X_VCO_MIN,
		 .max = G4X_VCO_MAX },
	.n   = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
	.m   = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
	.m1  = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
	.m2  = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
	.p   = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
	.p1  = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
		 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
	.p2  = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
		 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
		 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
	.dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
	.vco = { .min = G4X_VCO_MIN,
		 .max = G4X_VCO_MAX },
	.n   = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
	.m   = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
	.m1  = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
	.m2  = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
	.p   = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
	.p1  = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
		 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
	.p2  = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
		 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
		 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
	},
	.find_pll = intel_g4x_find_best_PLL,
};

static const intel_limit_t intel_limits_g4x_display_port = {
        .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
                 .max = G4X_DOT_DISPLAY_PORT_MAX },
        .vco = { .min = G4X_VCO_MIN,
                 .max = G4X_VCO_MAX},
        .n   = { .min = G4X_N_DISPLAY_PORT_MIN,
                 .max = G4X_N_DISPLAY_PORT_MAX },
        .m   = { .min = G4X_M_DISPLAY_PORT_MIN,
                 .max = G4X_M_DISPLAY_PORT_MAX },
        .m1  = { .min = G4X_M1_DISPLAY_PORT_MIN,
                 .max = G4X_M1_DISPLAY_PORT_MAX },
        .m2  = { .min = G4X_M2_DISPLAY_PORT_MIN,
                 .max = G4X_M2_DISPLAY_PORT_MAX },
        .p   = { .min = G4X_P_DISPLAY_PORT_MIN,
                 .max = G4X_P_DISPLAY_PORT_MAX },
        .p1  = { .min = G4X_P1_DISPLAY_PORT_MIN,
                 .max = G4X_P1_DISPLAY_PORT_MAX},
        .p2  = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
                 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
                 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
        .find_pll = intel_find_pll_g4x_dp,
};

static const intel_limit_t intel_limits_igd_sdvo = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX},
        .vco = { .min = IGD_VCO_MIN,		.max = IGD_VCO_MAX },
        .n   = { .min = IGD_N_MIN,		.max = IGD_N_MAX },
        .m   = { .min = IGD_M_MIN,		.max = IGD_M_MAX },
        .m1  = { .min = IGD_M1_MIN,		.max = IGD_M1_MAX },
        .m2  = { .min = IGD_M2_MIN,		.max = IGD_M2_MAX },
        .p   = { .min = I9XX_P_SDVO_DAC_MIN,    .max = I9XX_P_SDVO_DAC_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	.p2  = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_SDVO_DAC_SLOW,	.p2_fast = I9XX_P2_SDVO_DAC_FAST },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_igd_lvds = {
        .dot = { .min = I9XX_DOT_MIN,		.max = I9XX_DOT_MAX },
        .vco = { .min = IGD_VCO_MIN,		.max = IGD_VCO_MAX },
        .n   = { .min = IGD_N_MIN,		.max = IGD_N_MAX },
        .m   = { .min = IGD_M_MIN,		.max = IGD_M_MAX },
        .m1  = { .min = IGD_M1_MIN,		.max = IGD_M1_MAX },
        .m2  = { .min = IGD_M2_MIN,		.max = IGD_M2_MAX },
        .p   = { .min = IGD_P_LVDS_MIN,	.max = IGD_P_LVDS_MAX },
        .p1  = { .min = I9XX_P1_MIN,		.max = I9XX_P1_MAX },
	/* IGD only supports single-channel mode. */
	.p2  = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
		 .p2_slow = I9XX_P2_LVDS_SLOW,	.p2_fast = I9XX_P2_LVDS_SLOW },
	.find_pll = intel_find_best_PLL,
};

static const intel_limit_t intel_limits_igdng_sdvo = {
	.dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
	.vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
	.n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
	.m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
	.m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
	.m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
	.p   = { .min = IGDNG_P_SDVO_DAC_MIN,   .max = IGDNG_P_SDVO_DAC_MAX },
	.p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
	.p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
		 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
		 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
	.find_pll = intel_igdng_find_best_PLL,
};

static const intel_limit_t intel_limits_igdng_lvds = {
	.dot = { .min = IGDNG_DOT_MIN,          .max = IGDNG_DOT_MAX },
	.vco = { .min = IGDNG_VCO_MIN,          .max = IGDNG_VCO_MAX },
	.n   = { .min = IGDNG_N_MIN,            .max = IGDNG_N_MAX },
	.m   = { .min = IGDNG_M_MIN,            .max = IGDNG_M_MAX },
	.m1  = { .min = IGDNG_M1_MIN,           .max = IGDNG_M1_MAX },
	.m2  = { .min = IGDNG_M2_MIN,           .max = IGDNG_M2_MAX },
	.p   = { .min = IGDNG_P_LVDS_MIN,       .max = IGDNG_P_LVDS_MAX },
	.p1  = { .min = IGDNG_P1_MIN,           .max = IGDNG_P1_MAX },
	.p2  = { .dot_limit = IGDNG_P2_DOT_LIMIT,
		 .p2_slow = IGDNG_P2_LVDS_SLOW,
		 .p2_fast = IGDNG_P2_LVDS_FAST },
	.find_pll = intel_igdng_find_best_PLL,
};

static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
{
	const intel_limit_t *limit;
	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
		limit = &intel_limits_igdng_lvds;
	else
		limit = &intel_limits_igdng_sdvo;

	return limit;
}

static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	const intel_limit_t *limit;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			/* LVDS with dual channel */
			limit = &intel_limits_g4x_dual_channel_lvds;
		else
			/* LVDS with dual channel */
			limit = &intel_limits_g4x_single_channel_lvds;
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
		   intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
		limit = &intel_limits_g4x_hdmi;
	} else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
		limit = &intel_limits_g4x_sdvo;
	} else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
		limit = &intel_limits_g4x_display_port;
	} else /* The option is for other outputs */
		limit = &intel_limits_i9xx_sdvo;

	return limit;
}

static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	const intel_limit_t *limit;

	if (IS_IGDNG(dev))
		limit = intel_igdng_limit(crtc);
	else if (IS_G4X(dev)) {
		limit = intel_g4x_limit(crtc);
	} else if (IS_I9XX(dev) && !IS_IGD(dev)) {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_i9xx_lvds;
		else
			limit = &intel_limits_i9xx_sdvo;
	} else if (IS_IGD(dev)) {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_igd_lvds;
		else
			limit = &intel_limits_igd_sdvo;
	} else {
		if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
			limit = &intel_limits_i8xx_lvds;
		else
			limit = &intel_limits_i8xx_dvo;
	}
	return limit;
}

/* m1 is reserved as 0 in IGD, n is a ring counter */
static void igd_clock(int refclk, intel_clock_t *clock)
{
	clock->m = clock->m2 + 2;
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / clock->n;
	clock->dot = clock->vco / clock->p;
}

static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
{
	if (IS_IGD(dev)) {
		igd_clock(refclk, clock);
		return;
	}
	clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
	clock->p = clock->p1 * clock->p2;
	clock->vco = refclk * clock->m / (clock->n + 2);
	clock->dot = clock->vco / clock->p;
}

/**
 * Returns whether any output on the specified pipe is of the specified type
 */
bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
{
    struct drm_device *dev = crtc->dev;
    struct drm_mode_config *mode_config = &dev->mode_config;
    struct drm_connector *l_entry;

    list_for_each_entry(l_entry, &mode_config->connector_list, head) {
	    if (l_entry->encoder &&
	        l_entry->encoder->crtc == crtc) {
		    struct intel_output *intel_output = to_intel_output(l_entry);
		    if (intel_output->type == type)
			    return true;
	    }
    }
    return false;
}

struct drm_connector *
intel_pipe_get_output (struct drm_crtc *crtc)
{
    struct drm_device *dev = crtc->dev;
    struct drm_mode_config *mode_config = &dev->mode_config;
    struct drm_connector *l_entry, *ret = NULL;

    list_for_each_entry(l_entry, &mode_config->connector_list, head) {
	    if (l_entry->encoder &&
	        l_entry->encoder->crtc == crtc) {
		    ret = l_entry;
		    break;
	    }
    }
    return ret;
}

#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
/**
 * Returns whether the given set of divisors are valid for a given refclk with
 * the given connectors.
 */

static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
{
	const intel_limit_t *limit = intel_limit (crtc);
	struct drm_device *dev = crtc->dev;

	if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
		INTELPllInvalid ("p1 out of range\n");
	if (clock->p   < limit->p.min   || limit->p.max   < clock->p)
		INTELPllInvalid ("p out of range\n");
	if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
		INTELPllInvalid ("m2 out of range\n");
	if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
		INTELPllInvalid ("m1 out of range\n");
	if (clock->m1 <= clock->m2 && !IS_IGD(dev))
		INTELPllInvalid ("m1 <= m2\n");
	if (clock->m   < limit->m.min   || limit->m.max   < clock->m)
		INTELPllInvalid ("m out of range\n");
	if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
		INTELPllInvalid ("n out of range\n");
	if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
		INTELPllInvalid ("vco out of range\n");
	/* XXX: We may need to be checking "Dot clock" depending on the multiplier,
	 * connector, etc., rather than just a single range.
	 */
	if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
		INTELPllInvalid ("dot out of range\n");

	return true;
}

static bool
intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
		    int target, int refclk, intel_clock_t *best_clock)

{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	intel_clock_t clock;
	int err = target;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
	    (I915_READ(LVDS)) != 0) {
		/*
		 * For LVDS, if the panel is on, just rely on its current
		 * settings for dual-channel.  We haven't figured out how to
		 * reliably set up different single/dual channel state, if we
		 * even can.
		 */
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset (best_clock, 0, sizeof (*best_clock));

	for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
		for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
			/* m1 is always 0 in IGD */
			if (clock.m2 >= clock.m1 && !IS_IGD(dev))
				break;
			for (clock.n = limit->n.min; clock.n <= limit->n.max;
			     clock.n++) {
				for (clock.p1 = limit->p1.min;
				     clock.p1 <= limit->p1.max; clock.p1++) {
					int this_err;

					intel_clock(dev, refclk, &clock);

					if (!intel_PLL_is_valid(crtc, &clock))
						continue;

					this_err = abs(clock.dot - target);
					if (this_err < err) {
						*best_clock = clock;
						err = this_err;
					}
				}
			}
		}
	}

	return (err != target);
}

static bool
intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	intel_clock_t clock;
	int max_n;
	bool found;
	/* approximately equals target * 0.00488 */
	int err_most = (target >> 8) + (target >> 10);
	found = false;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset(best_clock, 0, sizeof(*best_clock));
	max_n = limit->n.max;
	/* based on hardware requriment prefer smaller n to precision */
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
		/* based on hardware requirment prefere larger m1,m2, p1 */
		for (clock.m1 = limit->m1.max;
		     clock.m1 >= limit->m1.min; clock.m1--) {
			for (clock.m2 = limit->m2.max;
			     clock.m2 >= limit->m2.min; clock.m2--) {
				for (clock.p1 = limit->p1.max;
				     clock.p1 >= limit->p1.min; clock.p1--) {
					int this_err;

					intel_clock(dev, refclk, &clock);
					if (!intel_PLL_is_valid(crtc, &clock))
						continue;
					this_err = abs(clock.dot - target) ;
					if (this_err < err_most) {
						*best_clock = clock;
						err_most = this_err;
						max_n = clock.n;
						found = true;
					}
				}
			}
		}
	}
	return found;
}

static bool
intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	intel_clock_t clock;
	if (target < 200000) {
		clock.n = 1;
		clock.p1 = 2;
		clock.p2 = 10;
		clock.m1 = 12;
		clock.m2 = 9;
	} else {
		clock.n = 2;
		clock.p1 = 1;
		clock.p2 = 10;
		clock.m1 = 14;
		clock.m2 = 8;
	}
	intel_clock(dev, refclk, &clock);
	memcpy(best_clock, &clock, sizeof(intel_clock_t));
	return true;
}

static bool
intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
			int target, int refclk, intel_clock_t *best_clock)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	intel_clock_t clock;
	int max_n;
	bool found;
	int err_most = 47;
	found = false;

	/* eDP has only 2 clock choice, no n/m/p setting */
	if (HAS_eDP)
		return true;

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
		return intel_find_pll_igdng_dp(limit, crtc, target,
					       refclk, best_clock);

	if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
		if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
		    LVDS_CLKB_POWER_UP)
			clock.p2 = limit->p2.p2_fast;
		else
			clock.p2 = limit->p2.p2_slow;
	} else {
		if (target < limit->p2.dot_limit)
			clock.p2 = limit->p2.p2_slow;
		else
			clock.p2 = limit->p2.p2_fast;
	}

	memset(best_clock, 0, sizeof(*best_clock));
	max_n = limit->n.max;
	/* based on hardware requriment prefer smaller n to precision */
	for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
		/* based on hardware requirment prefere larger m1,m2, p1 */
		for (clock.m1 = limit->m1.max;
		     clock.m1 >= limit->m1.min; clock.m1--) {
			for (clock.m2 = limit->m2.max;
			     clock.m2 >= limit->m2.min; clock.m2--) {
				for (clock.p1 = limit->p1.max;
				     clock.p1 >= limit->p1.min; clock.p1--) {
					int this_err;

					intel_clock(dev, refclk, &clock);
					if (!intel_PLL_is_valid(crtc, &clock))
						continue;
					this_err = abs((10000 - (target*10000/clock.dot)));
					if (this_err < err_most) {
						*best_clock = clock;
						err_most = this_err;
						max_n = clock.n;
						found = true;
						/* found on first matching */
						goto out;
					}
				}
			}
		}
	}
out:
	return found;
}

/* DisplayPort has only two frequencies, 162MHz and 270MHz */
static bool
intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
		      int target, int refclk, intel_clock_t *best_clock)
{
    intel_clock_t clock;
    if (target < 200000) {
	clock.p1 = 2;
	clock.p2 = 10;
	clock.n = 2;
	clock.m1 = 23;
	clock.m2 = 8;
    } else {
	clock.p1 = 1;
	clock.p2 = 10;
	clock.n = 1;
	clock.m1 = 14;
	clock.m2 = 2;
    }
    clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
    clock.p = (clock.p1 * clock.p2);
    clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
    memcpy(best_clock, &clock, sizeof(intel_clock_t));
    return true;
}

void
intel_wait_for_vblank(struct drm_device *dev)
{
	/* Wait for 20ms, i.e. one cycle at 50hz. */
	mdelay(20);
}

static int
intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
		    struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_i915_master_private *master_priv;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct intel_framebuffer *intel_fb;
	struct drm_i915_gem_object *obj_priv;
	struct drm_gem_object *obj;
	int pipe = intel_crtc->pipe;
	unsigned long Start, Offset;
	int dspbase = (pipe == 0 ? DSPAADDR : DSPBADDR);
	int dspsurf = (pipe == 0 ? DSPASURF : DSPBSURF);
	int dspstride = (pipe == 0) ? DSPASTRIDE : DSPBSTRIDE;
	int dsptileoff = (pipe == 0 ? DSPATILEOFF : DSPBTILEOFF);
	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
	u32 dspcntr, alignment;
	int ret;

	/* no fb bound */
	if (!crtc->fb) {
		DRM_DEBUG("No FB bound\n");
		return 0;
	}

	switch (pipe) {
	case 0:
	case 1:
		break;
	default:
		DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
		return -EINVAL;
	}

	intel_fb = to_intel_framebuffer(crtc->fb);
	obj = intel_fb->obj;
	obj_priv = obj->driver_private;

	switch (obj_priv->tiling_mode) {
	case I915_TILING_NONE:
		alignment = 64 * 1024;
		break;
	case I915_TILING_X:
		/* pin() will align the object as required by fence */
		alignment = 0;
		break;
	case I915_TILING_Y:
		/* FIXME: Is this true? */
		DRM_ERROR("Y tiled not allowed for scan out buffers\n");
		return -EINVAL;
	default:
		BUG();
	}

	mutex_lock(&dev->struct_mutex);
	ret = i915_gem_object_pin(obj, alignment);
	if (ret != 0) {
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	ret = i915_gem_object_set_to_gtt_domain(obj, 1);
	if (ret != 0) {
		i915_gem_object_unpin(obj);
		mutex_unlock(&dev->struct_mutex);
		return ret;
	}

	/* Pre-i965 needs to install a fence for tiled scan-out */
	if (!IS_I965G(dev) &&
	    obj_priv->fence_reg == I915_FENCE_REG_NONE &&
	    obj_priv->tiling_mode != I915_TILING_NONE) {
		ret = i915_gem_object_get_fence_reg(obj);
		if (ret != 0) {
			i915_gem_object_unpin(obj);
			mutex_unlock(&dev->struct_mutex);
			return ret;
		}
	}

	dspcntr = I915_READ(dspcntr_reg);
	/* Mask out pixel format bits in case we change it */
	dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
	switch (crtc->fb->bits_per_pixel) {
	case 8:
		dspcntr |= DISPPLANE_8BPP;
		break;
	case 16:
		if (crtc->fb->depth == 15)
			dspcntr |= DISPPLANE_15_16BPP;
		else
			dspcntr |= DISPPLANE_16BPP;
		break;
	case 24:
	case 32:
		dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
		break;
	default:
		DRM_ERROR("Unknown color depth\n");
		i915_gem_object_unpin(obj);
		mutex_unlock(&dev->struct_mutex);
		return -EINVAL;
	}
	if (IS_I965G(dev)) {
		if (obj_priv->tiling_mode != I915_TILING_NONE)
			dspcntr |= DISPPLANE_TILED;
		else
			dspcntr &= ~DISPPLANE_TILED;
	}

	I915_WRITE(dspcntr_reg, dspcntr);

	Start = obj_priv->gtt_offset;
	Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);

	DRM_DEBUG("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
	I915_WRITE(dspstride, crtc->fb->pitch);
	if (IS_I965G(dev)) {
		I915_WRITE(dspbase, Offset);
		I915_READ(dspbase);
		I915_WRITE(dspsurf, Start);
		I915_READ(dspsurf);
		I915_WRITE(dsptileoff, (y << 16) | x);
	} else {
		I915_WRITE(dspbase, Start + Offset);
		I915_READ(dspbase);
	}

	intel_wait_for_vblank(dev);

	if (old_fb) {
		intel_fb = to_intel_framebuffer(old_fb);
		i915_gem_object_unpin(intel_fb->obj);
	}
	mutex_unlock(&dev->struct_mutex);

	if (!dev->primary->master)
		return 0;

	master_priv = dev->primary->master->driver_priv;
	if (!master_priv->sarea_priv)
		return 0;

	if (pipe) {
		master_priv->sarea_priv->pipeB_x = x;
		master_priv->sarea_priv->pipeB_y = y;
	} else {
		master_priv->sarea_priv->pipeA_x = x;
		master_priv->sarea_priv->pipeA_y = y;
	}

	return 0;
}

/* Disable the VGA plane that we never use */
static void i915_disable_vga (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u8 sr1;
	u32 vga_reg;

	if (IS_IGDNG(dev))
		vga_reg = CPU_VGACNTRL;
	else
		vga_reg = VGACNTRL;

	if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
		return;

	I915_WRITE8(VGA_SR_INDEX, 1);
	sr1 = I915_READ8(VGA_SR_DATA);
	I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
	udelay(100);

	I915_WRITE(vga_reg, VGA_DISP_DISABLE);
}

static void igdng_disable_pll_edp (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	DRM_DEBUG("\n");
	dpa_ctl = I915_READ(DP_A);
	dpa_ctl &= ~DP_PLL_ENABLE;
	I915_WRITE(DP_A, dpa_ctl);
}

static void igdng_enable_pll_edp (struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	dpa_ctl = I915_READ(DP_A);
	dpa_ctl |= DP_PLL_ENABLE;
	I915_WRITE(DP_A, dpa_ctl);
	udelay(200);
}


static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 dpa_ctl;

	DRM_DEBUG("eDP PLL enable for clock %d\n", clock);
	dpa_ctl = I915_READ(DP_A);
	dpa_ctl &= ~DP_PLL_FREQ_MASK;

	if (clock < 200000) {
		u32 temp;
		dpa_ctl |= DP_PLL_FREQ_160MHZ;
		/* workaround for 160Mhz:
		   1) program 0x4600c bits 15:0 = 0x8124
		   2) program 0x46010 bit 0 = 1
		   3) program 0x46034 bit 24 = 1
		   4) program 0x64000 bit 14 = 1
		   */
		temp = I915_READ(0x4600c);
		temp &= 0xffff0000;
		I915_WRITE(0x4600c, temp | 0x8124);

		temp = I915_READ(0x46010);
		I915_WRITE(0x46010, temp | 1);

		temp = I915_READ(0x46034);
		I915_WRITE(0x46034, temp | (1 << 24));
	} else {
		dpa_ctl |= DP_PLL_FREQ_270MHZ;
	}
	I915_WRITE(DP_A, dpa_ctl);

	udelay(500);
}

static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int plane = intel_crtc->plane;
	int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
	int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
	int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
	int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
	int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
	int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
	int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
	int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
	int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
	int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
	int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
	int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
	int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
	int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
	int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
	int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
	int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
	int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
	int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
	int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
	int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
	int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
	u32 temp;
	int tries = 5, j, n;

	/* XXX: When our outputs are all unaware of DPMS modes other than off
	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
	 */
	switch (mode) {
	case DRM_MODE_DPMS_ON:
	case DRM_MODE_DPMS_STANDBY:
	case DRM_MODE_DPMS_SUSPEND:
		DRM_DEBUG("crtc %d dpms on\n", pipe);
		if (HAS_eDP) {
			/* enable eDP PLL */
			igdng_enable_pll_edp(crtc);
		} else {
			/* enable PCH DPLL */
			temp = I915_READ(pch_dpll_reg);
			if ((temp & DPLL_VCO_ENABLE) == 0) {
				I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
				I915_READ(pch_dpll_reg);
			}

			/* enable PCH FDI RX PLL, wait warmup plus DMI latency */
			temp = I915_READ(fdi_rx_reg);
			I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
					FDI_SEL_PCDCLK |
					FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
			I915_READ(fdi_rx_reg);
			udelay(200);

			/* Enable CPU FDI TX PLL, always on for IGDNG */
			temp = I915_READ(fdi_tx_reg);
			if ((temp & FDI_TX_PLL_ENABLE) == 0) {
				I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
				I915_READ(fdi_tx_reg);
				udelay(100);
			}
		}

		/* Enable CPU pipe */
		temp = I915_READ(pipeconf_reg);
		if ((temp & PIPEACONF_ENABLE) == 0) {
			I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
			I915_READ(pipeconf_reg);
			udelay(100);
		}

		/* configure and enable CPU plane */
		temp = I915_READ(dspcntr_reg);
		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
			I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
		}

		if (!HAS_eDP) {
			/* enable CPU FDI TX and PCH FDI RX */
			temp = I915_READ(fdi_tx_reg);
			temp |= FDI_TX_ENABLE;
			temp |= FDI_DP_PORT_WIDTH_X4; /* default */
			temp &= ~FDI_LINK_TRAIN_NONE;
			temp |= FDI_LINK_TRAIN_PATTERN_1;
			I915_WRITE(fdi_tx_reg, temp);
			I915_READ(fdi_tx_reg);

			temp = I915_READ(fdi_rx_reg);
			temp &= ~FDI_LINK_TRAIN_NONE;
			temp |= FDI_LINK_TRAIN_PATTERN_1;
			I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
			I915_READ(fdi_rx_reg);

			udelay(150);

			/* Train FDI. */
			/* umask FDI RX Interrupt symbol_lock and bit_lock bit
			   for train result */
			temp = I915_READ(fdi_rx_imr_reg);
			temp &= ~FDI_RX_SYMBOL_LOCK;
			temp &= ~FDI_RX_BIT_LOCK;
			I915_WRITE(fdi_rx_imr_reg, temp);
			I915_READ(fdi_rx_imr_reg);
			udelay(150);

			temp = I915_READ(fdi_rx_iir_reg);
			DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);

			if ((temp & FDI_RX_BIT_LOCK) == 0) {
				for (j = 0; j < tries; j++) {
					temp = I915_READ(fdi_rx_iir_reg);
					DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
					if (temp & FDI_RX_BIT_LOCK)
						break;
					udelay(200);
				}
				if (j != tries)
					I915_WRITE(fdi_rx_iir_reg,
							temp | FDI_RX_BIT_LOCK);
				else
					DRM_DEBUG("train 1 fail\n");
			} else {
				I915_WRITE(fdi_rx_iir_reg,
						temp | FDI_RX_BIT_LOCK);
				DRM_DEBUG("train 1 ok 2!\n");
			}
			temp = I915_READ(fdi_tx_reg);
			temp &= ~FDI_LINK_TRAIN_NONE;
			temp |= FDI_LINK_TRAIN_PATTERN_2;
			I915_WRITE(fdi_tx_reg, temp);

			temp = I915_READ(fdi_rx_reg);
			temp &= ~FDI_LINK_TRAIN_NONE;
			temp |= FDI_LINK_TRAIN_PATTERN_2;
			I915_WRITE(fdi_rx_reg, temp);

			udelay(150);

			temp = I915_READ(fdi_rx_iir_reg);
			DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);

			if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
				for (j = 0; j < tries; j++) {
					temp = I915_READ(fdi_rx_iir_reg);
					DRM_DEBUG("FDI_RX_IIR 0x%x\n", temp);
					if (temp & FDI_RX_SYMBOL_LOCK)
						break;
					udelay(200);
				}
				if (j != tries) {
					I915_WRITE(fdi_rx_iir_reg,
							temp | FDI_RX_SYMBOL_LOCK);
					DRM_DEBUG("train 2 ok 1!\n");
				} else
					DRM_DEBUG("train 2 fail\n");
			} else {
				I915_WRITE(fdi_rx_iir_reg,
						temp | FDI_RX_SYMBOL_LOCK);
				DRM_DEBUG("train 2 ok 2!\n");
			}
			DRM_DEBUG("train done\n");

			/* set transcoder timing */
			I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
			I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
			I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));

			I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
			I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
			I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));

			/* enable PCH transcoder */
			temp = I915_READ(transconf_reg);
			I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
			I915_READ(transconf_reg);

			while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
				;

			/* enable normal */

			temp = I915_READ(fdi_tx_reg);
			temp &= ~FDI_LINK_TRAIN_NONE;
			I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
					FDI_TX_ENHANCE_FRAME_ENABLE);
			I915_READ(fdi_tx_reg);

			temp = I915_READ(fdi_rx_reg);
			temp &= ~FDI_LINK_TRAIN_NONE;
			I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
					FDI_RX_ENHANCE_FRAME_ENABLE);
			I915_READ(fdi_rx_reg);

			/* wait one idle pattern time */
			udelay(100);

		}

		intel_crtc_load_lut(crtc);

	break;
	case DRM_MODE_DPMS_OFF:
		DRM_DEBUG("crtc %d dpms off\n", pipe);

		i915_disable_vga(dev);

		/* Disable display plane */
		temp = I915_READ(dspcntr_reg);
		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
			I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
			I915_READ(dspbase_reg);
		}

		/* disable cpu pipe, disable after all planes disabled */
		temp = I915_READ(pipeconf_reg);
		if ((temp & PIPEACONF_ENABLE) != 0) {
			I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
			I915_READ(pipeconf_reg);
			n = 0;
			/* wait for cpu pipe off, pipe state */
			while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
				n++;
				if (n < 60) {
					udelay(500);
					continue;
				} else {
					DRM_DEBUG("pipe %d off delay\n", pipe);
					break;
				}
			}
		} else
			DRM_DEBUG("crtc %d is disabled\n", pipe);

		if (HAS_eDP) {
			igdng_disable_pll_edp(crtc);
		}

		/* disable CPU FDI tx and PCH FDI rx */
		temp = I915_READ(fdi_tx_reg);
		I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
		I915_READ(fdi_tx_reg);

		temp = I915_READ(fdi_rx_reg);
		I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
		I915_READ(fdi_rx_reg);

		udelay(100);

		/* still set train pattern 1 */
		temp = I915_READ(fdi_tx_reg);
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_PATTERN_1;
		I915_WRITE(fdi_tx_reg, temp);

		temp = I915_READ(fdi_rx_reg);
		temp &= ~FDI_LINK_TRAIN_NONE;
		temp |= FDI_LINK_TRAIN_PATTERN_1;
		I915_WRITE(fdi_rx_reg, temp);

		udelay(100);

		/* disable PCH transcoder */
		temp = I915_READ(transconf_reg);
		if ((temp & TRANS_ENABLE) != 0) {
			I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
			I915_READ(transconf_reg);
			n = 0;
			/* wait for PCH transcoder off, transcoder state */
			while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
				n++;
				if (n < 60) {
					udelay(500);
					continue;
				} else {
					DRM_DEBUG("transcoder %d off delay\n", pipe);
					break;
				}
			}
		}

		/* disable PCH DPLL */
		temp = I915_READ(pch_dpll_reg);
		if ((temp & DPLL_VCO_ENABLE) != 0) {
			I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
			I915_READ(pch_dpll_reg);
		}

		temp = I915_READ(fdi_rx_reg);
		if ((temp & FDI_RX_PLL_ENABLE) != 0) {
			temp &= ~FDI_SEL_PCDCLK;
			temp &= ~FDI_RX_PLL_ENABLE;
			I915_WRITE(fdi_rx_reg, temp);
			I915_READ(fdi_rx_reg);
		}

		/* Disable CPU FDI TX PLL */
		temp = I915_READ(fdi_tx_reg);
		if ((temp & FDI_TX_PLL_ENABLE) != 0) {
			I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
			I915_READ(fdi_tx_reg);
			udelay(100);
		}

		/* Disable PF */
		temp = I915_READ(pf_ctl_reg);
		if ((temp & PF_ENABLE) != 0) {
			I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
			I915_READ(pf_ctl_reg);
		}
		I915_WRITE(pf_win_size, 0);

		/* Wait for the clocks to turn off. */
		udelay(150);
		break;
	}
}

static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
	int dspbase_reg = (pipe == 0) ? DSPAADDR : DSPBADDR;
	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
	u32 temp;

	/* XXX: When our outputs are all unaware of DPMS modes other than off
	 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
	 */
	switch (mode) {
	case DRM_MODE_DPMS_ON:
	case DRM_MODE_DPMS_STANDBY:
	case DRM_MODE_DPMS_SUSPEND:
		/* Enable the DPLL */
		temp = I915_READ(dpll_reg);
		if ((temp & DPLL_VCO_ENABLE) == 0) {
			I915_WRITE(dpll_reg, temp);
			I915_READ(dpll_reg);
			/* Wait for the clocks to stabilize. */
			udelay(150);
			I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
			I915_READ(dpll_reg);
			/* Wait for the clocks to stabilize. */
			udelay(150);
			I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
			I915_READ(dpll_reg);
			/* Wait for the clocks to stabilize. */
			udelay(150);
		}

		/* Enable the pipe */
		temp = I915_READ(pipeconf_reg);
		if ((temp & PIPEACONF_ENABLE) == 0)
			I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);

		/* Enable the plane */
		temp = I915_READ(dspcntr_reg);
		if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
			I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
		}

		intel_crtc_load_lut(crtc);

		/* Give the overlay scaler a chance to enable if it's on this pipe */
		//intel_crtc_dpms_video(crtc, true); TODO
		intel_update_watermarks(dev);
	break;
	case DRM_MODE_DPMS_OFF:
		intel_update_watermarks(dev);
		/* Give the overlay scaler a chance to disable if it's on this pipe */
		//intel_crtc_dpms_video(crtc, FALSE); TODO

		/* Disable the VGA plane that we never use */
		i915_disable_vga(dev);

		/* Disable display plane */
		temp = I915_READ(dspcntr_reg);
		if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
			I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
			/* Flush the plane changes */
			I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
			I915_READ(dspbase_reg);
		}

		if (!IS_I9XX(dev)) {
			/* Wait for vblank for the disable to take effect */
			intel_wait_for_vblank(dev);
		}

		/* Next, disable display pipes */
		temp = I915_READ(pipeconf_reg);
		if ((temp & PIPEACONF_ENABLE) != 0) {
			I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
			I915_READ(pipeconf_reg);
		}

		/* Wait for vblank for the disable to take effect. */
		intel_wait_for_vblank(dev);

		temp = I915_READ(dpll_reg);
		if ((temp & DPLL_VCO_ENABLE) != 0) {
			I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
			I915_READ(dpll_reg);
		}

		/* Wait for the clocks to turn off. */
		udelay(150);
		break;
	}
}

/**
 * Sets the power management mode of the pipe and plane.
 *
 * This code should probably grow support for turning the cursor off and back
 * on appropriately at the same time as we're turning the pipe off/on.
 */
static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_master_private *master_priv;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	bool enabled;

	if (IS_IGDNG(dev))
		igdng_crtc_dpms(crtc, mode);
	else
		i9xx_crtc_dpms(crtc, mode);

	if (!dev->primary->master)
		return;

	master_priv = dev->primary->master->driver_priv;
	if (!master_priv->sarea_priv)
		return;

	enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;

	switch (pipe) {
	case 0:
		master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
		master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
		break;
	case 1:
		master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
		master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
		break;
	default:
		DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
		break;
	}

	intel_crtc->dpms_mode = mode;
}

static void intel_crtc_prepare (struct drm_crtc *crtc)
{
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
}

static void intel_crtc_commit (struct drm_crtc *crtc)
{
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
	crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
}

void intel_encoder_prepare (struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	/* lvds has its own version of prepare see intel_lvds_prepare */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
}

void intel_encoder_commit (struct drm_encoder *encoder)
{
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	/* lvds has its own version of commit see intel_lvds_commit */
	encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
}

static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
				  struct drm_display_mode *mode,
				  struct drm_display_mode *adjusted_mode)
{
	struct drm_device *dev = crtc->dev;
	if (IS_IGDNG(dev)) {
		/* FDI link clock is fixed at 2.7G */
		if (mode->clock * 3 > 27000 * 4)
			return MODE_CLOCK_HIGH;
	}
	return true;
}


/** Returns the core display clock speed for i830 - i945 */
static int intel_get_core_clock_speed(struct drm_device *dev)
{

	/* Core clock values taken from the published datasheets.
	 * The 830 may go up to 166 Mhz, which we should check.
	 */
	if (IS_I945G(dev))
		return 400000;
	else if (IS_I915G(dev))
		return 333000;
	else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
		return 200000;
	else if (IS_I915GM(dev)) {
		u16 gcfgc = 0;

		pci_read_config_word(dev->pdev, GCFGC, &gcfgc);

		if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
			return 133000;
		else {
			switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
			case GC_DISPLAY_CLOCK_333_MHZ:
				return 333000;
			default:
			case GC_DISPLAY_CLOCK_190_200_MHZ:
				return 190000;
			}
		}
	} else if (IS_I865G(dev))
		return 266000;
	else if (IS_I855(dev)) {
		u16 hpllcc = 0;
		/* Assume that the hardware is in the high speed state.  This
		 * should be the default.
		 */
		switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
		case GC_CLOCK_133_200:
		case GC_CLOCK_100_200:
			return 200000;
		case GC_CLOCK_166_250:
			return 250000;
		case GC_CLOCK_100_133:
			return 133000;
		}
	} else /* 852, 830 */
		return 133000;

	return 0; /* Silence gcc warning */
}

/**
 * Return the pipe currently connected to the panel fitter,
 * or -1 if the panel fitter is not present or not in use
 */
static int intel_panel_fitter_pipe (struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32  pfit_control;

	/* i830 doesn't have a panel fitter */
	if (IS_I830(dev))
		return -1;

	pfit_control = I915_READ(PFIT_CONTROL);

	/* See if the panel fitter is in use */
	if ((pfit_control & PFIT_ENABLE) == 0)
		return -1;

	/* 965 can place panel fitter on either pipe */
	if (IS_I965G(dev))
		return (pfit_control >> 29) & 0x3;

	/* older chips can only use pipe 1 */
	return 1;
}

struct fdi_m_n {
	u32        tu;
	u32        gmch_m;
	u32        gmch_n;
	u32        link_m;
	u32        link_n;
};

static void
fdi_reduce_ratio(u32 *num, u32 *den)
{
	while (*num > 0xffffff || *den > 0xffffff) {
		*num >>= 1;
		*den >>= 1;
	}
}

#define DATA_N 0x800000
#define LINK_N 0x80000

static void
igdng_compute_m_n(int bytes_per_pixel, int nlanes,
		int pixel_clock, int link_clock,
		struct fdi_m_n *m_n)
{
	u64 temp;

	m_n->tu = 64; /* default size */

	temp = (u64) DATA_N * pixel_clock;
	temp = div_u64(temp, link_clock);
	m_n->gmch_m = div_u64(temp * bytes_per_pixel, nlanes);
	m_n->gmch_n = DATA_N;
	fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);

	temp = (u64) LINK_N * pixel_clock;
	m_n->link_m = div_u64(temp, link_clock);
	m_n->link_n = LINK_N;
	fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
}


struct intel_watermark_params {
	unsigned long fifo_size;
	unsigned long max_wm;
	unsigned long default_wm;
	unsigned long guard_size;
	unsigned long cacheline_size;
};

/* IGD has different values for various configs */
static struct intel_watermark_params igd_display_wm = {
	IGD_DISPLAY_FIFO,
	IGD_MAX_WM,
	IGD_DFT_WM,
	IGD_GUARD_WM,
	IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params igd_display_hplloff_wm = {
	IGD_DISPLAY_FIFO,
	IGD_MAX_WM,
	IGD_DFT_HPLLOFF_WM,
	IGD_GUARD_WM,
	IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params igd_cursor_wm = {
	IGD_CURSOR_FIFO,
	IGD_CURSOR_MAX_WM,
	IGD_CURSOR_DFT_WM,
	IGD_CURSOR_GUARD_WM,
	IGD_FIFO_LINE_SIZE,
};
static struct intel_watermark_params igd_cursor_hplloff_wm = {
	IGD_CURSOR_FIFO,
	IGD_CURSOR_MAX_WM,
	IGD_CURSOR_DFT_WM,
	IGD_CURSOR_GUARD_WM,
	IGD_FIFO_LINE_SIZE
};
static struct intel_watermark_params i945_wm_info = {
	I945_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i915_wm_info = {
	I915_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I915_FIFO_LINE_SIZE
};
static struct intel_watermark_params i855_wm_info = {
	I855GM_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};
static struct intel_watermark_params i830_wm_info = {
	I830_FIFO_SIZE,
	I915_MAX_WM,
	1,
	2,
	I830_FIFO_LINE_SIZE
};

/**
 * intel_calculate_wm - calculate watermark level
 * @clock_in_khz: pixel clock
 * @wm: chip FIFO params
 * @pixel_size: display pixel size
 * @latency_ns: memory latency for the platform
 *
 * Calculate the watermark level (the level at which the display plane will
 * start fetching from memory again).  Each chip has a different display
 * FIFO size and allocation, so the caller needs to figure that out and pass
 * in the correct intel_watermark_params structure.
 *
 * As the pixel clock runs, the FIFO will be drained at a rate that depends
 * on the pixel size.  When it reaches the watermark level, it'll start
 * fetching FIFO line sized based chunks from memory until the FIFO fills
 * past the watermark point.  If the FIFO drains completely, a FIFO underrun
 * will occur, and a display engine hang could result.
 */
static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
					struct intel_watermark_params *wm,
					int pixel_size,
					unsigned long latency_ns)
{
	long entries_required, wm_size;

	entries_required = (clock_in_khz * pixel_size * latency_ns) / 1000000;
	entries_required /= wm->cacheline_size;

	DRM_DEBUG("FIFO entries required for mode: %d\n", entries_required);

	wm_size = wm->fifo_size - (entries_required + wm->guard_size);

	DRM_DEBUG("FIFO watermark level: %d\n", wm_size);

	/* Don't promote wm_size to unsigned... */
	if (wm_size > (long)wm->max_wm)
		wm_size = wm->max_wm;
	if (wm_size <= 0)
		wm_size = wm->default_wm;
	return wm_size;
}

struct cxsr_latency {
	int is_desktop;
	unsigned long fsb_freq;
	unsigned long mem_freq;
	unsigned long display_sr;
	unsigned long display_hpll_disable;
	unsigned long cursor_sr;
	unsigned long cursor_hpll_disable;
};

static struct cxsr_latency cxsr_latency_table[] = {
	{1, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
	{1, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
	{1, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */

	{1, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
	{1, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
	{1, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */

	{1, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
	{1, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
	{1, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */

	{0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
	{0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
	{0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */

	{0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
	{0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
	{0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */

	{0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
	{0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
	{0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
};

static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
						   int mem)
{
	int i;
	struct cxsr_latency *latency;

	if (fsb == 0 || mem == 0)
		return NULL;

	for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
		latency = &cxsr_latency_table[i];
		if (is_desktop == latency->is_desktop &&
			fsb == latency->fsb_freq && mem == latency->mem_freq)
			break;
	}
	if (i >= ARRAY_SIZE(cxsr_latency_table)) {
		DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
		return NULL;
	}
	return latency;
}

static void igd_disable_cxsr(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;

	/* deactivate cxsr */
	reg = I915_READ(DSPFW3);
	reg &= ~(IGD_SELF_REFRESH_EN);
	I915_WRITE(DSPFW3, reg);
	DRM_INFO("Big FIFO is disabled\n");
}

static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
			    int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	u32 reg;
	unsigned long wm;
	struct cxsr_latency *latency;

	latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
		dev_priv->mem_freq);
	if (!latency) {
		DRM_DEBUG("Unknown FSB/MEM found, disable CxSR\n");
		igd_disable_cxsr(dev);
		return;
	}

	/* Display SR */
	wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
				latency->display_sr);
	reg = I915_READ(DSPFW1);
	reg &= 0x7fffff;
	reg |= wm << 23;
	I915_WRITE(DSPFW1, reg);
	DRM_DEBUG("DSPFW1 register is %x\n", reg);

	/* cursor SR */
	wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
				latency->cursor_sr);
	reg = I915_READ(DSPFW3);
	reg &= ~(0x3f << 24);
	reg |= (wm & 0x3f) << 24;
	I915_WRITE(DSPFW3, reg);

	/* Display HPLL off SR */
	wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
		latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
	reg = I915_READ(DSPFW3);
	reg &= 0xfffffe00;
	reg |= wm & 0x1ff;
	I915_WRITE(DSPFW3, reg);

	/* cursor HPLL off SR */
	wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
				latency->cursor_hpll_disable);
	reg = I915_READ(DSPFW3);
	reg &= ~(0x3f << 16);
	reg |= (wm & 0x3f) << 16;
	I915_WRITE(DSPFW3, reg);
	DRM_DEBUG("DSPFW3 register is %x\n", reg);

	/* activate cxsr */
	reg = I915_READ(DSPFW3);
	reg |= IGD_SELF_REFRESH_EN;
	I915_WRITE(DSPFW3, reg);

	DRM_INFO("Big FIFO is enabled\n");

	return;
}

/*
 * Latency for FIFO fetches is dependent on several factors:
 *   - memory configuration (speed, channels)
 *   - chipset
 *   - current MCH state
 * It can be fairly high in some situations, so here we assume a fairly
 * pessimal value.  It's a tradeoff between extra memory fetches (if we
 * set this value too high, the FIFO will fetch frequently to stay full)
 * and power consumption (set it too low to save power and we might see
 * FIFO underruns and display "flicker").
 *
 * A value of 5us seems to be a good balance; safe for very low end
 * platforms but not overly aggressive on lower latency configs.
 */
const static int latency_ns = 5000;

static int intel_get_fifo_size(struct drm_device *dev, int plane)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t dsparb = I915_READ(DSPARB);
	int size;

	if (IS_I9XX(dev)) {
		if (plane == 0)
			size = dsparb & 0x7f;
		else
			size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
				(dsparb & 0x7f);
	} else if (IS_I85X(dev)) {
		if (plane == 0)
			size = dsparb & 0x1ff;
		else
			size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
				(dsparb & 0x1ff);
		size >>= 1; /* Convert to cachelines */
	} else if (IS_845G(dev)) {
		size = dsparb & 0x7f;
		size >>= 2; /* Convert to cachelines */
	} else {
		size = dsparb & 0x7f;
		size >>= 1; /* Convert to cachelines */
	}

	DRM_DEBUG("FIFO size - (0x%08x) %s: %d\n", dsparb, plane ? "B" : "A",
		  size);

	return size;
}

static void i965_update_wm(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;

	DRM_DEBUG("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR 8\n");

	/* 965 has limitations... */
	I915_WRITE(DSPFW1, (8 << 16) | (8 << 8) | (8 << 0));
	I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
}

static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
			   int planeb_clock, int sr_hdisplay, int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t fwater_lo;
	uint32_t fwater_hi;
	int total_size, cacheline_size, cwm, srwm = 1;
	int planea_wm, planeb_wm;
	struct intel_watermark_params planea_params, planeb_params;
	unsigned long line_time_us;
	int sr_clock, sr_entries = 0;

	/* Create copies of the base settings for each pipe */
	if (IS_I965GM(dev) || IS_I945GM(dev))
		planea_params = planeb_params = i945_wm_info;
	else if (IS_I9XX(dev))
		planea_params = planeb_params = i915_wm_info;
	else
		planea_params = planeb_params = i855_wm_info;

	/* Grab a couple of global values before we overwrite them */
	total_size = planea_params.fifo_size;
	cacheline_size = planea_params.cacheline_size;

	/* Update per-plane FIFO sizes */
	planea_params.fifo_size = intel_get_fifo_size(dev, 0);
	planeb_params.fifo_size = intel_get_fifo_size(dev, 1);

	planea_wm = intel_calculate_wm(planea_clock, &planea_params,
				       pixel_size, latency_ns);
	planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
				       pixel_size, latency_ns);
	DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);

	/*
	 * Overlay gets an aggressive default since video jitter is bad.
	 */
	cwm = 2;

	/* Calc sr entries for one plane configs */
	if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
		/* self-refresh has much higher latency */
		const static int sr_latency_ns = 6000;

		sr_clock = planea_clock ? planea_clock : planeb_clock;
		line_time_us = ((sr_hdisplay * 1000) / sr_clock);

		/* Use ns/us then divide to preserve precision */
		sr_entries = (((sr_latency_ns / line_time_us) + 1) *
			      pixel_size * sr_hdisplay) / 1000;
		sr_entries = roundup(sr_entries / cacheline_size, 1);
		DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
		srwm = total_size - sr_entries;
		if (srwm < 0)
			srwm = 1;
		if (IS_I9XX(dev))
			I915_WRITE(FW_BLC_SELF, (srwm & 0x3f));
	}

	DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
		  planea_wm, planeb_wm, cwm, srwm);

	fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
	fwater_hi = (cwm & 0x1f);

	/* Set request length to 8 cachelines per fetch */
	fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
	fwater_hi = fwater_hi | (1 << 8);

	I915_WRITE(FW_BLC, fwater_lo);
	I915_WRITE(FW_BLC2, fwater_hi);
}

static void i830_update_wm(struct drm_device *dev, int planea_clock,
			   int pixel_size)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
	int planea_wm;

	i830_wm_info.fifo_size = intel_get_fifo_size(dev, 0);

	planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
				       pixel_size, latency_ns);
	fwater_lo |= (3<<8) | planea_wm;

	DRM_DEBUG("Setting FIFO watermarks - A: %d\n", planea_wm);

	I915_WRITE(FW_BLC, fwater_lo);
}

/**
 * intel_update_watermarks - update FIFO watermark values based on current modes
 *
 * Calculate watermark values for the various WM regs based on current mode
 * and plane configuration.
 *
 * There are several cases to deal with here:
 *   - normal (i.e. non-self-refresh)
 *   - self-refresh (SR) mode
 *   - lines are large relative to FIFO size (buffer can hold up to 2)
 *   - lines are small relative to FIFO size (buffer can hold more than 2
 *     lines), so need to account for TLB latency
 *
 *   The normal calculation is:
 *     watermark = dotclock * bytes per pixel * latency
 *   where latency is platform & configuration dependent (we assume pessimal
 *   values here).
 *
 *   The SR calculation is:
 *     watermark = (trunc(latency/line time)+1) * surface width *
 *       bytes per pixel
 *   where
 *     line time = htotal / dotclock
 *   and latency is assumed to be high, as above.
 *
 * The final value programmed to the register should always be rounded up,
 * and include an extra 2 entries to account for clock crossings.
 *
 * We don't use the sprite, so we can ignore that.  And on Crestline we have
 * to set the non-SR watermarks to 8.
  */
static void intel_update_watermarks(struct drm_device *dev)
{
	struct drm_crtc *crtc;
	struct intel_crtc *intel_crtc;
	int sr_hdisplay = 0;
	unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
	int enabled = 0, pixel_size = 0;

	if (DSPARB_HWCONTROL(dev))
		return;

	/* Get the clock config from both planes */
	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		intel_crtc = to_intel_crtc(crtc);
		if (crtc->enabled) {
			enabled++;
			if (intel_crtc->plane == 0) {
				DRM_DEBUG("plane A (pipe %d) clock: %d\n",
					  intel_crtc->pipe, crtc->mode.clock);
				planea_clock = crtc->mode.clock;
			} else {
				DRM_DEBUG("plane B (pipe %d) clock: %d\n",
					  intel_crtc->pipe, crtc->mode.clock);
				planeb_clock = crtc->mode.clock;
			}
			sr_hdisplay = crtc->mode.hdisplay;
			sr_clock = crtc->mode.clock;
			if (crtc->fb)
				pixel_size = crtc->fb->bits_per_pixel / 8;
			else
				pixel_size = 4; /* by default */
		}
	}

	if (enabled <= 0)
		return;

	/* Single plane configs can enable self refresh */
	if (enabled == 1 && IS_IGD(dev))
		igd_enable_cxsr(dev, sr_clock, pixel_size);
	else if (IS_IGD(dev))
		igd_disable_cxsr(dev);

	if (IS_I965G(dev))
		i965_update_wm(dev);
	else if (IS_I9XX(dev) || IS_MOBILE(dev))
		i9xx_update_wm(dev, planea_clock, planeb_clock, sr_hdisplay,
			       pixel_size);
	else
		i830_update_wm(dev, planea_clock, pixel_size);
}

static int intel_crtc_mode_set(struct drm_crtc *crtc,
			       struct drm_display_mode *mode,
			       struct drm_display_mode *adjusted_mode,
			       int x, int y,
			       struct drm_framebuffer *old_fb)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	int fp_reg = (pipe == 0) ? FPA0 : FPB0;
	int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
	int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
	int dspcntr_reg = (pipe == 0) ? DSPACNTR : DSPBCNTR;
	int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
	int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
	int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
	int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
	int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
	int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
	int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
	int dspsize_reg = (pipe == 0) ? DSPASIZE : DSPBSIZE;
	int dsppos_reg = (pipe == 0) ? DSPAPOS : DSPBPOS;
	int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
	int refclk, num_outputs = 0;
	intel_clock_t clock;
	u32 dpll = 0, fp = 0, dspcntr, pipeconf;
	bool ok, is_sdvo = false, is_dvo = false;
	bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
	bool is_edp = false;
	struct drm_mode_config *mode_config = &dev->mode_config;
	struct drm_connector *connector;
	const intel_limit_t *limit;
	int ret;
	struct fdi_m_n m_n = {0};
	int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
	int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
	int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
	int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
	int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
	int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
	int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
	int lvds_reg = LVDS;
	u32 temp;
	int sdvo_pixel_multiply;
	int target_clock;

	drm_vblank_pre_modeset(dev, pipe);

	list_for_each_entry(connector, &mode_config->connector_list, head) {
		struct intel_output *intel_output = to_intel_output(connector);

		if (!connector->encoder || connector->encoder->crtc != crtc)
			continue;

		switch (intel_output->type) {
		case INTEL_OUTPUT_LVDS:
			is_lvds = true;
			break;
		case INTEL_OUTPUT_SDVO:
		case INTEL_OUTPUT_HDMI:
			is_sdvo = true;
			if (intel_output->needs_tv_clock)
				is_tv = true;
			break;
		case INTEL_OUTPUT_DVO:
			is_dvo = true;
			break;
		case INTEL_OUTPUT_TVOUT:
			is_tv = true;
			break;
		case INTEL_OUTPUT_ANALOG:
			is_crt = true;
			break;
		case INTEL_OUTPUT_DISPLAYPORT:
			is_dp = true;
			break;
		case INTEL_OUTPUT_EDP:
			is_edp = true;
			break;
		}

		num_outputs++;
	}

	if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
		refclk = dev_priv->lvds_ssc_freq * 1000;
		DRM_DEBUG("using SSC reference clock of %d MHz\n", refclk / 1000);
	} else if (IS_I9XX(dev)) {
		refclk = 96000;
		if (IS_IGDNG(dev))
			refclk = 120000; /* 120Mhz refclk */
	} else {
		refclk = 48000;
	}
	

	/*
	 * Returns a set of divisors for the desired target clock with the given
	 * refclk, or FALSE.  The returned values represent the clock equation:
	 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
	 */
	limit = intel_limit(crtc);
	ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
	if (!ok) {
		DRM_ERROR("Couldn't find PLL settings for mode!\n");
		drm_vblank_post_modeset(dev, pipe);
		return -EINVAL;
	}

	/* SDVO TV has fixed PLL values depend on its clock range,
	   this mirrors vbios setting. */
	if (is_sdvo && is_tv) {
		if (adjusted_mode->clock >= 100000
				&& adjusted_mode->clock < 140500) {
			clock.p1 = 2;
			clock.p2 = 10;
			clock.n = 3;
			clock.m1 = 16;
			clock.m2 = 8;
		} else if (adjusted_mode->clock >= 140500
				&& adjusted_mode->clock <= 200000) {
			clock.p1 = 1;
			clock.p2 = 10;
			clock.n = 6;
			clock.m1 = 12;
			clock.m2 = 8;
		}
	}

	/* FDI link */
	if (IS_IGDNG(dev)) {
		int lane, link_bw;
		/* eDP doesn't require FDI link, so just set DP M/N
		   according to current link config */
		if (is_edp) {
			struct drm_connector *edp;
			target_clock = mode->clock;
			edp = intel_pipe_get_output(crtc);
			intel_edp_link_config(to_intel_output(edp),
					&lane, &link_bw);
		} else {
			/* DP over FDI requires target mode clock
			   instead of link clock */
			if (is_dp)
				target_clock = mode->clock;
			else
				target_clock = adjusted_mode->clock;
			lane = 4;
			link_bw = 270000;
		}
		igdng_compute_m_n(3, lane, target_clock,
				  link_bw, &m_n);
	}

	if (IS_IGD(dev))
		fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
	else
		fp = clock.n << 16 | clock.m1 << 8 | clock.m2;

	if (!IS_IGDNG(dev))
		dpll = DPLL_VGA_MODE_DIS;

	if (IS_I9XX(dev)) {
		if (is_lvds)
			dpll |= DPLLB_MODE_LVDS;
		else
			dpll |= DPLLB_MODE_DAC_SERIAL;
		if (is_sdvo) {
			dpll |= DPLL_DVO_HIGH_SPEED;
			sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
			if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
				dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
			else if (IS_IGDNG(dev))
				dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
		}
		if (is_dp)
			dpll |= DPLL_DVO_HIGH_SPEED;

		/* compute bitmask from p1 value */
		if (IS_IGD(dev))
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
		else {
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
			/* also FPA1 */
			if (IS_IGDNG(dev))
				dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
		}
		switch (clock.p2) {
		case 5:
			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
			break;
		case 7:
			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
			break;
		case 10:
			dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
			break;
		case 14:
			dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
			break;
		}
		if (IS_I965G(dev) && !IS_IGDNG(dev))
			dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
	} else {
		if (is_lvds) {
			dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
		} else {
			if (clock.p1 == 2)
				dpll |= PLL_P1_DIVIDE_BY_TWO;
			else
				dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
			if (clock.p2 == 4)
				dpll |= PLL_P2_DIVIDE_BY_4;
		}
	}

	if (is_sdvo && is_tv)
		dpll |= PLL_REF_INPUT_TVCLKINBC;
	else if (is_tv)
		/* XXX: just matching BIOS for now */
		/*	dpll |= PLL_REF_INPUT_TVCLKINBC; */
		dpll |= 3;
	else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
		dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
	else
		dpll |= PLL_REF_INPUT_DREFCLK;

	/* setup pipeconf */
	pipeconf = I915_READ(pipeconf_reg);

	/* Set up the display plane register */
	dspcntr = DISPPLANE_GAMMA_ENABLE;

	/* IGDNG's plane is forced to pipe, bit 24 is to
	   enable color space conversion */
	if (!IS_IGDNG(dev)) {
		if (pipe == 0)
			dspcntr |= DISPPLANE_SEL_PIPE_A;
		else
			dspcntr |= DISPPLANE_SEL_PIPE_B;
	}

	if (pipe == 0 && !IS_I965G(dev)) {
		/* Enable pixel doubling when the dot clock is > 90% of the (display)
		 * core speed.
		 *
		 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
		 * pipe == 0 check?
		 */
		if (mode->clock > intel_get_core_clock_speed(dev) * 9 / 10)
			pipeconf |= PIPEACONF_DOUBLE_WIDE;
		else
			pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
	}

	dspcntr |= DISPLAY_PLANE_ENABLE;
	pipeconf |= PIPEACONF_ENABLE;
	dpll |= DPLL_VCO_ENABLE;


	/* Disable the panel fitter if it was on our pipe */
	if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
		I915_WRITE(PFIT_CONTROL, 0);

	DRM_DEBUG("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
	drm_mode_debug_printmodeline(mode);

	/* assign to IGDNG registers */
	if (IS_IGDNG(dev)) {
		fp_reg = pch_fp_reg;
		dpll_reg = pch_dpll_reg;
	}

	if (is_edp) {
		igdng_disable_pll_edp(crtc);
	} else if ((dpll & DPLL_VCO_ENABLE)) {
		I915_WRITE(fp_reg, fp);
		I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
		I915_READ(dpll_reg);
		udelay(150);
	}

	/* The LVDS pin pair needs to be on before the DPLLs are enabled.
	 * This is an exception to the general rule that mode_set doesn't turn
	 * things on.
	 */
	if (is_lvds) {
		u32 lvds;

		if (IS_IGDNG(dev))
			lvds_reg = PCH_LVDS;

		lvds = I915_READ(lvds_reg);
		lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
		/* Set the B0-B3 data pairs corresponding to whether we're going to
		 * set the DPLLs for dual-channel mode or not.
		 */
		if (clock.p2 == 7)
			lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
		else
			lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);

		/* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
		 * appropriately here, but we need to look more thoroughly into how
		 * panels behave in the two modes.
		 */

		I915_WRITE(lvds_reg, lvds);
		I915_READ(lvds_reg);
	}
	if (is_dp)
		intel_dp_set_m_n(crtc, mode, adjusted_mode);

	if (!is_edp) {
		I915_WRITE(fp_reg, fp);
		I915_WRITE(dpll_reg, dpll);
		I915_READ(dpll_reg);
		/* Wait for the clocks to stabilize. */
		udelay(150);

		if (IS_I965G(dev) && !IS_IGDNG(dev)) {
			sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
			I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
					((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
		} else {
			/* write it again -- the BIOS does, after all */
			I915_WRITE(dpll_reg, dpll);
		}
		I915_READ(dpll_reg);
		/* Wait for the clocks to stabilize. */
		udelay(150);
	}

	I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
		   ((adjusted_mode->crtc_htotal - 1) << 16));
	I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
		   ((adjusted_mode->crtc_hblank_end - 1) << 16));
	I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
		   ((adjusted_mode->crtc_hsync_end - 1) << 16));
	I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
		   ((adjusted_mode->crtc_vtotal - 1) << 16));
	I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
		   ((adjusted_mode->crtc_vblank_end - 1) << 16));
	I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
		   ((adjusted_mode->crtc_vsync_end - 1) << 16));
	/* pipesrc and dspsize control the size that is scaled from, which should
	 * always be the user's requested size.
	 */
	if (!IS_IGDNG(dev)) {
		I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
				(mode->hdisplay - 1));
		I915_WRITE(dsppos_reg, 0);
	}
	I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));

	if (IS_IGDNG(dev)) {
		I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
		I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
		I915_WRITE(link_m1_reg, m_n.link_m);
		I915_WRITE(link_n1_reg, m_n.link_n);

		if (is_edp) {
			igdng_set_pll_edp(crtc, adjusted_mode->clock);
		} else {
			/* enable FDI RX PLL too */
			temp = I915_READ(fdi_rx_reg);
			I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
			udelay(200);
		}
	}

	I915_WRITE(pipeconf_reg, pipeconf);
	I915_READ(pipeconf_reg);

	intel_wait_for_vblank(dev);

	I915_WRITE(dspcntr_reg, dspcntr);

	/* Flush the plane changes */
	ret = intel_pipe_set_base(crtc, x, y, old_fb);

	intel_update_watermarks(dev);

	drm_vblank_post_modeset(dev, pipe);

	return ret;
}

/** Loads the palette/gamma unit for the CRTC with the prepared values */
void intel_crtc_load_lut(struct drm_crtc *crtc)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
	int i;

	/* The clocks have to be on to load the palette. */
	if (!crtc->enabled)
		return;

	/* use legacy palette for IGDNG */
	if (IS_IGDNG(dev))
		palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
						   LGC_PALETTE_B;

	for (i = 0; i < 256; i++) {
		I915_WRITE(palreg + 4 * i,
			   (intel_crtc->lut_r[i] << 16) |
			   (intel_crtc->lut_g[i] << 8) |
			   intel_crtc->lut_b[i]);
	}
}

static int intel_crtc_cursor_set(struct drm_crtc *crtc,
				 struct drm_file *file_priv,
				 uint32_t handle,
				 uint32_t width, uint32_t height)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	struct drm_gem_object *bo;
	struct drm_i915_gem_object *obj_priv;
	int pipe = intel_crtc->pipe;
	uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
	uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
	uint32_t temp = I915_READ(control);
	size_t addr;
	int ret;

	DRM_DEBUG("\n");

	/* if we want to turn off the cursor ignore width and height */
	if (!handle) {
		DRM_DEBUG("cursor off\n");
		if (IS_MOBILE(dev) || IS_I9XX(dev)) {
			temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
			temp |= CURSOR_MODE_DISABLE;
		} else {
			temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
		}
		addr = 0;
		bo = NULL;
		mutex_lock(&dev->struct_mutex);
		goto finish;
	}

	/* Currently we only support 64x64 cursors */
	if (width != 64 || height != 64) {
		DRM_ERROR("we currently only support 64x64 cursors\n");
		return -EINVAL;
	}

	bo = drm_gem_object_lookup(dev, file_priv, handle);
	if (!bo)
		return -ENOENT;

	obj_priv = bo->driver_private;

	if (bo->size < width * height * 4) {
		DRM_ERROR("buffer is to small\n");
		ret = -ENOMEM;
		goto fail;
	}

	/* we only need to pin inside GTT if cursor is non-phy */
	mutex_lock(&dev->struct_mutex);
	if (!dev_priv->cursor_needs_physical) {
		ret = i915_gem_object_pin(bo, PAGE_SIZE);
		if (ret) {
			DRM_ERROR("failed to pin cursor bo\n");
			goto fail_locked;
		}
		addr = obj_priv->gtt_offset;
	} else {
		ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
		if (ret) {
			DRM_ERROR("failed to attach phys object\n");
			goto fail_locked;
		}
		addr = obj_priv->phys_obj->handle->busaddr;
	}

	if (!IS_I9XX(dev))
		I915_WRITE(CURSIZE, (height << 12) | width);

	/* Hooray for CUR*CNTR differences */
	if (IS_MOBILE(dev) || IS_I9XX(dev)) {
		temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
		temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
		temp |= (pipe << 28); /* Connect to correct pipe */
	} else {
		temp &= ~(CURSOR_FORMAT_MASK);
		temp |= CURSOR_ENABLE;
		temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
	}

 finish:
	I915_WRITE(control, temp);
	I915_WRITE(base, addr);

	if (intel_crtc->cursor_bo) {
		if (dev_priv->cursor_needs_physical) {
			if (intel_crtc->cursor_bo != bo)
				i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
		} else
			i915_gem_object_unpin(intel_crtc->cursor_bo);
		drm_gem_object_unreference(intel_crtc->cursor_bo);
	}
	mutex_unlock(&dev->struct_mutex);

	intel_crtc->cursor_addr = addr;
	intel_crtc->cursor_bo = bo;

	return 0;
fail:
	mutex_lock(&dev->struct_mutex);
fail_locked:
	drm_gem_object_unreference(bo);
	mutex_unlock(&dev->struct_mutex);
	return ret;
}

static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
{
	struct drm_device *dev = crtc->dev;
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	uint32_t temp = 0;
	uint32_t adder;

	if (x < 0) {
		temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
		x = -x;
	}
	if (y < 0) {
		temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
		y = -y;
	}

	temp |= x << CURSOR_X_SHIFT;
	temp |= y << CURSOR_Y_SHIFT;

	adder = intel_crtc->cursor_addr;
	I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
	I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);

	return 0;
}

/** Sets the color ramps on behalf of RandR */
void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
				 u16 blue, int regno)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	intel_crtc->lut_r[regno] = red >> 8;
	intel_crtc->lut_g[regno] = green >> 8;
	intel_crtc->lut_b[regno] = blue >> 8;
}

static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
				 u16 *blue, uint32_t size)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int i;

	if (size != 256)
		return;

	for (i = 0; i < 256; i++) {
		intel_crtc->lut_r[i] = red[i] >> 8;
		intel_crtc->lut_g[i] = green[i] >> 8;
		intel_crtc->lut_b[i] = blue[i] >> 8;
	}

	intel_crtc_load_lut(crtc);
}

/**
 * Get a pipe with a simple mode set on it for doing load-based monitor
 * detection.
 *
 * It will be up to the load-detect code to adjust the pipe as appropriate for
 * its requirements.  The pipe will be connected to no other outputs.
 *
 * Currently this code will only succeed if there is a pipe with no outputs
 * configured for it.  In the future, it could choose to temporarily disable
 * some outputs to free up a pipe for its use.
 *
 * \return crtc, or NULL if no pipes are available.
 */

/* VESA 640x480x72Hz mode to set on the pipe */
static struct drm_display_mode load_detect_mode = {
	DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
		 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
};

struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
					    struct drm_display_mode *mode,
					    int *dpms_mode)
{
	struct intel_crtc *intel_crtc;
	struct drm_crtc *possible_crtc;
	struct drm_crtc *supported_crtc =NULL;
	struct drm_encoder *encoder = &intel_output->enc;
	struct drm_crtc *crtc = NULL;
	struct drm_device *dev = encoder->dev;
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	struct drm_crtc_helper_funcs *crtc_funcs;
	int i = -1;

	/*
	 * Algorithm gets a little messy:
	 *   - if the connector already has an assigned crtc, use it (but make
	 *     sure it's on first)
	 *   - try to find the first unused crtc that can drive this connector,
	 *     and use that if we find one
	 *   - if there are no unused crtcs available, try to use the first
	 *     one we found that supports the connector
	 */

	/* See if we already have a CRTC for this connector */
	if (encoder->crtc) {
		crtc = encoder->crtc;
		/* Make sure the crtc and connector are running */
		intel_crtc = to_intel_crtc(crtc);
		*dpms_mode = intel_crtc->dpms_mode;
		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
			crtc_funcs = crtc->helper_private;
			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
			encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
		}
		return crtc;
	}

	/* Find an unused one (if possible) */
	list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
		i++;
		if (!(encoder->possible_crtcs & (1 << i)))
			continue;
		if (!possible_crtc->enabled) {
			crtc = possible_crtc;
			break;
		}
		if (!supported_crtc)
			supported_crtc = possible_crtc;
	}

	/*
	 * If we didn't find an unused CRTC, don't use any.
	 */
	if (!crtc) {
		return NULL;
	}

	encoder->crtc = crtc;
	intel_output->base.encoder = encoder;
	intel_output->load_detect_temp = true;

	intel_crtc = to_intel_crtc(crtc);
	*dpms_mode = intel_crtc->dpms_mode;

	if (!crtc->enabled) {
		if (!mode)
			mode = &load_detect_mode;
		drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
	} else {
		if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
			crtc_funcs = crtc->helper_private;
			crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
		}

		/* Add this connector to the crtc */
		encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
		encoder_funcs->commit(encoder);
	}
	/* let the connector get through one full cycle before testing */
	intel_wait_for_vblank(dev);

	return crtc;
}

void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
{
	struct drm_encoder *encoder = &intel_output->enc;
	struct drm_device *dev = encoder->dev;
	struct drm_crtc *crtc = encoder->crtc;
	struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
	struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;

	if (intel_output->load_detect_temp) {
		encoder->crtc = NULL;
		intel_output->base.encoder = NULL;
		intel_output->load_detect_temp = false;
		crtc->enabled = drm_helper_crtc_in_use(crtc);
		drm_helper_disable_unused_functions(dev);
	}

	/* Switch crtc and output back off if necessary */
	if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
		if (encoder->crtc == crtc)
			encoder_funcs->dpms(encoder, dpms_mode);
		crtc_funcs->dpms(crtc, dpms_mode);
	}
}

/* Returns the clock of the currently programmed mode of the given pipe. */
static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
	u32 fp;
	intel_clock_t clock;

	if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
		fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
	else
		fp = I915_READ((pipe == 0) ? FPA1 : FPB1);

	clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
	if (IS_IGD(dev)) {
		clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
		clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
	} else {
		clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
		clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
	}

	if (IS_I9XX(dev)) {
		if (IS_IGD(dev))
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
				DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
		else
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
			       DPLL_FPA01_P1_POST_DIV_SHIFT);

		switch (dpll & DPLL_MODE_MASK) {
		case DPLLB_MODE_DAC_SERIAL:
			clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
				5 : 10;
			break;
		case DPLLB_MODE_LVDS:
			clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
				7 : 14;
			break;
		default:
			DRM_DEBUG("Unknown DPLL mode %08x in programmed "
				  "mode\n", (int)(dpll & DPLL_MODE_MASK));
			return 0;
		}

		/* XXX: Handle the 100Mhz refclk */
		intel_clock(dev, 96000, &clock);
	} else {
		bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);

		if (is_lvds) {
			clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
				       DPLL_FPA01_P1_POST_DIV_SHIFT);
			clock.p2 = 14;

			if ((dpll & PLL_REF_INPUT_MASK) ==
			    PLLB_REF_INPUT_SPREADSPECTRUMIN) {
				/* XXX: might not be 66MHz */
				intel_clock(dev, 66000, &clock);
			} else
				intel_clock(dev, 48000, &clock);
		} else {
			if (dpll & PLL_P1_DIVIDE_BY_TWO)
				clock.p1 = 2;
			else {
				clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
					    DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
			}
			if (dpll & PLL_P2_DIVIDE_BY_4)
				clock.p2 = 4;
			else
				clock.p2 = 2;

			intel_clock(dev, 48000, &clock);
		}
	}

	/* XXX: It would be nice to validate the clocks, but we can't reuse
	 * i830PllIsValid() because it relies on the xf86_config connector
	 * configuration being accurate, which it isn't necessarily.
	 */

	return clock.dot;
}

/** Returns the currently programmed mode of the given pipe. */
struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
					     struct drm_crtc *crtc)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
	int pipe = intel_crtc->pipe;
	struct drm_display_mode *mode;
	int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
	int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
	int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
	int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);

	mode = kzalloc(sizeof(*mode), GFP_KERNEL);
	if (!mode)
		return NULL;

	mode->clock = intel_crtc_clock_get(dev, crtc);
	mode->hdisplay = (htot & 0xffff) + 1;
	mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
	mode->hsync_start = (hsync & 0xffff) + 1;
	mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
	mode->vdisplay = (vtot & 0xffff) + 1;
	mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
	mode->vsync_start = (vsync & 0xffff) + 1;
	mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;

	drm_mode_set_name(mode);
	drm_mode_set_crtcinfo(mode, 0);

	return mode;
}

static void intel_crtc_destroy(struct drm_crtc *crtc)
{
	struct intel_crtc *intel_crtc = to_intel_crtc(crtc);

	if (intel_crtc->mode_set.mode)
		drm_mode_destroy(crtc->dev, intel_crtc->mode_set.mode);
	drm_crtc_cleanup(crtc);
	kfree(intel_crtc);
}

static const struct drm_crtc_helper_funcs intel_helper_funcs = {
	.dpms = intel_crtc_dpms,
	.mode_fixup = intel_crtc_mode_fixup,
	.mode_set = intel_crtc_mode_set,
	.mode_set_base = intel_pipe_set_base,
	.prepare = intel_crtc_prepare,
	.commit = intel_crtc_commit,
};

static const struct drm_crtc_funcs intel_crtc_funcs = {
	.cursor_set = intel_crtc_cursor_set,
	.cursor_move = intel_crtc_cursor_move,
	.gamma_set = intel_crtc_gamma_set,
	.set_config = drm_crtc_helper_set_config,
	.destroy = intel_crtc_destroy,
};


static void intel_crtc_init(struct drm_device *dev, int pipe)
{
	struct intel_crtc *intel_crtc;
	int i;

	intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
	if (intel_crtc == NULL)
		return;

	drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);

	drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
	intel_crtc->pipe = pipe;
	intel_crtc->plane = pipe;
	for (i = 0; i < 256; i++) {
		intel_crtc->lut_r[i] = i;
		intel_crtc->lut_g[i] = i;
		intel_crtc->lut_b[i] = i;
	}

	intel_crtc->cursor_addr = 0;
	intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
	drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);

	intel_crtc->mode_set.crtc = &intel_crtc->base;
	intel_crtc->mode_set.connectors = (struct drm_connector **)(intel_crtc + 1);
	intel_crtc->mode_set.num_connectors = 0;

	if (i915_fbpercrtc) {



	}
}

int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
				struct drm_file *file_priv)
{
	drm_i915_private_t *dev_priv = dev->dev_private;
	struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
	struct drm_crtc *crtc = NULL;
	int pipe = -1;

	if (!dev_priv) {
		DRM_ERROR("called with no initialization\n");
		return -EINVAL;
	}

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		if (crtc->base.id == pipe_from_crtc_id->crtc_id) {
			pipe = intel_crtc->pipe;
			break;
		}
	}

	if (pipe == -1) {
		DRM_ERROR("no such CRTC id\n");
		return -EINVAL;
	}

	pipe_from_crtc_id->pipe = pipe;

       return 0;
}

struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
{
	struct drm_crtc *crtc = NULL;

	list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
		struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
		if (intel_crtc->pipe == pipe)
			break;
	}
	return crtc;
}

static int intel_connector_clones(struct drm_device *dev, int type_mask)
{
	int index_mask = 0;
	struct drm_connector *connector;
	int entry = 0;

        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
		struct intel_output *intel_output = to_intel_output(connector);
		if (type_mask & intel_output->clone_mask)
			index_mask |= (1 << entry);
		entry++;
	}
	return index_mask;
}


static void intel_setup_outputs(struct drm_device *dev)
{
	struct drm_i915_private *dev_priv = dev->dev_private;
	struct drm_connector *connector;

	intel_crt_init(dev);

	/* Set up integrated LVDS */
	if (IS_MOBILE(dev) && !IS_I830(dev))
		intel_lvds_init(dev);

	if (IS_IGDNG(dev)) {
		int found;

		if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
			intel_dp_init(dev, DP_A);

		if (I915_READ(HDMIB) & PORT_DETECTED) {
			/* check SDVOB */
			/* found = intel_sdvo_init(dev, HDMIB); */
			found = 0;
			if (!found)
				intel_hdmi_init(dev, HDMIB);
			if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
				intel_dp_init(dev, PCH_DP_B);
		}

		if (I915_READ(HDMIC) & PORT_DETECTED)
			intel_hdmi_init(dev, HDMIC);

		if (I915_READ(HDMID) & PORT_DETECTED)
			intel_hdmi_init(dev, HDMID);

		if (I915_READ(PCH_DP_C) & DP_DETECTED)
			intel_dp_init(dev, PCH_DP_C);

		if (I915_READ(PCH_DP_D) & DP_DETECTED)
			intel_dp_init(dev, PCH_DP_D);

	} else if (IS_I9XX(dev)) {
		bool found = false;

		if (I915_READ(SDVOB) & SDVO_DETECTED) {
			found = intel_sdvo_init(dev, SDVOB);
			if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
				intel_hdmi_init(dev, SDVOB);

			if (!found && SUPPORTS_INTEGRATED_DP(dev))
				intel_dp_init(dev, DP_B);
		}

		/* Before G4X SDVOC doesn't have its own detect register */

		if (I915_READ(SDVOB) & SDVO_DETECTED)
			found = intel_sdvo_init(dev, SDVOC);

		if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {

			if (SUPPORTS_INTEGRATED_HDMI(dev))
				intel_hdmi_init(dev, SDVOC);
			if (SUPPORTS_INTEGRATED_DP(dev))
				intel_dp_init(dev, DP_C);
		}

		if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
			intel_dp_init(dev, DP_D);
	} else
		intel_dvo_init(dev);

	if (IS_I9XX(dev) && IS_MOBILE(dev) && !IS_IGDNG(dev))
		intel_tv_init(dev);

	list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
		struct intel_output *intel_output = to_intel_output(connector);
		struct drm_encoder *encoder = &intel_output->enc;

		encoder->possible_crtcs = intel_output->crtc_mask;
		encoder->possible_clones = intel_connector_clones(dev,
						intel_output->clone_mask);
	}
}

static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_device *dev = fb->dev;

	if (fb->fbdev)
		intelfb_remove(dev, fb);

	drm_framebuffer_cleanup(fb);
	mutex_lock(&dev->struct_mutex);
	drm_gem_object_unreference(intel_fb->obj);
	mutex_unlock(&dev->struct_mutex);

	kfree(intel_fb);
}

static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
						struct drm_file *file_priv,
						unsigned int *handle)
{
	struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
	struct drm_gem_object *object = intel_fb->obj;

	return drm_gem_handle_create(file_priv, object, handle);
}

static const struct drm_framebuffer_funcs intel_fb_funcs = {
	.destroy = intel_user_framebuffer_destroy,
	.create_handle = intel_user_framebuffer_create_handle,
};

int intel_framebuffer_create(struct drm_device *dev,
			     struct drm_mode_fb_cmd *mode_cmd,
			     struct drm_framebuffer **fb,
			     struct drm_gem_object *obj)
{
	struct intel_framebuffer *intel_fb;
	int ret;

	intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
	if (!intel_fb)
		return -ENOMEM;

	ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
	if (ret) {
		DRM_ERROR("framebuffer init failed %d\n", ret);
		return ret;
	}

	drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);

	intel_fb->obj = obj;

	*fb = &intel_fb->base;

	return 0;
}


static struct drm_framebuffer *
intel_user_framebuffer_create(struct drm_device *dev,
			      struct drm_file *filp,
			      struct drm_mode_fb_cmd *mode_cmd)
{
	struct drm_gem_object *obj;
	struct drm_framebuffer *fb;
	int ret;

	obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
	if (!obj)
		return NULL;

	ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
	if (ret) {
		mutex_lock(&dev->struct_mutex);
		drm_gem_object_unreference(obj);
		mutex_unlock(&dev->struct_mutex);
		return NULL;
	}

	return fb;
}

static const struct drm_mode_config_funcs intel_mode_funcs = {
	.fb_create = intel_user_framebuffer_create,
	.fb_changed = intelfb_probe,
};

void intel_modeset_init(struct drm_device *dev)
{
	int num_pipe;
	int i;

	drm_mode_config_init(dev);

	dev->mode_config.min_width = 0;
	dev->mode_config.min_height = 0;

	dev->mode_config.funcs = (void *)&intel_mode_funcs;

	if (IS_I965G(dev)) {
		dev->mode_config.max_width = 8192;
		dev->mode_config.max_height = 8192;
	} else if (IS_I9XX(dev)) {
		dev->mode_config.max_width = 4096;
		dev->mode_config.max_height = 4096;
	} else {
		dev->mode_config.max_width = 2048;
		dev->mode_config.max_height = 2048;
	}

	/* set memory base */
	if (IS_I9XX(dev))
		dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
	else
		dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);

	if (IS_MOBILE(dev) || IS_I9XX(dev))
		num_pipe = 2;
	else
		num_pipe = 1;
	DRM_DEBUG("%d display pipe%s available.\n",
		  num_pipe, num_pipe > 1 ? "s" : "");

	for (i = 0; i < num_pipe; i++) {
		intel_crtc_init(dev, i);
	}

	intel_setup_outputs(dev);
}

void intel_modeset_cleanup(struct drm_device *dev)
{
	drm_mode_config_cleanup(dev);
}


/* current intel driver doesn't take advantage of encoders
   always give back the encoder for the connector
*/
struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
{
	struct intel_output *intel_output = to_intel_output(connector);

	return &intel_output->enc;
}